4/26/13

TDDDO05

Enterprise Java Beans - Part1
Lecture 07

LuLi luli@liu.se
Department of Computer and Information Science

Linksping University, Sweden

Some slides from Mikhail Chalabine and Peter Nunus

Definition

» EJB — component model for building distributed
server-side Java-based enterprise application
components

» An EJB - distributed server-side non-visual
component encapsulating application business
logic

Developers say

» EJB is a piece of code executing in a special
container

» EJB = @+ Bean

© Bean encapsulates business logic
Distributed objects with distinct address spaces
Programmer writes Beans to a standard
Portability and scalability
Components with lifecycle management
Transactional access to remote objects
Container services; out of the box

[.]

EJBs Provide (1)

Model for defining server-side components

Model for defining distributed client interfaces
to services provided by server-side components

> Framework for building server-side components

Standard operations and semantics for allowing
a container to create, destroy, allocate, persist,
activate, and invoke component instances

Model for defining a component that maintains a
session with a client where the session is
managed by the container

EJBs Provide (2)

» Model for defining a component that
encapsulates a data source entry with object-to-
relational data mapping handled by the container
— a.k.a. Entity bean (EJB2) or JPA Entity (EJB3)

Model for defining a component that
encapsulates an asynchronous message
consumer with messaging service handled by
the container — a.k.a. Message-driven beans

> Model for defining a component that
encapsulates a Web service with SOAP
messaging interactions handled by the container

EJBs Provide (3)

o Standard for configuring and deploying
distributed components

Standard for declaratively specifying the
security attributes of a component

Standard for declaratively specifying the
transactions attributes of a component

Standard component interface contract
allowing components to run in any vendor-
compliant container/server which implements this
standard interface contract

[

Implementation

EJB € Java EE standard (a.k.a. J2EE)
© Component specification
¢ Distributed component model standard

o Implementation by independent vendors
© Tools and Containers

» Proprietary: IBM (WebSphere), BEA (WebLogic), Sun and
Netscape (iPlanet), Oracle, Borland

» Open source: GlassFish, JBoss

4/26/13

EJB vs. JavaBeans

> JavaBeans model — a means for building Java
components

> Enterprise JavaBeans model — a means for
building Java components for use in containers
that offer distributed client connectivity, have
exclusive server-side semantics, provide various
standard services and offer sophisticated
component lifecycle management

[J2EE Developer's Handbook, Parmons, Chaganti and Sc

2003,p. 1080] EJB

EJB & Java Evolution

S
Java 2.0 Ease of
. Development
Enterprise Edition
TIMELINE
1 _1 Web Services | “MAEES
Annotations,
Persistence
API, Updated
1 . 0 Robustness Web Services
Enterprise J2EE13
Java Platform cwP,
Connector

Architecture.

JPEPmIed .

EJB Architecture Basics

EJB Architecture Basics (1)

-

—a SRR

A
T @

SIORAGE

LNt

APPLICATION SERVER

EJB Architecture Basics (2)

= e T’@

LNt ! STORAGE
EJ8 Container

Java FE Container

Clients EJB Architecture Basics (3)

JsP Page

JSF Component +

WEB CONTAINER

EJB CONTAINER

i Application Client ; 3

APPLICATION
CLIENT CONTAINER
avm

. Java Application

EJB CONTAINER

4/26/13

Distributed Objects (1)

R - Remote Interface

Network

Skeleton °

Distributed Objects (2)

R, R’ - Remote Interfaces:
Stub R SR

o Request interceptor

 Proxy (security, primary use)

< Exposes a subset of DO Notwork
methods; hides others

Request
Interceptor

(R

© 0O & Separation of concerns

< Encapsulates logic specific to
type of request, e.g., RMI/
IIOP — cf. DO business logic

< Encapsulates logic specific to
all DO instances of certain
type — cf. logic specific to
individual DO instances

Distributed
Object (DO)

Skeleton

Distributed Objects (3)

