
1

TDDD05 Component-based software. IDA, Linköpings universitet, C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Problems and Solutions
in Classical Component
Systems

 Language Transparency

 Location/Distribution Transparency

 Example: Yellow Page Service

 IDL principle

 Reflective Calls, Name Service

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Remember: Motivation for COTS

Component definition revisited:

 Program units for composition with

 standardized basic communication

 standardized contracts

2

 independent development and deployment

 A meaningful unit of reuse

 Large program unit

 Dedicated to the solution of a problem

 Standardized in a likewise standardized domain

 Goal: economically stable and scalable software production

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Obstacles to Overcome …

 Technical – Interoperability

 Standard basic communication

 Heterogeneity:
different platforms, different programming languages

 Distribution:
applications running on locally different hosts

3

applications running on locally different hosts
connected with different networks

 Economically – Marketplace

 Standardize the domain
to create reusable, standardized components in it

 Create a market for those components
(to find, sell and buy them)
– which has some more technical implications

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Technical Motivations

When the Object Management Group (OMG) was formed
in 1989, interoperability was its founders' primary, and
almost their sole, objective:

A vision of software components working smoothly

4

A vision of software components working smoothly
together, without regard to details of any component's
location, platform, operating system, programming
language, or network hardware and software.

- Jon Siegel

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Interoperability problems
to be solved by component systems

 Language transparency:
interoperability of programs

 on the same platform, using

 different programming languages

Platform transparency:

5

 Platform transparency:
interoperability of programs

 written for different platforms using

 the same programming language

 Heterogeneity:

 Different platforms, different programming languages

 Requires language and platform transparency

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Language Transparency Problems

 Calling concept
 Procedure, Co-routine, Messages, …

 Calling conventions and calling implementation
 Call by name, call by value, call by reference, …

 Calling implementation: Arguments on stack, in registers, on heap, ...

6

 Data types
 Value and reference objects

 Arrays, unions, enumerations, classes, (variant) records, …

 Data representation
 Coding, size, little or big endian, …

 Layout of composite data

 Runtime environment
 Memory management, garbage collection, lifetime …

2

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Options In General

For n languages:

 Direct language mapping:

 1:1 adaptation of pairs of languages: O(n2)

7

 Mapping to common language:

 Adaptation to a general exchange format: O(n)

 Compiling to common type system:

 Standardize a single format (as in .NET): O(1) but very restrictive,
because the languages become very similar

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Solutions in
Classical Component Systems

 Calling concept:

 standardized by the communication library (RPC)

 Calling conventions and implementation:

 Standardized by the communication library (EJB - Java , DCOM - C)

 Implementation for every single language (CORBA)

8

 Data types:

 Existing type system as standard (EJB – Java types)

 New standard type system (CORBA IDL-to-Language mapping)

 Data representation:

 Standard (EJB – Java representation, DCOM – binary standard)

 Adaptation to a general exchange format (CORBA GIOP/IIOP)

 Runtime environment

 Standard by services of the component systems

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Language Transparency Implementation

 Stubs and Skeletons

 Stub

 Client-side proxy of the component

 Takes calls of component clients in language A
and sends them to the

9

and sends them to the

 Skeleton

 Takes those calls and sends them to the server component
implementation in language B

 Language adaptation could take place in Stub or Skeleton (or both)

 Adaptation deals with calling concepts, data formats, etc.

 Solution of distribution transparency problem postponed ...

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

Client

Server
ComponentClient

10

Client
Java

Component
C++

Client
C

Stub SkeletonStub

Call

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

<<interface>>
ServerComponent

 A typical instance of the proxy pattern

 Stub (client-side proxy) delegates calls to Skeleton

 Skeleton (server-side proxy) delegates to servant (implementation)

11

Skeleton

ComponentImpl

+ m (Data d)

ServerComponent

Stub

+ m (Data d)

+m(Data d)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Distribution

 Location transparency / Distribution transparency:
interoperability of programs independently of their execution location

 Problems to solve:

 Transparent basic communication

 Transparently initiate a local/remote call

12

Transparently initiate a local/remote call

 Transparently transport data locally or remotely via a network

 How to handle references transparently?

