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Abstract. Gated Bayesian networks (GBNs) are a recently introduced
extension of Bayesian networks that aims to model dynamical systems
consisting of several distinct phases. In this paper, we present an algo-
rithm for semi-automatic learning of GBNs. We use the algorithm to
learn GBNs that output buy and sell decisions for use in algorithmic
trading systems. We show how using the learnt GBNs can substantially
lower risks towards invested capital, while at the same time generating
similar or better rewards, compared to the benchmark investment strat-
egy buy-and-hold.
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1 Introduction

Algorithmic trading can be viewed as a process of actively deciding when to
own assets and when to not own assets, so as to get better risk and reward on
invested capital compared to holding on to the assets over a long period of time.
At the other end of the spectrum is the buy-and-hold strategy, where one owns
assets continuously over a period of time without making any decisions of selling
or buying during the period. This paper introduces a novel algorithm that can
be used to learn gated Bayesian networks (GBNs, described in Sect. 2) for use as
part of an algorithmic trading system. We also present a real-world application
of this learning algorithm that shows that, compared to the benchmark buy-and-
hold strategy, the expected risks and rewards are improved upon.

1.1 Algorithmic Trading

An algorithmic trading system contains several components, some which may be
automated by a computer, and others that may be manually executed [1, 2]. A
schematic overview of the components of a general algorithmic trading system
is shown in Fig. 1.

The type of data used at the research stage varies greatly, e.g. net profit,
potential prospects, sentiment analysis, analysis of previous trades, or techni-
cal analysis, which will be the focus in the enclosed application (described in



Research Data

Pretrade analysis Alpha model ... Alpha model Risk model Transaction cost model

Trading signal generation Portfolio construction model

Trade execution Execution model

Fig. 1. Components of an algorithmic trading system

Dec 31
2007

Mar 03
2008

May 01
2008

Jul 01
2008

Sep 02
2008

Nov 03
2008

Dec 29
2008

60
70

80
90

10
0

11
0

12
0

Pr
ic

e

20
00

0
22

00
0

24
00

0

Eq
ui

ty
 c

ur
veFig. 2. Buy and sell signals

Sect. 5.1). The analysis of the data is split up into alpha, risk and transaction
cost models. The alpha models are responsible for outputting decisions for buying
and selling assets based on the data they are given. These decisions are known as
buy and sell signals, examples of which are depicted in Fig. 2 (an arrow pointing
upwards is a buy signal and a downwards facing arrow is a sell signal, the signals
are drawn on top of the historical asset price). If followed, these buy and sell
signals give rise to certain risk and reward on the initial investment (which will
be described further in Sect. 3). The contribution of this paper is concerned with
the use of GBNs as alpha models.

The risk and transaction cost models should be seen as strategies for man-
aging risk and transaction costs in a system that has many alpha models. The
output from these three types of models (alpha, risk and transaction) are in their
turn the input to the portfolio construction model in the trading signal genera-
tion stage. Here the output of the previous components are combined to decide
which signals to actually execute in order to create a portfolio that is based on
a combination of alpha models. The final stage is the actual execution of the
trading signals, which must be done in a manner that does not affect the price
of the asset that is being bought. Although all components are important, we
will not be addressing all of them in this paper, our focus will be on the alpha
models.

The rest of the paper is organised as follows. We begin by giving a brief
introduction to Bayesian networks (BN) and GBNs in Sect. 2, this is important
to understand how GBNs can be used as alpha models. We continue by explaining
how we can evaluate the performance of an alpha model in Sect. 3. We use this
method of evaluation in Sect. 4, where we introduce a novel algorithm that can
be used to learn GBNs. In Sect. 5 we make use of the learning algorithm in a
real-world application, where we show how learnt GBNs can be used as alpha
models. Finally we end the paper in Sect. 6 with a few words regarding our
conclusions and future work.

2 Gated Bayesian Networks

BNs can be interpreted as models of causality at the macroscopic level, where
unmodeled causes add uncertainty. Cause and effect are modelled using random
variables that are placed in a directed acyclic graph (DAG). The causal model
implies some probabilistic independencies among the variables, that can easily
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be read off the DAG. Therefore, a BN does not only represent a causal model
but also an independence model. The qualitative model can be quantified by
specifying certain marginal and conditional probability distributions so as to
specify a joint probability distribution, which can later be used to answer queries
regarding posterior probabilities. The independencies represented in the DAG
make it possible to compute these posteriors efficiently. See [3, 4] for more details.

