
ALTERNATIVE MARKOV AND CAUSAL PROPERTIES FOR ACYCLIC

DIRECTED MIXED GRAPHS - SUPPLEMENTARY MATERIAL

This supplement contains the proofs of the theorems in the manuscript.

Lemma 1. If there is a path ρ in an ADMG G between A ∈ X and B ∈ Y such that (i) no non-
collider C on ρ is in Z unless A − C − B is a subpath of ρ and PaG(C) ∖ Z ≠ ∅, and (ii) every
collider on ρ is in AnG(X ∪ Y ∪ Z), then there is a path in G connecting a node in X and a node
in Y given Z.

Proof. Suppose that ρ has a collider C such that C ∈ AnG(D) ∖ AnG(Z) with D ∈ X, or C ∈
AnG(E)∖AnG(Z) with E ∈ Y . Assume without loss of generality that C ∈ AnG(D)∖AnG(Z) with
D ∈X because, otherwise, a symmetric argument applies. Then, replace the subpath of ρ between A
and C with D ← . . .← C. Note that the resulting path (i) has no non-collider in Z unless A−C −B
is a subpath of ρ and PaG(C)∖Z ≠ ∅, and (ii) has every collider in AnG(X ∪Y ∪Z). Note also that
the resulting path has fewer colliders than ρ that are not in AnG(Z). Continuing with this process
until no such collider C exists produces the desired result. �

Lemma 2. Given an ADMG G, let ρ denote a shortest path in G[A∪B∪Z]a connecting two nodes
A and B given Z. Then, a path in G between A and B can be obtained as follows. First, replace
every augmented edge on ρ with an associated collider path in G[A ∪B ∪Z]. Second, replace every
non-augmented edge on ρ with an associated edge in G[A∪B ∪Z]. Third, replace any configuration
C −D ← F →D −E produced in the previous steps with C −D −E.

Proof. We start by proving that the collider paths added in the first step of the lemma either do
not have any node in common except possibly one of the endpoints, or the third step of the lemma
removes the repeated nodes. Suppose for a contradiction that C −D and C ′−D′ are two augmented
edges on ρ such that their associated collider paths have in common a node which is not an endpoint
of these paths. Consider the following two cases.

Case 1: Suppose that D ≠ C ′. Then, one of the following configurations must exist in G[A ∪
B ∪Z].

C D

E

C ′ D′ C D

E

C ′ D′ C D

E F

C ′ D′

C D

E F

C ′ D′ C D

E F H

C ′ D′ C D

E F H

C ′ D′

C D

E F H

C ′ D′ C D

E F H

C ′ D′
C D

E F

C ′ D′

C D

E F

C ′ D′

However, the first case implies that C−D′ is in G[A∪B∪Z]a, which implies that replacing
the subpath of ρ between C and D′ with C−D′ results in a path in G[A∪B∪Z]a connecting
A and B given Z that is shorter than ρ. This is a contradiction. Similarly for the fourth,
sixth, seventh, eighth, ninth and tenth cases. And similarly for the rest of the cases by
replacing the subpath of ρ between D and D′ with D −D′.

1



2

Case 2: Suppose that D = C ′. Then, one of the following configurations must exist in G[A ∪
B ∪Z].

C D

E

D′ C D

E

D′ C D

E

D′ C D

E F

D′

C D

E F

D′ C D

E F H

D′ C D

E F

D′

However, the first case implies that C−D′ is in G[A∪B∪Z]a, which implies that replacing
the subpath of ρ between C and D′ with C−D′ results in a path in G[A∪B∪Z]a connecting
A and B given Z that is shorter than ρ. This is a contradiction. Similarly for the second,
fourth and seventh cases. For the third, fifth and sixth cases, the third step of the lemma
removes the repeated nodes. Specifically, it replaces C −E ←D → E −D′ with C −E −D′ in
the third case, E−F ←D → F −D′ with E−F −D′ in the fifth case, and E−F ←D → F −H
with E − F −H in the sixth case.

