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1 Parameter estimation

Since we cannot observe the hidden variablesH1:T , we cannot solve the parameter estimation
problem by simply counting events from a dataset. Instead we must apply some method that
can give us an approximate solution. The canonical way of parameter estimation in HMM
is to use EM, and therefore we shall also adopt this technique for our GBN-HMMs.

As before, let o1:T represent a sequence of observations over the variablesO1:T and let h1:T =
{h1, h2, ..., hT } represent a sequence of states. Let H represent the set of all state sequences
h1:T . The current parameters for our model are denoted Θ′, and we seek parameters Θ that
maximises the expected log-likelihood of the observed data. This expectation is expressed
by Q(Θ,Θ′) =

∑
h1:T∈H p(o1:T , h1:T |Θ′) log p(o1:T , h1:T |Θ), thus it is the function Q that

we wish to maximise.

We can substitute p(o1:T , h1:T |Θ) in the Q function with our factorisation of the GBN-
HMM, which gives us the expanded Q function in Equation 1. From this expansion we can
see that the terms do not interact, thus we can maximise each term separately.

Q(Θ,Θ′) =
∑

h1:T∈H

p(o1:T , h1:T |Θ′) log p(o1:T , h1:T |Θ) =

∑
h1:T∈H

p(o1:T , h1:T |Θ′) log πh1

M∏
i=1

bih1
(o1)

T∏
t=2

aht−1,ht,zt−1

T∏
t=2

M∏
i=1

biht
(ot) =

∑
h1:T∈H

p(o1:T , h1:T |Θ′) log πh1
+

+
∑

h1:T∈H

p(o1:T , h1:T |Θ′)
T∑
t=2

log aht−1,ht,zt−1
+

+
∑

h1:T∈H

p(o1:T , h1:T |Θ′)
T∑
t=1

M∑
i=1

log biht
(ot)

(1)
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1.1 Initial state distribution

The first term in Equation 1 can be seen as marginalising out all hidden state variables except
the first. To show this we can look at a small example wereH = {{1, 1}, {1, 2}, {2, 1}, {2, 2}}.
If we expand the sum over these sequences we get Equation 2.

∑
h1:2∈H

p(o1:2, h1:2|Θ′) log πh1 =

p(o1:2, h1 = 1, h2 = 1|Θ′) log π1 + p(o1:2, h1 = 1, h2 = 2|Θ′) log π1+

p(o1:2, h1 = 2, h2 = 1|Θ′) log π2 + p(o1:2, h1 = 2, h2 = 2|Θ′) log π2 =

p(o1:2, h1 = 1|Θ′) log π1 + p(o1:2, h1 = 2|Θ′) log π2 =

2∑
i=1

p(o1:2, h1 = i|Θ′) log πi

(2)

Therefore, we can avoid summing over all possible sequences of hidden states and rewrite
the first term of Equation 1 in the form of Equation 3.

∑
h1:T∈H

p(o1:T , h1:T |Θ′) log πh1
=

N∑
i=1

p(o1:T , h1 = i|Θ′) log πi (3)

We wish to find the πi that maximises this expression, under the constraint that
∑N
i=1 πi = 1.

In Equation 4 we therefore create a new function f with the addition of the Lagrange
multiplier λ, using the aforementioned constraint.

f =

N∑
i=1

p(o1:T , h1 = i|Θ′) log πi − λ

(
N∑
i=1

πi − 1

)
(4)

The derivative of f with respect to πi is given in Equation 5.

∂f

∂πi
=

∂

∂πi

(
N∑
i=1

p(o1:T , h1 = i|Θ′) log πi − λ

(
N∑
i=1

πi − 1

))
=

=
∂

∂πi

(
N∑
i=1

p(o1:T , h1 = i|Θ′) log πi −
N∑
i=1

λπi + λ

)
=

=
∂

∂πi

(
N∑
i=1

p(o1:T , h1 = i|Θ′) log πi − λπi

)
+
�
�
��

0
∂

∂πi
λ

(5)
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From Equation 5 we can identify an expression for each partial derivative by realising that
for, e.g. π1, only the part of the sum concerning i = 1 will be nonzero in the partial
derivative, thus we can remove all of the summands where i 6= 1. The partial derivatives
are given in Equation 6.

