UML behavior models

Kristian Sandahl

II LINKOPING
o UNIVERSITY

isti dahl iViai
UML/Kristian Sanda Viaintenance

Validate Requirements, Verify Specification

P
<«

Acceptance Test

Ret|uiren ents
(Release testing)

Verify System Design

Sy item Des 9n
Architecture,
Hi¢ 1-level Design)

System Testing

(Integration testing of modules)

Module Testing

(Integration testing of units)

. Verify Module Design
Module Design

(Program Design,
Detailed Design) Verify Implementation

<

Project Management, Software Quality Assurance (SQA), Supporting Tool§>Education

Implementation

of Units (classes, procedures,
functions)

L

II LINKOPING
, oW UNIVERSITY

UML/Kristian Sandahl 2017-03-27 3

The goals of module design, again

* Provide the expected function

* Prepare for change:
¢ Separation of concern
« Testability
* Understandability

« Contribute to quality, eg:
* Performance
« Usability
* Reliability

* Map for the implementers and testers

LINKOPING
Il.l' UNIVERSITY

wn Diagrams of UML

UML 2.5
Diagram

JAN

Structure
Diagram

/\

Class
Diagram

Behavior
Diagram

Object
Diagram

Package
Diagram

Component
Diagram

Deployment
Diagram

2017-03-27 4

JAN

Use-Case
Diagram

Machine
Diagram

T—State—

Interaction
Diagram

/\

Sequence
Diagram

LINKOPING
Il.l' UNIVERSITY

Well-known Diagrams of UML

2017-03-27 5

UML 2.5
Diagram
Structure Behavior
Diagram Diagram
/\ /\
Use-Case
Class Package Diagram
Diagram Diagram —
State
Machine
Object Component \ Diagram
Diagram Diagram ion
Diagram
N\~ /’\
Deployment / Sequence
Diagram \ | Diagram

LINKOPING \/
v

Different instance models 0

&a‘ﬁé
g S°
ot
Specific
buys k
Kristian : Cup1 : CupOfCoffee | 1o<& IDA-B-house :
CoffeeCustomer Machine
Generic
buys k _
aCoffeeCustomer : aCup : CupOfCoffee makes aMachine :
CoffeeCustomer Machine
Short hand
buys k _
: CoffeeCustomer : CupOfCoffee maxes : Machine
Related: Roles
buys k _
: CoffeeCustomer : CupOfCoffee mares : Machine

LINKOPING
Il.l' UNIVERSITY

UML/Kristian Sandahl 2017-03-27 7

State machine diagram

For class
CoinHandler: start state marker
transiton _ _
ys object
N
falseCoin()/returnCoin(self) [
checking idle J
/ 7t€om()/check€o@) \
state trigger event, action, reaction

causing transition to the event

II LINKOPING
O UNIVERSITY

UML/Kristian Sandahl 2017-03-27 8

A few more states

« Kiristian’s alarm clock starts sounding at 6.00 with a
nasty signal. He can now do either of three things:
a) Turn the alarm off;
) Press the snooze button; or
¢ Do nothing.

If the snooze button is pressed the signal will turn off and start
sounding after 5 minutes again.

 When an hour has passed from the first time the alarm sound
started, the snooze button has no effect.

o After that the alarm sound starts, the signal will last for 2 minutes.

« If no action has been taken during these 2 minutes, the absence of
action will have the same effect as if the snooze button were pressed
exactly when the alarm stopped to sound.

LINKOPING
Ilo" UNIVERSITY

UML/Kristian Sandahl 2017-03-27

Orthogonal, composite states

course attempt | state machine

Studying orthogonal state

®. T e done T
L Project project done @

______ e
LFinal exam bass ©j
| v
: fal { Failed } [Passed 1
orthogonal region

LINKOPING
Ilo" UNIVERSITY

UML/Kristian Sandahl 2017-03-27

Explicit exit points

10

course attempt ’

Studying

| Lab1 labl do”e{ Lab 2 Fm@
“““ e S~
‘\ L Project project done @

[Final examw Bass @
\ / %
fail l i

V) VA
&Y% >/
failed passed

LINKOPING
Ilo" UNIVERSITY

UML/Kristian Sandahl 2017-03-27 11

Activity diagram # State diagram

Initial node @ ’{ Insert coin J
final

decision [no] node>@

(brew¢coffee] [add hot water \

to adjust strength

(add sugar/whiteneﬂ
M

[pour coffee J >@)

II LINKOPING
O UNIVERSITY

UML/Kristian Sandahl 2017-03-27 12

Sequence diagram

role O
\ X . Interface
: CoffeeCustomer E \\
i | Message
— _ _ S (synchronous)
Vo \ULife line
_ of object
p machineReady
F Procedure
p[ESSBI IIIQD(b]) IS active
time pourCoffee
v < my