It only remains to prove that the collider paths added in the first step of the lemma have no nodes
in common with ρ except the endpoints. Suppose that ρ has an augmented edge C −D. Then, one
of the following configurations must exist in G[A ∪B ∪Z].

C D

E

C D

E F

Consider the first case and suppose for a contradiction that E occurs on ρ. Note that E ∉ Z
because, otherwise, ρ would not be connecting. Assume without loss of generality that E occurs on
ρ before C and D because, otherwise, a symmetric argument applies. Then, replacing the subpath
of ρ between E and D with E −D results in a path in G[A ∪B ∪Z]a connecting A and B given Z
that is shorter than ρ. This is a contradiction. Similarly for the second case. Specifically, assume
without loss of generality that E occurs on ρ because, otherwise, a symmetric argument with F
applies. Note that E ∉ Z because, otherwise, ρ would not be connecting. If E occurs on ρ after
C and D, then replace the subpath of ρ between C and E with C − E. This results in a path in
G[A ∪B ∪ Z]a connecting A and B given Z that is shorter than ρ, which is a contradiction. If E
occurs on ρ before C and D, then replace the subpath of ρ between E and D with E −D. This
results in a path in G[A ∪B ∪ Z]a connecting A and B given Z that is shorter than ρ, which is a
contradiction. �

Lemma 3. Let ρ denote a path in an ADMG G connecting two nodes A and B given Z. The
sequence of non-colliders on ρ forms a path in G[A ∪B ∪Z]a between A and B.

Proof. Consider the maximal undirected subpaths of ρ. Note that each endpoint of each subpath
is ancestor of a collider or endpoint of ρ, because ρ is connecting. Thus, all the nodes on ρ are in
G[A ∪B ∪Z]a. Suppose that C and D are two successive non-colliders on ρ. Then, the subpath of
ρ between C and D consists entirely of colliders. Specifically, the subpath is of the form C ⊸D,
C →D, C → E ⊸D or C → E − F ←D. Then, C and D are adjacent in G[A ∪B ∪Z]a. �

Theorem 1. There is a path in an ADMG G connecting a node in X and a node in Y given Z if
and only if there is a path in G[X ∪ Y ∪Z]a connecting a node in X and a node in Y given Z.

Proof. We start by proving the only if part. Let ρ denote a path in G connecting A ∈X and B ∈ Y
given Z. By Lemma 3 the non-colliders on ρ form a path ρa between A and B in G[X ∪ Y ∪ Z]a.
Since ρ is connecting, every non-collider C on ρ is outside Z unless D −C −E is a subpath of ρ and
PaG(C)∖Z ≠ ∅. To address the latter case, consider in turn each maximal subpath of ρ of the form
D−C1−. . .−Cn−E such that Ci ∈ Z for all 1 ≤ i ≤ n. Note that ρa has a subpath D′−C1−. . .−Cn−E′
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where D′ =D unless D is a collider on ρ, i.e. D′ →D−C is on ρ. Similarly for E and E′. Therefore,
we replace this subpath of ρa with D′ − F1 − . . . − Fn −E′ where Fi ∈ PaG(Ci) ∖ Z for all 1 ≤ i ≤ n.
Then, ρa is connecting given Z. Note that ρa may be a route (e.g. if F1 = Fn). Obtaining the desired
path is trivial though. Finally, note that D′ − F1 is guaranteed to be in G[X ∪ Y ∪ Z]a, because
F1 → C1 is in G with C1 ∈ Z, and D − C1 is in G when D′ = D or otherwise D′ → D − C1 is in G
with D ∈ AnG(Z). Similarly for Fn −E′. Likewise, Fi − Fi+1 is guaranteed to be in G[X ∪ Y ∪ Z]a
for all 1 ≤ i < n, because Fi → Ci and Fi+1 → Ci+1 are in G with Ci,Ci+1 ∈ Z.

