
From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

From Motion Planning to Control - A Navigation Framework
for an Autonomous Unmanned Aerial Vehicle

Mariusz Wzorek, Gianpaolo Conte, Piotr Rudol
Torsten Merz, Simone Duranti, Patrick Doherty

Department of Computer and Information Science
Linköping University, SE-58183 Linköping, Sweden
{marwz,giaco,pioru,g-torme,simdu,patdo}@ida.liu.se

ABSTRACT
The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously in dynamic and complex
operational environments is becoming increasingly more common. While the application domains in which they
are currently used are still predominantly military in nature, in the future we can expect widespread usage in the
civil and commercial sectors. In order to insert such vehicles into commercial airspace, it is inherently important
that these vehicles can generate collision-free motion plans and also be able to modify such plans during their
execution in order to deal with contingencies which arise during the course of operation. In this paper, we
present a fully deployed autonomous unmanned aerial vehicle, based on a Yamaha RMAX helicopter, which
is capable of navigation in urban environments. We describe a motion planning framework which integrates
two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Trees
together with a path following controller that is used during path execution. Integrating deliberative services, such
as planners, seamlessly with control components in autonomous architectures is currently one of the major open
problems in robotics research. We show how the integration between the motion planning framework and the
control kernel is done in our system.

Additionally, we incorporate a dynamic path reconfigurability scheme. It offers a surprisingly efficient method
for dynamic replanning of a motion plan based on unforeseen contingencies which may arise during the execution
of a plan. Those contingencies can be inserted via ground operator/UAV interaction to dynamically change UAV
flight paths on the fly. The system has been verified through simulation and in actual flight. We present empirical
results of the performance of the framework and the path following controller.

BIOGRAPHY
Patrick Doherty is a Professor at the Department of Computer and Information Science (IDA), Linköping
University (LiU), Sweden. He is director of the Artificial Intelligence and Integrated Computer Systems Division
at IDA and his research interests are in the area of knowledge representation, automated planning, autonomous
systems, approximate reasoning and UAV technologies.
Mariusz Wzorek (MSc) is a graduate student at LiU. Research focus: automated planning techniques, autonomous
unmanned systems and robotics.
Gianpaolo Conte (MSc) is a graduate student at LiU. Research focus: control and sensor fusion related problems.
Piotr Rudol (MSc) is a graduate student at LiU. Research focus: non-GPS navigation, mapping and obstacle
avoidance for UAVs.
Torsten Merz (PhD) has been involved in the WITAS project at LiU for many years. Since 2006, he is working
at the Autonomous Systems Lab at CSIRO (Australia) leading the development of an unmanned aerial vehicle for
power line inspection.
Simone Duranti (MSc) is working at Saab Aerosystems and LiU. He has been involved in the WITAS project at
LiU for many years.

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

1 Introduction

Navigating in environments cluttered with obstacles in
the vicinity of building structures requires path planning
algorithms which deliver collision-free paths, accurate
controllers able to execute such paths even in the
presence of inhospitable weather conditions (e.g. wind
gusts) and a reliable mechanism that coordinates the
two.

This paper describes an approach to combining path
planning techniques with a path execution mechanism
(including a robust 3D path following control mode)
in a distributed software architecture used in a fully
deployed rotor-based Unmanned Aerial Vehicle (UAV).
Details of many of the software components used in
the distributed architecture are provided. An emphasis
is placed on the components responsible for path
execution. The approach allows for interaction of a path
planning algorithm with a path following control mode
and copes with their different timing characteristics
and distributed communication. It also includes a
safety mechanism which is necessary for operating
UAVs in urban environments. For the experiments
we present in this paper, we assume a predominantly
static environment which is described by a 3D model.
An onboard geographic information system (GIS) is
used to supply information about building structures,
vegetation, etc. Certain types of dynamic changes in
the environment are handled by the use of no-fly zones
or pop-up zones which can be added or removed on the
fly during the course of a mission.

Our hardware/software framework incorporates
software distribution technologies for a number
of reasons. Firstly, existing commercial off-the-shelf
(COTS) hardware suitable enough for airborne systems,
does not yet have sufficient computational power and
storage space to encompass all the necessary software
components needed to achieve sophisticated mission
scenarios autonomously. Additionally, in order to
use third-party software without compromising flight
safety, it is necessary to separate software components
that can crash the operating system from software that
is crucial for the UAV flight operation. Another reason
for using a distributed solution is to take advantage
of additional resources which may be found on the
Internet.

One of the long term goals which has guided our
research is the idea of push-button missions where the
ground operator supplies mission tasks to a UAV at
a very high-level of abstraction and the UAV system
does most of the work ranging from planning to actual

execution of the mission.

The Autonomous UAV Technologies Laboratory 1 at
Linköping University, Sweden, has been developing
fully autonomous rotor-based UAV systems in the mini-
and micro-UAV class. Our current system design is the
result of an evolutionary process based on many years
of developing, testing and maintaining sophisticated
UAV systems. In particular, we have used the Yamaha
RMAX helicopter platform and developed a number of
micro air vehicles from scratch.

Much effort has also gone into the development
of useful ground control station interfaces which
encourage the idea of push-button missions, letting
the system itself plan and execute complex missions
with as little effort as possible required from the
ground operator other than stating mission goals at a
high-level of abstraction and monitoring the execution
of the ensuing mission. The mission scenarios we
use are generic in nature and may be instantiated
relative to different applications. For example, the
functionality required for the monitoring/surveillance
mission described below can be modified slightly and
used in mission scenarios such as power line inspection.

