Alternative Markov and Causal Properties for Acyclic Directed Mixed Graphs

Abstract

We extend Andersson-Madigan-Perlman chain
graphs by (i) relaxing the semidirected acyclity
constraint so that only directed cycles are forbid-
den, and (ii) allowing up to two edges between
any pair of nodes. We introduce global, and or-
dered local and pairwise Markov properties for
the new models. We show the equivalence of
these properties for strictly positive probability
distributions. We also show that when the ran-
dom variables are continuous, the new models
can be interpreted as systems of structural equa-
tions with correlated errors. This enables us
to adapt Pearl’s do-calculus to them. Finally,
we describe an exact algorithm for learning the
new models from observational and interven-
tional data via answer set programming.

1 INTRODUCTION

Chain graphs (CGs) are graphs with possibly directed and
undirected edges but without semidirected cycles. They
have been extensively studied as a formalism to repre-
sent probabilistic independence models, because they can
model symmetric and asymmetric relationships between
random variables. Moreover, they are much more ex-
pressive than directed acyclic graphs (DAGs) and undi-
rected graphs (UGs) (Sonntag and Pefia, 2016). There
are three different interpretations of CGs as independence
models: The Lauritzen-Wermuth-Frydenberg (LWF) in-
terpretation (Lauritzen, 1996), the multivariate regression
(MVR) interpretation (Cox and Wermuth, 1996), and the
Andersson-Madigan-Perlman (AMP) interpretation (An-
dersson et al., 2001). No interpretation subsumes another
(Andersson et al., 2001; Sonntag and Pefia, 2015). More-
over, AMP and MVR CGs are coherent with data genera-
tion by block-recursive normal linear regressions (Anders-
son et al., 2001).

Richardson (2003) extends MVR CGs by (i) relaxing the
semidirected acyclity constraint so that only directed cy-
cles are forbidden, and (ii) allowing up to two edges be-
tween any pair of nodes. The resulting models are called
acyclic directed mixed graphs (ADMGs). These are the
models in which Pearl’s do-calculus operates to determine
if the causal effect of an intervention is identifiable from
observed quantities (Pearl, 2009). In this paper, we make
the same two extensions to AMP CGs. We call our ADMGs
alternative as opposed to the ones proposed by Richardson,
which we call original. It is worth mentioning that neither
the original ADMGs nor any other family of mixed graphi-
cal models that we know of (e.g. summary graphs (Cox and
Wermuth, 1996), ancestral graphs (Richardson and Spirtes,
2002), MC graphs (Koster, 2002) or loopless mixed graphs
(Sadeghi and Lauritzen, 2014)) subsume AMP CGs and
hence our alternative ADMGs. To see it, we refer the reader
to the works by Richardson and Spirtes (2002, p. 1025) and
Sadeghi and Lauritzen (2014, Section 4.1). Therefore, our
work complements the existing works.

The rest of the paper is organized as follows. Section 2
introduces some preliminaries. Sections 3 and 4 introduce
global, and ordered local and pairwise Markov properties
for our ADMGs, and prove their equivalence. When the
random variables are continuous, Section 5 offers an intu-
itive interpretation of our ADMGs as systems of structural
equations with correlated errors, so that Pearl’s do-calculus
can easily be adapted to them. Section 6 describes an exact
algorithm for learning our ADMGs from observational and
interventional data via answer set programming (Gelfond,
1988; Niemeld, 1999; Simons et al., 2002). We close the
paper with some discussion in Section 7. Formal proofs of
the claims made in this paper can be found in the supple-
mentary material.

2 PRELIMINARIES

In this section, we introduce some concepts about graphical
models. Unless otherwise stated, all the graphs and proba-
bility distributions in this paper are defined over a finite set



V. The elements of V are not distinguished from single-
tons. An ADMG G is a graph with possibly directed and
undirected edges but without directed cycles. There may
be up to two edges between any pair of nodes, but in that
case the edges must be different and one of them must be
undirected to avoid directed cycles. Edges between a node
and itself are not allowed. See Figure 1 for two examples
of ADMGs.