To prove the if part, let ρa denote a shortest path in G[X ∪Y ∪Z]a connecting A ∈X and B ∈ Y
given Z. We can transform ρa into a path ρ in G as described in Lemma 2. Since ρa is connecting,
no node on ρa is in Z and, thus, no non-collider on ρ is in Z. Finally, since all the nodes on ρ are
in G[X ∪ Y ∪ Z]a, it follows that every collider on ρ is in AnG(X ∪ Y ∪ Z). To see it, note that if
C −D is an augmented edge in G[X ∪Y ∪Z]a then the colliders on any collider path associated with
C −D are in AnG(X ∪ Y ∪Z). Thus, by Lemma 1 there exist a node in X and a node in Y which
are connected given Z in G. �

Theorem 2. There is a path in an ADMG G connecting A and B given Z if and only if there is a
route in G connecting A and B given Z.

Proof. We prove the theorem for the following separation criterion, which is equivalent to criterion
2: A route is said to be connecting given Z ⊆ V when

● every collider on the route is in Z, and
● every non-collider C on the route is outside Z unless A−C−B is a subroute and PaG(C)∖Z ≠
∅.

The only if part is trivial. To prove the if part, let ρ denote a route in G connecting A and B
given Z. Let C denote a node that occurs more than once in ρ. Consider the following cases.

Case 1: Assume that ρ is of the form A. . .D → C . . .C → E . . .B. Then, C ∉ Z for ρ to be
connecting given Z. Then, removing the subroute between the two occurrences of C from ρ
results in the route A. . .D → C → E . . .B, which is connecting given Z.

Case 2: Assume that ρ is of the form A. . .D → C . . .C ⊸E . . .B. Then, C ∈ AnG(Z) for ρ
to be connecting given Z. Then, removing the subroute between the two occurrences of C
from ρ results in the route A. . .D → C ⊸E . . .B, which is connecting given Z.

Case 3: Assume that ρ is of the form A. . .D ← C . . .C . . .B. Then, C ∉ Z for ρ to be
connecting given Z. Then, removing the subroute between the two occurrences of C from ρ
results in the route A. . .D ← C . . .B, which is connecting given Z.

Case 4: Assume that ρ is of the form A. . .D − C . . .C → E . . .B. Then, C ∉ Z for ρ to be
connecting given Z. Then, removing the subroute between the two occurrences of C from ρ
results in the route A. . .D −C → E . . .B, which is connecting given Z.

Case 5: Assume that ρ is of the form A. . .D − C . . .C ← E . . .B. Then, C ∈ AnG(Z) for ρ
to be connecting given Z. Then, removing the subroute between the two occurrences of C
from ρ results in the route A. . .D −C ← E . . .B, which is connecting given Z.

Case 6: Assume that ρ is of the form A. . .D−C . . .C−E . . .B and C ∉ Z. Then, removing the
subroute between the two occurrences of C from ρ results in the route A. . .D −C −E . . .B,
which is connecting given Z.

Case 7: Assume that ρ is of the form A. . .D − C . . .C − E . . .B and C ∈ Z. Then, ρ must
actually be of the form A. . .D − C ← F . . .C − E . . .B or A. . .D − C − F . . .C − E . . .B.
Note that in the former case F ∉ Z for ρ to be connecting given Z. For the same reason,
PaG(C)∖Z ≠ ∅ in the latter case. Then, PaG(C)∖Z ≠ ∅ in either case. Then, removing the
subroute between the two occurrences of C from ρ results in the route A. . .D −C −E . . .B,
which is connecting given Z.

Repeating the process above until no such node C exists produces the desired path. �

Theorem 3. Given an ADMG G, there is a path in G[X ∪ Y ∪Z]a connecting a node in X and a
node in Y given Z if and only if there is a path in (G[X ∪ Y ∪Z]m)a connecting a node in X and
a node in Y given Z.

Proof. We start by proving the only if part. Suppose that there is path in G[X ∪Y ∪Z]a connecting
a node in X and a node in Y given Z. We can then obtain a path in G connecting A ∈ X and
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B ∈ Y given Z as shown in the proof of Theorem 1. In this path, replace with C −D every subpath
C −V1 − . . .−Vn −D such that C,D ∈ AnG(X ∪Y ∪Z) and V1, . . . , Vn ∉ AnG(X ∪Y ∪Z). The result
is a path in G[X ∪ Y ∪ Z]m. Moreover, the path connects A and B given Z. To see it, note that
the resulting and original paths have the same colliders, and the non-colliders on the resulting path
are a subset of the non-colliders on the original path. Then, there is path in (G[X ∪ Y ∪ Z]m)a
connecting A and B given Z.

