
UML and Object-
orientation
Kristian Sandahl

2

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

MaintenanceUML-OO/Kristian Sandahl

The goals of module design
• Provide the expected function
• Prepare for change:

– Separation of concern
– Testability
– Understandability

• Contribute to quality, eg:
– Performance
– Usability
– Reliability
– ...

• Map for the implementers and testers

3UML-OO/Kristian Sandahl

A Single Class

4

+getNoOfOrders():Integer
+getOrderStatus():String
+ addEmail(email:String)

name: String[1]
email: String [0..2]

Customer

Class name

attributes

operations

visibility
+ public
- private
protected
~ package

Multiplicity
1 exactly one
0..1 Zero or one
* Zero or more

(same as 0..*)
2..8 Between 2 and 8

Return type
Parameter

UML-OO/Kristian Sandahl

Relationships (1/6) - overview and intuition
- Association

5

BA Association
(with navigability)

UML-OO/Kristian Sandahl

Relationships (1/6) - overview and intuition
- Association

6UML-OO/Kristian Sandahl

BookTitle Boolean
+ isLatestEdition

1
Date

+ newOrderDate

0..1 *

BookItem

+ items {ordered}*

1
*

+ newOrderDate: Date [0..1]
+ isLatestEdition: Boolean [1]
+ items: BookItem[*]

BookTitle

attributes Both representations are
almost equivalent

directed association

role name

{ordered} {unordered}
{unique}{nonunique}
Default is unordered,
unique

Relationships (1/6) - overview and intuition
- Association

7UML-OO/Kristian Sandahl

Car Wheel

wheel1

wheel2

wheel3

wheel4mycar

4
class

objects

mycar has links to 4
wheels

Navigation - mycar can reach the
wheels, but not the oppositeExplicitly show that navigation is

not allowed

Relationships (1/6) - overview and intuition
- Association

8UML-OO/Kristian Sandahl

Car Wheel

wheel1

mycar1

4

What does it mean to have a * here? What if we have multiplicity 1 instead?

mycar2

wheel2 wheel3 wheel4

mycar3

A wheel can be linked to more
than one car instance wheel1

mycar1

wheel2 wheel3 wheel4

mycar2
A wheel can only be liked to

one car instance

"*" "1"

Relationships (1/6) - overview and intuition
- Association

9UML-OO/Kristian Sandahl

Car Wheel

wheel1

mycar1

4

wheel2 wheel3 wheel4

Associations are the "glue" that ties a system together

association instance = link

An association describes a relation between objects
at run-time.

{(mycar1,wheel1),
(mycar1,wheel2),
(mycar1,wheel3),
(mycar1,wheel4)}

Relationships (2/6) - overview and intuition
- Aggregation

10UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

Relationships (2/6) - overview and intuition
- Aggregation

11UML-OO/Kristian Sandahl

Car Wheel4

Common vague interpretations: "owns a" or "part of"

What does this mean? What is the
difference to association?

Vague definitions Inconsistency and misunderstandings

Aggregation was added to UML with little
semantics. Why?

Jim Rumbaugh
"Think of it as a modeling placebo"

Recommendation: - Do not use it in your models.
- If you see it in other's models, ask them what they actually mean.

Relationships (3/6) - overview and intuition
- Composition

12UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

Relationships (3/6) - overview and intuition
- Composition

13UML-OO/Kristian Sandahl

Car Wheel4

Any difference to association?

Yes! First, multiplicity must be 1 or 0..1. An instance can only have one owner.

1

Car Wheel
41

But, isn't this equivalent to what we
showed with associations?

Well, in this case...

wheel1

mycar1

wheel2 wheel3 wheel4

mycar2

Relationships (3/6) - overview and intuition
- Composition

14UML-OO/Kristian Sandahl

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Ok for wheels to be part of
mycar1 or mybike1

Relationships (3/6) - overview and intuition
- Composition

15UML-OO/Kristian Sandahl

Car Wheel MotorCycle
41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share
the same wheels?

NO!
Not with composition!

Key concepts
• "No sharing" rule
• The owner is responsible for managing

its parts, e.g. allocation and deallocation.

Relationships (3/6) - overview and intuition
- Composition

16UML-OO/Kristian Sandahl

Car Wheel MotorCycle41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using associations...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share the
same wheels this time?