Given an ADMG G, we represent with A — B that
A — Bor A— B (orboth) is in G. The parents of X C V'
in G are Pag(X) = {A|A — Bisin G with B € X}.
The children of X in G are Chg(X) = {A|]A «+ B
is in G with B € X}. The neighbours of X in G are
Neg(X) = {A]A — Bisin G with B € X}. The an-
cestors of X in G are Ang(X) = {A|A — ... - Bis
in G with B € X or A € X}. The descendants of X
in G are Deg(X) = {A|A < ... < B is in G with
B € X or A € X}. The semidescendants of X in G
are deg(X) = {A|A o— ... o— Bisin G with B € X
or A € X}. The non-semidescendants of X in G are
Ndg(X) = V \ deg(X). The connectivity components
of X in G is Ceqg(X) = {AJA — ... — Bis in G with
B € X or A € X}. The connectivity components in G
are denoted as C'c¢(G). A route between a node V; and a
node V,, on G is a sequence of (not necessarily distinct)
nodes Vi, ..., V, such that V; and V;,; are adjacent in G
for all 1 < ¢ < n. We do not distinguish between the se-
quences Vy,...,V, and V,,, ..., V1, i.e. they represent the
same route. If the nodes in the route are all distinct, then
the route is called a path. Finally, the subgraph of G in-
duced by X C V, denoted as G'x, is the graph over X that
has all and only the edges in G whose both ends are in X.

Let X, Y, W and Z be disjoint subsets of V. We rep-
resent by X 1 ,Y|Z that X and Y are conditionally in-
dependent given Z in a probability distribution p. Every
probability distribution p satisfies the following four prop-
erties: Symmetry X | ,Y|Z = Y 1 ,X|Z, decom-
position X L , Y UW|Z = X L1 ,Y|Z, weak union
X 1L, YUW|Z = X 1L ,Y|[ZUW, and contraction
X L)Y ZuWAX L ,WZ = X 1,YUW|Z
If p is strictly positive, then it also satisfies the intersec-
tion property X L Y| ZUWAX L ,W|ZUY =
X 1 ,YUW|Z. Some (not yet characterized) proba-
bility distributions also satisfy the composition property
XLYZAXLW|Z=X1,YUW|Z.

3 GLOBAL MARKOV PROPERTY

In this section, we introduce four separation criteria for
ADMGs. Moreover, we show that they are all equiva-
lent. A probability distribution is said to satisfy the global
Markov property with respect to an ADMG if every sepa-
ration in the graph can be interpreted as an independence
in the distribution.

— /Y\
A— B—D A— B—C—D

Figure 1: Examples of ADMGs.

Criterion 1. A node C on a path in an ADMG G is said
to be a collider on the path if A — C o— B is a subpath.
Moreover, the path is said to be connecting given Z C V
when

e every collider on the path is in Ang(Z), and

e every non-collider C' on the path is outside Z unless
A — C — Bisasubpath and Pag(C) \ Z # 0.

Let X, Y and Z denote three disjoint subsets of V. When
there is no path in GG connecting a node in X and a node in
Y given Z, we say that X is separated from Y given Z in
G and denote itas X 1 Y| Z.

Criterion 2. A node C' on a route in an ADMG G is said
to be a collider on the route if A — C o— B is a subroute.
Note that maybe A = B. Moreover, the route is said to be
connecting given Z C V when

e every collider on the route is in Z, and

e every non-collider C on the route is outside Z.

Let X, Y and Z denote three disjoint subsets of V. When
there is no route in G connecting a node in X and a node
in Y given Z, we say that X is separated from Y given Z
in G and denote itas X | oY |Z.

Criterion 3. Let G* denote the UG over V that con-
tains all and only the undirected edges in G. The ex-
tended subgraph G[X] with X C V is defined as G[X| =
G ang(x) Y (GY)ceq(Ang(x))- Two nodes A and B in G
are said to be collider connected if there is a path between
them such that every non-endpoint node is a collider, i.e.
A— Co—BorA— C—D <« B. Suchapathis called a
collider path. Note that a single edge forms a collider path.
The augmented graph G is the UG over V such that A— B
is in G* if and only if A and B are collider connected in
G. The edge A — B is called augmented if it is in G* but
A and B are not adjacent in G. A path in G is said to be
connecting given Z C V if no node on the path is in Z.
Let X, Y and Z denote three disjoint subsets of V. When
there is no path in G[X UY U Z]® connecting a node in X
and a node in Y given Z, we say that X is separated from
Y given Z in G and denote it as X L Y| Z.