 Distributed systems are heterogeneous

 So far, we handled platform-transparent design of components

 Usual suspects in distributed systems

 Transactions

 Synchronization

 …

3

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Transparent Local/Remote Calls

 Communication over proxies (-> proxy pattern)

 Proxies redirect call locally or remotely on demand

 Proxies always local to the caller

 RPC for remote calls to a handler

13

 RPC for remote calls to a handler

 Handler always local to the callee

 Déjà vu! We reuse Stubs and Skeletons

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Remote Stubs and Skeletons

Remote
Client

Server component
C++

Local
Client

Site 1 Site 2

14

Client C++
Local
Client

Stub SkeletonStub

Remote Call

Local Call

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons for Distribution

<<interface>>
ServerComponent

 A variant of the Proxy pattern,
using remote procedure call (RPC) when forwarding requests

15

Skeleton

ComponentImpl

+m(Data d)

Stub

+m(Data d)

+ m (Data d)

RPC

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

Site 1 Site 2

16

Skeleton Component
Impl

Client Stub

RPC

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons so far …
(same platform)

SkeletonStub

17

Language 1

1. Map call data to an
exchange format

2. Call Skeleton

Language 2

3. Receive Call from Stub
4. Retrieve data from the

exchange format

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

… and now

SkeletonStub

message
(bytes)

18

Language 1
Site 1
1. Map data / call

to a byte stream
exchange format

2. Send message,
e.g. via TCP/IP network socket

Language 2
Site 2
3. Receive message

from network socket
4. Retrieving data / call

from the byte stream
exchange format

4

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs, Skeletons, and Adapters

Site 1 Site 2

19

Client Stub
Skeleton CompImplStub Adapter AdapterClient

Many stubs and skeletons may need to share the same communication infrastructure
(e.g., TCP/IP ports)

Stub and skeleton objects must be created and referenced by need.

Put this support functionality in a separate Adapter layer (“run-time system for RPC”)

Remark: In CORBA, this ”Adapter” functionality will be split between the
ORB (communication) and the so-called Object-Adapter (multiplexing).

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Reference Problem

 Target of calls

 Call-by-reference parameters, references as results

 Reference data in composite parameters and results

20

 Scope of references

 Thread/process

 Computer

 Agreed between communication partners

 Net wide

 How to handle references transparently?

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Approach

 World-wide unique addresses

 E.g. computer address + local address

 URL, URI (uniform resource identifiers)

 Mapping tables for local references

 Logical-to-physical

21

 Logical-to-physical

 Consistent change of local references possible

 (In principle) one adapter per computer manages references

 1:n relation adapter to skeletons

 1:m relation skeletons to component objects

 Lifecycle and garbage collection management

 Identification (“Who is this guy …?”)

 Authorization (“Is he allowed to do this …?”)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Change of Local References

Why are you interested in a reference?

 Need a reference to computation service (function)

 Sufficient to have a reference to the component

 Adapter creates or hands out reference to an arbitrary object on demand

22

 Need a reference to store/retrieve data service

 Use a data base

 Adapter creates or hands out an arbitrary object instance
wrapping the accesses to the data base

 Need a reference to stated transaction to leave and resume

 Adapter must keep correct the mapping logical-to-physical address

 Problems with use of self reference inside and outside service

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow-Page Service

 Yellow Pages service

 Lookup of a name (database access with caching by YP object)

 Internally: 2 types of requests (in adapter/stub/skeleton layers)

 Lookup Request: given

23

 Service type (Yellow pages, phone book, ...)