Although BNs have successfully been used in many domains, our interest is to
model the process of buying and selling assets, and in this particular situation
the BN model is not enough. This is the main motivation for us introducing
GBNs [5], and the current paper builds upon this previous contribution. When
trying to model the process of buying and selling assets, we want to model the
continuous flow between looking for opportunities to buy and opportunities to
sell. The model can be seen as being in one of two distinct phases: either looking
for an opportunity to buy into the market, or an opportunity to sell and exit
the market. These two phases can be very different and the random variables
included in the BNs modelling them are not necessarily the same.

Switching between phases is done using so called gates. These gates are en-
coded with predefined logical expressions regarding posterior probabilities of
random variables in the BNs. This allows activation and deactivation of BNs
based on posterior probabilities. A GBN that uses two different BNs (BN1 and
BN2) is shown in Fig. 3, follows does a brief explanation of this GBN and how
it is used (for the full details we refer the reader to our previous publication [5]).

– A GBN consists of BNs and gates. BNs can be active or inactive. The label
of BN1 is underlined, indicating that it is active at the initial state of the
GBN. The BNs supply posterior probabilities to the gates via so called trigger
nodes. The node S is a trigger node for gate G1 and W is a trigger node for
G2. A gate can utilise more than one trigger node.

– Each gate is encoded with a predefined logical expression regarding its trigger
nodes’ posterior probability of a certain state, e.g. G1 may be encoded with
p(S = s1|e) > 0.7. This expression is known as the trigger logic for gate G1.

– When evidence is supplied to the GBN an evidence handling algorithm up-
dates posterior probabilities and checks if any of the logical statements in
the gates are satisfied. If the trigger logic is satisfied for a gate it is said



to trigger. A BN that is inactive never supplies any posterior probabilities,
hence G2 will never trigger as long as BN2 is inactive.

– When a gate triggers it deactivates all of its parent BNs and activates its
child BNs (as defined by the direction of the edges between gates and BNs).
In our example, if G1 was to trigger it would deactivate BN1 and activate
BN2, this implies that the model has switched phase.

For the user of the GBN, the knowledge that one or more of the gates have
triggered (i.e. the state of the GBN has changed), may be useful in a decision
making process. As an example, if the GBN was used as an alpha model, knowing
that the GBN has found a buying opportunity and has started modelling selling
opportunities would suggest that a buy signal has been generated. Looking again
at Fig. 2, each buy and sell signal is generated by the fact that the GBN switched
back and forth between its states.

GBNs can consist of many phases, and the phases themselves can have sub-
phases that are made up of several BNs. An example of a GBN with multiple
phases is shown in Fig. 4.

3 Evaluating Alpha Models

Regression models can be evaluated by how well they minimise some error func-
tion or by their log predictive scores. For classification, the accuracy and precision
of a model may be of greatest interest. Alpha models may rely on regression and
classification, but can not be evaluated as either. An alpha model’s performance
needs to be based on its generated signals over a period of time, and the perfor-
mance must be measured by the risk and reward of the model. This is known as
backtesting.

3.1 Backtesting

The process of evaluating an alpha model on historic data is known as backtest-
ing, and its penultimate goal is to produce metrics that describe the behaviour
of a specific alpha model. These metrics can then be used for comparison be-
tween alpha models [6, 7]. A time range, price data for assets traded and a set
of signals are used as input. The backtester steps through the time range and
executes signals that are associated with the current time (using the supplied
price data) and computes an equity curve (which will be explained in Sect. 3.2).
From the equity curve it is possible to compute metrics of risk and reward.
To simulate potential transaction costs, often referred to as commission, every
trade executed is usually charged a small percentage of the total value (0.06%
is a common commission charge used in the enclosed application).

Alpha models are backtested separately from the other components of the
algorithmic trading system, as the backtesting results are input to the other
components. Therefore, we execute every signal from an alpha model during
backtesting, whereas in a full algorithmic trading system we would have a port-
folio construction model that would combine several alpha models and decide
how to build a portfolio from their signals.



