
Lena Buffoni (slides by Kristian Sandahl/Mariam Kamkar)
Department of Computer and Information Science

2015-09-29

Software
Engineering Theory

2

How do you test a ballpoint pen?

• Does the pen write in the right color,
with the right line thickness?

• Is the logo on the pen according to
company standards?

• Is it safe to chew on the pen?
• Does the click-mechanism still work

after 100 000 clicks?
• Does it still write after a car has run

over it?

What is expected from this pen?

Intended use!!

3

Validation vs. Verification

Validation: Are we building the right system?

Verification: Are we building the system
right?

4

Testing software
• Are the functions giving

correct output?
• Are the integrated modules

giving correct output?
• Is the entire system giving

correct output when used?
• Is the correct output given in

reasonable time?
• Is the output presented in

an understandable way?
• Was this what we really

expected?

• Software testing is an
activity in which a program
is executed under specified
conditions,
the results are observed,
and an evaluation is made
of the program.

5

Other methods for Validation & Verification

• Formal verification (Z method)
• Model checking
• Prototyping
• Simulation
• Software reviews

6

”Testing shows the
presence, not the
absence of bugs“

(Edsger Wybe
Dijkstra)

…but you might use
experience and statistics to
make some kind of
assessment.

7Basic Definitions – lecture notes

The terminology here is taken from standards developed by the institute of Electronics and
Electrical Engineers (IEEE) computer Society.

• Error: people make errors. A good synonym is mistake. When people make mistakes while coding,
we call these mistakes bugs. Errors tend to propagate; a requirements error may be magnified
during design and amplified still more during coding.

• Fault: a fault is the result of an error. It is more precise to say that a fault is the representation of an
error, where representation is the mode of expression, such as narrative text, data flow diagrams,
hierarchy charts, source code, and so on. Defect is a good synonym for fault, as is bug. Faults can
be elusive. When a designer makes an error of omission, the resulting fault is that something is
missing that should be present in the representation. We might speak of faults of commission and
faults of omission. A fault of commission occurs when we enter something into a representation
that is incorrect. Faults of omission occur when we fail to enter correct information. Of these two
types, faults of omission are more difficult to detect and resolve.

• Failure (anomaly): a failure occurs when a fault executes. Two subtleties arise here: one is that
failures only occur in an executable representation, which is usually taken to be source code, or
more precisely, loaded object; the second subtlety is that this definition relates failures only to
faults of commission. How can we deal with failures that correspond to faults of omission?

Error, Fault, Failure

8

Human error (Mistake, Bug)

Can lead to

Can lead to

Fault (Defect, Bug)

Failure

The Ariane 5 fiasco

9

• 10 years and $7 billion to produce

• < 1 min to explode

• Programmers thought that this
particular value would never
become large enough to cause
trouble

• Removed the test present in
Ariane 4 software

• 1 bug = 1 crash

10Who does the testing?

Developer
Understands the
system but, will test
"gently"
and, is driven by
"delivery”

Independent Tester
Must learn about
the system, but, will
attempt to break it
and, is driven by
quality

– Development team needs to work with Test team
– “Egoless Programming”

That is not how
you are supposed

to test it!!!!

11The V-model from the tester perspective

Requirements
Specification Fault Resolution

Fault
Isolation

Design

Coding

Testing

Fault
Classification

Error

Error

Error

Error

Fault

Fault

Fault

Incident

Fix

Putting Bugs IN
Development phases

Finding Bugs
Testing phase

Getting Bugs OUT

12Program Behaviors

Specification
(expected)

Program
(observed)

Missing Functionality
(sins of omission)

Extra Functionality
(sins of commission)

"Correct“
Portion

13

Basic Approaches

Specification Program

Functional
(Black Box)

establishes confidence

Structural
(White Box)
seeks faults

input output

R1: Given input, the software
shall provide output.

X

Find input and output so that
X is executed.

Types of Faults
(dep. on org. IBM, HP)

14

• Algorithmic: division by zero

• Computation & Precision: order of op

• Documentation: doc - code

• Stress/Overload: data-structure size (dimensions of tables, size of
buffers)

• Capacity/Boundary: x devices, y parallel tasks, z interrupts

• Timing/Coordination: real-time systems

• Throughout/Performance: speed in req.

• Recovery: power failure

• Hardware & System Software: modem

• Standards & Procedure: organizational standard; difficult for
programmers to follow each other.