To prove the if part, suppose that there is path in (G[X ∪Y ∪Z]m)a connecting A ∈X and B ∈ Y
given Z. Suppose that the path contains an edge C −D that is not in G[X ∪ Y ∪ Z]a. This is due
to one the following reasons.

Case 1: C − V1 − . . . − Vn −D is in G[X ∪ Y ∪ Z] with V1, . . . , Vn ∉ AnG(X ∪ Y ∪ Z). Then,
C − V1 − . . . − Vn −D is in G[X ∪ Y ∪Z]a.

Case 2: C → E −D is in G[X ∪ Y ∪ Z]m, which means that C → E − V1 − . . . − Vn −D is in
G[X∪Y ∪Z] with V1, . . . , Vn ∉ AnG(X∪Y ∪Z). Then, C−V1−. . .−Vn−D is in G[X∪Y ∪Z]a.

Case 3: C → E −F ←D is in G[X ∪Y ∪Z]m, which means that C → E −V1 − . . .−Vn −F ←D
is in G[X ∪ Y ∪ Z] with V1, . . . , Vn ∉ AnG(X ∪ Y ∪ Z). Then, C − V1 − . . . − Vn − D is in
G[X ∪ Y ∪Z]a.

Either case implies that there is a path in G[X ∪ Y ∪ Z]a connecting A ∈ X and B ∈ Y given
Z. �

Theorem 4. Given a probability distribution p satisfying the intersection property, p satisfies the
global Markov property with respect to an ADMG if and only if it satisfies the ordered local Markov
property with respect to the ADMG and a consistent ordering of its nodes.

Proof. We start by proving the only if part. It suffices to note that every node that is adjacent to
B in G[S]a is in MbG[S](B), hence B is separated from S ∖ (B ∪MbG[S](B)) given MbG[S](B) in
G[S]a. Thus, B⊥pS ∖ (B ∪MbG[S](B))∣MbG[S](B) by the global Markov property.

To prove the if part, let A be the node in X∪Y ∪Z that occurs the latest in ≺, and let S =X∪Y ∪Z.
Note that for all B ∈ S, the set of nodes that are adjacent to B in G[S]a is precisely MbG[S](B).
Then, the ordered local Markov property implies the global Markov property (Lauritzen, 1996,
Theorem 3.7). �

Theorem 5. Given a probability distribution p satisfying the intersection property, p satisfies the
global Markov property with respect to an ADMG if and only if it satisfies the ordered pairwise
Markov property with respect to the ADMG and a consistent ordering of its nodes.

Proof. We start by proving the only if part. It suffices to note that if B and C are not adjacent in
G[S]a, then they are separated in G[S]a given V (G[S])∖(B∪C). Thus, B⊥pC ∣V (G[S])∖(B∪C)
by the global Markov property.

To prove the if part, let A be the node in X∪Y ∪Z that occurs the latest in ≺, and let S =X∪Y ∪Z.
Then, the ordered pairwise Markov property implies the global Markov property (Lauritzen, 1996,
Theorem 3.7). �

Theorem 6. C1, C2 and C3∗ hold if and only if the following two properties hold:

● C1∗: D⊥pNdG(D) ∖ PaG(D)∣PaG(D) for all D ⊆ C.
● C2∗: p(C ∣PaG(C)) satisfies the global Markov property with respect to GC .