An example of such a push-button mission that
has been used as an application scenario in our
research is a combined monitoring/surveillance and
photogrammetry mission out in the field in an urban
area with the goal of investigating facades of building
structures and gathering both video sequences and
photographs of building facades. For this experiment,
we have used a Yamaha RMAX helicopter system as a
platform. Let us assume the operational environment
is in an urban area with a complex configuration
of building and road structures. A number of
these physical structures are of interest since one has
previously observed suspicious behavior and suspects
the possibility of terrorist activity. The goal of the
mission is to investigate a number of these buildings and
acquire video and photos from each of the building’s
facades. It is assumed the UAV has a 3D model of
the area and a GIS with building and road structure
information on-line.

The ground operator would simply mark building
structures of interest on a map display and press a button
to generate a complete multi-segment mission that flies
to each building, moves to waypoints to view each
facade, positions the camera accordingly and begins
to relay video and/or photographs. The motion plans
generated are also guaranteed to be collision-free from

1www.ida.liu.se/∼patdo/auttek/

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

static obstacles. If the ground operator is satisfied with
the generated mission, he or she simply clicks a confirm
button and the mission begins. During the mission, the
ground operator has the possibility of suspending the
mission to take a closer look at interesting facades of
buildings, perhaps taking a closer look into windows or
openings and then continuing the mission. This mission
has been successfully executed robustly and repeatedly
from take-off to landing using the RMAX. The plan
generation and execution mechanism described in this
paper is an integral part of such a complex mission.

1.1 Related Work

Many universities (20; 22; 1; 19; 9; 21; 23) have been
and continue to do research with autonomous helicopter
systems. Most of the research has focussed on
low-level control of such systems with less emphasis on
high-autonomy as in our case. The research area itself
is highly multidisciplinary and requires competences in
many areas such as control system design, computer
science, artificial intelligence, avionics and electronics.
We briefly mention a number of interesting university
research projects representative of the type of research
being pursued.

The Autonomous Helicopter Project at Carnegie Mellon
University has done a great deal of research on
helicopter modeling (16) and helicopter control
(2), developing and testing robust flight control for
full-envelope flight.

The School of Aerospace Engineering at Georgia Tech
has developed an adaptive control system using neural
networks (10) and has demonstrated the ability for
high speed flight and operation with aggressive flight
maneuvers using the Yamaha RMAX helicopter.

The motion planning problem for helicopters has been
investigated by (6). Here the problem of the operation
of an autonomous vehicle in a dynamic environment
has been an issue of research and a method to reduce
the computational complexity of the problem has been
proposed based on the quantization of the system
dynamics leading to a control architecture based on a
hybrid automaton. The proposed approach has been
tested in simulation.

1.2 Paper Outline

The paper is structured as follows. In section 2, we
describe the hardware architecture developed and used

on a Yamaha RMAX helicopter and on-board hardware
components. In section 3, we describe the distributed
CORBA-based software architecture and a number of
software modules used in an integrated manner with the
robotic system. Much of this work was completed in
the WITAS 2 UAV project. In section 4, we describe
the planning techniques used in the UAV system. In
section 5, the path following control mode is described
in detail and in section 6 we descibe the path execution
mechanism. Dynamic path replanning capability is
described in section 7 and experimental results of
two example missions are presented in section 8. In
section 9, we conclude and discuss future work.

2 The Hardware Platform

Figure 1: The WITAS RMAX Helicopter in an urban
environment

The WITAS UAV platform (4) is a slightly modified
Yamaha RMAX helicopter (Fig. 1). It has a total length
of 3.6 m (including main rotor) and is powered by
a 21 hp two-stroke engine with a maximum takeoff
weight of 95 kg. The helicopter has a built-in
attitude sensor (YAS) and an attitude control system
(YACS). The hardware platform developed during the
WITAS UAV project is integrated with the Yamaha
platform as shown in Fig. 2. It contains three PC104
embedded computers. The primary flight control
(PFC) system runs on a PIII (700Mhz), and includes a
wireless Ethernet bridge, a GPS receiver, and several
additional sensors including a barometric altitude
sensor. The PFC is connected to the YAS and YACS,
an image processing computer and a computer for
deliberative capabilities. The image processing (IPC)

2WITAS is an acronym for the Wallenberg Information
Technology and Autonomous Systems Lab which hosted a long term
UAV research project (1997-2004).

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

system runs on the second PC104 embedded computer
(PIII 700MHz), and includes a color CCD camera
mounted on a pan/tilt unit, a video transmitter and
a recorder (miniDV). The deliberative/reactive (DRC)
system runs on the third PC104 embedded computer
(Pentium-M 1.4GHz) and executes all high-end
autonomous functionality. Network communication
between computers is physically realized with serial
line RS232C and Ethernet. Ethernet is mainly used for
CORBA applications (see below), remote login and file
transfer, while serial lines are used for hard real-time
networking.

DRC
- 1.4 GHz P-M
- 1GB RAM
- 512 MB flash

IPC
- 700 MHz PIII
- 256MB RAM
- 512 MB flash

Yamaha RMAX
(YAS, YACS)

ethernet
switch

PFC
- 700 MHz PIII
- 256MB RAM
- 512 MB flash

sensor
suite

sensor
suite

RS232C
Ethernet
Other media

Figure 2: On-board hardware schematic

3 The Software Architecture

A hybrid deliberative/reactive software architecture has
been developed for the UAV. Conceptually, it is a
layered, hierarchical system with deliberative, reactive
and control components, although the system can easily
support both vertical and horizontal data and control
flow. Fig. 3 presents the functional layer structure of
the architecture and emphasizes its reactive-concentric
nature. Fig. 4 depicts the navigation subsystem and
main software components. With respect to timing
characteristics, the architecture can be divided into two
layers: (a) the hard real-time part, which mostly deals
with hardware and control laws (also referred to as
the Control Kernel) and (b) the non real-time part,
which includes deliberative services of the system (also
referred to as the High-level system) 3. All three

3Note that distinction between the Control Kernel and the
High-level system is done based mainly on the timing characterisitcs
and it does not exclude, for example, placing some deliberative

Figure 3: Funcional structure of the architecture

computers in our UAV platform (i.e. PFC, IPC and
DRC) have both hard and soft real-time components
but the processor time is assigned to them in different
proportions. On one extreme, the PFC runs mostly
hard real-time tasks with only minimum user space
applications (e.g. SSH daemon for remote login). On
the other extreme, the DRC uses the real-time part
only for device drivers and real-time communication.
The majority of processor time is spent on running
the deliberative services. Among others, the most
important ones from the perspective of this paper are the
Path Planner, the Task Procedure Execution Module and
the Helicopter Server which encapsulates the Control
Kernel (CK) of the UAV system.

