
Control System Framework for Autonomous Robots Based on
Extended State Machines

Torsten Merz
�

Piotr Rudol
�

Mariusz Wzorek
�

Department of Computer and Information Science,
Linköping University, SE-58183 Linköping, Sweden

Abstract

We present a new framework optimized for the design,
implementation, and testing of control systems for au-
tonomous robots. It is based on a new visual specification
language which specifies both control and data flow, and
which is suited to be interpreted in real-time. The frame-
work is divided into a comprehensive development and a
lightweight run-time environment. The latter is fully in-
tegrated with a real-time operating system and permits to
reconfigure a control system without compilation at run
time. Moreover, communication in distributed systems is
supported. An earlier version of the framework has been
successfully applied in an autonomous helicopter and an
autonomous ground vehicle project.

1. Introduction

Building control systems for highly autonomous robots
for real-world applications is an open problem. Apart from
finding ways to achieve autonomy in principle, we have
learned from several robot projects that system integration
and testing is a major problem. We argue that it is pos-
sible to achieve a relatively high level of autonomy using
techniques available today in combination with a suitable
framework.

A suitable framework should permit to develop and test
system components independently according to a given
specification, minimize their dependencies, enable their
seamless integration, and make it possible to model, ana-
lyze, and control the system behavior easily. For testing an
integrated system the framework should provide informa-
tion about which component is active at what time and what
are input and output data of system components. Moreover,
we believe that a suitable framework should permit to re-
configure a system at run time. Further requirements are
discussed in [9].

1Supported by the Wallenberg Foundation, Sweden

The main contribution of the work presented in this paper
is the development of a framework which offers a unique
combination of the following features. The framework (1)
comprises the control, the data processing, and the commu-
nication part of a system, (2) supports reconfigurability at
run time, (3) is based on a single, well-defined specification
language, (4) supports all stages of development, (5) is op-
timized for control systems for autonomous robots, (6) has
been successfully applied in several robot projects.

Related work can be found in many fields: robotics, con-
trol theory, embedded system design, and software engi-
neering. We looked at existing methods and included them
in the framework if they turned out to be useful in practice
for building robotic systems. There are many specification
languages, programming languages, software frameworks,
and design tools which are used in control or embedded sys-
tem design (Ptolemy II, Esterel, Stateflow, UML 2, among
others) but none of them is optimized for building control
systems for autonomous robots.

The specification language and the computation model
we propose is mainly influenced by Harel’s Statecharts for-
malism [6]. State machine based approaches have already
been used successfully in many robotic systems. Brooks [3]
for instance uses state machines to build reactive systems
and Kleinehagenbrock et. al. [7] include them in a deliber-
ative/reactive system. Albus et. al. [1] propose an architec-
ture for intelligent hybrid control systems which has some
similarities with our framework. It also includes state ma-
chines, defines a hierarchy of functional modules and in-
cludes a communication system, but it lacks some of the
features mentioned above. Our framework supports the
component-based design methodology. In [4] a component-
based framework is proposed which aims for similar goals
but it also does not provide some of the features mentioned
above.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the basic concepts of the framework. The
extended state machine language is defined and explained
in Section 3. Section 4 describes the implementation of the
framework and Section 5 concludes.

2. Basic concepts

The specification of the framework we propose is derived
from the requirements for control systems for autonomous
robots discussed in [9] and our experience building these
systems. Although its focus is on control system synthesis,
its underlying formalism permits to integrate system analy-
sis and model checking tools.

For efficiency and robustness reasons the framework is
divided into a run-time environment designed for embedded
computers typically used in robotics and a development en-
vironment which can be installed on standard desktop com-
puters. Every feature that is not required for the execution of
the control system is provided by the development environ-
ment. The framework is based on a specification language
which can be interpreted in real-time. This permits to re-
configure a control system at run time. In order to have full
control over all essential system components, the run-time
environment is implemented at a very low level of the soft-
ware system. We avoid building critical parts of our frame-
work on third-party software which is not exactly specified.
In all other parts we try to take advantage of existing imple-
mentations as much as possible.