15

Faults classified by severity
(Beizer, 1984)

1. Mild Misspelled word
2. Moderate Misleading or redundant information
3. Annoying Truncated names, bill for $0.00
4. Disturbing Some transaction(s) not processed
5. Serious Lose a transaction
6. Very serious Incorrect transaction execution
7. Extreme Frequent ”very serious” errors
8. Intolerable Database corruption
9. Catastrophic System shutdown
10. Infectious Shutdown that spreads to others

16

Contents of a Test Case

"Boilerplate": author, date, purpose, test case ID
Pre-conditions (including environment)
Inputs
Expected Outputs
Observed Outputs
Pass/Fail

Test

Test case Test suite

17Testing levels

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Verify System Design

18

Test table

Id Advanced course
credits in Computer
Science

Advanced
course
credits in
total

Masters
thesis in
subject

Total
number of
credits

M.Sc.,
Computer
Science

1 20 120 Computer
sc.

120 No

2 30 90 Computer
sc.

120 Yes

3 30 90 Physics 120 No

… … … … … …

Can be written from specification

Unit-Testing

19

Objective: to ensure that code implemented the design
properly.

Design SpecificationCode = System

Often done by the programmers themselves.

20

The oracle problem

Test

Object

Input

Output

Failure?

Oracle

Two Types of Oracles

21

• Human: an expert that can examine an input and its
associated output and determine whether the
program delivered the correct output for this
particular input.

• Automated: a system capable of performing the
above task.

R2: “The answer is 42.”
42.0

41.99999
XLII 4242

Black-box/ closed box testing

22

Testing based only on specification:

1. Exhaustive testing

2. Equivalence class testing (Equivalence
Partitioning)

3. Boundary value analysis

1. Exhaustive testing

23

Definition: testing with every member of the input
value space.

Input value space: the set of all possible input values to
the program.

– Sum of two 16 bit integers: 232 combinations

– One test per ms takes about 50 days.

2. Equivalence Class Testing

24

• Equivalence Class (EC) testing is a technique
used to reduce the number of test cases to a
manageable level while still maintaining
reasonable test coverage.

• Each EC consists of a set of data that is treated
the same by the module or that should produce
the same result. Any data value within a class is
equivalent, in terms of testing, to any other
value.

25

Identifying the Equivalence Classes
Taking each input condition (usually a sentence or phrase in the specification)
and partitioning it into two or more groups:

– Input condition
• range of values x: 1-50

– Valid equivalence class

• 1 <= x <= 50

– Invalid equivalence classes

• x < 1

• x > 50

x
1 50

1 50
x

1 50
x

Two-variable example
26

Validate loan application forms against the rule:

• If you are 18 years and older, you can borrow
maximally 100.000, but not less than 10.000.

• Variable: age
– EC1: age < 18

– EC2: age >= 18

• Variable: sum
– EC3: sum < 10.000

– EC4: 10.000 <= sum <= 100.000

– EC5: sum > 100.000

Two-variable example, test-cases

Test-case id Age Sum Valid form

1 32 55.300 Yes

2 13 72.650 No

3 44 9.875 No

4 50 60.000 Yes

5 87 103.800 No

27

Arbitrary, valid sums

Arbitrary, valid ages

Guidelines
28

1. If an input condition specifies a range of values; identify one valid
EC and two invalid EC.

2. If an input condition specifies the number (e.g., one through 6
owners can be listed for the automobile); identify one valid EC and
two invalid EC (- no owners; - more than 6 owners).

3. If an input condition specifies a set of input values and there is
reason to believe that each is handled differently by the program;
identify a valid EC for each and one invalid EC.

4. If an input condition specifies a “must be” situation (e.g., first
character of the identifier must be a letter); identify one valid EC (it
is a letter) and one invalid EC (it is not a letter)

5. If there is any reason to believe that elements in an EC are not
handled in an identical manner by the program, split the
equivalence class into smaller equivalence classes.

Identifying the Test Cases

29

1. Assign a unique number to each EC.

2. Until all valid ECs have been covered by test cases, write a new test
case covering as many of the uncovered valid ECs as possible.

3. Until all invalid ECs have been covered by test cases, write a test
case that cover one, and only one, of the uncovered invalid ECs.

Applicability and Limitations

30

• Most suited to systems in which much of the input data takes on values
within ranges or within sets.