Criterion 4. Given an UG H over V and X C V, we
define the marginal graph HX as the UG over X such
that A — B is in HX if and only if A — B is in H or
A-Vi—...=V,—BisHwith Vq,...,V,, ¢ X. We de-
fine the marginal extended subgraph G[X]™ as G[X]|™ =



GAnG(X) U ((Gu)CCG(AnG(X)))AnG(X). Let X,Y and Z
denote three disjoint subsets of V. When there is no path
in (GIX UY U Z]™)“ connecting a node in X and a node
in Y given Z, we say that X is separated from Y given Z
in G and denote itas X L oY |Z.

The first three separation criteria introduced above coincide
with those introduced by Andersson et al. (2001) and Levitz
etal. (2001) for AMP CGs. The equivalence for AMP CGs
of these three separation criteria has been proven by Levitz
et al. (2001, Theorem 4.1). The following theorems prove
the equivalence for ADMGs of the four separation criteria
introduced above.

Theorem 1 There is a path in an ADMG G connecting a
node in X and a node in'Y given Z if and only if there is a
pathin G[X UY U Z]* connecting a node in X and a node
inY given Z.

Theorem 2 There is a path in an ADMG G connecting A
and B given Z if and only if there is a route in G connecting
A and B given Z.

Theorem 3 Given an ADMG G, there is a path in G[X U
Y UZ]* connecting a node in X and anode in'Y given Z if
and only if there is a path in (G[X UY U Z|™)% connecting
anode in X and a node in'Y given Z.

Unlike in AMP CGs, two non-adjacent nodes in an ADMG
are not necessarily separated. For example, A 1 D|Z
does not hold for any Z in the ADMGs in Figure 1. This
drawback is shared by the original ADMGs (Evans and
Richardson, 2013, p. 752), summary graphs and MC
graphs (Richardson and Spirtes, 2002, p. 1023), and an-
cestral graphs (Richardson and Spirtes, 2002, Section 3.7).
For ancestral graphs, the problem can be solved by adding
edges to the graph without altering the separations repre-
sented until every missing edge corresponds to a separation
(Richardson and Spirtes, 2002, Section 5.1). A similar so-
lution does not exist for our ADMGs (we omit the details).

4 ORDERED LOCAL AND PAIRWISE
MARKOYV PROPERTIES

In this section, we introduce ordered local and pairwise
Markov properties for ADMGs. Given an ADMG G, the
directed acyclity of G implies that we can specify a total or-
dering (<) of the nodes of G such that A < B only if B ¢
Ang(A). Such an ordering is said to be consistent with G.
Let the predecessors of A with respect to < be defined as
Preg(A,<) ={B|B < Aor B= A}. Given S C V, we
define the Markov blanket of B € S with respect to G[S]
as Mbg[s] (B) = Chg[s] (B) @] Neg[s] (B @] Chg[s] (B)) U
Pag[s] (B @] ChG[S](B) @) NeG[S](B @] Chg[s] (B))) We
say that a probability distribution p satisfies the ordered lo-
cal Markov property with respect to G and < if for any

AeVand S C Preg(A, <) suchthat A € S
B 1,8\ (BUMbgs)(B))|[Mbgs)(B)
forall Be€ S.

Theorem 4 Given a probability distribution p satisfying
the intersection property, p satisfies the global Markov
property with respect to an ADMG if and only if it satis-
fies the ordered local Markov property with respect to the
ADMG and a consistent ordering of its nodes.

Similarly, we say that a probability distribution p satisfies
the ordered pairwise Markov property with respect to G
and < if forany A € V and S C Preg(A4, <) such that
AeS

BL,CIV(GIS)\ (BUC)

for all nodes B, C' € S that are not adjacent in G[S]%, and
where V(G]S]) denotes the nodes in G[S].

Theorem 5 Given a probability distribution p satisfying
the intersection property, p satisfies the global Markov
property with respect to an ADMG if and only if it satis-
fies the ordered pairwise Markov property with respect to
the ADMG and a consistent ordering of its nodes.