The specification language is the common basis of the
framework. It has to meet orthogonal demands: on the one
hand it has to be expressive enough for realizing control
systems for autonomous robots in general and on the other
hand it has to be interpreted in real-time. We use a state
machine based approach. There are several reasons for this:
state machines are well suited to model reactive systems,
they can be used to coordinate all kinds of tasks including
deliberative services (see [5]), they can be formally ana-
lyzed, they are traceable for debugging, and interpreters can
be implemented efficiently.

To cope with the combinatorial state explosion and com-
plexity problem of finite state machines (FSMs), to enable
mixed synchronous/asynchronous systems, to include data
flow, and to control task execution we introduce extended
state machines (ESMs, see Section 3). We believe that
specifying control and data flow explicitly is essential for
structuring complex robotic systems. In the computational
model we propose, the data flow and the control flow are
separated i.e. the data flow does not influence the control
flow. To enable efficient implementations, data is never
copied between user tasks executed by the same processor.
Instead, the framework provides pointers to data which is
stored in memory only once.

ESMs support the component-based design methodol-
ogy. This allows to develop and test new components indi-
vidually and to reuse existing components. ESMs basically
specify the interaction of components. In a hybrid control
system a component contains continuous control laws while
the state machine defines the switching mechanism. In our

framework, components are tasks or state machine contain-
ers with specified data interfaces (see Section 4). They are
associated with task states or superstates of the ESM lan-
guage. In the literature, a component is sometimes defined
as a binary unit (see [4]). Binary units can be started by
system commands which are part of the source code of a
task while source code units or libraries are compiled or
linked with task code. Tasks and state machine containers
are reusable in different parts of the ESM if they are de-
signed for reuse.

We do not use explicit external events in our framework.
Instead we represent the actual (sensed) qualitative state of
the robot or its system components by flags which are used
as guard conditions in ESMs (see Section 3). Asynchronous
events of the physical world are modeled by a special in-
ternal periodic event in combination with guard conditions.
That way we shift problems with sequentializing concurrent
events and delays of event communication to the state ma-
chine level. The proposed framework permits to implement
an appropriate solution for each application in the ESM lan-
guage.

In a robotic system timing plays a crucial role as an au-
tonomous robot has to act in a physical world which is usu-
ally not synchronized with the execution of tasks. To avoid
unpredictable delays in the system the run-time environ-
ment uses non-preemptive periodic real-time tasks which
are executed sequentially by one processor. This means that
tasks have to terminate within a fixed time. Non-preemptive
task execution has the additional advantage that it does not
require sophisticated task communication mechanisms. In
the proposed framework, the task schedule is computed
prior to execution from the declaration of task durations and
rates. The schedule can be changed at run time to achieve
some flexibility (see Section 4).

Not all tasks must or can be deterministic in time. This is
the case for most deliberative services such as task and mo-
tion planners, and system services such as file handling or
standard network access. Non-real-time tasks are executed
preemptively within a special periodic time slot. In case a
real-time task terminates earlier the remaining time is used
as additional time to execute non-real-time tasks. That way
the idle time of the processor is minimized although we use
static scheduling. Combining real-time and non-real-time
tasks in one system permits to take advantage of both. We
realized this concept with a real-time patch to a standard op-
erating system which permits both to implement a run-time
environment which has full control of the processor and to
run standard applications (see Section 4).

Similar to the RCS system [1] the framework permits
to build a hierarchy of time horizons. At the lower levels,
periodic user tasks such as device drivers or controllers run
at high rates and have short durations. At higher levels less
time critical but usually more complex tasks are executed

root machine

InputList

OutputList

ContainerID

State machine containers

ki

j

(example with three

(integer>0)

orthogonal regions)

i,j,k RegionNumber

final state

initial state

data input port

optional data input port

data output port

optional data output port

Data connectors

(example with one

(multiple connections possible,

junctions: PortID optional)

connected data path)

StateName

s

StateName

States

simple state (StateName optional)

superstate (StateName optional)

s TaskSlotNumber (integer ≥ 0)

task state (StateName optional)
StateName

ContainerID
Transitions

(multiple connections possible)

TransitionCode

(no final states)

Data ports

several ports per state possible)
(task states and superstates only,

(all states)

Data paths

(one connection per port)

DataName (optional)

PortID

Figure 1. Visual syntax of the extended state
machine language.

at lower rates. The ESM interpreter is a task which runs at
a rate which makes the system responsive enough to react
on events of the physical world. In multi-processor systems
each processor has its own ESM interpreter.