∂

∂π1
(p(o1:T , h1 = 1|Θ′) log π1 − λπ1) =

1

π1
p(o1:T , h1 = 1|Θ′)− λ

...
∂

∂πN
(p(o1:T , h1 = N |Θ′) log πN − λπN ) =

1

πN
p(o1:T , h1 = N |Θ′)− λ

(6)

Any stationary point of the Lagrangian function is a stationary point of the original function,
subject to the constraints. Therefore each partial derivative must be zero, thus from the
last row of Equation 6 we can conclude that for 1 ≤ i ≤ N we must have 1

πi
p(o1:T , h1 =

i|Θ′)− λ = 0. This implies that p(o1:T , h1 = i|Θ′)/λ = πi, and since
∑N
i=1 πi = 1, we have

that λ =
∑N
i=1 p(o1:T , h1 = i|Θ′) = p(o1:T |Θ′). Therefore, the choice of πi that maximises

the Q function is given by Equation 7.

πi =
p(o1:T , h1 = i|Θ′)

p(o1:T |Θ′)
(7)

1.2 State transition distribution

The second term of Equation 1 can, in a similar way as the first term, be considered a
marginalisation but for each time t rather than just t = 1. To show this we can expand our
example from before, having H = { {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {2, 1, 1}, {2, 1, 2},
{2, 2, 1}, {2, 2, 2}}, gives us Equation 8.
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∑
h1:3∈H

p(o1:3, h1:3|Θ′)
T∑
t=2

log aht−1htzt−1 =

p(o1:3, h1 = 1, h2 = 1, h3 = 1|Θ′)(log a11z1 + log a11z2)+

p(o1:3, h1 = 1, h2 = 1, h3 = 2|Θ′)(log a11z1 + log a12z2)+

p(o1:3, h1 = 1, h2 = 2, h3 = 1|Θ′)(log a12z1 + log a21z2)+

p(o1:3, h1 = 1, h2 = 2, h3 = 2|Θ′)(log a12z1 + log a22z2)+

p(o1:3, h1 = 2, h2 = 1, h3 = 1|Θ′)(log a21z1 + log a11z2)+

p(o1:3, h1 = 2, h2 = 1, h3 = 2|Θ′)(log a21z1 + log a12z2)+

p(o1:3, h1 = 2, h2 = 2, h3 = 1|Θ′)(log a22z1 + log a21z2)+

p(o1:3, h1 = 2, h2 = 2, h3 = 2|Θ′)(log a22z1 + log a22z2) =

= log a11z1(p(o1:3, h1 = 1, h2 = 1, h3 = 1|Θ′) + p(o1:3, h1 = 1, h2 = 1, h3 = 2|Θ′))+
log a11z2(p(o1:3, h1 = 1, h2 = 1, h3 = 1|Θ′) + p(o1:3, h1 = 2, h2 = 1, h3 = 1|Θ′))+
...
log a22z2(p(o1:3, h1 = 1, h2 = 2, h3 = 2|Θ′) + p(o1:3, h1 = 2, h2 = 2, h3 = 2|Θ′)) =

= log a11z1p(o1:3, h1 = 1, h2 = 1|Θ′) + log a11z2p(o1:3, h2 = 1, h3 = 1|Θ′) + · · ·
· · ·+ log a22z2p(o1:3, h2 = 2, h3 = 2|Θ′) =

=

2∑
i=1

2∑
j=1

3∑
t=2

p(o1:3, ht−1 = i, ht = j|Θ′) log aijzt−1

(8)

Following this example we can again avoid summing over all possible sequences of hidden
states, and rewrite the second term of Equation 1 in the form of Equation 9.