3.2 Alpha Model Metrics

What constitutes risk and reward is not necessarily the same for every investor,
and investors may have their own personal preferences. However, there are a few
that are common and often taken into consideration [7]. Here we will introduce
a few metrics that we will use to evaluate the performance of our alpha models.

Equity Curve Although not a metric on its own, the equity curve needs to be
defined in order to define the following metrics. The equity curve represents the
total value of a trading account at a given point in time. If a daily timescale is
used, then it is created by plotting the value of the trading account day by day.
If no assets are bought, then the equity curve will be flat at the same level as the
initial investment. If assets are bought that increase in value, then the equity
curve will rise. If the assets are sold at this higher value then the equity curve
will again go flat at this new level. The equity curve summarises the value of the
trading account including cash holdings and the value of all assets. We will use
Et to reference the value of the equity curve at point t.

Metric 1 (Return). The return of an investment is defined as the percentage
difference between two points on the equity curve. If the timescale of the equity
curve is daily, then rt = (Et − Et−1)/|Et−1| would be the daily return between
day t and t−1. We will use r̄ and σr to denote the mean and standard deviation
of a set of returns.

Metric 2 (Sharpe Ratio). One of the most well known metrics used is the so
called Sharpe ratio. Named after its inventor Nobel laureate William F. Sharpe,
this ratio is defined as: (r̄− risk free rate)/σr. The risk free rate is usually set to
be a "safe" investment such as government bonds or the current interest rate,
but is also sometimes removed from the equation [7]. The intuition behind the
Sharpe ratio is that one would prefer a model that gives consistent returns (re-
turns around the mean), rather than one that fluctuates. This is important since
investors tend to trade on margin (borrowing money to take larger positions),
and it is then more important to get consistent returns than returns that some-
times are large and sometimes small. This is why the Sharpe ratio is used as a
reward metric rather than the return.

Drawdown Risks Using the Sharpe ratio as a metric will ensure that the
alpha models are evaluated on their risk adjusted return, however, there are
other important alpha model behaviours that need to be measured. A family of
these, that we will call drawdown risks, are presented here (please see Fig. 5 for
examples of an equity curve and these metrics).

Metric 3 (Maximum Drawdown (MDD)). The percentage between the
highest peak and the lowest trough of the equity curve during backtesting. The
peak must come before the trough in time. The MDD is important from both
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a technical and psychological regard. It can be seen as a measure of the maxi-
mum risk that the investment will live through. Investors that use their existing
investments that have gained in value as safety for new investments may be put
in a situation where they are forced to sell everything. Other risk management
models may automatically sell investments that are loosing value sharply. For
the individual who is not actively trading but rather placing money in a fund,
the MDD is psychologically frustrating to the point where the individual may
withdraw their investment at a loss in fear of loosing more money.

Metric 4 (Maximum Drawdown Duration (MDDD)). The longest it has
taken from one peak of the equity curve to recover to the same value as that
peak. Despite its unfortunate name it is not the duration of the MDD, but rather
then longest drawdown period. There is an old adage amongst investors to "cut
your losses early". In essence it means that it is better to take a loss straight
away than to sit on an investments for months or years, hoping that it will come
back to positive returns. During this time one could have re-invested the money
elsewhere, rather then breaking-even much later (or taking a larger loss much
later). Models that have long periods of drawdown lock resources when they
could have been used better elsewhere.

Metric 5 (Lowest Value From Investment (LVFI)). The percentage be-
tween the initial investment and the lowest value of the equity curve. This is one
of the most important metrics, and has a significant impact on technical and
psychological factors. For investors trading on margin, a high LVFI will cause
the lender to ask the investor for more safety capital (known as a margin call).
This can be potentially devastating, as the investor may not have the capital
required, and is then forced to sell the investment. The investor will then never
enjoy the return the model could have produced. Individuals who are not invest-
ing actively, but instead are choosing between funds that invest in their place,
should be aware of the LVFI as it is the worst case scenario if they need to
retract their equity prematurely.

Metric 6 (Time In Market Ratio (TIMR)). The percentage of time of the
investment period where the alpha model owned assets. This metric may seem
odd to place within the same family as the other drawdown risks, however it fits



naturally in this space. We can assume that the days the alpha model does not
own any assets the drawdown risk is zero. If we are not invested, then there is no
risk of loss. In fact, we can further assume that our equity is growing according
to the risk free rate, as it is not bound in assets.