In our framework several forms of communication ex-
ist: communication between states of the ESM language
processed by the same interpreter, processors of the same
computer system, computer systems of the same robot, and
between different robots or robots and operators. Commu-
nication between states is synchronous or asynchronous and
reliable, between processors asynchronous and reliable, be-
tween computer systems asynchronous and mostly reliable,
and between robots or robots with operators asynchronous
and mostly unreliable (in case of wireless transmission).
The first form is realized by a common event queue and con-
trol/system flags held in ordinary memory (see Section 3),
the second by passing flags and data through shared mem-
ory, and the remaining forms by transmitting flags and data
periodically in packets with predefined size and rate. Simi-
lar to the task schedule the communication schedule is com-
puted prior to execution from the declaration of packet size
and rate. The time needed to transmit a packet is given by
the average data rate of the link and the packet size.

The run-time environment coordinates devices for send-
ing packages with a predefined number of bytes to remote
machines, for receiving packages and for checking their in-
tegrity. It permits building real-time communication appli-
cations if the underlying network is suitable. We success-
fully built real-time communication links based on serial
line standards (RS232C and similar) and Ethernet.

TransitionCode = Event [”[” Guard ”]”] [/ ActionList] |
*[/ ActionList];

* = ”↑ [�]”;
ActionList = Action {”,” Action};
Action = ”↑” EventID | ControlFlag | ”¬” ControlFlag;
Event = EventID | ”↑”;
Guard = [”¬”] GuardFlag | Guard Op Guard | ”(” Guard ”)”;
Op = ”∧” | ”∨”;
GuardFlag = ControlFlag | ”�” | ”⊗” | ”�”;
ControlFlag = (”•” FlagID) | (”◦” FlagID);
InputList = Element {”,” Element};
OutputList = Element {”,” Element};
Element = PortID | (”↑” EventID) | (”◦” FlagID);
(* all ID symbols are ANSI C id-tokens *)
(* all Name symbols are ASCII characters *)

Figure 2. Syntax of symbols in Fig. 1 in EBNF
notation.

The ESM interpreter logs all information needed to ob-
serve state transitions at run time or after mission execu-
tion with a state machine debugger which is provided by
the framework. Log data is coded efficiently so that it can
be transmitted through low bandwidth links. Beside state
machine data it is possible to log any data produced by user
tasks.

3. Extended state machines

We define an extended state machine (ESM) as a con-
ventional deterministic transducer finite state machine with
the following extensions: (1) guarded events as inputs, (2)
action lists as outputs, (3) event broadcasting and filter-
ing, (4) AND/OR decomposition of states, (5) states asso-
ciated with tasks, (6) control and system flags, (7) states
with timers, (8) data flow between states. This definition is
different from the extended (finite) state machine definition
commonly used in the literature which introduces variables
for modeling quantitative aspects.

Feature (1), (2), event broadcasting, and (4) are adopted
from the classical Statecharts formalism introduced by
Harel [6]. A guarded event is an event with a Boolean
expression (Guard) which has to evaluate to TRUE be-
fore triggering a transition. Flags represent the values of
Boolean variables. An action list contains a sequence of ac-
tions which are executed in transitions (Mealy machine).
We define two types of actions: send event (adding an
event to the event queue of the ESM interpreter, see below)
and set flag. There are no explicit external events in our
ESM formalism and events do not carry data. We define a
special periodic event (pulse event) which in combination
with guard conditions models external events while inter-
nal events (events produced by the state machine itself) are
used for broadcast communication. We introduce a filter-
ing mechanism which limits the scope of internal events.

ESMs permit AND and (X)OR decomposition as the Stat-
echarts formalism does. AND decomposition introduces
concurrent states (orthogonal decomposition) while (X)OR
decomposition enables different levels of abstraction by hi-
erarchical structuring of states.