The CK is a distributed real-time runtime environment
and is used for accessing the hardware, implementing
continuous control laws, and control mode switching.
Moreover, the CK coordinates the real-time
communication between all three on-board computers
as well as between CKs of other robotic systems. In
our case, we perform multi-platform missions with
two identical RMAX helicopter platforms developed
in the WITAS UAV project. The CK is implemented
using C language. This part of the system uses the
Real-Time Application Interface (RTAI) (13) which
provides industrial-grade real-time operating system
functionality. RTAI is a hard real-time extension to a
standard Linux kernel (Debian in our case) and has
been developed at the Department of the Aerospace
Engineering of Politecnico di Milano.

The real-time performance is achieved by inserting

services (e.g. prediction) in the Control Kernel.

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

Task
Procedures*

HCSM
Interpreter

Other
Modes

Communi-
cation

Handling

PFC

DRC

Real-time
communication channel

Path Planner
Service*

Helicopter Server*

CORBA
HCSM Interpreter (C-API)

GIS
Service*

Other
Services*

Hardware
Handling

Path
Following

Mode

Hovering
Mode

Distributed
System*- CORBA-based

Figure 4: Navigation subsystem and main software
components

a module into the Linux kernel space. Since the
module takes full control over the processor it is
necessary to suspend it in order to let the user space
applications run. The standard Linux distribution is a
task with lower priority, it runs preemptively and can
be interrupted at any time. For that reason a locking
mechanism is used when both user- and kernel-space
processes communicate though shared memory. It is
also important to mention that the CK is self-contained
and only the part running on the PFC computer is
necessary for maintaining flight capabilities. Such
separation enhances safety of the operation of the
UAV platform which is especially important in urban
environments.

The Control Kernel has a hybrid flavor. Its components
contain continuous control laws and mode switching is
realized using event-driven hierarchical concurrent state
machines (HCSMs). They can be represented as state
transition diagrams similar to those of statecharts (8).
In our system, tables describing transitions derived from
such diagrams are passed to the system in the form of
text files and are interpreted by a HCSM Interpreter at
run-time in each of the on-board computers. Thanks to
its compact and efficient implementation, the interpreter
runs in the real-time part of the system as a task with
high execution rate. It allows coordinating all functional

units of the control system from the lowest level
hardware components (e.g. device drivers) through
control laws (e.g. hovering, path following) and
communication to the interface used by the Helicopter
Server.

The use of HCSMs also allows implementing complex
behaviors consisting of other lower level ones. For
instance, landing mode includes control laws steering
the helicopter and coordinates camera system/image
processing functionalities. When the landing behavior
is activated, the CK takes care of searching for a
pre-defined pattern with the camera system, feeding
the Kalman filter with image processing results which
fuses them with the helicopter’s inertial measurements.
The CK sends appropriate feedback when the landing
procedure is finished or it has been aborted. For details
see (15).

For achieving best performance, a single
non-preemptive real-time task is used which follows a
predefined static schedule to run all functional units.
Similarly, the real-time communication physically
realized using serial lines is statically scheduled with
respect to packet sizes and rates of sending. For a
detailed description see (14).

The high-level part of the system has reduced timing
requirements and is responsible for coordinating the
execution of reactive Task Procedures (TPs). This
part of the system uses Common Object Request
Broker Architecture (CORBA) as its distribution
backbone. A TP is a high-level procedural execution
component which provides a computational mechanism
for achieving different robotic behaviors by using
both deliberative and control components in a highly
distributed and concurrent manner. The control and
sensing components of the system are accessible for
TPs through the Helicopter Server which in turn uses
an interface provided by the Control Kernel. A TP
can initiate one of the autonomous control flight modes
available in the UAV (i.e. take off, vision-based landing,
hovering, dynamic path following (see section 5) or
reactive flight modes for interception and tracking).
Additionally, TPs can control the payload of the
UAV platform which currently consists of the video
camera mounted on a pan-tilt unit. TPs receive
data delivered by the PFC and IPC computers i.e.
helicopter state and camera system state (including
image processing results), respectively. The Helicopter
Server on one side uses CORBA to be accessible by TPs
or other components of the system, on the other side it
communicates through shared memory with the HCSM
based interface running in the real-time part of the DRC

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

software.

The software architecture described is used to achieve
missions which require deliberative services such as
path planners and control laws such as path following
described in detail in sections 4 and 5, respectively.
Details of the interaction between the TPs, path
planners and the Control Kernel are presented in section
6.

4 The Path Planning Algorithms

In this section, we provide a brief overview of the
sample-based path planning techniques used in our
framework. More detailed descriptions of the two path
planners can be found in (18; 17).

The problem of finding optimal paths between two
configurations in a high-dimensional configuration
space such as a helicopter is intractable in general.
Sample-based approaches such as probabilistic
roadmaps (PRM) or rapidly exploring random trees
(RRT) often make the path planning problem solvable
in practice by sacrificing completeness and optimality.