 Address: specifies the YP service object (i.e., a reference)

 Requested method (lookup, ...)

 and array of parameter objects, e.g. name (string) to look up

 Creation Request: Creation of a new YP service object on server

 Service type

 Address = -1 (denotes creation request)

YP service objects registered in YP skeleton in a hashtable of YP objects

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (1)
Service component

Site 1 Site 2

24

Stub
Skeleton CompImplStub Adapter AdapterClient

Provides the service implementation

5

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (1)
Service component

class YellowPages extends YellowPagesInterface {

private Hashtable cache = new Hashtable ();

//JDBC data base connection:

private static DataBase db = … ;

public String lookup(String name) {

String res;

25

String res;

if ((res = cache.lookup(name)) != null)

return (String)res;

if ((res = db.lookup(name)) != null){

cache.put(name,res);

return (String)res;

}

return “Sorry”;

}

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (2)
Client

Site 1 Site 2

26

Client Stub
Skeleton CompImplStub Adapter AdapterClient

Wants to transparently use the service

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (2)
Client

class Client {

…

YellowPageInterface yps = YellowPageInterface.getOne();

…

String res = (String)yps.lookup(...string to lookup...);

27

String res = (String)yps.lookup(...string to lookup...);

…

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (3)
Stub (client site)

Site 1 Site 2

28

Stub
Skeleton CompImplStub Adapter AdapterClient

1:1 mapping to service component
Manages services objects of that component on client site

Is called from the client

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (3)
Client Stub

class YellowPageStub extends YellowPageInterface {

private ClientAdapter ca = new ClientAdapter();

private static Hashtable yellowPageObjects = new Hashtable();

public String lookup(String name) {

ca.invoke(“Yellow Pages”, yellowPageObjects.get(this),

29

ca.invoke(“Yellow Pages”, yellowPageObjects.get(this),
“lookup”, Object[]{name});

return (String)ca.res;

}

// client-side constructor:

public YellowPageInterface getOne() {

ca.invoke(“Yellow Pages”, Integer(-1), “new”, null);

yp = new YellowPageStub();

yellowPageObjects.put(yp, ca.res);

return yp;

}

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (4)
Client Site Adapter

Site 1 Site 2

30

Stub
Skeleton CompImplStub Adapter AdapterClient

Manages the basic communication on client site
Is called from the client stubs

6

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (4)
Client Adapter

class ClientAdapter {

Socket s = new Socket(serverHost, serverPort); //magic

public Object res;

public void invoke(String service; Integer addr; String method; Object[] args) {

ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream());

ObjectInputStream is = new ObjectInputStream(s.getInputStream());

os.writeObject(service);

31

os.writeObject(service);

os.writeObject(addr);

os.writeObject(method);

if (addr==Integer(-1) && method.equals(“new”)) {

os.flush();

res = is.readObject(); }

else {

os.writeObject(args);

os.flush();

res = is.readObject();}

s.close(); }

}

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow-Page Service (5)
Server-side Adapter

Site 1 Site 2

32

Stub
Skeleton CompImplStub Adapter AdapterClient

Manages the basic communication on server site
Calls the service skeletons

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (5)
Server-side Adapter

class ServiceAdapter extends Thread {

ServerSocket ss = new ServerSocket(0); //magic

public void run() {

while(true) {

try { Socket s = ss.accept();

ObjectInputStream is =

new ObjectInputStream(s.getInputStream());

33

ObjectOutputStream os =

new ObjectOutputStream(s.ObjectOutputStream());

String service =(String) is.readObject();

if (service.equals(“Yellow Pages”)

new YellowPagesSkeleton(os,is).start();

else if (service.equals(“Phone Book”)

new PhoneBookSkeleton(os,is).start();

else if …

else System.err.println(“Unknown service.”);

} catch(...) {…}

}

}

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (6)
Skeleton

Site 1 Site 2

34

Stub
Skeleton CompImplStub Adapter AdapterClient

1:1 mapping to service component
Manages service objects of that component on server site

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (6)
Skeleton

class YellowPagesSkeleton extends Thread implements Skeleton {

static Hashtable yellowPageObjects = new Hashtable();

YellowPagesSkeleton(ObjectOutputStream os, ObjectInputStream is) { … }

public void run() { …

Integer addr = (Integer) is.readObject();

if (addr == Integer(-1)) { // creation of the service:

Integer address = new Integer(yellowPageObjects.size()) ;

yellowPageObjects.put(address, new YellowPage());