We distinguish, as Harel does, between actions and activ-
ities. Actions have no duration (zero-time assumption) and
are executed in transitions, while activities take time and
are associated with states. A state can represent any activity
of a system. We define three types of states: simple states,
superstates, and task states. Superstates represent nested
states at a higher level of abstraction (AND/OR decomposi-
tion) while task states represent user defined program code
being executed. The ESM formalism does not define a se-
mantics for simple states. Control flags are introduced to be
able to configure submachines or tasks and to react on their
outcome. System flags are used by the state machine inter-
preter and the task dispatchers (see Section 4) to enable the
execution of tasks and to indicate that a submachine reached
a final state, a timeout occurred, a task is finished, or that
it cannot be executed. All states have a timer. It is started
when a state is entered and a system flag is set when a state
specific time limit is reached. Finally, our formalism per-
mits to specify data flow between task states, superstates,
and both of them.

We use a visual language for representing ESMs based
on state diagrams similar to Statecharts. Its syntax is de-
fined in Fig. 1 and Fig. 2 (textual symbols of the language
are written in italics in Fig. 1). We introduce several special
characters as terminal symbols to shorten labels in state di-
agrams and to avoid confusion with names and identifiers.
The symbols are described in the text of this section and in
Fig. 3.

Symbol Context Description

EventID Event receive event EventID

↑ Event receive pulse event

� Guard read exit flag of superstate or task state

� Guard read timeout flag of superstate or task state

⊗ Guard read busy flag of superstate or task state

◦FlagID Guard read control flag FlagID of parent superstate

•FlagID Guard read control flag FlagID of superstate or

task state

↑EventID Action send event EventID

◦FlagID Action set control flag FlagID of parent superstate

•FlagID Action set control flag FlagID of next superstate or

task state

↑EventID InputList forward event EventID from upper machine

level to all regions of lower machine level

PortID InputList input port of superstate

◦FlagID InputList declaration of input control flag FlagID

↑EventID OutputList forward event EventID to all regions of

upper machine level

PortID OutputList output port of superstate

◦FlagID OutputList declaration of output control flag FlagID

Figure 3. Description of symbols.

User defined tasks are associated with task states. Each
task state represents an instance of a task. All real-time in-
stances of tasks are executed in non-preemptive task slots
identified by their TaskSlotNumber while non-real-time in-
stances are executed in preemptive threads (TaskSlotNum-
ber=0). A special task attribute declares execution restric-
tions (e.g. mutual exclusive execution). All control flags
of a task have to be declared. Control flags can be set in a
transition to a task state (� operator, input flags) and used in
a guard of a transition from a task state (� operator, output
flags). Each task state has its own set of flags. Beside con-
trol flags, system flags can be used in guards of transitions
from task states. Data inputs and outputs are represented
by triangles attached to the task state symbol (data ports).
Each port has a task unique identifier (PortID) and the fol-
lowing attributes: data type, memory allocation informa-
tion, and optional port flag. A user task can be associated
with several states. This has to be considered in the imple-
mentation of such a task. Task states are described more in
detail in Section 4.

A state machine container encloses one or more sub-
machines (AND/OR decomposition). It contains a list of
inputs and outputs and one or more regions. Regions en-
capsulate orthogonal decomposed state machines. They are
ordered by a consecutive number (RegionNumber). Differ-
ent regions inside a state machine container are separated by
dashed lines. A superstate represents an instance of a state
machine container at a higher levels of abstraction. Input
and output data are declared in InputList and OutputList re-
spectively. They are represented by triangles attached to the
superstate symbol (data ports). The lists also declare con-
trol flags of the superstate and which events are forwarded.
Control flags are set and used in guards in the same way
as described above for task states. Each superstate has its
own set of control flags. Their scope is limited to the re-
gions of the state machine container. Beside control flags,
system flags can be used in guards of transitions from su-
perstates. The framework permits to reuse state machine
containers, i.e. it provides all means necessary to execute
multiple instances of a state machine. The reuse of state
machine containers has to be considered in the implemen-
tation of included user tasks.