4.1 Probabilistic Roadmaps

The standard probabilistic roadmap (PRM) algorithm
(11) works in two phases, one off-line and the
other on-line. In the off-line phase a roadmap is
generated using a 3D world model. Configurations
are randomly generated and checked for collisions
with the model. A local path planner is then used
to connect collision-free configurations taking into
account kinematic and dynamic constraints of the
helicopter. Paths between two configurations are also
checked for collisions. In the on-line or querying
phase, initial and goal configurations are provided and
an attempt is made to connect each configuration to
the previously generated roadmap using the local path
planner. A graph search algorithm such as A∗ is
then used to find a path from the initial to the goal
configuration in the augmented roadmap.

Fig. 5 provides a schema of the PRM path planner
used in the WITAS UAV system. The planner uses an
OBBTree-algorithm (7) for collision checking and an
A∗ algorithm for graph search. Here one can optimize
for shortest path, minimal fuel usage, etc. The following
extensions have been made with respect to the standard
version of the PRM algorithm in order to adapt the
approach to our UAV platform.

Figure 5: PRM path plan generation

• Multi-level roadmap planning

The standard probabilistic roadmap algorithm is
formulated for fully controllable systems only.
This assumption is true for a helicopter flying at
low speed with the capability to stop and hover
at each waypoint. However, when the speed
is increased the helicopter is no longer able to
negotiate turns of a smaller radius, which imposes
demands on the planner similar to non-holonomic
constraints for car-like robots. In this case, linear
paths are first used to connect configurations in
the graph and at a later stage these are replaced
with cubic curves when possible. These are
required for smooth high speed flight. If it is
not possible to replace a linear path segment
with a cubic curve then the helicopter has to
slow down and switch to hovering mode at the
connecting waypoint before continuing. From
our experience, this rarely happens.

• Runtime constraint handling

Our motion planner has been extended to deal
with different types of constraints at runtime not
available during roadmap construction. Such
constraints can be introduced at the time of
a query for a path plan. Some examples
of runtime constraints currently implemented
include maximum and minimum altitude, adding
forbidden regions (no-fly zones) and placing
limits on the ascent-/descent-rate. Such
constraints are dealt with during the A∗ search
phase.

The mean planning time in the current implementation
(for our operational environments) is below 1000 ms
and the use of runtime constraints do not noticeably
influence the mean.

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

4.2 Rapidly Exploring Random Trees

The use of rapidly exploring random trees (RRT)
provides an efficient motion planning algorithm that
constructs a roadmap online rather than offline. The
algorithm (12) generates two trees rooted in the start
and end configurations by exploring the configuration
space randomly in both directions. While the trees are
being generated, an attempt is made at specific intervals
to connect them to create one roadmap. After the
roadmap is created, the remaining steps in the algorithm
are the same as with PRMs. In comparison with the
PRM planner, the mean planning time with RRT is also
below 1000 ms, but in this case, the success rate is
much lower and the generated plans are not optimal
which may sometimes cause anomalous detours (17).

Results of the path planning algorithms are used by
the path following controller described in the following
section.

5 Path Following Control Mode

In this section, we provide a detailed description of a
path following control mode (Fig. 6, the bottom part of
Fig. 4) which executes paths provided by the planner
introduced in section 4. As described in section 3,
the HCSM-based Control Kernel coordinates execution
of different control modes available in the UAV system,
including the path following control mode.

In the classical approach to the trajectory following
problem, a trajectory is generated directly taking into
account the dynamic constraints of the system. In
our approach, however, we split the problem into two
parts. First, the path planner generates a geometrical
description of a path and the dynamic constraints are
handled later by the path following mode by generating
an appropriate velocity profile. In order to navigate
safely in urban environments, the path following mode
has been designed to minimize the tracking error during
a path execution. Because paths generated by the
planner are collision-free (relative to the static obstacles
present in the model), staying closer to the geometric
path assures safer navigation in the environment.

A path is composed of one or more segments (each
described by a 3D cubic curve) which are passed
sequentially to the control mode. The mode is
implemented as a function which takes as input
the segment geometry, the desired cruise and final
velocities. It is called by the Control Kernel with

HCSM
Interpreter

Trajectory
generator

Path controller
(Outer control loop)

Inner control loop
(YACS)

Helicopter platform

Path Following
Control Mode

Figure 6: Interaction between the Path Following
Control Mode and other components of the Control
Kernel

a frequency of 50Hz and its output consists of four
control signals (pitch, roll, yaw and the vertical
channel). Additionally, the function returns a set of
status flags which are used by the HCSM in control to
generate appropriate events, i.e. path segment switching
mechanism and safety braking procedure.

When the helicopter reaches the end point of the current
segment, the controlling HCSM is informed and an
Arrived event is generated. The next call to the path
following function is made using parameters describing
the next segment to be flown. The process continues
until all segments of the path are executed.

The safety braking procedure is activated in case the
next segment is not provided by the High-level system
(e.g. due to communication failure) in a specific time.
This time point is calculated as the minimum distance
necessary to stop the helicopter at the end of the current
segment without overshooting.

The path tracking error is also available to the
controlling HCSM and it can be used to take appropriate
actions in case it becomes too large to guarantee safe
operation. Such a situation can arise if the wind is too
strong for the platform to keep it on the desired path.

The path following control mode is conceptually
divided into two parts: (a) the Trajectory Generator
(TG) which calculates the reference trajectory used by
(b) the Path Controller (PC) to calculate the control
signals. We consider each part in the next two
subsections.

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

5.1 Trajectory Generator

A trajectory represents the evolution of a dynamic
system in the state-space domain, where the state
variables are parameterized in time. In our approach
the generated reference trajectory (based on the planner
output) depends not on the time but on the position of
the helicopter relative to the path. In order to calculate
the reference trajectory, a control point on the path
which is the closest to the helicopter position must be
found. Once this is done, the trajectory parameters
can be calculated and used by the path controller
(described in the next subsection) as set-points. A
feedback method is used to find the control point,
similar approach is used in (5).

