
Software Architecture
Kristian Sandahl

2

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

MaintenanceSoftware Architecture/Kristian Sandahl

Why should we design a system?

3

Harry
the hacker

Carol
the customer

Requirements Implementation

Why not?

Software Architecture/Kristian Sandahl

Constructing a building...

4

Construction
The king's
requirements

Ulla

I need a tower,
with a big
clock...

Software Architecture/Kristian Sandahl

Constructing a building...

5Software Architecture/Kristian Sandahl

Construction

UllaArchitecture

The king's
requirements

Constructing software...

6Software Architecture/Kristian Sandahl

Architecture
Carol

the customer

Requirements

Harry
the hacker

Implementation

Software is different
• No physical natural order of construction
(e.g. start with the foundation of the house)

• Software is not tangible

Constructing software...

7Software Architecture/Kristian Sandahl

Carol
the customer

Requirements

Harry
the hacker

Implementation

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Abstraction

Fuzzy distinction
 Sometimes several levels
 Sometimes only one level

Why design and document software architectures?

8Software Architecture/Kristian Sandahl

Communication between stakeholders
A high-level presentation of the system.
Use for understanding, negotiation and communication.

Early design decisions
Profound effect on the systems quality attributes, e.g.
performance, availability, maintainability etc.

(Bass et.al., 2003)

Large-scale reuse
If similar system have common requirements, modules
can be identified and reused.

Analyze and Synthesis a system (decompose and compose)
9Software Architecture/Kristian Sandahl

Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Module Testing
(Integration testing of uni

System Testing
(Integration testing of mo

Acceptance Test
(Release testing)

Imagine a "virtual" System

Divide into "virtual"
modules

a "concrete"
System

Design each
module

"concrete"
modules

Analyze and Synthesis a system (decompose and compose)
10Software Architecture/Kristian Sandahl

Requirements

System Design
(Architecture,
High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,
functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Imagine a "virtual" System

Divide into "virtual"
modules

a "concrete"
System

Design each
module

"concrete"
modules

Design is an iterative process!
 Throw away Prototyping
 Evolutionary Prototyping
 The world is nearly

decomposable*

*Herbert Simon

Box-and-line diagrams...

11Software Architecture/Kristian Sandahl

Logging

Identification &
Authentication

User
Database

Encryption /
Decryption

Packet
Handler

Session
Handler

Module, Subsystem,
Element, Entity,
Component... (many
names)

Interface

Relationship,
shows data
and/or control
flow

Architectural views

12Software Architecture/Kristian Sandahl

Implementation
(code) view

Execution
view

Deployment
view

Cryptographic
Module

Client

Server

On different machines?

One machine? Different
CPUs?

Components, connectors, sub-
systems (box-and-line)

Packages, components,
artifacts

Unified Modeling Language
• Wide-spread standard

of modeling software
and systems

• Several diagrams and
perspectives

• Often needs a text of
assumptions and
intentions

• Many tools tweak the
standard

13Software Architecture/Kristian Sandahl

Well-known Diagrams of UML in architecture
UML 2.5
Diagram

Behavior
Diagram

Structure
Diagram

Class
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Package
Diagram

Use-Case
Diagram

State
Machine
Diagram

Interaction
Diagram

Sequence
Diagram

1
4

14

Implementation view with packages

15Software Architecture/Kristian Sandahl

A developer’s perspective:
1. What are we going to develop?
2. Where is the code? GUI

Transaction
manager

Encryption/
decryption

Storage
manager

Package
• Organize work
• Compile together
• Name space

dependency

Packages can be used to give an overall structure to other things
than code, eg. Use-cases and Classes

Component diagram with interfaces

16Software Architecture/Kristian Sandahl

Dictionary

spell-check

supplement

Older notation:

<<component>>

Alternative notation:

provided interface

required interface

Subsystem with components

17Software Architecture/Kristian Sandahl

Dictionary

Search engine

<<subsystem>> word-book
port

delegation connector

Artifacts

18Software Architecture/Kristian Sandahl

<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

Physical code, file, or library

<<artifact>>
clientCrypto.jar

<<manifest>> <<component>>
Encryption

The artifact implements
the component

Deployment view in UML

19Software Architecture/Kristian Sandahl

<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

<<protocol>>
TCP/IP

Node, physical hardware

Communication path

<<client>> <<server>>

Coupling - dependency between modules

20Software Architecture/Kristian Sandahl

Uncoupled - no dependeces Loosely coupled - few dependencies

Highly coupled - many dependencies

What do we want?
Low coupling. Why?
 Replaceable
 Enable changes
 Testable - isolate faults
 Understandable

Cohesion - relation between internal parts of the module
21Software Architecture/Kristian Sandahl

What do we want?
High cohesion. Why?
 More understandable
 Easier to maintain

Low cohesion - the parts e.g.
functions have less or nothing in
common.

Medium cohesion - some logically
related function. E.g. IO related
functions.

High cohesion - does only what it is designed for

Several factors - sometimes overlap

22Software Architecture/Kristian Sandahl

Maintainability

Availability

Performance

Modifiability

Scalability

Portability

Reliability

Safety

Usability

Testability

Non-functional requirements...

Performance - timing

23Software Architecture/Kristian Sandahl

Timing
 Throughput
 Response time (interactive system)

Scale out...

Scale up...

Can our architecture be parallelized?

Security

24Software Architecture/Kristian Sandahl

CIA

Confidentiality • Only authorized users can read
the information
• E.g. Military

Integrity

• Only authorized users can
modify, edit or delete data.

• E.g. bank systems

Availability

• Right information is available at the right time
• Important for everyone

Safety - absence of critical faults

25Software Architecture/Kristian Sandahl

How can we validate that a safety critical system
is correct?

 Formal validation?
 Testing?

Design so that all
safety critical
operations are
located in one or few
modules /
subsystems.

Critical

The whole system

Modifiability - cost of change

26Software Architecture/Kristian Sandahl

Portability

OS (UNIX, Windows, Real-
time OS, Mac,...

Memory consumption

CPU (Big-endian?)

Computation power

Maintainability
Consistent with code

Enough details

Low coupling

What can change?
 Platform?
 Function?
 Protocols?
 Environment?
When can change?
 Source code?
 Compiler option?
 Library?
 Setup config?
 At runtime?

Usability - How easy is it and what support
exists to perform a task

27Software Architecture/Kristian Sandahl

Easy to learn
system
features

Using the system
efficiently

E.g. a word-processor
or app

E.g. Latex, or UNIX
shells and pipes

Testability

28Software Architecture/Kristian Sandahl

At least 40% of the cost of well-engineered system is due to testing
(Bass et. al., 2003)

Internal state

Input Output

Control Observe

What about cohesion and coupling?

Some Business Qualities

29Software Architecture/Kristian Sandahl

Time-to-market

Reuse component
and use commercial-
off-the-self (COTS)
products

Cost-and-benefits

Use technology that
the organization knows

Architecture Styles / Patterns

30Software Architecture/Kristian Sandahl

Example of styles and patterns
 Client-Server
 Layering
 Pipes-and-filters
 Service-oriented
 Model-View-Control (MVC)
 Repository
 Peer-to-Peer

Discussed today

1. Client-Server

31Software Architecture/Kristian Sandahl

Server

Client Client Client

The clients need to be
aware of the server.

Clients initiate
communication

1. Client-Server

32Software Architecture/Kristian Sandahl

Server

Client Client Client

The clients need to be
aware of the server.