Proof. First, C1∗ implies C3∗ by decomposition. Second, C1∗ implies C1 by taking D = C and
applying weak union. Third, C1 and the fact that NdG(D) = NdG(C) imply D ⊥ pNdG(D) ∖
CcG(PaG(C))∣CcG(PaG(C)) by symmetry and decomposition, which together with C3∗ imply C1∗
by contraction. Finally, C2 and C2∗ are equivalent because p(C ∣PaG(C)) = p(C ∣CcG(PaG(C))) by
C1∗ and decomposition. �

Theorem 7. A probability distribution p satisfying the intersection property satisfies the global
Markov property with respect to an AMP CG G if and only if the following two properties hold for
all C ∈ Cc(G):

● L1: A⊥pC ∖ (A ∪NeG(A))∣NdG(C) ∪NeG(A) for all A ∈ C.
● L2∗: A⊥pNdG(C) ∖ PaG(A ∪ S)∣S ∪ PaG(A ∪ S) for all A ∈ C and S ⊆ C ∖A.
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Proof. To see the only if part, note that C1∗ with D = C implies that p(C ∣NdG(C)) = p(C ∣PaG(C)).
This implies that p(C ∣NdG(C)) satisfies the global Markov property with respect to GC by C2∗.
This implies L1 (Lauritzen, 1996, Theorem 3.7). Moreover, let D = A ∪ S and note that NdG(D) =
NdG(C). Then, L2∗ follows from C1∗ by symmetry and weak union.

To see the if part, note that L2∗ with S = NeG(A) implies that A⊥pNdG(C)∖PaG(C)∣NeG(A)∪
PaG(C) by weak union. This together with L1 imply A⊥ pC ∖ (A ∪NeG(A))∣NeG(A) ∪ PaG(C)
by contraction and decomposition. This implies C2∗ (Lauritzen, 1996, Theorem 3.7). Moreover, let
D = {D1, . . . ,Dn}. Then

(1) D1⊥pNdG(C) ∖ PaG(D)∣(D ∖D1) ∪ PaG(D) by L2∗ with A =D1 and S =D ∖D1.
(2) D2⊥pNdG(C) ∖ PaG(D)∣(D ∖D2) ∪ PaG(D) by L2∗ with A =D2 and S =D ∖D2.
(3) D1 ∪D2⊥pNdG(C) ∖PaG(D)∣(D ∖ (D1 ∪D2)) ∪PaG(D) by symmetry and intersection on

(1) and (2).
(4) D3⊥pNdG(C) ∖ PaG(D)∣(D ∖D3) ∪ PaG(D) by L2∗ with A =D3 and S =D ∖D3.
(5) D1 ∪ D2 ∪ D3 ⊥ pNdG(C) ∖ PaG(D)∣(D ∖ (D1 ∪ D2 ∪ D3)) ∪ PaG(D) by symmetry and

intersection on (3) and (4).

Continuing with this for D4, . . . ,Dn leads to C1∗. �

Theorem 8. A probability distribution p satisfying the intersection property satisfies the global
Markov property with respect to an AMP CG G if and only if the following two properties hold for
all C ∈ Cc(G):

● P1: A⊥pB∣NdG(C) ∪C ∖ (A ∪B) for all A ∈ C and B ∈ C ∖ (A ∪NeG(A)).
● P2∗: A⊥pB∣S ∪NdG(C) ∖B for all A ∈ C, S ⊆ C ∖A and B ∈ NdG(C) ∖ PaG(A ∪ S).

Proof. To see the only if part, note that L1 and L2∗ imply P1 and P2∗ by weak union. To see the
if part, let NdG(C) ∖ PaG(A ∪ S) = {B1, . . . ,Bn}. Then

(1) A⊥pB1∣S ∪NdG(C) ∖B1 by P2∗ with B = B1.
(2) A⊥pB2∣S ∪NdG(C) ∖B2 by P2∗ with B = B2.
(3) A⊥pB1 ∪B2∣S ∪NdG(C) ∖ (B1 ∪B2) by intersection on (1) and (2).
(4) A⊥pB3∣S ∪NdG(C) ∖B3 by P2∗ with B = B3.
(5) A⊥pB1 ∪B2 ∪B3∣S ∪NdG(C) ∖ (B1 ∪B2 ∪B3) by intersection on (3) and (4).