The reference trajectory in this work is a vector
represented by 9 components: x(s), y(s) and z(s)
represent the respective East, North positions and
altitude of the helicopter relative to an initial point;
vx(s), vy(s) and vz(s) the North, East and vertical
velocity components; φ(s), θ(s) and ψ(s) the roll,
pitch and yaw angles; s is the path segment parameter.
Details of the calculation of the parameter s through
feedback can be found in (3).

The geometric path is composed of several segments
represented by a 3D cubic polynomial. The motivation
for using this type of curve is given in (17). A
3D geometric segment is represented by the following
equation in a vector form:

P (s) = As3 + Bs2 + Cs+ D

where A, B, C and D are 3D vectors defined by the
boundary conditions calculated by the path planner and
passed to the control mode, s=[0,1] is the parameter of
the curve and P = [x, y, z]. 0nce the parameter s is
found the position coordinates x, y, z can be calculated.

In order to achieve the necessary tracking performance,
the path curvature is fed forward in the roll control law.
The target roll angle value is calculated according to the
following formula:

φ(s) =
V 2

Rxy(s)g

where V is the helicopter speed, g is the gravity
acceleration and Rxy(s) is the local curvature radius
of the path projected on the horizontal plane. The
curvature radius of the path is a 3D vector and it is
calculated analytically as explained in (3).

The same approach could be applied in order to
calculate the target pitch angle θ(s). However, for

the helicopter flight envelope we are interested in, the
dynamics of the path curvature in the vertical direction
is not very fast. Therefore, the feed forward term is not
used for the pitch channel.

The yaw angle ψ(s) is calculated from the tangent
vector of the path. The tangent is projected on the
horizontal (East-North) plane and used as reference
signal for the yaw control.

The target path velocity (Vtar(s)) is derived from
two input parameters: the cruise velocity Vc (desired
velocity for the segment) and the final velocity Vf

(velocity that the helicopter must have at the end of
the segment). Both velocities are given by the path
planners.

The calculation of Vtar(s) along the path segment is
divided into three phases: acceleration, cruise and
braking. The acceleration phase is active only during
execution of the first segment of the path. During this
phase the velocity increases with a constant rate until
the cruise velocity Vc is reached. Note that in this case
Vtar depends on time rather than on the path parameter
(s) since it is not important at which position of the path
the acceleration phase is terminated.

The braking phase is active when the following
condition is satisfied: the remaining path length dend(s)
is equal to the distance required to brake the helicopter
from Vc to Vf for given deceleration abrake:

dend(s) =
|V 2

c − V 2
f |

2abrake

The target velocity in the braking phase is a function of
dend(s):

Vtar(s) =
√
|2dend(s)abrake + V 2

f |

This guarantees achieving the desired velocity at the
end of the path segment. In case Vf > Vc, the
helicopter accelerates in order to reach Vf at the end
of the path segment. The path planner assures the
continuity of the velocity profile between segments. In
order to make a coordinated turn a consistency check
must be done with respect to the generated Vtar(s).
For such a maneuver, the helicopter must compensate
the centripetal acceleration with a certain amount of
roll angle. Because of safety reasons the maximum
roll angle (φmax) and maximum yaw rate (ωmax) are
specified. Therefore, the maximum velocity during a
turn maneuver is also restricted. The two velocity limits

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

−20 0 20 40 60 80

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

East [m]

N
or

th
 [m

]

Closed loop YACS on the roll channel

Flight tested
Target

−20 0 20 40 60 80

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

East [m]

N
or

th
 [m

]

Open loop YACS

Flight tested
Target

Start
End

Start End

Figure 7: Comparison of path tracking performances using two different roll controller. The flight-test where
performed at 36 km/h constant velocity for both paths.

are calculated as follows:

Vmax1(s) =
√
Rxy(s)gφmax

Vmax2(s) = ω2
maxRxy(s)

The minimum between Vmax1(s), Vmax2(s) and
Vtar(s) is taken as target velocity by the path controller
described in the next subsection. Thus, the calculated
velocity is compatible with the curvature radius of the
path.

5.2 Path Controller

Usually the control system for a helicopter consists of
an inner loop, which is responsible for stabilizing the
attitude, and the outer loop, which controls the position
and velocity.

In our system we use the Yamaha Attitude Control
System (YACS) provided with the RMAX helicopter
for the attitude control. For the outer loop we use four
decoupled PID controllers. Their outputs are used as
input to the YACS system. In (3) the control approach
for the RMAX has been described and experimental
results provided.

In this section, we present results of a modified
controller, which uses an additional feedback loop on

the roll channel. Several experiments were done closing
the roll angle loop around the YACS in order to test if it
is feasible to improve path tracking precision without a
complete redesign of the attitude controller.

The modified controller has been flight-tested on the
RMAX helicopter at a constant velocity of 36km/h
on a path with changing curvature. Such a path
is typically used to navigate in areas with obstacles.
The results are shown in Fig. 7 where the same path
was tested both with the roll loop closed around the
YACS, and without. Note, that at the beginning of
the path when the dynamic response of the controller
is more important because of the changing curvature,
the control with additional feedback loop over the
roll channel performs much better than the other one.
The error for the closed loop controller in this part
is below 1 meter, while for the other is around 6
meters. The results obtained during flight-tests show
that the loop on the roll channel reduces the path
tracking error, what makes the controller more suitable
for obstacle-cluttered environments.

The following section describes interaction between the
path following control mode with a Task Procedure
responsible for executing a planned path.

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

6 Path Execution Mechanism

The key element of the framework is the path execution
mechanism. It allows for seemless integration of hard
real-time componets (e.g. the path following controller)
with inherently non real-time deliberative services (e.g.
the path planners).