Data paths are used to connect data ports. Data transfer
is realized by passing pointers to data structures in shared
or ordinary memory along data paths. Each data port can
be connected to one data path only. In order to connect
several data paths with each other, data connectors are in-
troduced. Data connectors are also used to associate data
ports in different regions with each other and ports inside a
state machine container with ports of the corresponding su-
perstate. Ports can only be connected or associated if their
properties match. Input and output ports belonging to the
same state containing pointers to the same data structure in

memory can be combined (double triangle) and connected
to a single path.

The semantics of the ESM execution is defined by the al-
gorithm given in Fig. 4. In the following we define the terms

ExecuteStateMachine
1 lock memory with control and system flags
2 create empty event queue
3 append pulse event with global scope to event queue
4 while event queue not empty
5 remove first event Event from event queue
6 call MakeTransitions(1,Event)
7 unlock memory
8 return

MakeTransitions(MachineLevel, Event)
1 for RegionNumber = 1 to number of regions
2 at MachineLevel

3 if t − ts > ttimeout of current local state
4 set timeout flag
5 if Event is visible and received by a transition of
6 the current local state and Guard is TRUE
7 if current local state is task state
8 and task is real-time
9 disable task execution (reset enable flag)
10 if next local state is task state or superstate
11 reset control and system flags
12 ExecuteActions(ActionList)
13 if next local state is task state
14 enable task execution (set enable flag)
15 else if next local state is final state
16 set exit flag
17 save state start time ts = t

18 enter next local state
19 else if current local state is superstate
20 call MakeTransitions(MachineLevel+1,Event)
21 return

ExecuteActions(ActionList)
1 for each action Action in ActionList

2 if Action is send event action
3 put event with source information in event queue
4 else set control flag
5 return

Figure 4. Extended state machine algorithm.

used in the algorithm. States of ESMs can be represented
as AND/OR-trees with superstates as AND and regions as
OR nodes. The root node of the tree represents the root ma-
chine superstate and leaves symbolize atomic states. Atomic
states are simple states and task states. We define the cur-
rent state of the ESM as the Sub-AND/OR-tree defined by
all paths from the root to all leaves representing the current
atomic states. The machine level of an ESM is calculated
by dividing the level of the AND/OR-tree containing AND
or leaf nodes by two. The current local state is defined as
the current state of the ESM at a given machine level in
a given region. Next local state is the state which can be

reached from a current local state by making one transition.
An event is visible if it is broadcasted or forwarded along
the path from the creation node to the node representing the
current state in the AND/OR-tree (event scope). The cre-
ation node is the node that represents the state from which
the transition with the send event action was made. Events
are broadcasted to all regions of a state machine container
or forwarded to other regions if they are declared in Output-
List and InputList respectively.

The main procedure of the algorithm is ExecuteStateMa-
chine which is supposed to be called periodically. The pe-
riod time determines the lower bound of the time the robot
needs to react to external events of the physical world or
switch control modes using the ESM. During its execution,
the control and system flags cannot be changed from out-
side. All events are stored in a single event queue and pro-
cessed in the order they arrive. In the beginning there is
only the pulse event in the queue which is visible in all
states. MakeTransition processes all current local states of
the current state recursively in a depth-first manner for a
given event (micro step). When entering a new machine
level the current local state is the initial state of the given
region. The algorithm terminates when the event queue is
empty (macro step). In practice it is sufficient, if the pe-
riod time of the algorithm is about one order of magnitude
higher than the shortest time between two external events
which have to be processed by the ESM for the proper op-
eration of the robot. Considering this and assuming that the
algorithm terminates within the period time, the synchrony
hypothesis [2] can be applied to the ESM. Note, that the ef-
fect of the time needed to compute a guard condition from
sensor readings and the time it takes from enabling a task or
set a control flag until an actuator moves must be considered
additionally.

4. Implementation of the framework

This section describes some details of our implemen-
tation of the proposed framework. As motivated above it
is divided into a development and a run-time environment.
The two parts exchange information by configuration files,
ANSI C source code files, and log files. Source code is only
used in parts that do not require a reconfiguration at run
time, if it reduces execution time significantly, or if it can
not be avoided.