Clients initiate
communication

1. Client-Server
33Software Architecture/Kristian Sandahl

Presentation
layer

Business
Layer

Client

Server
Data

management

Two-Tier, Fat-client

Presentation
layer

Business
Layer

Client

Server

Data
management

Two-Tier, Thin-client

Presentation
layer

Client

Middle-ware
Business

Layer

Server
Data

management

Three-Tier

- Heavy load on server
- Significant network

traffic

+ Distribute workload on
clients
- System management
problem, update software on
clients

+ Map each layer on separate
hardware

+ Possibility for load-balancing

2. Layers
34Software Architecture/Kristian Sandahl

layer 3

layer 2

layer 1

layer 3
layer 1

layer 3

Highest
Abstraction

Defined
Interfaces

Client

IP

Ethernet

Application

Transport

Network

Data link

SSL

HTTP

Server

TCP/UDPTCP/UDP

IP

Ethernet

SSL

HTTP In a “pure” layered model,
only the immediate below
layer can be accessed

Layer bridging – can access
lower than the closest one

2. Layers

35Software Architecture/Kristian Sandahl

Pros Cons
 Easy reuse of layers
 Support for standardization
 Dependencies are kept local -

modification local to a layer
 Supports incremental

development and testing

 Could give performance penalties
 Layer bridging looses modularity

layer 3
layer 1

layer 3

3. Pipes and Filters
36Software Architecture/Kristian Sandahl

Example: UNIX Shell

lexer parser semantic
analysis

Intermediate
Code

Generation

Optimi-
zation

ls -R |grep “html$" |sort ls grep sort

Example: A Compiler

FiltersPipes

Input Output

Code
Generation

Case: SOA and Amazon
37Software Architecture/Kristian Sandahl

Customer web clients Webserver + DBMS

Two-tier architectureBefore 2001…
Problems
 Scaling the DBMS
 Too complex software to

maintain and develop

Customer web clients

Web servers Services

Partner Companies
(1 million)

Key Success Factors
 Data encapsulated with

business logic.
 No data sharing between

services
 Independent dev teams

for each service
 Developers have

operational responsibility
(you build, you run)

After 2001…

CTO Werner Vogels blog
www.allthingsdistributed.com

Coming back to documents...
38Software Architecture/Kristian Sandahl

Write from the point of view of the readers...
Stakeholder Use of the architect document
Requirements engineers Negotiate and make tradeoffs among

requirements
Architects/Designers Resolve quality issues (e.g. performance,

maintainability etc.)
Architects/Designers A tool to structure and analyze the system
Designers Design modules according to interfaces
Developers Get better understanding of the general product
Testers and Integrators Specify black-box behavior for system testing
Managers Create teams that can work in parallel with

e.g. different modules. Plan and allocate
resources.

New software engineers To get a quick view of what the system is doing
Quality assurance team Make sure that implementation corresponds

to architecture.

When to document?

39Software Architecture/Kristian Sandahl

Time implementation
design

requirements

Initial
design

Design
iterations

After implementation
(consistent with code?)

www.liu.se

Software Architecture/Kristian Sandahl

	Software Architecture
	Slide Number 2
	Why should we design a system?
	Constructing a building...
	Constructing a building...
	Constructing software...
	Constructing software...
	Why design and document software architectures?
	Analyze and Synthesis a system (decompose and compose)
	Analyze and Synthesis a system (decompose and compose)
	Box-and-line diagrams...
	Architectural views
	Unified Modeling Language
	Slide Number 14
	Implementation view with packages
	Component diagram with interfaces
	Subsystem with components
	Artifacts
	Deployment view in UML
	Coupling - dependency between modules
	Cohesion - relation between internal parts of the module
	Several factors - sometimes overlap
	Performance - timing
	Security
	Safety - absence of critical faults
	Modifiability - cost of change
	Usability - How easy is it and what support exists to perform a task
	Testability
	Some Business Qualities
	Architecture Styles / Patterns
	1. Client-Server
	1. Client-Server
	1. Client-Server
	2. Layers
	2. Layers
	3. Pipes and Filters
	Case: SOA and Amazon
	Coming back to documents...
	When to document?
	Slide Number 40