LINKOPING
Ilo" UNIVERSITY

UML/Kristian Sandahl 2017-03-27

Seqguence diagram with several roles
O

X . Interface . CoinHandler . Brewer

: CoffeeCustomer

1. _ | | Return message :

InsertCoin ! transport ! i

Timing | | |0 <s5s) i

constraint o «---QQJD_A_QQ_QQE@_CIK warmUp -
<-vlitIndicators.__| T
pressButton(b1) 5

makeOrdef(ol) o
~—pourCoffee | | pnurCnffe:ae

Ihouizs | ; a

UML/Kristian Sandahl

2017-03-27

Combining fragments of sequence diagrams

14

SD processOrder |

:Order ‘TicketDB :Account
create R '
ref | .
Get existing customer data
gate loop ’ . loop

reserve(date,no) :

[get next item] *\r\

—+ loop condition

_______________ \/
< Ay

answer

destruction

LINKOPING
Il.“ UNIVERSITY

UML/Kristian Sandahl 2017-03-27 15

Combining fragments of sequence diagrams

SD Get existing customer d@aJ

‘Order :‘TicketDB :Account
Create R Getdata(cl)
R Data(cl)

LINKOPING
Il.l' UNIVERSITY

UML/Kristian Sandahl 2017-03-27 16

Combining fragments of sequence diagrams

SD processOrder |
:Order :TicketDB :Account
create R ' '
ref) Get existing customer data
loop) 4—— loop
[get next item] *
reserve(date,no) ! - loop condition
add(seats)
B ¢ § answer

destruction

LINKOPING
Il.“ UNIVERSITY

UML/Kristian Sandahl

More fragments of sequence diagrams

2017-03-27 17

guard condition

e

nested conditional

:Order :TicketDB
loop |
[get next item] .
reserve(date,noﬁ
alt [available] O
.add(seats) o
reject [unavailable]]

>alternate branches

LINKOPING
UNIVERSITY

UML/Kristian Sandahl 2017-03-27 18

http://www.uml-diagrams.org

er._ "'é‘éﬁ http://www.uml-diagrams... ,O - O 3| ida.liuse @)Nyhetsfeed _é‘é; Unified Modeling Langu...

X ®Konvertera v Véilj

=|B3| X

i By 2 Dy & >] £ A~ 23
= Cé\'i| Hamta fler tilldggspro.. ~ EGoogle C@J LiUB Proxy _E_Star‘mdan - Datavetenska... 3‘5‘?"‘ hd ,','\f > (=) « Sida v Sakerhet~ Verktyg ~ Qv
1 I ! |
Home TUML Diagrams Class Diagrams Composite Siructures Packages Components Deployments Use Case Diagrams Information Flows Activities ~

State Machines Seguence Diagrams Communications Timing Diagrams Interaction Overviews Profiles UML Index Examples About

The Unified Modeling Language

The Unified Modeling Language™ (UMLE) is a standard visual modeling language intended to be used for

» modeling business and similar processes,
+ analysis, design, and implementation of software-based systems

UML is a common language for business analysts, software architects and developers used to describe, specify, design, and document existing or new business
processes, structure and behavior of artifacts of software systems.

UML can be applied to diverse application domains (e.g., banking, finance, internet, aerospace, healthcare, ete.) It can be used with all major object and

component software development methods and for various implementation platforms (e.g., J2EE, .NET).

UML is a standard modeling language, not a software development process. UML 1.4.2 Specification explained that process:

+ provides guidance as to the order of a team’s activities,

+ specifies what artifacts should be developed,

+ directs the tasks of individual developers and the team as a whole, and

» offers criteria for monitoring and measuring a project’s products and activities.

UML is intentionally process independent and could be applied in the context of different processes. 5till, it is most suitable for use case driven, iterative and
incremental development processes. An example of such process is Rational Unified Process (RUP).

UML is not complete and it is not completely visual. Given some UML diagram, we can't be sure to understand depicted part or behavior of the system from the
diagram alone. Some information could be intentionally omitted from the diagram, some information represented on the diagram could have different
interpretations, and some concepts of UML have no graphical notation at all, so there is no way to depict those on diagrams.

For example, semantics of multiplicity of actors and multiplicity of use cases on use case diagrams is not defined precisely in the UML specification

and could mean either concurrent or successive usage of use cases.
18

Name of an abstraet classifier is shown in italies while final classifier has no specific graphical notation, so there is no way to determine whether classifier

http://www.uml-diagrams.org/

UML/Kristian Sandahl

WAAWAITIRY=

II LINKOPING
o UNIVERSITY

	UML behavior models
	Slide Number 2
	The goals of module design, again�
	Slide Number 4
	Slide Number 5
	Slide Number 6
	State machine diagram
	A few more states
	Orthogonal, composite states
	Explicit exit points
	Slide Number 11
	Sequence diagram
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	http://www.uml-diagrams.org
	Slide Number 19