Yes! Associations do not
have a "no sharing"
rule.

(Note the difference. The diamond is removed.)

However, in this case it is a
strange model...

Relationships (4/6) - overview and intuition
- Generalization

17UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA Generalization

Relationships - (4/6) overview and intuition
- Generalization

18UML-OO/Kristian Sandahl

+ reverse()

Car

+ drive()

Vehicle

Class with code for
the drive()
operation

Inherits the code for
drive(). New
operation reverse()

+ reverse()

Car

+ drive()

MotorCycle

Overrides drive()

1. Inheritance
~ relation implementation

2. Subtyping
~ relation on interfaces

+ drive()

Vehicle Visible Type: Vehicle.
Instance of: MotorCycle.
Can we drive()? Can we reverse()?

+ drive()

Vehicle

An instance of a class can have many types
= (subtyping) polymorphism

Visible Type: Vehicle.
Instance of: Car
Can we drive()? Can we reverse()?

Visible Type: Car.
Instance of: Car
Can we drive()? Can we reverse()?

static typing: safe substitution

Relationships - (5/6) overview and intuition
- Realization

19UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.
Generalization

BA Realization

Relationships - (5/6) overview and intuition
- Realization

20UML-OO/Kristian Sandahl

+ drive()

Vehicle

+ reverse()

Car

+ drive()

MotorCycle

Realization

Implementation

Specifier

Correct?
Must implement
the interface

+ open()

<<interface>>
Door

Interface
(no implementation)

Provides the Door
interface

+ drive()

Vehicle

Can we create an instance of
Vehicle?

+ drive()
+ open()

AnotherVehicle

Can we create an instance of
AnotherVehicle?

Abstract class
(Italic)

Abstract operation

+ drive()
+ reverse()
+ open()

Car

Relationships - (5/6) overview and intuition
- Realization

21UML-OO/Kristian Sandahl

What is the difference between an interface and
an abstract class?

+ drive()
+ open()

AnotherVehicle

Abstract class

+ open()

<<interface>>
Door

Interface

Non of them can be instantiated
Cannot contain implementation

Can (but need not to) contain
implementation

An abstract class with only abstract operations is conceptually the same as an interface

Relationships - (6/6) overview and intuition
- Realization

22UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.
Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

BA Dependency

Relationships - (6/6) overview and intuition
- Dependency

23UML-OO/Kristian Sandahl

Dependency supplierclient

Schedule
viewer

Lecture

<<use>>

Relationships - overview and intuition
24UML-OO/Kristian Sandahl

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a instance of

"B" is expected.
Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

"A" is dependent on "B" if changes in the definition
of "B" causes changes of "A".BA Dependency

Software Design Patterns
A Design Pattern is a standard solution for a standard
design problem in a certain context.

Goal: reuse design information

25UML-OO/Kristian Sandahl

26UML-OO/Kristian Sandahl

Example: Facade

Example: Facade
27UML-OO/Kristian Sandahl

Facade

How to describe design patterns?
• GoF book

28UML-OO/Kristian Sandahl

Facade

Intent
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

Motivation
Structuring a system into subsystems helps reduce complexity. A
common design goal is to minimize the communication and
dependencies between subsystems. … example …

29UML-OO/Kristian Sandahl

Facade

Applicability
Use the Facade pattern when:

• you want to provide a simple interface to a complex subsystem.
This makes subsystems more reusable and easier to customize.

• there are many dependencies between clients and the
implementation classes of an abstraction. Introduce a facade to
decouple the subsystem from other subsystems, thereby
promoting subsystem independence and portability.

• you want to layer your subsystems. Use a facade to define an
entry point to each subsystem level.

30UML-OO/Kristian Sandahl

Facade

Consequences
The Facade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby
reducing the number of objects that clients deal with and
making subsystem easier to use.

2. It promotes weak coupling between subsystem and its clients.
Weak coupling lets you vary the components of the subsystem
without affecting its clients.