∑
h1:T∈H

p(o1:T , h1:T |Θ′)
T∑
t=2

log aht−1htzt−1 =

N∑
i=1

N∑
j=1

T∑
t=2

p(o1:T , ht−1 = i, ht = j) log aijzt−1

(9)

For each i in (1 ≤ i ≤ N) and k in (1 ≤ k ≤ SZ) where SZ represents the number of states
of Z, it must be the case that

∑N
j=1 aijk = 1. We incorporate this constraint using Lagrange

multipliers, and create the function f in Equation 10.

f =

N∑
i=1

N∑
j=1

T∑
t=2

p(o1:T , ht−1 = i, ht = j) log aijzt−1
−

N∑
i=1

SZ∑
k=1

λik

 N∑
j=1

aijk − 1

 (10)
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The derivative of f with respect to aijk is given in Equation 11.

∂f

∂aijk
=

∂

∂aijk

 N∑
i=1

N∑
j=1

T∑
t=2

p(o1:T , ht−1 = i, ht = j) log aijzt−1
−

−
N∑
i=1

SZ∑
k=1

λik

 N∑
j=1

aijk − 1

 =

=
∂

∂aijk

 N∑
i=1

N∑
j=1

T∑
t=2

p(o1:T , ht−1 = i, ht = j) log aijzt−1
−

−
N∑
i=1

SZ∑
k=1

N∑
j=1

λikaijk +

N∑
i=1

SZ∑
k=1

λik

 =

=
∂

∂aijk

 N∑
i=1

N∑
j=1

T∑
t=2

p(o1:T , ht−1 = i, ht = j) log aijzt−1
−

−
N∑
i=1

SZ∑
k=1

N∑
j=1

λikaijk

+
���

���
���

�:0
∂

∂aijk

 N∑
i=1

SZ∑
k=1

λik



(11)

We can then write each partial derivative on its own by considering each combination of i, j
and k separately, which follows from Equation 12.

∂

∂a111

(
T∑
t=2

p(o1:T , ht−1 = 1, ht = 1) log a11zt−1 − λ11a111

)
...

∂

∂aNNSZ

(
T∑
t=2

p(o1:T , ht−1 = N,ht = N) log aNNzt−1 − λNNaNNSZ

) (12)

Expanding the sum in the partial derivative for a111 gives us the summands in Equa-
tion 13.
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∂

∂a111

(
T∑
t=2

p(o1:T , ht−1 = 1, ht = 1) log a11zt−1 − λ11a111

)
=

∂

∂a111
p(o1:T , h1 = 1, h2 = 1) log a11z1+

+
∂

∂a111
p(o1:T , h1 = 1, h2 = 1) log a11z2+

+ · · ·+

+
∂

∂a111
p(o1:T , hT−1 = 1, hT = 1) log a11zT−1

− ∂

∂a111
λ11a111

(13)

From Equation 13 we can see that for t where zt−1 6= 1, the term will be 0 after derivation
with respect to a111. Therefore, if we let δ(zt−1 = 1) be one when zt−1 = 1 and zero
otherwise, we get Equation 14.

∂

∂a111

(
T∑
t=2

p(o1:T , ht−1 = 1, ht = 1) log a11zt−1
− λ11a111

)
=

∂

∂a111

(
T∑
t=2

p(o1:T , ht−1 = 1, ht = 1) log a11zt−1

)
− ∂

∂a111
λ11a111 =

1

a111

T∑
t=2

p(o1:T , ht−1 = 1, ht = 1)δ(zt−1 = 1)− λ11

(14)

We therefore have that a111 =
∑T

t=2 p(o1:T ,ht−1=1,ht=1)δ(zt−1=1)

λ11
, and since

∑N
j=1 a1j1 = 1

we get λ11 =
∑N
j=1

∑T
t=2 p(o1:T , ht−1 = 1, ht = j)δ(zt−1 = 1) =

∑T
t=2 p(o1:T , ht−1 =

1)δ(zt−1 = 1). By generalising what we have done for a111 to any aijk, we find that the aijk
that maximises the Q function is given by Equation 15.

aijk =

∑T
t=2 p(o1:T , ht−1 = i, ht = j)δ(zt−1 = k)∑T

t=2 p(o1:T , ht−1 = i)δ(zt−1 = k)
(15)

1.3 Observational model distribution

From the third term in Equation 1 we can see that it is possible to treat each observed vari-
able separately. Therefore, we shall consider the case where i = 1, from which the rest of the
observational variables follow. As was the case with the initial state distribution and transi-
tion state distribution, we start by avoiding the summation over every possible hidden state
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sequence via marginalisation. We revisit the example withH = {{1, 1}, {1, 2}, {2, 1}, {2, 2}},
and expand the summations in Equation 16.