���������	��
��������������������
����������������

The major components of the development environment
are depicted in the left-hand part of Fig. 5. They are imple-
mented on a standard PC as an integrated application with
a common GUI (Graphical User Interface). All operations
involving manipulation of visual elements of the ESM lan-
guage (see Fig. 1) are performed in a graphical manner by

Communication
Configuration Parser

State Machine
Parser

Interpreter
State Machine

Task 1

R
ea

l−
T

im
e

N
on

−
R

ea
l−

T
im

e

Run−time EnvironmentDevelopment Environment

ID
s

ID
s

T
as

k
Sc

he
du

le
Task Slot
Scheduler

State Machine
Creator

Scheduler
Communication

ConfigurationSlot Schedule

Declaration
Communication

Debugger
Machine

State

D
es

cr
ip

tio
n

Task Schedule
Parser

Task
Dispatcher

Declaration
Task Code

Communication Communication

Generator

Generator
Task Schedule

Generator
Configuration

Task Slot
Schedule

Task Header File

Dispatcher Code

Memory Header File

Thread n

Declaration
Task Slot

Thread 1
St

at
e

M
ac

hi
ne

...

Sh
ar

ed
 M

em
or

yData Paths Schedule
Task

State Machine
Representation

Task Dispatcher
Real−Time

Log
Data

Communication
Dispatcher(s)

Task n...

Communication
Configuration

T
as

k
E

na
bl

e
Fl

ag
s

E
xi

t/B
us

y
Fl

ag
s

Control Flags

System Flags

Figure 5. Framework structure.

the State Machine Creator using drag-and-drop technique.
All textual manipulation is done using dialog boxes. Fig. 6
shows a screenshot of the State Machine Creator. It con-
tains an ESM for the hovering flight mode of an autonomous
helicopter developed in the WITAS project [5].

The output of the development environment is twofold:
(1) in form of source code files generated by the Code Gen-
erator (code changes require recompilation of the run-time
environment) and (2) in form of files produced by the Task
Schedule Generator, the State Machine Creator, and the
Configuration Generator which are interpreted at run time.
The Code Generator generates C-code for the task dispatch-
ers which contains function calls to user task functions (Dis-
patcher Code), creates a header file declaring those func-
tions (Task Header File), and produces the Memory Header
File which defines control flags for user tasks.

The task scheduling is performed in two steps. Firstly,
the Task Slot Scheduler generates a slot schedule based on
the Task Slot Declaration. It contains an identifier num-
ber (TaskSlotNumber), a duration, and a rate for each time
slot. This information is used by the Task Slot Scheduler to
find a suitable start time for every slot. A simple exhaustive
search is fast enough to find the start times for the number
of user tasks we require in our current systems. Secondly,
the Task Schedule Generator creates a configuration file for
the run-time environment which contains the schedule for

all user tasks of an ESM based on the previously scheduled
slots and the slots assigned to the tasks. One slot can be as-
signed to several mutual exclusive tasks with similar timing
requirements (e.g. computationally expensive filters which
are not required at the same time) or by concurrent tasks as
long as they do not exceed the slot duration.

The communication scheduling is done in a similar way
as the task scheduling. The Communication Scheduler gen-
erates the communication slot schedule based on informa-
tion given in the Communication Declaration. It contains
the declaration of all data links served by one processor and
all outgoing and incoming frames. The declaration of each
data link consists of an identifier for the associated com-
munication dispatcher (see Section 4.2), the transfer rate,
and the frame header size. For each outgoing frame the
following must be declared: the frame identifier (included
in the header), the communication dispatcher identifier, the
data port (PortID), the payload size, and the slot rate. The
declaration for an incoming frame consists of the identifiers
of the frame, the communication dispatcher, and the data
port. The Configuration Generator creates a configuration
file for the run-time environment which contains the com-
munication slot schedule and the mapping between frames
and function arguments of communication dispatcher func-
tions. Both the communication configuration and the task
schedule can be changed at run time.

Figure 6. Screenshot of the State Machine
Creator showing a state machine container.

The development environment includes a State Machine
Debugger which is a very useful tool for investigating the
behavior of a robotic system. For each point in time the de-
bugger enables to visualize graphically the current state of
an ESM and evaluate all guard conditions of connected tran-
sitions. The required information is either received directly
from the run-time environment while the robotic system is
operating or read afterwards from a log file which was cre-
ated during a mission. The debugger offers a step function
which permits to browse through every micro step.

