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The goals of module design, again

* Provide the expected function

* Prepare for change:
¢ Separation of concern
« Testability
* Understandability

« Contribute to quality, eg:
* Performance
« Usability
* Reliability

* Map for the implementers and testers

LINKOPING
Il.l' UNIVERSITY



wn Diagrams of UML

UML 2.5
Diagram

JAN

Structure
Diagram

/\

Class
Diagram

Behavior
Diagram

Object
Diagram

Package
Diagram

Component
Diagram

Deployment
Diagram

2017-03-27 4

JAN

Use-Case
Diagram

Machine
Diagram

T—State—

Interaction
Diagram

/\

Sequence
Diagram

LINKOPING
Il.l' UNIVERSITY




Well-known Diagrams of UML
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Different instance models 0
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State machine diagram

For class
CoinHandler: start state marker
transiton _ _
ys object
N
falseCoin()/returnCoin(self) [
checking idle J
/ 7t€om()/check€o@) \
state trigger event, action, reaction

causing transition to the event

II LINKOPING
O UNIVERSITY



UML/Kristian Sandahl 2017-03-27 8

A few more states

« Kiristian’s alarm clock starts sounding at 6.00 with a
nasty signal. He can now do either of three things:
a) Turn the alarm off;
) Press the snooze button; or
¢ Do nothing.

If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

 When an hour has passed from the first time the alarm sound
started, the snooze button has no effect.

o After that the alarm sound starts, the signal will last for 2 minutes.

« If no action has been taken during these 2 minutes, the absence of
action will have the same effect as if the snooze button were pressed
exactly when the alarm stopped to sound.
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Orthogonal, composite states
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Explicit exit points
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Activity diagram # State diagram
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Sequence diagram
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Seqguence diagram with several roles
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Combining fragments of sequence diagrams
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Combining fragments of sequence diagrams

SD Get existing customer d@aJ

‘Order :‘TicketDB :Account
Create R Getdata(cl)
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Combining fragments of sequence diagrams

SD processOrder |
:Order :TicketDB :Account
create R ' '
ref ) Get existing customer data
loop ) 4—— loop
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More fragments of sequence diagrams
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guard condition

e

nested conditional

:Order :TicketDB
loop |
[get next item] .
reserve(date,noﬁ
alt [available] O
.add(seats) o
reject [unavailable] ]
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http://www.uml-diagrams.org
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The Unified Modeling Language

The Unified Modeling Language™ (UMLE) is a standard visual modeling language intended to be used for

» modeling business and similar processes,
+ analysis, design, and implementation of software-based systems

UML is a common language for business analysts, software architects and developers used to describe, specify, design, and document existing or new business
processes, structure and behavior of artifacts of software systems.

UML can be applied to diverse application domains (e.g., banking, finance, internet, aerospace, healthcare, ete.) It can be used with all major object and

component software development methods and for various implementation platforms (e.g., J2EE, .NET).

UML is a standard modeling language, not a software development process. UML 1.4.2 Specification explained that process:

+ provides guidance as to the order of a team’s activities,

+ specifies what artifacts should be developed,

+ directs the tasks of individual developers and the team as a whole, and

» offers criteria for monitoring and measuring a project’s products and activities.

UML is intentionally process independent and could be applied in the context of different processes. 5till, it is most suitable for use case driven, iterative and
incremental development processes. An example of such process is Rational Unified Process (RUP).

UML is not complete and it is not completely visual. Given some UML diagram, we can't be sure to understand depicted part or behavior of the system from the
diagram alone. Some information could be intentionally omitted from the diagram, some information represented on the diagram could have different
interpretations, and some concepts of UML have no graphical notation at all, so there is no way to depict those on diagrams.

For example, semantics of multiplicity of actors and multiplicity of use cases on use case diagrams is not defined precisely in the UML specification

and could mean either concurrent or successive usage of use cases.
18

Name of an abstraet classifier is shown in italies while final classifier has no specific graphical notation, so there is no way to determine whether classifier
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