35

yellowPageObjects.put(address, new YellowPage());

os.writeObject(address);}

else { // service query:

YellowPage yp = (YellowPage) yellowPageObjects.get(addr);

String method = (String) is.readObject();

if (method.equals(“lookup”) {

String name = (String) is.readObject();

String res = yp.lookup(name); // finally: the call to the service

os.writeObject(res); }

else if (method.equals(“store”) { … }

else System.err.println(“Unknown service method.”); }

os.flush(); s.close();

}}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Sequence Diagram, Creation

Client Skeleton Service
CompImpl

Stub Adapter
Client
Side

Adapter
Server
Side

getOne invoke
(“getOne”)

Socket
Communication
Call object

36

Socket
Communication

handle

start()

Call object

res
handle

return
Stub
Object

new

return
Service
CompImpl

7

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Sequence Diagram, Call

Client Skeleton Service
CompImpl

Stub Adapter
Client
Side

Adapter
Server
Side

lookup invoke
(handle,
“lookup”)

Socket
Communication
Call object

37

Socket
communication

start()

res
Objectreturn

String

lookup

return
String

Call object

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Technical remark

Note: This was a simplification!
Some issues are solved differently e.g. in CORBA or Java RMI.

Client Stub
Skeleton CompImplStub

Site 1 Site 2

OA OAClient ORB ORB

38

”Adapter” functionality is, in CORBA, split up between ORB (communication/run-
time system) and Object Adapter.

The communication mechanism, here Java sockets etc., is in CORBA provided by
the ORB (which abstracts from language or platform specific communication
mechanism/API).

The server object registry (static hashtable yellowPageObjects), here in the
Skeleton, which is used to direct a call to the ”right” server object, would in
CORBA reside in the Object Adapter (who is responsible for activating /
terminating ”its” server processes and objects, resolving interoperable object
references, and directing calls from the ORB to the right target object).

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Who Realizes Stubs and Skeletons?

 Programmer ?

 Much handcraft, boring and error prone

 Insight

 Stub

 Export interface is component dependent

39

 Export interface is component dependent

 Implementation is source language dependent

 Skeleton

 Import interface is component dependent

 Implementation is target language dependent

 Idea

 Generate export and import interfaces of Stub and Skeleton
from a component interface definition

 Take a generic language adapter for the implementation

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Interface Definition Language (IDL)

 Language to define the

 Interfaces of components

 Data types of parameters and results

 Programming-language independent type system

40

 General enough to capture all data types in HPL (host progr. lang.)

 Procedure of construction

 Define component with IDL

 Generate stubs and skeletons with required languages
using an IDL compiler

 Implement the frame (component) in respective language
(if possible reusing some other, predefined components)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Automatic Generation of
Stubs and Skeletons

IDL Interface

IDL-
Compiler

generate

41

Server
Implementation

Server HPL
Compiler

Server
Skeleton

Client
Stub

Client program Server program

Client
Implementation

Client HPL
Compiler

generate

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

IDL Interface Can Be Generated

Specification in IDL and
host language

 Determined language
binding,

 standardized IDL-to-

Specification in host
language only

 Retrieve the IDL spec from
the HPL interface definitions
(see lecture on metaprogr.)

42

 standardized IDL-to-
language mapping

 Generation of stubs and
skeleton is IDL-compiler
independent

 Language-specific IDL
compilers

 CORBA

(see lecture on metaprogr.)

 Have only one source of IDL
compilers, guaranteeing
consistency

 Quasi standard

 Java, DCOM, .NET

8

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Required Formal Properties
of the IDL-to-Language mapping

Let PL: IDL TSPL be the mapping from an
interface definition language IDL to the
type system TS of a programming language PL

 Well-definedness

43

 Well-definedness
for all PL : PL: IDL TSPL is well defined

 Completeness
for all PL : PL

-1: TSPL IDL is well defined

 Soundness
for all PL : PL

-1 PL: IDL IDL is IDL
for all PL : PLPL

-1: TSPL TSPL is PL

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example revisited

 IDL compiler must generate code for server-side adapter
(example code contained the service dispatcher)