Thanks to the well defined semantics of the ESM lan-
guage it is possible to perform numerous verification checks
for a designed system. There exist many tools for the ver-
ification of FSMs that can be applied. Additionally, errors
specifically related to ESMs such as attempting to run two
exclusive tasks at the same time or connecting ports with
mismatching types can be found automatically. The frame-
work also supports simulations. It is possible to simulate
state transitioning by providing models which describe sys-
tem and control flags of user tasks and to simulate data flow
by providing models for the generation or transformation of
data.

��������������� � ����� ����
���������� � ���

The major components of the run-time environment are
shown on the right hand side of Fig. 5. We have imple-
mented it for PC/104 embedded computers which are com-
monly used in robotics. Nevertheless, porting it to dif-
ferent architectures is easy. As operating system we use
Linux with a RTAI (Real-Time Application Interface) ker-
nel patch. RTAI is a hard real-time extension to the Linux
kernel developed at the Department of Aerospace Engineer-
ing of Politecnico di Milano (DIAPM) [8]. It provides the
features of an industrial-grade real-time operating system
(RTOS) together with the possibility to use standard Linux
OS services and standard Linux applications. In the run-

time environment described here those and non-real-time
user tasks are executed preemptively within a special peri-
odic time slot (TaskSlotNumber = 0). User tasks are imple-
mented as ANSI C functions. Binary applications can be
started from non-real-time user tasks.

The core of the run-time environment consists of a real-
time module (RTM) and a user space application (UA).
Shared memory is used for communication between the
module and the application. The RTM includes all compo-
nents from the real-time part of the framework and the UA
those of the non-real-time part. The execution of tasks, both
in the real- and non-real-time environments is coordinated
by two task dispatchers that use the task schedule generated
in the development stage.

The State Machine Interpreter (SMI) is implemented as
a periodic real-time task and interprets ESM code accord-
ing to the algorithm presented in Fig. 4. Each period cor-
responds to one macro step. The SMI uses System Flags
to coordinate the task execution in both, real-time and non-
real-time parts. A global event queue is used internally. For
each event it holds the identifier for the event and the identi-
fier for the state from which the corresponding transition is
made. In order to propagate events efficiently it is necessary
to find the scope of the event quickly. The scope is defined
by the ESM structure and the event filters (see Section 3).
In our implementation we use an event lookup table, which
holds a list of states for each event/state identifier pair. The
table is created during the initialization of the SMI.

As mentioned in Section 3 data flow is pointer based.
Pointers are passed to user task functions as function ar-
guments which correspond to data ports. The connections
are stored in shared memory (Data Paths) according to the
ESM. Memory for the data must be allocated and released
by user tasks. Because of the different address spaces used
in the real- and the non-real-time parts it is necessary to pro-
vide tasks to correct data pointers with an offset when using
both types of memory.

The startup procedure of the run-time environment is as
follows: The UA is started and the RTM is inserted. Then
they synchronize via shared memory. The UA runs the State
Machine Parser, the Communication Configuration Parser,
and the Task Schedule Parser which initialize the data struc-
tures in shared memory. All parsers use the configuration
files created in the development environment. The RTM
sleeps until the UA initialization process is finished. Then it
executes the SMI once. All further initialization steps such
as starting the SMI task have to be specified by the ESM. At
that point the startup procedure is finished and the regular
schedule is executed.

The communication between different machines, robots,
or robots and operators is realized by communication dis-
patchers (CDs) which are associated with task states in
ESMs. For each data link exists a separate CD. A phys-

ical data link contains one or more virtual channels which
are mapped to the ports of a task state. CDs for transmission
and reception are separate tasks. Each input of a transmis-
sion CD contains a pointer to a data packet which is sent in
a single frame during a communication time slot defined in
the communication configuration (parsed file). A frame is
not copied to the transmission buffer of the communication
device driver if it does not fit. In this case the transmission
CD sets a control flag to be able to react to this problem.
Communication time slots are usually periodic. There is no
acknowledgment of received frames.