Continuing with this for B4, . . . ,Bn leads to L2∗. Finally, let C ∖ (A ∪ NeG(A)) = {B1, . . . ,Bn}.
Then

(6) A⊥pB1∣NdG(C) ∪C ∖ (A ∪B1) by P1 with B = B1.
(7) A⊥pB2∣NdG(C) ∪C ∖ (A ∪B2) by P1 with B = B2.
(8) A⊥pB1 ∪B2∣NdG(C) ∪C ∖ (A ∪B1 ∪B2) by intersection on (6) and (7).
(9) A⊥pB3∣NdG(C) ∪C ∖ (A ∪B3) by P1 with B = B3.

(10) A⊥pB1 ∪B2 ∪B3∣NdG(C) ∖ (B1 ∪B2 ∪B3) by intersection on (8) and (9).

Continuing with this for B4, . . . ,Bn leads to L1. �

Theorem 9. Let X, Y and Z denote three disjoint subsets of V . Then, X ⊥GY ∣Z if and only if
X⊥G′Y ∣Z.

Proof. It suffices to show that every path in G connecting α and β given Z can be transformed into
a path in G′ connecting α and β given Z and vice versa, with α,β ∈ V and Z ⊆ V ∖ (α ∪ β).

Let ρ denote a path in G connecting α and β given Z. We can easily transform ρ into a path ρ′ in
G′ between α and β: Simply, replace every maximal subpath of ρ of the form V1−V2− . . .−Vn−1−Vn
(n ≥ 2) with V1 ← εV1 − εV2 − . . . − εVn−1 − εVn → Vn. We now show that ρ′ is connecting given Z.

First, if B ∈ V is a collider on ρ′, then ρ′ must have one of the following subpaths:

A B C A B εB εC

with A,C ∈ V . Therefore, ρ must have one of the following subpaths:

A B C A B C
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In either case, B is a collider on ρ and, thus, B ∈ AnG(Z) for ρ to be connecting given Z. Then,
B ∈ AnG′(Z) by construction of G′ and, thus, B ∈ AnG′(Dt(Z)).

Second, if B ∈ V is a non-collider on ρ′, then ρ′ must have one of the following subpaths:

A B C A B C A B εB εC

with A,C ∈ V . Therefore, ρ must have one of the following subpaths:

A B C A B C A B C

In either case, B is a non-collider on ρ and, thus, B ∉ Z for ρ to be connecting given Z. Since
Z contains no error node, Z cannot determine any node in V that is not already in Z. Then,
B ∉Dt(Z).

Third, if εB is a non-collider on ρ′ (note that εB cannot be a collider on ρ′), then ρ′ must have
one of the following subpaths:

A B εB εC εB B ∈ {α,β}εA A B εB εC εA εB εC

with A,C ∈ V . Recall that εB ∉ Z because Z ⊆ V ∖ (α ∪ β). In the first case, if A = α or A = β
then A ∉ Z, else A ∉ Z for ρ to be connecting given Z. Then, εB ∉Dt(Z). In the second case, B ∉ Z
and, thus, εB ∉ Dt(Z). In the third case, B ∉ Z for ρ to be connecting given Z. Then, εB ∉ Dt(Z).
The last case implies that ρ has the following subpath:

A B C

Thus, B is a non-collider on ρ, which implies that B ∉ Z or PaG(B)∖Z ≠ ∅ for ρ to be connecting
given Z. In either case, εB ∉Dt(Z) (recall that PaG′(B) = PaG(B) ∪ εB by construction of G′).

Finally, let ρ′ denote a path in G′ connecting α and β given Z. We can easily transform ρ′
into a path ρ between α and β: Simply, replace every maximal subpath of ρ′ of the form V1 ←
εV1 −εV2 − . . .−εVn−1 −εVn → Vn (n ≥ 2) with V1−V2− . . .−Vn−1−Vn. We now show that ρ is connecting
given Z.