3.3 Buy and Hold Benchmark

At first the buy-and-hold strategy may seem naïve, however it has been shown
that deciding when to own and not own assets requires consistent high accuracy
of predictions in order to gain higher returns than the buy-and-hold strategy [8].
The buy-and-hold strategy has become a standard benchmark, not only because
of the required accuracy, but also because it requires very little effort to execute
(no complex computations and/or experts needed).

Now consider the family of metrics that we called drawdown risks. The buy-
and-hold strategy holds assets over the entire backtesting period and so will
be subject to the full force of these metrics. For instance, as an asset will be
held throughout the period, the lowest point of the assets value will coincide
with LVFI. Furthermore, the initial investment will always be locked in assets,
not being able to make money from risk free rates during periods of decreasing
value. These are serious risks of using buy-and-hold that algorithmic trading
could improve upon, which we will explore in the enclosed application in Sect. 5.

4 Learning Algorithm

The algorithm proposed in this paper for semi-automatically learning the struc-
ture of a GBN consists of two parts: a GBN template and a novel combina-
tion of k-fold cross-validation and time series cross-validation (time series cross-
validation is sometimes known as rolling origin [9] or walk forward analysis [6]).

4.1 Gated Bayesian Network Templates

A GBN template is a representation of the modelled phases, including the pos-
sible transitions between them. The template defines where BNs and gates can
be placed. For each slot where a BN can be placed, there is a library of BNs
to choose from, similarly so for gates (gates differ in their trigger logic, e.g. the
thresholds may vary between them). A template with four slots and correspond-
ing libraries is depicted in Fig. 6.

The only restrictions on the BNs and gates are the ones they place on each
other, e.g. if the gates placed in G2 expect a particular node as trigger node, then
the BNs placed in BN2 must contain that node. Except for these restrictions,
the BNs and gates can be configured freely.

Selecting a BN and a gate from the libraries for each slot in the template
creates a GBN (e.g. Fig. 3), we call this a candidate of the template. We use Ci
to denote GBN candidate i of a GBN template.
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4.2 K-Fold and Time Series Cross-Validation

In this section we will discuss how a GBN candidate, from a GBN template, is
evaluated. In the domain of algorithmic trading it is natural for the test data
to always come after the training data in temporal order. This is to ensure that
we are not training on data that may carry information not available during the
time the testing data was produced.

Splitting the Data A data set D of consecutive evidence sets, e.g. observations
over all or some of the random variables in the GBN, is divided into n equally
sized blocks (D1, ...,Dn) such that they are mutually exclusive and exhaustive.
Each block contains consecutive evidence sets and all evidence sets in block Di

come before all evidence sets in Dj for all i < j.
Depending on the amount of available data, k is chosen as the number of

blocks used for training. These blocks will be used for k-fold cross-validation.
Starting from index 1, blocks 1, .., k are used for training and k + 1 for testing,
thus ensuring that the evidence sets in the testing data occurs after the training
data (as in time series cross-validation). The procedure is then repeated starting
from index 2 (i.e. blocks 2, .., k + 1 are used for training and k + 2 for testing).
By doing this we create repeated simulations, moving the testing data one block
forward each time. An illustration of this procedure when n = 10 and k = 3 is
show in Fig. 7.

4.3 Algorithm

Let J (Ci,Dj , {D}ml ) be the score, e.g. Sharpe ratio, LVFI, etc., for GBN can-
didate i when block j has been used for testing and the blocks Dl, ...,Dm have
been used for training. The algorithm then works in three steps (with an optional
fourth):

1. For each simulation t, where (as discussed previously) Dt+k is the testing
data and Dt...Dt+k−1 is the training data, find Ct that satisfies (1). This
corresponds to finding the GBN candidate with the maximum mean score of



the k evaluations performed during k-fold cross-validation over the training
data. This is done by taking into consideration every possible candidate,
thus exhausting the search space.

Ct = arg max
Ci

1

k
Σt+k−1

j=t J (Ci,Dj , {D}t+k−1
t \Dj) . (1)

2. For each Ct calculate its score ρtJ on the testing set with respect to the scoring
function J according to (2). This corresponds to training the found GBN
candidate from (1) using all training data and evaluating the performance
on the data withheld for testing.