The reception CD allocates payload buffers for each out-
put. Each received frame carries an identifier which assigns
the frame to a task port according to the communication
configuration. A frame is only copied to a buffer after a
checksum validation. The status of the reception is reported
by the following control flags: frame available, frame de-
layed and frame errors. The communication mechanism is
independent of underlying communication device drivers.

During the ESM execution data containing state infor-
mation and guard conditions is directly sent to the devel-
opment environment and written to shared memory (Log
Data). The data is coded in a way that it can be sent through
a low bandwidth link and that it consumes minimal memory
space. Recorded log data is written to a log file after a robot
mission is finished.

5. Conclusion

We presented a framework which has the following
characteristics: (1) it is based on a concise formalism
with a well-defined semantics which specifies control and
data flow, (2) it is optimized for robotic systems but not
limited to a specific robot architecture, (3) it permits to
build deterministic real-time control systems, (4) it includes
an ESM controlled communication mechanism, (5) it can
be distributed on several computer systems or processors,
(6) it offers possibilities for debugging, simulation, and
model checking, (7) it supports the component-based design
methodology and the reuse of components, (8) it is suitable
for rapid prototyping, (9) it supports reconfigurability at run
time, (10) it enables lightweight, efficient and robust imple-
mentations of control systems. To our knowledge there is
no other framework proposed in literature with comparable
characteristics.

The framework design mainly evolved from our experi-
ence building control systems for autonomous robots. We
successfully applied an earlier version of the framework in
an autonomous helicopter and an autonomous ground vehi-
cle project. The new version includes all features described
in this paper and is about to be finished.

The ESM language we propose provides a well-defined
formalism to describe a system. This is essential for build-

ing model checkers and execution monitoring mechanisms.
In contrast to FSMs, the use of ESMs prevents combina-
tory state explosion even for large robotic systems, permits
to realize mixed synchronous/asynchronous state machines,
and incorporates data flow and task execution control mech-
anisms. Hierarchical decomposition enables abstraction of
state machines, their reuse, as well as inheritance.

Thanks to the separation of development and run-time
environment, building new systems (including systems with
non-PC compatible hardware) only requires design of an
ESM, implementation or porting of associated user tasks,
and porting of the run-time environment. We assume that
the ESM language is abstract enough to reuse existing ESM
designs for new applications without or with only little
modification.

Future work includes integrating model checking tools,
extending our existing robotic systems, and confirm the ver-
satility of the framework. Thanks to the component-based
design methodology supported by the framework and the
inclusion of data flow into ESMs, we are expecting a seam-
less incorporation of more deliberative services such as task
planners and a straightforward integration of new sensors
and effectors.

References

[1] J. Albus and F. Proctor. A reference model architecture for
intelligent hybrid control systems. In Proc. of the 13. World
Congress, IFAC, June (30-5) 2000.

[2] A. Benveniste and G. Berry. The synchronous approach to re-
active and real-time systems. Proc. of the IEEE, 79(9):1270–
1282, 1991.

[3] R. Brooks. A robot that walks; emergent behaviors from a
carefully evolved network. In Proc. of the 1989 IEEE Int’l
Conf. on Robotics and Automation (Vol. 2), pages 692–696,
May (14-19) 1989.

[4] A. Brooks et. al. Towards component-based robotics. In Proc.
of the Int’l Conf. on Intelligent Robots and Systems, August
(2-6) 2005.

[5] P. Doherty. Knowledge representation and unmanned aerial
vehicles. In Proc. of the Int’l Conf. on Intelligent Agent Tech-
nology, pages 9–16, 2005.

[6] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274, June
1987.

[7] M. Kleinehagenbrock et. al. Supporting advanced interaction
capabilities on a mobile robot with a flexible control system.
In Proc. of the Int’l Conf. on Intelligent Robots and Systems,
September 28 – October 2 2004.

[8] P. Mantegazza et. al. RTAI: Real time application interface.
Linux Journal, 72, April 2000.

[9] T. Merz. Building a system for autonomous aerial robotics
research. In Proc. of the 5th IFAC Symp. on Intelligent Au-
tonomous Vehicles, July (5-7) 2004.