• It makes the assumption that data in the same EC is, in fact, processed
in the same way by the system. The simplest way to validate this
assumption is to ask the programmer about their implementation.

• EC testing is equally applicable at the unit, integration, system, and
acceptance test levels. All it requires are inputs or outputs that can be
partitioned based on the system’s requirements.

3. Boundary Value Testing

31

Boundary value testing focuses on the boundaries
simply because that is where so many defects hide.
The defects can be in the requirements or in the code.

Technique

32

1. Identify the ECs.

2. Identify the boundaries of each EC.

3. Create test cases for each boundary value by
choosing one point on the boundary, one point just
below the boundary, and one point just above the
boundary.

33

Specification: the program accepts four to
eight inputs which are 5 digit integers
greater than or equal to 10000.

Less than 4 Between 4 and 8 More than 8

Number of input values

Less than 10000 Between 10000 and 99999 More than 99999

Input values

34

Boundary value analysis

10000

9999 10001
99999

99998 100000

Less than 10000 Between 10000 and 99999 More than 99999

Applicability and Limitations

35

Boundary value testing is equally applicable at the
unit, integration, system, and acceptance test levels.
All it requires are inputs that can be partitioned and
boundaries that can be identified based on the
system’s requirements.

xUnit

36

• xUnit is a set of tools for regression testing

• x denotes a programming language

• Junit, for Java is one of the earliest and most popular

• TDDC88 has a lab – do that

• Recommended primer:

http://www.it-c.dk/~lthorup/JUnitPrimer.html

37JUnit framework

Object Oriented Framework Development
by Marcus Eduardo Markiewicz and Carlos J.P. Lucena

http://www.acm.org/crossroads/crew/marcus_markiewicz.html
http://www.acm.org/crossroads/crew/carlos_lucena.html

38

JUnit interface

assertEquals("Checks the boundary value 5", true, tester.isBetween5and10(5));

message if fail expected actual

Test-Driven Development (TDD)
39

source: Redmond Developer

40

Integration testing

41
C

om
po

ne
nt

 c
od

e
C

om
po

ne
nt

 c
od

e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

Integration Testing strategies

42

1. Big-bang
2. Bottom-up
3. Top-down
4. Sandwich

Three level functional decomposition tree

A

CB D

E F HG

Level 1

Level 2

Level 3

Big-Bang testing

Unit
test A

Unit
test B

Unit
test H

…

System-wide
test

Environment:
A, B, C, D, E, F, G, H

Driver
A pretend module that requires a sub-system
and passes a test case to it

Black-box view

setup driver
SUT(x)
verification

SUT

driver

SUT

System
Under
Test

Bottom-up testing

E, F, B

D, G, H

A, B, E, F, C, D, G, H

Is bottom-up smart?
• If the basic functions are complicated, error-prone or has

development risks

• If bottom-up development strategy is used

• If there are strict performance or real-time requirements

Problems:

• Lower level functions are often off-the shelf or trivial

• Complicated User Interface testing is postponed

• End-user feed-back postponed

• Effort to write drivers.

Stub
• A program or a method that simulates the input-

output functionality of a missing sub-system by
answering to the decomposition sequence of the
calling sub-system and returning back simulated or
”canned” data.

SUT
Service(x)

Check x Stub
Return y;
end

SUT

Stub

Top-down testing

A, B, C, D
A, B, E, F, C, D, G, H

Is top-down smart?
• Test cases are defined for functional requirements of the

system

• Defects in general design can be found early

• Works well with many incremental development methods

• No need for drivers

Problems:

• Technical details postponed, potential show-stoppers

• Many stubs are required

• Stubs with many conditions are hard to write

Sandwich testing

Taget level

A, B, C, D

E, F, B

G, H, D

A, B, E, F, C, D, G, H

52

Is sandwich testing smart?

• Top and Bottom Layer Tests can be done in
parallel

• Problems:
• Does not test the individual subsystems on

the target layer thoroughly before integration

53

System Testing

54

Unit
test

C
om

po
ne

nt
 c

od
e

Integration
test

Tested components

Design Specification

Unit
test

C
om

po
ne

nt
 c

od
e

Tested components

Integrated modules

55

Function
test

Performance
test

Acceptance
test

Installation
test

In
te

gr
at

ed
 m

od
ul

es

Fu
nc

tio
ni

ng
 s

ys
te

m
s

Ve
rif

ie
d

va
lid

at
ed

so
ftw

ar
e

System functional requirements Other software requirements

A
cc

ep
te

d
sy

st
em

System
In
Use!