R, R’ — Remote Interfaces:
° Stub BoER

o Execution flow
¢ Client calls a method
on the EJB object Network
© EJB object delegates
the call to a bean

EJB Container

EJB Object

© EJB receives the
result

© EJB passes the result
to the caller

Skeleton

Discover EJBs — JNDI (1)

Java EE Container EJB Container

2]

Client O R/

EJB Object

R, R’ — Remote Interfaces:
R E R

Java Naming and Directory Interface (JNDI)

© Similar to CORBA naming service

Discover EJBs — JNDI (2)

INDI Server (INDI Tree)

) Resource

Java Naming and Directory Interface (JNDI)
' Maps resource names to physical (network) locations
" Global names visible across Java EE container
No need to hardcode addresses to EJB objects in the Client

Discover EJBs — JNDI (3)

4/26/13

Java Naming and Directory Interface (JNDI)
> Centralized repository
» No metalevel descriptions
» Resources identified by names submitted to JNDI server
» Example: mappedName = “ejb/TDDD@5” (see below)
» Client must know the name of EJB to get it
» No metalevel description of EJB component semantics
> Not possible: Get me EJB that computes (a + b)
» Possible: Get me EJB with name “A”

import javax.ejb.Stateless;

@Stateless(mappedName="ejb/TDDD@5")
public class SimpleSessionBean implements SimpleSession {

}...

EJB 2

EJB 2

o EJB 2 - EJB component (distributed object)
configurable through XML descriptors
¢ Remote interface
> Bean’s business methods
Amenable to Reflection metadata analysis
© Home interface
© Bean’s lifecycle management
« Create
Find
¢ Remove
@ Bean class
» Business logic

EJB 2 Architecture (1)

EJB Container

EJB Object

R, R, R” - Remote Interfaces

R SR
B — Bean Instance of type B ,//
EJB Object — EJB Object object for 5
Beans of type B
EJB Home - EJB Home object for
Beans of type B Relational

Database

EJB 2 Architecture (2)

© - Client obtains a reference to the EJB Home
object (JNDI Lookup, address)

@ - Client calls create() on EJB Home to obtain
Bean’s Remote Interface (EJB Object)

© Container creates a new EJB Object per client and Bean type
« Container associates a Bean instance from the pool with the
newly created EJB Object
Ready state
© - Client calls a method on Beans Remote
Interface (EJB Object)

Q — EJB Object delegates the call to Bean
Instance associated with it

EJB Object — Remote Interface (1)

l EJ8 Container

Client » EJB Object

INDI
EJB Home

B - Bean Instance of type B

EJB Object - EJB Object object for
Beans of type B

EJB Home - EJB Home object for

Beans of type B

4/26/13

EJB Object — Remote Interface (2)
> Acts as Proxy
© One per client request and Bean type (component type)