The execution of the path provided by the path planner
is divided into two parts, namely the Task Procedure
and the Path Following controller. The standard
path execution scheme in our architecture for static
operational environments is depicted in Fig. 8 (key
functional componets involved in navigation are drawn
in black). A UAV mission is specified via a Task

Plan 2 1

Task
Procedures*

End points,
Constraints

34

HCSM
Interpreter

Other
Modes

Communi-
cation

Handling

PFC

DRC

Real-time
communication channel

Path Planner
Service*

Helicopter Server*

CORBA
HCSM Interpreter (C-API)

GIS
Service*

Other
Services*

Hardware
Handling

Path
Following

Mode

Hovering
Mode

Distributed
System*- CORBA-based

Figure 8: Path execution mechanism

Procedure in the reactive layer of our architecture,
(perhaps after calling a task-based planner). For the
purpose of this paper, a TP can be viewed as an
augmented state machine.

For the case of flying to a waypoint, an instance of a
navigation TP is created. First it calls the path planner
service (step 1) with the following parameters: initial
position, goal position, desired velocity and additional
constraints.

If successful, the path planner (step 2) generates a
segmented path which is represented as a set of cubic

polynomial curves. Each segment is defined by start
and end points, start and end directions, target velocity
and end velocity. The TP sends the first segment (step
3) of the path via the control system interface and waits
for the Request Segment event. It is generated by the
HCSM responsible for the path execution as soon as the
path following (PF) controller output is fed with a path
segment.

When a Request Segment event arrives (step 4) the
TP sends the next segment data to the HCSM which
coordinates the path execution. This procedure
is repeated (step 3-4) until the last segment is
executed. However, because the high-level system is
not implemented in hard real-time it may happen that
the next segment does not arrive at the Control Kernel
on time. In this case, the controller has a timeout limit
after which it goes into safety braking mode in order
to stop and hover at the end of the current segment.
The timeout is determined by a velocity profile, current
position and current velocity.
∆t

2t
im

eo
ut

∆t
1t

ot
al

∆t
1t

im
eo

ut

br
ak

in
g fly
in

g
se

gm
en

t 1

TP
t0

PF

tstart1

to1

tarrive1

t1

br
ak

in
g

fly
in

g
se

gm
en

t 2

to2

tarrive2

1

2

3

t t
1 – segment 1; 2 – Request segment
3 – segment 2

tstart2 t2

∆t
2t

ot
al

Figure 9: Execution timeline for trajectory consisting of
2 segments

Fig. 9 depicts a timeline plot of the execution of a
trajectory (2 segments). At time t0, a TP sends the
first segment of the path to the PF controller and waits
for a Request segment event which arrives immediately
(t1) after the helicopter starts to fly (tstart1). Typical
time values for receiving a Request segment event (t1 −
t0) are well below 200ms. Time to1 is the timeout

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

for the first segment which means that the TP has a
∆t1timeout time window to send the next segment to
the PF controller before it initiates a safety braking
procedure. If the segment is sent after to1, the helicopter
will start braking. In the current implementation,
segments are not allowed to be sent after a timeout.
This will be changed in a future implementation. In
practice, the ∆t1timeout time window is large enough
to replan the path using the standard path planner. The
updated segments are then sent to the PF controller
transparently.

The described path execution mechanism allows for
dynamic replacement of path segments if necessary.
The following section describes the process of dynamic
path replanning.

Init Align

Send
segment

Exit

Plan

no
t al

ign
ed

al
ig

ne
d

las
t

seg
ment

 se
nt

no
-f

ly
 z

on
e

up
da

te
d

request segment
received

Estimate
timeout

tim
eo

ut

ca
lc

ul
at

ed

Check
collision

Replan

Wait

timeout condition
updated path

no
 c

ol
lis

io
n

Strategy
Selection

Times
Estimation

Strategy
Library

collision detectedst
ra

te
gy

 q
ue

ry

st
ra

te
gy

path

plan path
with strategy

path

est
im

ate
d t

im
ing

s
est

im
ate

 tim
ing

s

for
 se

gm
en

ts

Static

pl
an

 p
at

h

Figure 10: The dynamic path replanning automaton

7 Dynamic Replanning of the Path

The design of the path execution mechanism provides
a method for feeding path segments to the PF
controller iteratively. This is a particularly interesting
part of the design because it gives the deliberative
or decision-making layer of the architecture the
opportunity to anticipate problems at longer temporal
horizons and then to modify one or more segments
in the original mission path plan based on any
contingencies it discovers.

There are several services that are used during the path
replanning stage. They are called when changes in
the environment are detected and an update event is
generated in the system. The augmented state machine
associated with the TP used for the dynamic replanning
of a path is depicted in Fig. 10. The TP takes a start and
an end point and a target velocity as input. The TP then
calls a path planning service (Plan state) which returns
an initial path.

If the helicopter is not aligned with the direction of
the flight, a command to align is sent to the controller
(Align state).The TP then sends the first segment of the
generated path to the PF controller (Send segment state)
and calls the Prediction service to estimate a timeout
for the current segment (Estimate timeout state). Based
on the segment timeout and system latency, a condition
is calculated for sending the next segment. If there is
no change in the environment the TP waits (Wait state)
until a timeout condition is true and then sends the next
segment to the PF controller.

In case new information about newly added or deleted
forbidden regions (no-fly zone updated) arrives, the TP
checks if the current path is in collision with the updated
world model (Check Collision state). If a collision is
detected in one or more segments the TP calls a Strategy
Selector service (Strategy Selection state) to determine
which replanning strategy is the most appropriate to
use at the time. The Strategy Selector service uses the
Prediction service for path timings estimation (Times
Estimation state) to get estimated timeouts, total travel
times etc. It also uses the Strategy Library service
(Strategy Library state) to get available replanning
strategies that will be used to replan when calling the
path planner (Replan state). The TP terminates when
the last segment is sent.