ρtJ = J (Ct,Dt+k, {D}t+k−1
t ) . (2)

3. The expected performance ρ̄J of the algorithm, with respect to the score
function J , is then given by the average of the scores ρtJ (3).

ρ̄J =
1

n− k
Σn−k

t=1 ρ
t
J . (3)

4. (Optional) If the objective is to find the candidate to be used on future
unseen data (i.e. block Dn+1) then (1) is used once more to find Cn−k+1.
This candidate can then be used on Dn+1 with an expected performance
ρ̄J .

It may seem unorthodox to use k-fold cross-validation with unordered data
in step 1, i.e. the testing block may come before some training blocks. However,
this step is only used to select a model to evaluate in step 2. The data used in
step 2 is always ordered, i.e. the test block is always the immediate successor of
the training blocks. This does give a fair evaluated performance on the testing
data. Step 1 attempts to use the training data to its maximum, allowing for each
candidate to be assessed on several data sets before selecting the one to move
forward with.

In the description of the algorithm, one scoring function J has been used both
for choosing a candidate in (1) and for evaluating the expected performance of
the algorithm in (2). In Sect. 3.2 we have defined several metrics used to evaluate
alpha models. The scoring function J used in (1) could internally use many of
these metrics to come up with one score to compare the different candidates
with. However, it is natural in the current setting to expose the actual values of
these metrics during step 2, and so several scoring functions J can be used to
get a vector of scores [ρtJ1

, ..., ρtJm
] and use a vector of means as the performance

of the algorithm [ρ̄J1
, ..., ρ̄Jm

].

5 Application

In this section we show a real-world application where our proposed algorithm
has been used to learn GBNs for use as alpha models, using backtesting to



evaluate their performance. Following the discussion in Sect. 3.3, the aim is to
generate buy and sell signals such that the drawdown risks defined in Sect. 3.2
are mitigated as compared to the buy-and-hold strategy, while at the same time
maintaining similar or better rewards.

5.1 Methodology

The variables used in the BNs of our GBNs are all based on so called technical
analysis. One of the major tenets in technical analysis is that the movement
of the price of an asset repeats itself in recognisable patterns. Indicators are
computations of price and volume that support the identification and confirma-
tion of patterns used for forecasting. Many classical indicators exists, such as
the moving average (MA), which is the average price over time, and the rela-
tive strength index (RSI) which compares the size of recent gains to the size of
recent losses. Technical analysis is a topic that is being actively developed and
researched [10]. In this application we will be using three indicators: the MA,
the RSI and the relative difference between two MAs (MADIFF). Please see [11]
for the full definition and calculations of these indicators.

GBN Template A template with one BN per phase was created (see Fig. 6),
along with eight BNs per BN slot (see Fig. 8) and four gates per gate slot,
giving a total of 1024 candidates. The eight BNs used for BN1 are identical to
those used in BN2, however the gates’ trigger logic are different. The trigger
logic for G1 asks for the posterior probability of a good buying opportunity
(i.e. a predicted positive future climate) while the trigger logic for G2 asks for
the posterior probability of a good selling opportunity (i.e. a predicted negative
future climate).

The random variables in the BNs are discretizations of technical analysis in-
dicators (RSI, MA and MADIFF) and their corresponding first and second order
1 and 5 day backward finite differences (∇1

1,∇1
5,∇2

1 and ∇2
5) which approximate

the first and second order derivatives. The parameters used in the indicators are
standard 14 day period for RSI [11] (written as RSI(14)), 20 day period for MA,
representing 20 trading days in a month (written as MA(20)), and 5 and 20 day
period for MADIFF, where 5 days represent the 5 trading days in a week (writ-
ten as MADIFF(5,20) and calculated as MA(5)−MA(20)

MA(20) ). We also consider the
previous indicators but with an offset of 5 days in the past and 5 days into the
future. The random variables that are offset into the future represent the future
economical climate, one of which was involved in the trigger logic of the gates.
The true values for these future random variables were naturally not part of the
testing data sets. The BNs used for the BN slots are presented in Fig. 8. The
node named S was used as the trigger node for all gates. The GBN generated
trading signals as it transitioned between its two phases (as described in Sect. 2).