' Either none or single associated Bean instance
© Access to container services

» Access to Bean configuration
x4
K
. .y

£JB Request EIB *®" Request forward
e Object ° Bean

~~~ 'S
N Persistence
S
.
.
u

[EJB 3 in Action, 2007, pp. 14

.

== =) Service access

EJB Object — Remote Interface (3)

» Must extend javax.ejb.EJBObject
» Lists business methods available to clients
» Created via EJBHome object factory

public interface SimpleSession extends javax.ejb.EJBObject {
public String sayHello() throws java.rmi.RemoteException;

EJB Home — Home Interface (1)

I €38 contatner

Client ‘ £ ‘ EJB Object

JINDI )
EJB Home

- Remote Interfaces

B - Bean Instance of type B

EJB Object - EJB Object object for
Beans of type B

EJB Home - EJB Home object for

Beans of type B Relat

tlamanse
>

EJB Home — Home Interface (2)

Must extend javax.ejb.EJBHome
» Factory to create EJB Object instances
> Singleton — one instance per EJB component
o Allows clients to create / remove / locate EJBs
o Generated by the container
o Registered to JNDI

© Access point for clients
public interface SimpleSessionHome extends javax.ejb.EJBHome {

SimpleSession create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

EJB 2 Architecture (3)

> Combine EJB Home and EJB Object in one ?

@ No good, because
© EJB Home is a Singleton
One factory per EJB component sufficient
© Can create as many EJB Object instances as needed
© Obs! EJB Object — one instance per Client and EJB component
EJB Home as singleton is good OO — reduces code duplication
Separation of Concerns (see AOP lecture)
EJB Home encapsulates no Bean’s Business Logic
EJB Home encapsulates EJB framework code

» Create / destroy / locate EJBs
e EJB Object

@ EJB Home

e

Discover EJBs (1)

l £38 Contatner

Client ‘

EJB Object

(JNDI > 1
— EJB Home

— Remote Interfaces

B ~ Bean Instance of type B
EJB Object - EJB Object object for

Beans of type B e
EJB Home - EJB Home object for Q

Beans of type B




4/26/13

Discover EJBs (2)

o Classical JNDI lookup (cf. DIl in EJB 3)
> Gives the Client a reference to EJBHome object
o Clients reference JNDI server via InitialContext (see example)

> JNDI implementation
> Vendor specific
o Bound to J2EE server implementation

Context ctx = new InitialContext();
HelloWorldHome ejbHome = (HelloWorldHome) PortableRemoteObject.narrow(
ctx. lookup("HelloWorld"),
HelloWorldHome.class );
HelloObject ejbObject
String message

ejbHome.createQ);
ejbObject.sayHello();

EJB 2 Bean Types

Session
o Stateless
o Stateful

Presentation layer

Session | ———p-| Message-driven

Entity / / sustness logtc layer

Message-Driven

Persistence layer

.

Session Beans (1)

' Distributed objects, components
o Home Interface, Remote / Local interface, Bean class

> Act as agents to the client
> No DB persistence
> Low resource requirements
o Won't survive a server crash or shutdown
> Fast response
o Perfect for short requests to perform a unit of work

Types
o Stateless
o Stateful

14,72] EJB

Session Beans (2)

o Stateless

¢ Single request business model
© No client - conversational — state maintained across client
requests
© Conversational state spans over a single method call

© Container may destroy / return to pool Bean instance after
each method call

Client-independent state can be kept in member variables
© Bean member variables can be populated at server start
» Heavy computations done once
© Data provided as parameters or retrieved
© Require little container resources
No state
© Data always in RAM or destroyed
© Efficient Instance Pooling

[ See also Instance Pooling under the <<Container Services>> section below ]

Session Beans (3)

o Stateful (1)
© Designed to service business processes that span
over multiple method calls (requests) or transactions
© Conversational state
~ Maintained by EJB container
© Maintained for lifetime of Bean’s service to client
Maintained in container cache
> Require more resources from the container
2 No Bean Instance Pooling
© Activation / Passivation instead

[ See also Instance Pooling under the <<Container < section below |

Session Beans (4)

Stateful (2)

¢ Limitations and Alternatives
Performance
' Preserving state comes at a cost
Memory
» Complex states require much memory
Alternatives
1 Combine Stateless Bean with Persistence
7 Code state persistence yourself (memory, file)
' Maintain session in Web Container instead (Java Servlet API)
o No, No!
® Use (instantiate) Stateful EJB in a Stateless EJB