For each A € V and S C Preg(A, <) such that A €
S, the ordered local Markov property specifies an inde-
pendence for each B € S. The number of indepen-
dences to specify can be reduced by noting that G[S] =
G[Ang(S)] and, thus, we do not need to consider every
set S C Preg(A, <) but only those that are ancestral,
i.e. those such that S = Ang(S). The number of in-
dependences to specify can be further reduced by consid-
ering only maximal ancestral sets, i.e. those sets .S such
that Mbgs)(B) C Mbgr)(B) for every ancestral set T'
such that S C T C Preg(A, <). The independences for
the non-maximal ancestral sets follow from the indepen-
dences for the maximal ancestral sets by decomposition. A
characterization of the maximal ancestral sets is possible
but notationally cumbersome (we omit the details). All in
all, for each node and maximal ancestral set, the ordered
local Markov property specifies an independence for each
node in the set. This number is greater than for the original
ADMGs, where a single independence is specified for each
node and maximal ancestral set (Richardson, 2003, Section
3.1). Even fewer independences are needed for the original
ADMGs when interpreted as linear causal models (Kang
and Tian, 2009, Section 4). All in all, our ordered local
Markov property serves its purpose, namely to identify a
subset of the independences in the global Markov property
that implies the rest.

Note that Andersson et al. (2001, Theorem 3) describe lo-
cal and pairwise Markov properties for AMP CGs that are
equivalent to the global one under the assumption of the
intersection and composition properties. Our ordered local



and pairwise Markov properties above only require assum-
ing the intersection property. Note that this assumption is
also needed to prove similar results for much simpler mod-
els such as UGs (Lauritzen, 1996, Theorem 3.7). For AMP
CGs, however, we can do better than just using the ordered
local and pairwise Markov properties for ADMGs above.
Specifically, we introduce in the next section neater local
and pairwise Markov properties for AMP CGs under the
intersection property assumption. Later on, we will also
use them to prove some results for ADMGs.

4.1 LOCAL AND PAIRWISE MARKOV
PROPERTIES FOR AMP CGS

Andersson et al. (2001, Theorem 2) prove that a probabil-
ity distribution p satisfies the global Markov property with
respect to an AMP CG G if and only if it satisfies the block-
recursive Markov property which requires that the follow-
ing three properties hold for all C' € C¢(G):

e Cl: CL,Ndg(C)\ Cecg(Pac(C))|Cea(Pac(C)).

e C2: p(C|Cecq(Pag(C))) satisfies the global Markov
property with respect to G¢.

e C3*: D1 ,Ccc(Pac(C))\ Pac(D)|Pac(D) for all
DCC.

We simplify the block-recursive Markov property as fol-
lows.

Theorem 6 CI, C2 and C3* hold if and only if the follow-
ing two properties hold:

e CI*: D1 ,Nda(D)\ Pag(D)|Pac(D) forall D C
C.

o C2*: p(C|Pag(C)) satisfies the global Markov prop-
erty with respect to G¢.

Andersson et al. (2001, Theorem 3) also prove that a prob-
ability distribution p satisfying the intersection and compo-
sition properties satisfies the global Markov property with
respect to an AMP CG G if and only if it satisfies the lo-
cal Markov property which requires that the following two
properties hold for all C' € C¢(G):

o LI: AL ,C\(AUNeg(A))|Ndg(C)UNeg(A) for
allAeC.

o 12: Al ,Ndg(C)\ Pag(A)|Pag(A)forall A € C.

We introduce below a local Markov property that is equiva-
lent to the global one under the assumption of the intersec-
tion property only.

Theorem 7 A probability distribution p satisfying the in-
tersection property satisfies the global Markov property
with respect to an AMP CG G if and only if the following
two properties hold for all C € Cc(G):

o LI: A1 ,C\(AUNeg(A))|Nda(C)UNeg(A) for
all AeC.

o [2*: A1 ,Nde(C)\ Pag(AUS)|SUPag(AUS)
Joral Ac Cand S CC\ A

Finally, Andersson et al. (2001, Theorem 3) also prove that
a probability distribution p satisfying the intersection and
composition properties satisfies the global Markov prop-
erty with respect to an AMP CG G if and only if it satisfies
the pairwise Markov property which requires that the fol-
lowing two properties hold for all C' € C¢(G):

e PI: ALl ,B|Ndg(C)UC\ (AUB)forall A e C
and B € C\ (AU Neg(A)).

e P2: Al ,B|Ndg(C)\ Bforall A € C and B €
ng(C)\Pag(A).

We introduce below a pairwise Markov property that is
equivalent to the global one under the assumption of the
intersection property only.

Theorem 8 A probability distribution p satisfying the in-
tersection property satisfies the global Markov property
with respect to an AMP CG G if and only if the following
two properties hold for all C € Cc(G):

e PI: Al ,B|Nda(C)UC\ (AUB) forall A € C
and B € C'\ (AU Neg(A)).

o P2*: AL ,B|SUNdG(C)\ Bforall Ae C, S C
C\ Aand B € Ndg(C)\ Pag(AUS).