Data Sets A set of actively traded stock shares where chosen for the evaluation
of our learning algorithm: Apple Inc. (AAPL), Amazon.com Inc. (AMZN), Inter-
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Fig. 8. BNs in GBN template libraries

national Business Machines Corporation (IBM), Microsoft Corporation (MSFT),
NVIDIA Corporation (NVDA), General Electric Company (GE), Red Hat Inc.
(RHT). The daily adjusted closing prices for these stocks between 2003-01-01
and 2012-12-31 were downloaded from Yahoo! FinanceTM. This gave a total of
10 years of price data for each stock, where each year was allocated to a block,
and thus n = 10. For the learning algorithm, k was chosen to be 3, giving 7 sim-
ulations from which to calculate [ρ̄J1 , ..., ρ̄Jm ]. The split of the data is visualised
in Fig. 7.

Scoring Functions The signals generated were backtested (see Sect. 3) in order
to calculate the relevant metrics. For step 1 in the learning algorithm we used
the Sharpe ratio. This choice was made as it combines both risk and reward
into one score, which can then easily be compared between candidates. For step
2 we used the return and drawdown risks as described in Sect. 3.2 to create a
score vector. For the buy-and-hold strategy the same metrics as in step 2 were
calculated for the 7 simulations.

5.2 Results and Discussion

To visualise the backtesting that was done for each simulation, Fig. 9 gives
two examples of stock price, generated signals (an upward arrow indicates a
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Fig. 9. Price, signals and GBN equity curve for IBM 2008 (left) and NVDA 2010 (right)

buy signal and a downward arrow indicates a sell signal) and resulting equity
curve (with an initial investment of $20,000 USD) for the evaluated GBN. The
equity curve is the one achieved by executing the signals from the GBN, the
corresponding equity curve for the buy-and-hold strategy would follow the stock
price exactly, as it holds shares over the entire period. The GBN equity curve
grows in a more monotonic fashion, which is desirable because this decreases the
drawdown risks, while at the same time generating positive returns. The buy-
and-hold strategy would have made a loss in both these examples, because the
final price is lower than the initial one, furthermore it would have displayed bad
intermediate behaviour, reflected by the high drawdown risk values that would
have been incurred. These are declining years for the shares, however the GBN
does its best to get as much value as possible from the price movements.

Table 1 presents the score vectors from the learning algorithm versus the score
vector of the buy-and-hold strategy over the 7 simulations. Rows named min,
max, mean and sd (standard deviation) are based on (2) where mean corresponds
to (3). As each block used by the learning algorithm had an approximate length
of one year, the Sharpe ratio that is given by dividing the mean with the sd
of the return column is a yearly Sharpe ratio based on seven years (where the
risk-free rate has not been included). All values are ratios except for MDDD
which is measured in number of days.

Analysis of Results The Sharpe ratio is our measure of reward, premiered
above the raw return for reasons discussed in Sect. 3.2. Our first concern is to
ensure that the learnt GBNs are producing similar or better Sharpe ratios than
the buy-and-hold strategy over the testing period. As can be seen in Table 1,
this is the case except for NVDA and RHT. As we have previously discussed,
it requires a very high accuracy of predictions to consistently beat the Sharpe
ratio of buy-and-hold.



Table 1. Metric values comparing GBN with buy-and-hold

GBN Buy-and-hold
Return MDD MDDD LVFI TIMR Return MDD MDDD LVFI TIMR

AAPL min -0.000 0.122 35.0 0.001 0.520 -0.559 0.129 28.0 0.001 1.000
max 0.851 0.331 164.0 0.184 0.944 1.419 0.589 250.0 0.590 1.000
mean 0.347 0.206 95.0 0.055 0.723 0.489 0.274 116.0 0.162 1.000
sd 0.334 0.076 50.3 0.061 0.155 0.707 0.168 82.7 0.218 0.000

Sharpe 1.041 0.691
AMZN min -0.204 0.134 56.0 0.042 0.510 -0.466 0.157 45.0 0.001 1.000

max 0.784 0.306 142.0 0.245 0.768 1.740 0.634 249.0 0.620 1.000
mean 0.271 0.218 101.7 0.109 0.630 0.463 0.317 118.6 0.215 1.000
sd 0.374 0.060 32.8 0.088 0.091 0.829 0.171 89.9 0.234 0.000