∑
h1:2∈H

p(o1:2, h1:2|Θ′)
2∑
t=1

log b1ht
(ot) =

p(o1:2, h1 = 1, h2 = 1|Θ′)(log b11(o1) + log b11(o2))+

+p(o1:2, h1 = 1, h2 = 2|Θ′)(log b11(o1) + log b12(o2))+

+p(o1:2, h1 = 2, h2 = 1|Θ′)(log b12(o1) + log b11(o2))+

+p(o1:2, h1 = 2, h2 = 2|Θ′)(log b12(o1) + log b12(o2)) =

= log b11(o1)(p(o1:2, h1 = 1, h2 = 1|Θ′) + p(o1:2, h1 = 1, h2 = 2|Θ′))+
+ log b11(o2)(p(o1:2, h1 = 1, h2 = 1|Θ′) + p(o1:2, h1 = 2, h2 = 1|Θ′))+
+ log b12(o1)(p(o1:2, h1 = 2, h2 = 1|Θ′) + p(o1:2, h1 = 2, h2 = 2|Θ′))+
+ log b12(o2)(p(o1:2, h1 = 1, h2 = 2|Θ′) + p(o1:2, h1 = 2, h2 = 2|Θ′)) =

= log b11(o1)p(o1:2, h1 = 1|Θ′) + log b11(o2)p(o1:2, h2 = 1|Θ′)+
+ log b12(o1)p(o1:2, h1 = 2|Θ′) + log b12(o2)p(o1:2, h2 = 2|Θ′) =

=

2∑
j=1

2∑
t=1

p(o1:2, ht = j|Θ′) log b1j (ot)

(16)

Thus, we again avoid summing over every possible hidden state sequence, and therefore for
observed variable i = 1 we have Equation 17.

∑
h1:T∈H

T∑
t=1

p(o1:T , h1:T |Θ′) log b1ht
(ot) =

N∑
j=1

T∑
t=1

p(o1:T , ht = j|Θ′) log b1j (ot) (17)

The observed variable under consideration has S1 states, which we will index by l. For each
hidden state j ∈ [1, N ] and parent configuration k ∈ [1,Kj ] of the observed variable (where
Kj is the number of parent configurations for the observed variable under hidden state j),
we know that summing over all S1 states will result in unity. If we let b1jkl represent the
probability of state l given hidden state j and parent configuration k, then we have the
constraints that

∑S1

l=1 b
1
jkl = 1.

As before, in Equation 18 we create a new function f by introducing Lagrange multipliers
using the aforementioned constraints.

f =

N∑
j=1

T∑
t=1

p(o1:T , ht = j|Θ′) log b1j (ot)−
N∑
j=1

Kj∑
k=1

λjk

 S1∑
l=1

b1jkl − 1

 (18)
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The derivative of f is then given by Equation 19.

∂f

∂b1jkl
=

∂

∂b1jkl

 N∑
j=1

T∑
t=1

p(o1:T , ht = j|Θ′) log b1j (ot)−
N∑
j=1

Kj∑
k=1

λjk

 S1∑
l=1

b1jkl − 1

 =

=
∂

∂b1jkl

 N∑
j=1

T∑
t=1

p(o1:T , ht = j|Θ′) log b1j (ot)−
N∑
j=1

Kj∑
k=1

S1∑
l=1

λjkb
1
jkl+

+

N∑
j=1

Kj∑
k=1

λjk

 =

=
∂

∂b1jkl

 N∑
j=1

T∑
t=1

p(o1:T , ht = j|Θ′) log b1j (ot)−
N∑
j=1

Kj∑
k=1

S1∑
l=1

λjkb
1
jkl

+

+

��
�
��

�
��

��*
0

∂

∂b1jkl

 N∑
j=1

Kj∑
k=1

λjk



(19)

From Equation 19 we can extract each partial derivative on its own in Equation 20.