Customer requirements spec. User environment

Function testing/Thread testing 56

A function test checks that the integrated system performs its function as
specified in the requirement

• Guidelines

– use a test team independent of the designers and programmers

– know the expected actions and output

– test both valid and invalid input

– never modify the system just to make testing easier

– have stopping criteria

(testing one function at a time)
functional requirements

57

Performance Testing
nonfunctional requirements

• Stress tests
• Timing tests
• Volume tests
• Configuration tests
• Compatibility tests
• Regression tests
• Security tests

• (physical) Environment tests
• Quality tests
• Recovery tests
• Maintenance tests
• Documentation tests
• Human factors tests / usability

tests

58

Software reliability engineering

• Define target failure intensity
• Develop operational profile
• Plan tests
• Execute test
• Apply data to decisions

usage testing

59

Acceptance Testing

Benchmark test: a set of special test cases

Pilot test: everyday working
Alpha test: at the developer’s site, controlled environment
Beta test: at one or more customer site.

Parallel test: new system in parallel with previous one

Customers, users needs

60

Installation Testing at client site
Acceptance test at developers site
 installation test at users site,
otherwise installation test might not be needed!

61

Termination Problem : How decide when to stop
testing

• The main problem for managers!

Termination is influenced by:
• Deadlines, e.g. release deadlines, testing deadlines;
• Test cases completed with certain percentage passed;
• Test budget has been depleted;
• Coverage of code, functionality, or requirements

reaches a specified point;

62Control-flow based coverage

Statement coverage

All statements
executed

63Control-flow based coverage

Branch coverage

All decision
branches tried

64Control-flow based coverage

Full path coverage

All possible paths
executed

65

GUI Testing
• GUI application is event driven; users can cause any of several

events in any order

• GUI applications offer one small benefit to testers:
– There is a little need for integration testing

• Unit testing is typically at the “button level”; that is buttons have
functions, and these can be tested in the usual unit-level sense.

• The essence of system-level testing for GUI applications is to
exercise the event-driven nature of application

A wide range of GUI testing tools has appeared on the market over
the past few years.

TDDC88 has a lab on Selenium

66

Smoke test

• Important selected tests on
module, or system

• Possible to run fast
• Build as large parts as

possible as often as possible
• Run smoke tests to make

sure you are on the right
way

www.liu.se

The end. Thank you! Questions?

	Software Engineering Theory
	How do you test a ballpoint pen?
	Validation vs. Verification
	Testing software
	Other methods for Validation & Verification
	Slide Number 6
	Basic Definitions – lecture notes
	Error, Fault, Failure
	The Ariane 5 fiasco
	Who does the testing?
	The V-model from the tester perspective
	Program Behaviors
	Basic Approaches
	Types of Faults�(dep. on org. IBM, HP)
	Faults classified by severity�(Beizer, 1984)
	Contents of a Test Case
	Testing levels
	Test table
	Unit-Testing
	The oracle problem
	Two Types of Oracles
	Black-box/ closed box testing
	1. Exhaustive testing
	2. Equivalence Class Testing
	Identifying the Equivalence Classes
	Two-variable example
	Two-variable example, test-cases
	Guidelines
	Identifying the Test Cases
	Applicability and Limitations
	3. Boundary Value Testing
	Technique
	Slide Number 33
	Boundary value analysis
	Applicability and Limitations
	xUnit
	JUnit framework
	JUnit interface
	Test-Driven Development (TDD)
	Slide Number 40
	Slide Number 41
	Integration Testing strategies
	Three level functional decomposition tree
	Big-Bang testing
	Driver
	Bottom-up testing
	Is bottom-up smart?
	Stub
	Top-down testing
	Is top-down smart?
	Sandwich testing
	Is sandwich testing smart?
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Function testing/Thread testing
	Performance Testing�nonfunctional requirements
	Software reliability engineering
	Acceptance Testing�
	Installation Testing at client site
	Termination Problem : How decide when to stop testing
	Control-flow based coverage
	Control-flow based coverage
	Control-flow based coverage
	GUI Testing
	Smoke test
	Slide Number 67