e Conversational state of a client may leak

cy Injection in <<Container Sei section below |

[ More under Dep:




4/26/13

Entity Beans (1) Entity Beans (2)

» Reusable EJB component with automated ¢ EJBHome contains
persistence o create()

o ) o e .
© View into a data source a.k.a. relational database flr‘dsyprlmaryKeYCD !
. . Optionally other finder method declarations
Represent business data stored in a database

© Bean instances map to database table records ¢ Bean class contains
© Changes in Bean properties (Bean state) persisted automatically o Properties
to associated data source > Getters / Setters
© Data source outside Java EE application 5 Callbacks Context ctx = new InitialContextQ);
) . . MyEnti home = (MyEnti )
o Cf. secondary storage for Stateful Session Beans inside Java EE > ejbCreate) 2 P;mblekemtewjﬁctmrmﬂ(
© Distributed object > ejbLoad() b Eoet o croes 3,
© Alike Session Beans and Message-driven Beans  ejbstore SEnULLVEeanih EDIEhone SELLE VELmarvKey (5))
© Can have remote clients from outside JVM ' ej-zze':(-)vei)() myEb. setCourseName( "TODDOS" );
3 » ejbActivate
Cf. EJB 3 JPA Entity , ejbPassivate() Course course = myEb.getCourse(“TODDOS™);
 JPA Entity — POJO, not distributed object , setEntityContext()

All clients must be local to the JVM o Finder methods implementations

[EJ8 3 in Acton, 2007, p. 29; EJB 3 Develoy 08, p. 47, 48; Enterprise Ja

Entity Beans (3) Entity Beans (4)

© EJB 2 Persistence (1) © EJB 2 Persistence (2) [ programmer must choose ]
o Object to relational database mapping (common) © Container managed (CMP, implicit)
> Object databases (less common) Entity Bean defined as Abstract class

Abstract getters / setters
At deployment container creates concrete implementation classes

> Bean managed (BMP, explicit)

> Container generates persistence code
9 All'in case of Container Managed Persistence
2 Parts in case of Bean Managed Persistence
Entity Bean defined as a class

- EJB-QL, query Ianguage Programmer codes getters / setters using JDBC
© No client SQL code (SELECT, efc.) Programmer also codes using JDBC

Callbacks
ejbCreate()
ejbLoad()
ejbStore()

~ ejbFindByPrimaryKey()
Other Finder methods implementations

Entity Beans (5) Entity Beans (6)

o Traditional vs. EJB Persistence ¢ Limitations

o Traditional DB persistence (manual, explicit) > Record oriented
2 Each client requires a DB connection o No business logic beyond getters / setters and basic validation
© Business logic resides in both client and DB 2 No inheritance
o Little reusability » Semantics of Table1.id inherits Table2.id is undefined

> Entity Beans (implicit persistence) © No polymorphism
© Container handles DB connections © No good for Domain-driven Design (DDD)
© Business logic in a server side EJB 2 Not usable outside EJB container
2 Further free container services o Difficult to test

» Transactions
> Redundancy
» Security

[ See also <<Container Services>> section below




Message-Driven Beans (1)

4/26/13

© No Home, Remote or Local interfaces

o Have a single business method
© onMessage()

© No static type check
© No return values
> No exceptions

o Stateless

Message-Driven Beans (2)

¢ Why MDBs?
» Performance
" Reliability
) Support for multiple senders and receivers
) “Easy” integration with legacy systems

EJB 2 elements

Enterprise Bean class 3\
o Supporting classes

EJB Object
© Remote interface >
Home object

o Deployment descriptor (XML)

© Vendor-specific files

© (Local interface)

EJB 2 Deployment

© EJB deployment descriptor (XML)
o ejb-jar.xml
o Attributes of the beans specified declaratively

© Deployment descriptor language is a composition
language

© EJB-jar file is verified by container

« Container generates stubs and skeletons

XDoclet

Deployment descriptor

o Generate from declarative specification
> Remote interface
> home interface
> local interface
) local home interface
) primary key class

Specification as comments in the Bean class

EJB 2 Final thoughts

© Not object-oriented
» Data and operations separated
2 Entity beans encapsulate data (DB record-oriented)
© Session beans encapsulate functionality (no data)
» No component inheritance (EJB 2.0)

9 EJB 3.0 — Beans are POJOs
> Component inheritance implemented as classical OO inheritance

© Development and Application
» Strict architecture
» Complex
» Beans are difficult to test

© Container required
© Deployment errors mistaken for Business Logic errors