S CAUSAL INTERPRETATION

Let us assume that V' is normally distributed. In this sec-
tion, we show that an ADMG G can be interpreted as a sys-
tem of structural equations with correlated errors. Specif-
ically, the system includes an equation for each A € V,
which is of the form A = 4 - Pag(A) + €4 where €4
denotes the error term. The error terms are represented im-
plicitly in G. They can be represented explicitly by magni-
fying G into the ADMG G’ as follows:

1 SetG'=G

2  Foreachnode Ain G

3 Add the node € 4 and the edge e4 — A to G’
4 Foreachedge A— BinG

5 Replace A — B with the edge €4 — €p in G’
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Figure 2: Example of the magnification of an ADMG.

The magnification above basically consists in adding the
error nodes €4 to G and connect them appropriately. Fig-
ure 2 shows an example. Note that every node A € V
is determined by Pag/(A) and that €4 is determined by
A U Pag/(A) \ €a. Let e denote all the error nodes in
G’. Formally, we say that A € V U ¢ is determined by
Z C VUewhen A € Z or A is a function of Z. We
use Dt(Z) to denote all the nodes that are determined by
7. From the point of view of the separations, that a node
outside the conditioning set of a separation is determined
by the conditioning set has the same effect as if the node
were actually in the conditioning set. Bearing this in mind,
it is not difficult to see that, as desired, G and G’ repre-
sent the same separations over V. The following theorem
formalizes this result.

Theorem 9 Let X, Y and Z denote three disjoint subsets
of V. Then, X L gY|Z ifand only if X 1 Y| Z.

Finally, let € ~ N'(0, A) such that (A™1), ., =0ifeq —
ep is not in G’. Then, G can be interpreted as a system of
structural equations with correlated errors as follows. For
any AeV

A= ) PapBtea (1)

BEPag(A)
and for any other B € V

covariance(€g, €p) = Ac, ey (2)

The following two theorems confirm that the interpretation
above works as intended. A similar result to the second the-
orem exists for the original ADMGs (Koster, 1999, Theo-
rem 1).

Theorem 10 Every probability distribution p(V') specified
by Equations (1) and (2) is Gaussian.

Theorem 11 Every probability distribution p(V') specified
by Equations (1) and (2) satisfies the global Markov prop-
erty with respect to G.

The equations above specify each node as a linear function
of its parents with additive normal noise. The equations

can be generalized to nonlinear or nonparametric functions
as long as the noise remains additive normal. That is, A =
f(Pag(A)) + €4 forall A € V, with e ~ N(0,A) such
that (A™1)c, e, = 0if €4 — €p is not in G’. That the
noise is additive normal ensures that € 4 is determined by
AUPag (A)\€ea, which is needed for Theorem 9 to remain
valid which, in turn, is needed for Theorem 11 to remain
valid.

A less formal but more intuitive alternative interpretation
of ADMGs is as follows. We can interpret the parents of
each node in an ADMG as its observed causes. Its unob-
served causes are grouped into an error node that is repre-
sented implicitly in the ADMG. We can interpret the undi-
rected edges in the ADMG as the correlation relationships
between the different error nodes. The causal structure is
constrained to be a DAG, but the correlation structure can
be any UG. This causal interpretation of our ADMGs par-
allels that of the original ADMGs (Pearl, 2009). There are
however two main differences. First, the noise in the origi-
nal ADMGs is not necessarily additive normal. Second, the
correlation structure of the error nodes in the original AD-
MG:s is represented by a covariance graph, i.e. a graph with
only bidirected edges (Pearl and Wermuth, 1993). There-
fore, whereas a missing edge between two error nodes in
the original ADMGs represents marginal independence, in
our ADMGs it represents conditional independence given
the rest of the error nodes. This means that the original
and our ADMGs represent complementary causal models.
Consequently, there are scenarios where the identification
of the causal effect of an intervention is not possible with
the original ADMGs but is possible with ours, and vice
versa. We elaborate on this in the next section.