Sharpe 0.725 0.559
IBM min -0.022 0.062 53.0 0.013 0.494 -0.210 0.088 28.0 0.001 1.000

max 0.238 0.176 176.0 0.121 0.944 0.596 0.442 190.0 0.302 1.000
mean 0.125 0.117 112.3 0.044 0.712 0.170 0.174 106.4 0.086 1.000
sd 0.094 0.042 45.4 0.042 0.173 0.245 0.120 59.7 0.101 0.000

Sharpe 1.332 0.694
MSFT min -0.256 0.099 88.0 0.001 0.365 -0.457 0.141 74.0 0.001 1.000

max 0.381 0.305 197.0 0.279 0.741 0.659 0.498 250.0 0.498 1.000
mean 0.056 0.168 143.3 0.114 0.557 0.069 0.249 168.6 0.200 1.000
sd 0.202 0.068 41.9 0.091 0.156 0.338 0.119 67.8 0.155 0.000

Sharpe 0.278 0.204
NVDA min -0.420 0.182 64.0 0.032 0.241 -0.765 0.253 67.0 0.077 1.000

max 0.342 0.541 227.0 0.467 0.700 1.230 0.820 249.0 0.821 1.000
mean 0.016 0.284 148.1 0.209 0.516 0.202 0.458 172.3 0.311 1.000
sd 0.284 0.120 62.1 0.140 0.171 0.701 0.195 76.6 0.268 0.000

Sharpe 0.057 0.288
GE min -0.302 0.049 60.0 0.015 0.404 -0.555 0.089 69.0 0.001 1.000

max 0.461 0.465 217.0 0.438 0.570 0.222 0.657 217.00 0.642 1.000
mean 0.040 0.169 144.3 0.119 0.488 -0.001 0.314 157.0 0.236 1.000
sd 0.235 0.142 69.7 0.150 0.062 0.257 0.228 53.7 0.257 0.000

Sharpe 0.169 -0.005
RHT min -0.222 0.096 87.0 0.001 0.433 -0.370 0.143 40.0 0.001 1.000

max 0.436 0.428 221.0 0.348 0.784 1.341 0.676 221.0 0.617 1.000
mean 0.038 0.254 156.9 0.136 0.613 0.201 0.338 133.0 0.243 1.000
sd 0.259 0.103 45.6 0.123 0.136 0.579 0.197 61.6 0.234 0.000

Sharpe 0.145 0.346

From this we can conclude that the GBNs do not get beaten consistently
by the buy-and-hold strategy when considering the annual Sharpe ratio, even
though it is considered a nearly optimal strategy. Furthermore, we should take
into consideration TIMR. The GBNs are spending less time in the market, reduc-
ing risk to equity and possibly increasing equity value from risk free investments.
Potential gain in equity from risk free rates have not been added to the Sharpe
ratios presented in the table. Considering that the learnt GBNs consistently
spend considerably less time in the market (shown by the low TIMR values),
this could give a significant boost to the Sharpe ratios. An example of this can be
seen for NVDA where the Sharpe ratio for GBN is lower than for buy-and-hold,
but the GBN only spent on average 51.6% of the time in the market, risk free
investments could potentially drive the Sharpe ratio for the GBN above that of
the buy-and-hold strategy.

Turning our attention to the drawdown risks (as defined in Sec. 3.2) we first
consider the MDD and MDDD. The difference of the MDD values are substantial,
the MDDmean and sd are consistently smaller for the GBNs than they are for the
buy-and-hold strategy. This signals that the equity we gain from our investments



are at less risk when using the GBNs compared to the buy-and-hold strategy.
For MDDD the means differ in favour of either approach, we would not prefer
one in front of the other given only this metric.

The LVFI is a major threat to equity (see Sect. 3.2), and it is the one metric
where buy-and-hold severely under-performs. Considering the max values we
note that for NVDA the buy-and-hold strategy wiped out 82.1% of the equity
at worst, while the GBNs did 46.7% at worst for NVDA. Considering the LVFI
mean and sd for all stocks we note that they are consistently almost half for the
GBNs compared to the buy-and-hold strategy. LVFI is important because it is
the risk of the initial investment, loosing much of the initial investment may lead
to premature withdrawal of funds and/or force liquidation by margin-calls.

All in all, the results above clearly indicate that GBNs are competitive with
buy-and-hold in terms of Sharpe ratio, whereas they induce a more desirable
behaviour in terms of MDD, LVFI and TIMR.