∂

∂b1111

(
T∑
t=1

p(o1:T , ht = 1|Θ′) log b11(ot)− λ11b
1
111

)
...

∂

∂b1
NKNS1

(
T∑
t=1

p(o1:T , ht = N |Θ′) log b1N (ot)− λNKN b1NKNS1

) (20)

We shall continue in Equation 21 by expanding the summation within the partial derivative
with respect to ∂b1111, from which the rest will follow.
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∂

∂b1111

(
T∑
t=1

p(o1:T , ht = 1|Θ′) log b11(ot)− λ11b
1
111

)
=

=
∂

∂b1111

p(o1:T , h1 = 1|Θ′) log b11(o1)+

+
∂

∂b1111

p(o1:T , h2 = 1|Θ′) log b11(o2)+

+ · · ·+

+
∂

∂b1111

p(o1:T , hT = 1|Θ′) log b11(oT )−

− ∂

∂b1111

λ11b
1
111

(21)

By observing that each term b11(ot) in Equation 21 identifies the parameter b1jkl that is
consistent with ot, then it follows that only terms p(o1:T , ht = 1|Θ′) log b11(ot) in which the
parameter identified is b1111 contribute to the sum once the partial derivative is taken. If we
let δ(ot, b1111) be one when b1111 is identified, and zero otherwise, we get Equation 22.

∂

∂b1111

(
T∑
t=1

p(o1:T , ht = 1|Θ′) log b11(ot)− λ11b
1
111

)
=

1

b1111

T∑
t=1

p(o1:T , ht = 1|Θ′)δ(ot, b1111)− λ11

(22)

The condition for stationary points is given by setting each partial derivative to zero, thus
continuing the example we have b1111 =

∑T
t=1 p(o1:T ,ht=1|Θ′)δ(ot,b

1
111)

λ11
. Summing over each

state S1 gives
∑S
l=1 b

1
11l =

∑S
l=1

∑T
t=1 p(o1:T ,ht=1|Θ′)δ(ot,b

1
11l)

λ11
= 1. From here we can form an

expression for λ11 and solve it according to Equation 23.

λ11 =

S1∑
l=1

T∑
t=1

p(o1:T , ht = 1|Θ′)δ(ot, b111l) =

=

T∑
t=1

p(o1:T , ht = 1|Θ′)δ(ot, b1111) + ...+

T∑
t=1

p(o1:T , ht = 1|Θ′)δ(ot, b111S1) =

=

T∑
t=1

p(o1:T , ht = 1|Θ′)δ(ot, b111)

(23)

In the last row of Equation 23 we let δ(ot, bijk) be one only when ot is consistent with parent
configuration k for variable i under hidden state j, else it will be zero. It follows from the
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fact that we are summing over all S1 states that the observed variable takes, and since for
each configuration of its parents it must take on a state, that we are essentially counting
the number of times we are observing the parent state.

We therefore find that the value for parameter b1111 that maximises the Q function is given
by Equation 24 and in general for each observable variable and its respective parameters we
have Equation 25.

b1111 =

∑T
t=1 p(o1:T , ht = 1|Θ′)δ(ot, b1111)∑T
t=1 p(o1:T , ht = 1|Θ′)δ(ot, b111)

(24)

bijkl =

∑T
t=1 p(o1:T , ht = j|Θ′)δ(ot, bijkl)∑T
t=1 p(o1:T , ht = j|Θ′)δ(ot, bijk)

(25)

2 Inference

The first desired quantity that we shall consider will be p(O1:T , Ht|Θ′), which we shall refer
to as γ(HT ) and expand according to Equation 26.