5.1 do-CALCULUS

We start by adapting Pearl’s do-calculus, which operates
on the original ADMGs, to our ADMGs. The original do-
calculus consists of the following three rules, whose re-
peated application permits in some cases to identify (i.e.
compute) the causal effect of an intervention from observed
quantities:

e Rule 1 (insertion/deletion of observations):
p(Y|do(X),Z U W) = p{Y|do(X),W) if ¥ L
c Z|I X UW||X.

e Rule 2 (action/observation exchange):
p(Ydo(X),do(Z), W) = p(¥|do(X),Z U W) if
YJ_Gsz|X uwu ZHX

e Rule 3 (insertion/deletion of actions):
p(Y|do(X),do(Z), W) = p(Y1|do(X
G//Fz‘X U W||X

), W) if Y L

where X, Y, Z and W are disjoint subsets of V', G is the
original ADMG G augmented with an intervention random



variable F4 and an edge Fl4 — A forevery A € V, and
“|| X denotes an intervention on X in G”, i.e. any edge
with an arrowhead into any node in X is removed. See
Pearl (1995, p. 686) for further details and the proof that
the rules are sound. Fortunately, the rules also apply to
our ADMGs by simply redefining “|| X appropriately. The
proof that the rules are still sound is essentially the same as
before. Specifically, “||X”" should now be implemented as
follows:

1 Delete from G” all the edges A — B with B € X

2 Foreachpath A —V; —... -V, — Bin G” with
A,B¢ XandVp,...,V, €X
3 Add the edge A — Bto G”

N

Delete from G’ all the edges A — B with B € X

Line 1 is shared with an intervention in an original ADMG.
Lines 2-4 are best understood in terms of the magnified
ADMG G’: They correspond to marginalizing the error
nodes associated to the nodes in X out of G, the UG that
represents the correlation structure of the error nodes. In
other words, they replace G’ with (G’)€\°X, the marginal
graph of G, over € \ ex. This makes sense since ex is
no longer associated to X due to the intervention and, thus,
we may want to marginalize it out because it is unobserved.
This is exactly what lines 2-4 imply. To see it, note that the
ADMG after the intervention and the magnified ADMG af-
ter the intervention represent the same separations over V,
by Theorem 9.

Now, we show that the original and our ADMGs allow for
complementary causal reasoning. Specifically, we show
an example where our ADMGs allow for the identification
of the causal effect of an intervention whereas the origi-
nal ADMGs do not, and vice versa. Consider the DAG in
Figure 3, which represents the causal relationships among
all the random variables in the domain at hand.! However,
only A, B and C' are observed. Moreover, Ug represents
selection bias. Although other definitions may exist, we say
that selection bias is present if two unobserved causes have
a common effect that is omitted from the study but influ-
ences the selection of the samples in the study (Pearl, 2009,
p- 163). Therefore, the corresponding unobserved causes
are correlated in every sample selected. Note that this def-
inition excludes the possibility of an intervention affecting
the selection because, in a causal model, unobserved causes
do not have observed causes. Note also that our goal is not
the identification of the causal effect of an intervention in
the whole population but in the subpopulation that satisfies
the selection bias criterion.? For causal effect identification

"For instance, the DAG may correspond to the following fic-
titious domain: A = Smoking, B = Lung cancer, C' = Drinking,
Ua = Parents’ smoking, Up = Parents’ lung cancer, Uc = Par-
ents’ drinking, U = Parents’ genotype that causes smoking and
drinking, Us = Parents’ hospitalization.

2For instance, in the fictitious domain in the previous footnote,

DAG Our ADMG | Original ADMG
U—Uc—Us
Ua C Us C C

| |

A—B

/N

A——B A——B

Figure 3: Example of a case where p(B|do(A)) is identifi-
able with our ADMG but not with the original one.

in the whole population, see Bareinboim and Tian (2015).

The ADMGs in Figure 3 represent the causal model repre-
sented by the DAG when only the observed random vari-
ables are modeled. According to our interpretation of AD-
MGs above, our ADMG is derived from the DAG by keep-
ing the directed edges between observed random variables,
and adding an undirected edge between two observed ran-
dom variables if and only if their unobserved causes are
not separated in the DAG given the unobserved causes of
the rest of the observed random variables. In other words,
Ua L Ug|Ucs holds in the DAG but Uy | Ug|Up and
Up LUc|U4 do not and, thus, the edges A —C and B — C
are added to the ADMG but A— B is not. Deriving the orig-
inal ADMG is less straightforward. The bidirected edges
in an original ADMG represent potential marginal depen-
dence due to a common unobserved cause, also known as
confounding. Thus, the original ADMGs are not meant to
model selection bias. The best we can do is then to use bidi-
rected edges to represent potential marginal dependences
regardless of their origin. This implies that we can derive
the original ADMG from the DAG by keeping the directed
edges between observed random variables, and adding a
bidirected edge between two observed random variables if
and only if their unobserved causes are not separated in the
DAG given the empty set. Clearly, p(B|do(A)) is not iden-
tifiable with the original ADMG but is identifiable with our
ADMG (Pearl, 2009, p. 94). Specifically,