First, note that all the nodes in ρ are in V . Moreover, if B is a collider on ρ, then ρ must have
one of the following subpaths:

A B C A B C

with A,C ∈ V . Therefore, ρ′ must have one of the following subpaths:

A B C A B εB εC

In either case, B is a collider on ρ′ and, thus, B ∈ AnG′(Dt(Z)) for ρ′ to connecting given Z.
Since Z contains no error node, Z cannot determine any node in V that is not already in Z. Then,
B ∈Dt(Z) if and only if B ∈ Z. Since no error node is a descendant of B, then any node D ∈Dt(Z)
that is a descendant of B must be in V which, as seen, implies that D ∈ Z. Then, B ∈ AnG′(Dt(Z))
if and only if B ∈ AnG′(Z). Moreover, B ∈ AnG′(Z) if and only if B ∈ AnG(Z) by construction of
G′. These results together imply that B ∈ AnG(Z).

Second, if B is a non-collider on ρ, then ρ must have one of the following subpaths:

A B C A B C A B C A B C

with A,C ∈ V . Therefore, ρ′ must have one of the following subpaths:
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A B C A B C A B εB εC εA εB εC

In the first three cases, B is a non-collider on ρ′ and, thus, B ∉ Dt(Z) for ρ′ to be connecting
given Z. Since Z contains no error node, Z cannot determine any node in V that is not already
in Z. Then, B ∉ Z. In the last case, εB is a non-collider on ρ′ and, thus, εB ∉ Dt(Z) for ρ′ to be
connecting given Z. Then, B ∉ Z or PaG′(B) ∖ (εB ∪ Z) ≠ ∅. Then, B ∉ Z or PaG(B) ∖ Z ≠ ∅
(recall that PaG′(B) = PaG(B) ∪ εB by construction of G′). �

Theorem 10. Every probability distribution p(V ) specified by Equations (1) and (2) is Gaussian.

Proof. Modify the equation A = βA ⋅ PaG(A) + εA by replacing each B ∈ V in the right-hand side of
the equation with the right-hand side of the equation of B, i.e. βB ⋅PaG(B)+εB. Since G is directed
acyclic, repeating this process results in a set of equations for the elements of V whose right-hand
sides are linear combinations of the elements of ε. In other words, V = δε with ε ∼ N(0,Λ). Then,
V ∼ N(0, δΛδT ). �

Theorem 11. Every probability distribution p(V ) specified by Equations (1) and (2) satisfies the
global Markov property with respect to G.

Proof. Equation (1) implies for any A ∈ V that

A⊥p(V ∪ε)(V ∪ ε) ∖ (A ∪ PaG′(A))∣PaG′(A)
and thus

A⊥p(V ∪ε)NdG′(A) ∖ PaG′(A)∣PaG′(A) (3)

by decomposition.
Moreover, Equation (1) implies for any εC ∈ Cc(G′

ε) that

p(εC ∪NdG′(εC)) = p(εC)p(NdG′(εC)) (4)

and thus
εC ⊥p(V ∪ε)NdG′(εC)∣∅

and thus
εA⊥p(V ∪ε)NdG′(εC)∣εZ (5)

where εA ∈ εC and εZ ⊆ εC ∖ εA, by decomposition and weak union.
Finally, Equation (2) implies for any εA ∈ εC and εC ∈ Cc(G′

ε) that

εA⊥p(V ∪ε)εC ∖ (εA ∪NeG′(εA))∣NeG′(εA)
by Lauritzen (1996, Theorem 3.7 and Proposition 5.2), and thus

p(εC) = h(εA ∪NeG′(εA))k(εC ∖ εA)
by Lauritzen (1996, Equation 3.6). This together with Equation (4) imply that

p(εC ∪NdG′(εC)) = h(εA ∪NeG′(εA))k(εC ∖ εA)p(NdG′(εC))
and thus

εA⊥p(V ∪ε)εC ∖ (εA ∪NeG′(εA))∣NdG′(εC) ∪NeG′(εA) (6)

by Lauritzen (1996, Equation 3.6).
Consequently, Equations (3), (5) and (6) imply that p(V ∪ ε) satisfies the global Markov property

with respect to G′ by Theorem 7 because (i) G′ is actually an AMP CG over V ∪ ε, (ii) A is the only
node in the connectivity component of G′ that contains A, and (iii) εC has no parents in G′. Then,
p(V ) satisfies the global Markov property with respect to G, because G and G′ represent the same
separations over V by Theorem 9. �
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