Post-Analysis One of the benefits of using BNs is that we can get transparency
as to why a particular signal was generated. Our aim here was to look at the
non-discretized values of the variables at the time a signal was generated. We
combined the signals from all simulations (regardless of which stock was traded)
and then grouped the signals by which BN generated them and if they were buy
or sell signals. We then did pair-wise combinations of the variables in each BN to
create scatter plots with values of the variables along the axes and also added an
approximated density using the frequency of signals. These scatter plots show
when GBNs are generating signals. Examples of these plots for the BNs that
generated the most signals are given in Fig. 10 (using 7 from Fig. 8) and Fig. 11
(using 5 from Fig. 8).

In Fig. 10 the BN is used to look for buying opportunities. In the first
plot we see that most signals are generated when both ∇1

1MADIFF (5, 20)
and ∇2

1MADIFF (5, 20) are positive, indicating that the difference between the
two MAs is growing and increasing in speed, but not so positive so as to mak-
ing it impossible to benefit from the trend. The second two plots in Fig. 10
plot ∇2

1MADIFF (5, 20) against MADIFF (5, 20) and the ∇1
1MADIFF (5, 20)

against MADIFF (5, 20). Both these confirm what we knew about the first
and second order difference, but also indicate that MADIFF (5, 20) should be
positive (so the short period MA should be above the long period MA). From a
technical analysis perspective this kind of pattern is common, it indicates a trend
change, as the shorter MA is moving above and away from the longer MA. It is
noteworthy to mention that we have not set any priors on the BNs that would
indicate that these are the kind of patterns we are interested in, so our learning
algorithm is able to re-discover these human-like commonly used patterns. An
example of selling signals is presented in Fig. 11, here we are using RSI which is
bounded between 0 and 100. When RSI moves up towards 100 it indicates that
the buying pressure is increasing, and should drive prices higher, the opposite
is true when RSI moves towards 0. The first plot indicates that most selling
signals are generated when ∇1

1RSI(14) is close to zero or negative (i.e. RSI has
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Fig. 10. Buy decisions using 7 from Fig. 8
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Fig. 11. Sell decisions using 5 from Fig. 8

started to decrease) and ∇2
1RSI(14) is bounded around ±10. The two other

plots in Fig. 11 represent ∇2
1RSI(14) against RSI(14) and ∇1

1RSI(14) against
RSI(14). These last two figures confirm our findings in the first figure, but also
indicates that the RSI(14) should be below 50 (but not too much below 50 so as
to miss the selling opportunity). This seems reasonable from a technical analysis
perspective, as RSI goes below 50 and decreases, the selling pressure increases,
indicating that the price will go lower, and so a selling signal is generated. We
reemphasise that we did not set any prior in the BNs that would suggest that
these are the type of signals we should be looking for.

Modelling Different Phases The GBNs used herein do not attempt to switch
between BNs to adapt to changes in non-stationary data, but instead they change
when the decision being made has changed (i.e. first we are looking to buy, then
to sell). GBNs in general model different phases in a process, albeit that data
may be non-stationary in some or all phases. This makes GBNs different from
formalisms that switch between models to adjust for shifts in non-stationary
data, where it is common to take into consideration the performance of the
models as part of the weighting or switching probability [12].

6 Conclusions and Future Work

We have introduced a novel algorithm for semi-automatic learning of GBNs,
and shown how this algorithm can be used to learn GBNs for use as alpha
models in algorithmic trading systems. We have applied the algorithm to evaluate



the expected performance of the learnt GBNs as alpha models compared to
using the benchmark buy-and-hold strategy. The results show that learnt GBNs
consistently reduce risk with similar or better rewards and do so while at the
same time staying out of the market for considerable amounts of time, during
these non-invested days the equity is at zero risk and can gain value from risk
free assets.

Our future work will include developing the learning algorithm to become
more automatic, avoiding having to create a GBN template and rather allow the
algorithm to place the phases, BNs and gates in such a way that it optimises
some score. We are also interested in combining GBNs with utility and decisions
nodes, as are used in influence diagrams. This would allow us to trigger gates
depending on the utility of some decision, and this utility could be subject to
risk adjustment by using concave utility functions. Furthermore, we have very
preliminary ideas on using GBNs to give explanations to models induced by
chain graphs and vice versa [13].
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