All time estimations that have to do with paths or parts
of paths are handled by the Prediction service. It uses
the velocity profile of a vehicle and path parameters
to calculate timeouts, total times, and combinations of
those. For instance, in the case of flying a two-segment
trajectory (see execution timeline in Fig. 9) it can
estimate timeouts (∆t1timeout, ∆t2timeout), total travel
times (∆t1total, ∆t2total) as well as a combined timeout
for the first and the second segment (to2-t1).

When part of a path is not valid anymore, the path
planner service can be called in order to repair an
existing plan or to create a new one. There are many
strategies that can be used at that step which can
give different results depending on the situation. The
Strategy Library stores different replanning strategies
including information about the replanning algorithm to

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

be used, the estimated execution time and the priority.
Example strategies are shown in Fig. 11.

helicopter
position
waypoint

forbidden
region

final
path

invalid
path

Strategy 1

Strategy 2

Strategy 3

Strategy 4

new pass
waypoint

Figure 11: Examples of replanning strategies.

Strategy 1

Replanning is done from the next waypoint (start point
of the next segment) to the final end point. This
implies longer planning times and eventual replacement
of collision-free segments that could be reused. The
distance to the obstacle in this case is usually large so
the generated path should be smoother and can possibly
result in a shorter flight time.

Strategy 2

Segments up to the colliding one are left intact and
replanning is done from the last collision-free waypoint
to the final end point. In this case, planning times are
cut down and some parts of the old plan will be reused.
But since the distance to the obstacle is shorter than in
the previous case, it might be necessary for the vehicle
to slow down at the joint point of two plans, this can
result in a longer flight time.

Strategy 3

Replanning is done only for colliding segments. The
helicopter will stay as close to the initial path as
possible.

Strategy 4

There can be many other strategies that take into
account additional information that can make the result
of the replanning better from a global perspective. An
example is a strategy that allows new pass waypoints
that should be included in the repaired plan.

Note that each of these strategies progressively re-uses
more of the plan that was originally generated, thus
cutting down on planning times but maybe producing
less optimal plans. The decision as to which strategy
to use is made by the Strategy Selector service. In
the current implementation of the framework it uses

a simple algoritm for chosing strategies based on
user-predefined priorities.

More details on dynamic replanning are presented in
(24). One example of using the dynamic replanning
technique is presented in the following section.

8 Experimental results

In this section, we provide a description of two
generic missions, instances of which were flown at
the Swedish Rescue Services Agency facilities in
Revinge in southern Sweden. The site, which is
usually used by firefighters and other emergency rescue
forces for training purposes, consists of a number
of building structures, a road network and different
types of terrain and vegetation (trees, bushes, etc.).
A 3D map of the area is provided by an onboard
geographical information system (GIS) which is used
by the path planner service to generate collision-free
paths according to the framework described in the
previous sections.

Figure 12: Mission 1. White solid arrow designates take
off and landing position. White dotted arrow points
to the target building. Gray polygonal area marks the
no-fly zone created above the ground station vehicle.
Solid line represents the actual flight path.

In the first mission, the UAV took off autonomously
and hovered. It then flew towards a building previously
designated by the ground operator. Upon arrival at the
building, it gathered video footage of all the facades. It
then flew back to home base and landed autonomously.
The operator’s task was to select a building of interest
using a ground station user interface. The information
was sent to the UAV and the mission plan was generated

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

Figure 13: Mission 1. Images captured during the mission. Clockwise, starting from the upper left corner of the
figure: the North, West, South and Top view of the building.

on-board. As the helicopter was reaching successive
hovering positions in front of each facade and over the
building roof, the camera was controlled autonomously
to keep the object of interest in the center of the image.
This kind of mission was performed several times
with different buildings chosen as observation targets.
The logged flight-test data of one of the missions is
plotted on the map in Fig. 12. Fig. 13 presents several
frames taken from video footage from the mission
demonstrations.

The second mission demonstrates the use of the
dynamic replanning capability of the framework. The
flight started with autonomous take off, and the
helicopter began executing the planned path towards the
designated waypoints. After arriving at the first one,
the direction of flight changed to south and the ground
operator added a no-fly zone intersecting the flight path.

The information was sent to the helicopter and the
on-board system activated the replanning mechanism.
A new path was planned, and the flight continued
avoiding the no-fly zone. After the helicopter arrived at
the last waypoint, it was commanded to return to home
base and land. Fig. 14 shows the logged flight-test data
superimposed on the map of the area.

9 Conclusions and Future Work

A distributed hardware/software architecture has been
described which includes a framework for integrating
path planning techniques, a path following control
mode, and a path execution mechanism which allow
for UAV operation in obstacle-cluttered environments
in addition to dynamic replanning of flight paths. The

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

Figure 14: Mission 2. White solid arrow designates take
off and landing position. Solid line represents the actual
flight path executed counter-clockwise. Gray polygonal
area marks the no-fly zone added during the flight by the
ground operator. Black dotted line shows invalidated
part of the path.

path planning algorithms are based on the use of
sample-based probabilistic techniques which sacrifice
completeness in plan generation for tractability. Details
of the path following controller are provided in addition
to experimental results using the framework. These
results show that the controller keeps the UAV within
one meter of the desired path during flights with a
velocity of 10 m/s.

The proposed method for 3D trajectory execution views
flight paths as sequences of segments where each
segment is incrementally fed to the path following
controller. This scheme supports dynamic replanning
and replacement of flight path segments (e.g. because of
adding no-fly zones). It also enhances the safety of UAV
operations. The self-contained PFC computer’s role is
to request subsequent segments as a mission flight path
is being flown. In cases where the new segments do
not arrive on time, the PFC automatically switches to
a hover control mode. This approach would help to
avoid situations where a longer path which is passed to
the controller becomes unacceptable as time progresses,
but due to communication failure with the rest of the
system, is not made aware of the problem. This could
lead to potentially catastrophic situations.