3. It doesn't prevent applications from using subsystem classes if
they need to.

31UML-OO/Kristian Sandahl

Facade

• Structure
• Participants
• Collaborations
• Implementation
• Sample Code
• Known Uses
• Related Patterns

32UML-OO/Kristian Sandahl

Observer
33UML-OO/Kristian Sandahl

0%

10%

20%

30%

40%

50%

a b c
0%

10%

20%

30%

40%

50%

a b c

a = 10%
b = 30%
c = 40%

Observer

Applicability
• When an abstraction has two aspects, one dependent on the

other.

• When a change to one object requires changing others.

• When an object should be able to notify other objects without
making assumptions about who these objects are.

34UML-OO/Kristian Sandahl

Observer, structure
35UML-OO/Kristian Sandahl

Stock

attach(Observer)
detach(Observer)
notify()

IBM

getState()
setState()

subjectState

Investor

update()

Goldman Sachs

update()

observerState

*

Subject Observer

ConcreteSubject ConcreteObserver

Observer, collaborations
36UML-OO/Kristian Sandahl

Observer, consequences
• Abstract coupling between Subject and Observer

• Support for broadcast communication

• Unexpected updates

37UML-OO/Kristian Sandahl

Strategy
38UML-OO/Kristian Sandahl

Name: Strategy
Problem:
 Need to use different variants of the same algorithm in a class
 Different algorithms will be appropriate at different time.
 It is hard to add new algorithms and to change existing ones.

Intent (from GoF):
"Define a family of algorithms, encapsulate each one and make them

interchangeable. Strategy lets the algorithm vary independently from clients
that use it."

Example:

Input
(Plain Text)

Output
(cipher text)

Cryptographic
Module

AES

DES

3DES RC5

Algorithms:

Also known as: Policy

Strategy
39UML-OO/Kristian Sandahl

Structure:

In example: Part of crypto
module. Holds data, keys
etc.

+contextInterface()

Context

Reference to a strategy type Abstract

+algorithmInterface()

Strategy-strategy *
In example:
e.g. class
EncryptAlg

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

ConcreteStrategyB

+algorithmInterface()

ConcreteStrategyC

In Example: Implements e.g.
algorithm AES

E.g. AlgDES E.g. AlgRC5

Strategy
• Suppose we add a new strategy:

• Storage media:

– Disc

– USB-stick

– DVD

– Cloud

• ….

40UML-OO/Kristian Sandahl

Input
(Plain Text) Cryptographic

Module

Output
(Cipher text
on media)

Two strategies
41UML-OO/Kristian Sandahl

Backup

+EncryptInt()
+StoreInt()

AlgRC5

+Encrypt()

EncryptAlg

+Encrypt()

AlgDES

+Encrypt()

AES

+Encrypt()

Cloud

+Store()

Media

+Store()

DVD

+Store()

Disc

+Store()

www.liu.se

UML-OO/Kristian Sandahl

	UML and Object-orientation
	Slide Number 2
	The goals of module design
	A Single Class
	Relationships (1/6) - overview and intuition �- Association
	Relationships (1/6) - overview and intuition �- Association
	Relationships (1/6) - overview and intuition �- Association
	Relationships (1/6) - overview and intuition �- Association
	Relationships (1/6) - overview and intuition �- Association
	Relationships (2/6) - overview and intuition �- Aggregation
	Relationships (2/6) - overview and intuition�- Aggregation
	Relationships (3/6) - overview and intuition �- Composition
	Relationships (3/6) - overview and intuition �- Composition
	Relationships (3/6) - overview and intuition �- Composition
	Relationships (3/6) - overview and intuition �- Composition
	Relationships (3/6) - overview and intuition �- Composition
	Relationships (4/6) - overview and intuition �- Generalization
	Relationships - (4/6) overview and intuition �- Generalization
	Relationships - (5/6) overview and intuition �- Realization
	Relationships - (5/6) overview and intuition �- Realization
	Relationships - (5/6) overview and intuition �- Realization
	Relationships - (6/6) overview and intuition �- Realization
	Relationships - (6/6) overview and intuition �- Dependency
	Relationships - overview and intuition
	Software Design Patterns
	Slide Number 26
	Example: Facade
	How to describe design patterns?
	Facade
	Facade
	Facade
	Facade
	Observer
	Observer
	Observer, structure
	Observer, collaborations
	Observer, consequences
	Strategy
	Strategy
	Strategy
	Two strategies
	Slide Number 42