γ(Ht) = p(O1:T , Ht|Θ′) = p(O1:t, Ot+1:T , Ht|Θ′) =

= p(Ot+1:T |���*
Ot

O1:t , Ht,Θ
′)p(O1:t, Ht|Θ′)

= p(Ot+1:T |Ot, Ht,Θ
′)p(O1:t, Ht|Θ′)

(26)

In the second row of Equation 26 we notice that we cannot cancel out all the observations
in the first factor, as we have not conditioned on Ht+1 and due to the Z variable we cannot
assume independence.

The final two factors of Equation 26 can efficiently be computed. The joint probability
of the state of Ht and the observations O1:t is given by Equation 27, and the conditional
probability of the observations Ot+1:T given the state of Ht and the observation Ot is given
by Equation 28.
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α(Ht) = p(Ht, O1:t|Θ′) =
∑
Ht−1

p(Ht, Ht−1, O1:t−1, Ot|Θ′)

=
∑
Ht−1

p(Ot|Ht,��
�Ht−1 ,���O1:t−1 ,Θ

′)p(Ht, Ht−1, O1:t−1|Θ′)

=
∑
Ht−1

p(Ot|Ht,Θ
′)p(Ht|Ht−1,��

��:Ot−1
O1:t−1 ,Θ′)p(Ht−1, O1:t−1|Θ′)

= p(Ot|Ht,Θ
′)
∑
Ht−1

p(Ht|Ht−1, Ot−1,Θ
′)α(Ht−1)

=

M∏
i=1

biHt
(Ot)

∑
Ht−1

aHt−1HtZt−1
α(Ht−1)

(27)

β(Ht) = p(Ot+1:T |Ht, Ot,Θ
′) =

∑
Ht+1

p(Ot+1, Ot+2:T , Ht+1|Ht, Ot,Θ
′)

=
∑
Ht+1

p(Ot+2:T |Ht+1, Ot+1,��Ht ,��Ot ,Θ
′)p(Ot+1, Ht+1|Ht, Ot,Θ

′)

=
∑
Ht+1

p(Ot+2:T |Ht+1, Ot+1,Θ
′)p(Ot+1|Ht+1,��Ht ,��Ot ,Θ

′)p(Ht+1|Ht, Ot,Θ
′)

=
∑
Ht+1

β(Ht+1)p(Ot+1|Ht+1,Θ
′)p(Ht+1|Ht, Ot,Θ

′)

=
∑
Ht+1

β(Ht+1)

M∏
i=1

biHt+1
(Ot+1)aHtHt+1Zt

(28)

Using this new notation, we can write γ(Ht) = α(Ht)β(Ht). Noticing that
∑N
i=1 γ(Ht =

i) = p(O1:T |Θ′), we can readily compute Equation 7 and Equation 25 since both α and β
are expressed in known quantities (under the parameters Θ′).

The second quantity that we need to be able to compute, in order to compute Equation 15,
is p(O1:T , Ht−1, Ht|Θ′), which we shall refer to as ξ(Ht−1, Ht). We expand this quantity in
Equation 29, and express it in terms of known quantities.

11



ξ(Ht−1, Ht) =

= p(O1:T , Ht−1, Ht|Θ′) = p(O1:t−1, Ot, Ot+1:T , Ht−1, Ht|Θ′) =

= p(Ot+1:T |���O1:t−1 , Ot,��
�Ht−1 , Ht,Θ

′)p(O1:t−1, Ot, Ht−1, Ht|Θ′)
= p(Ot+1:T |Ot, Ht,Θ

′)p(Ot|���O1:t−1 ,��
�Ht−1 , Ht,Θ

′)p(O1:t−1, Ht−1, Ht|Θ′)

= p(Ot+1:T |Ot, Ht,Θ
′)p(Ot|Ht,Θ

′)p(Ht|����:
Ot−1

O1:t−1 , Ht−1,Θ
′)p(O1:t−1, Ht−1|Θ′)

= p(Ot+1:T |Ot, Ht,Θ
′)p(Ot|Ht,Θ

′)p(Ht|Ot−1, Ht−1,Θ
′)p(O1:t−1, Ht−1|Θ′) =

= β(Ht)

M∏
i=1

biHt
(Ot)aHt−1HtZt−1

α(Ht−1)

(29)
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