The systems and techniques described here have been
implemented and fully tested on our WITAS UAV
systems. The framework proposed allows for the
seamless coexistence of the hard real-time Control
Kernel and the soft real-time high-level deliberative

system by taking advantage of timing and other
characteristics of both.

The Control Kernel is in charge of flight mode
switching of the hybrid control system and coordinating
the real-time communication among other things. It
uses HCSMs to do this. The control kernel is
easily extendible and allows for the implementation
of additional functionality requiring a rigorous timing
regime.

The use of CORBA provides a straightforward means of
transparently distributing deliberative services such as
task- and motion planners across different processors in
a single platform, onto other airborne platforms or onto
different ground control stations. Task procedures are
used in the implementation of reactive behaviors which
provide the software and conceptual glue between the
lower control layer and the upper deliberative layer in
the architecture. Because CORBA is being used, both
reactive behaviors and deliberative functionalities can
be implemented in many different languages as long as
they have supporting IDL mappings.

Future work includes extending two of the services
used in the dynamic replanning technique, namely, the
Strategy Selector and the Strategy Library services.
On the hardware side, inclusion of additional sensors
necessary for perceiving the environment reactively are
planned. In order to enhance the autonomy of the
platform, the need for a 3D elevation map requirement
must be loosened. This can be achieved by adding
sensors enabling mapping and obstacle avoidance in
unknown and dynamic environments. A new and
enhanced version of the Control Kernel is also under
evaluation. Among other features, it introduces data
flow support into the state machine concept.

10 Acknowledgements

This work is funded by the Wallenberg Project under
the WITAS UAV Project. Many members of the WITAS
UAV project helped to make this work possible.

References
1. MARVIN: TU Berlin.

http://pdv.cs.tu-berlin.de/MARVIN/.

2. M. La Civita. Integrated Modeling and Robust
Control for Full-Envelope Flight of Robotic

21th Bristol UAV Systems Conference — April 2006

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

Helicopters. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 2003.

3. G. Conte, S. Duranti, and T. Merz. Dynamic 3D
Path Following for an Autonomous Helicopter.
In Proc. of the IFAC Symp. on Intelligent
Autonomous Vehicles, 2004.

4. P. Doherty, P. Haslum, F. Heintz, T. Merz,
T. Persson, and B. Wingman. A Distributed
Architecture for Autonomous Unmanned Aerial
Vehicle Experimentation. In Proc. of the
Int. Symp. on Distributed Autonomous Robotic
Systems, pages 221–230, 2004.

5. M. Egerstedt, X. Hu, and A. Stotsky. Control
of mobile platforms using a virtual vehicle
approach. IEEE Transactions on Automatic
Control, 46(11):1777–1782, November 2001.

6. E. Frazzoli, M. Dahleh, and E. Feron. Robust
Hybrid Control for Autonomous Vehicles
Motion Planning. In Technical report,
Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology,
Cambridge, MA, 1999. Technical report
LIDS-P-2468., 1999.

7. S. Gottschalk, M. C. Lin, and D. Manocha.
OBBTree: A hierarchical structure for rapid
interference detection. Computer Graphics,
30(Annual Conference Series):171–180, 1996.

8. D. Harel. Statecharts: A visual formalism
for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

9. MIT/Draper Autonomous Helicopter Project.
http://web.mit.edu/whall/www/heli/.

10. E. N. Johnson and S.K. Kannan. Adaptive flight
control for an autonomous unmanned helicopter.
In AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2002.

11. L. E. Kavraki, P. S̆vestka, J.C. Latombe, and
M. H. Overmars. Probabilistic Roadmaps
for Path Planning in High Dimensional
Configuration Spaces. Proc. of the IEEE
Transactions on Robotics and Automation,
12(4):566–580, 1996.

12. J. J. Kuffner and S. M. LaValle. RRT-connect:
An Efficient Approach to Single-Query Path
Planning. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, pages 995–1001,
2000.

13. P Mantegazza et. al. RTAI: Real time application
interface. Linux Journal, 72, April 2000.

14. T. Merz. Building a System for Autonomous
Aerial Robotics Research. In Proc. of the IFAC
Symp. on Intelligent Autonomous Vehicles, 2004.

15. T. Merz, S. Duranti, and G. Conte. Autonomous
landing of an unmanned aerial helicopter based
on vision and inertial sensing. In Proc. of the
9th International Symposium on Experimental
Robotics, 2004.

16. B. Mettler, M.B. Tischler, and T. Kanade.
System identification modeling of a small-scale
unmanned helicopter. Journal of the American
Helicopter Society, October 2001.

17. P-O Pettersson. Using Randomized Algorithms
for Helicopter Path Planning. Lic. Thesis
Linköping University., 2006.

18. P-O Pettersson and P. Doherty. Probabilistic
Roadmap Based Path Planning for an
Autonomous Unmanned Aerial Vehicle. In
Proc. of the ICAPS-04 Workshop on Connecting
Planning Theory with Practice, 2004.

19. AVATAR: USC Autonomous Flying Vehicle
Project. http://www-robotics.usc.edu/∼avatar.

20. BEAR: Berkeley Aerorobot Team.
http://robotics.eecs.berkeley.edu/bear/.

21. Georgia Tech UAV.
http://www.ae.gatech.edu/labs/controls/uavrf/.

22. Hummingbird: Stanford University.
http://sun-valley.stanford.edu/users/heli/.

23. CMU Autonomous Helicopter Project.
www.cs.cmu.edu/afs/cs/project/chopper/www.

24. M. Wzorek and P. Doherty. Preliminary
Report: Reconfigurable Path Planning for an
Autonomous Unmanned Aerial Vehicle. In
Proceedings of the 24th Annual Workshop of the
UK Planning and Scheduling Special Interest
Group (PlanSIG-05), 2005.

21th Bristol UAV Systems Conference — April 2006