 This is very nasty

 One server-side adapter per site –
should be independent of client components provided

44

should be independent of client components provided

 Current solution prevents dynamic loading of services

 Idea:

 Decoupling of adapter and skeletons

 Provide a basic (name) service for identifying the components
(skeletons) of a site

 Components register with name and reference

 Generic adapter provides this service

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Name Service

+ m (Data d)

<<interface>>
Component

ComponentImpl

+ m (Data d)

Skeleton

45

Adapter

NameService

Stub

+resolve(Name):Skeleton
+register(Name,Skeleton)

+ m (Data d)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Generic Server Adapter

class ServiceAdapter extends Thread {

ServerSocket ss = new ServerSocket(0);

NameService ns = new NameService();

public void run() {

while(true) {

try {

Socket s = ss.accept();

46

Socket s = ss.accept();

ObjectInputStream is = new ObjectInputStream (s.getInputStream());

ObjectOutputStream os = new ObjectOutputStream (s.getOutputStream());

String service = (String) is.readObject();

Skeleton sk = null;

if ((sk = ns.resolve(service)) != null) {

sk.init(os, is);

sk.start(); }

else System.err.println(“Unknown service.”);

} catch(...) {…} …
}

}

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Name Server Generalized

 Search for the right site providing a desired component
(extended name service)

 Search for a component with known properties, but unknown
name (trader service)

47

 Like an extended name service

 Components register with name, reference, and properties

 Match properties instead of names

 Return reference (site and service)

 Needs standardized properties (Terminology, Ontology)

 Functional properties (domain specific functions …)

 Non-functional properties (quality of service …)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Summary

 Component systems provide location, language and platform
transparency

 Stub, Skeleton

 One per component

 Technique: IDL compiler

48

 Adapters on client and server site

 Generic

 Technique: Name services

 Is the IDL compiler essential?

 No! Generic stubs and skeletons are possible, too.

 Technique: Reflection and dynamic invocation

9

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Reflection & Dynamic Invocation

 Reflection

 to inspect the interface of an unknown component

 for automatic / dynamic configuration of server sites

 Dynamic invocation

49

 to call the components

 Problem

 Language incompatibilities (solved)

 Access to interfaces (open)

 Solution: IDL is already the standard

 Standardize an IDL run time representation and access

 Define an IDL for IDL representation and access

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Generic Server Skeleton Using
Reflection
class GenericSkeleton extends Thread {

static ExtendendHashtable objects = new ExtendedHashtable();

ObjectOutputStream os;

ObjectInputStream is;

…
public void run() { …

Integer addr= (Integer) is.readObject(); //handler

50

Integer addr= (Integer) is.readObject(); //handler

String mn = (String) is.readObject(); //method name

Class[] pt = (Class[]) is.readObject(); //parameter types

Object[] args= (Object[]) is.readObject(); //parameters

Object o = objects.getComponent(addr);

//object reference by reflective call

Method m = o.getClass().getMethod(mn, pt);

//method object by reflection

Object res = m.invoke(o,args); //method call by reflection

os.writeObject(res);

os.flush(); s.close();

} …

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Services

 Predefined functionality standardized

 Reusable

 Distinguish

 Basic

 Useful (only) with component services

51

 Useful (only) with component services

 Examples discussed: name and trader service

 Further: multithreading, persistency, transaction, synchronization

 General (horizontal services)

 Useful (per se) in many domains

 Examples: Printer and e-mail service

 Domain specific (vertical services)

 Result of domain analysis

 Examples: Business objects (components)

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2013. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Summary: What Classical Component
Systems Provide

 Technical support: remote, language and platform transparency

 Stub, Skeleton

 One per component (technique: IDL compiler)

 Generic (technique: reflection and dynamic invocation)

 Adapters on client and server site

52

 Adapters on client and server site

 Generic (technique: Name services)

 Economic support: reusable services

 Basic: name, trader, persistency, transaction, synchronization

 General: print, e-mail, …

 Domain specific: business objects, …

 More on these issues in the next lecture: CORBA