p(Bldo(A)) =) p(Bldo(A), C)p(Cldo(4))
C

= p(Bldo(A), C)p(C) = > p(B|A,C)p(C)
C c

where the first equality is due to marginalization, the sec-
ond due to Rule 3, and the third due to Rule 2.

The original ADMGs assume that confounding is always
the source of correlation between unobserved causes. In
the example above, we consider selection bias as an addi-
tional source. However, this is not the only possibility. For
instance, Up and Uc may be tied by a physical law of the

we are interested in the causal effect that smoking may have on
the development of lung cancer for the patients with hospitalized
parents.



form f(Ugp,Uc) = constant devoid of causal meaning,
much like Boyle’s law relates the pressure and volume of
a gas as pressure - volume = constant if the tempera-
ture and amount of gas remain unchanged within a closed
system. In such a case, the discussion above still applies
and our ADMG allows for causal effect identification but
the original does not. For an example where the original
ADMG:s allow for causal effect identification whereas ours
do not, simply replace the subgraph Uc — Ug ¢ Up in
Figure 3 with Ug <~ W — Up where W is an unobserved
random variable. Then, our ADMG will contain the same
edges as before plus the edge A — B, making the causal
effect non-identifiable. The original ADMG will contain
the same edges as before with the exception of the edge
A + B, making the causal effect identifiable.

In summary, the bidirected edges of the original ADMGs
have a clear semantics: They represent potential marginal
dependence due to a common unobserved cause. This
means that we have to know the causal relationships involv-
ing the unobserved random variables to derive the ADMG.
Or at least, we have to know that there is no selection
bias or tying laws so that marginal dependence can be at-
tributed to a common unobserved cause due to Reichen-
bach’s principle (Pearl, 2009, p. 30). This knowledge
may not be available in some cases. Moreover, the origi-
nal ADMGs are not meant to represent selection bias or ty-
ing laws. To solve these two problems, we may be willing
to use the bidirected edges to represent potential marginal
dependences regardless of their origin. Our ADMGs are
somehow dual to the original ADMGs, since the undirected
edges represent potential saturated conditional dependence
between unobserved causes. This implies that in some
cases, such as in the example above, our ADMGs may
allow for causal effect identification whereas the original
may not.

6 LEARNING VIA ASP

In this section, we introduce an exact algorithm for learn-
ing ADMGs via answer set programming (ASP), which
is a declarative constraint satisfaction paradigm that is
well-suited for solving computationally hard combinato-
rial problems (Gelfond, 1988; Niemeld, 1999; Simons et
al., 2002). ASP represents constraints in terms of first-
order logical rules. Therefore, when using ASP, the first
task is to model the problem at hand in terms of rules so
that the set of solutions implicitly represented by the rules
corresponds to the solutions of the original problem. One
or multiple solutions to the original problem can then be
obtained by invoking an off-the-shelf ASP solver on the
constraint declaration. Each rule in the constraint declara-
tion is of the form head :- body. The head contains
an atom, i.e. a fact. The body may contain several liter-
als, i.e. negated and non-negated atoms. Intuitively, the
rule is a justification to derive the head if the body is true.

The body is true if its non-negated atoms can be derived,
and its negated atoms cannot. A rule with only the head
is an atom. A rule without the head is a hard-constraint,
meaning that satisfying the body results in a contradic-
tion. Soft-constraints are encoded as rules of the form
~ body. [W], meaning that satisfying the body results
in a penalty of W units. The ASP solver returns the solu-
tions that meet the hard-constraints and minimize the total
penalty due to the soft-constraints. In this work, we use
the ASP solver c1ingo (Gebser et al., 2011), whose un-
derlying algorithms are based on state-of-the-art Boolean
satisfiability solving techniques (Biere et al., 2009).

Figure 4 shows the ASP encoding of our learning al-
gorithm. The predicate node (X) in rule 1 represents
that X is a node. The predicates 1ine (X, Y, I) and
arrow (X, Y, I) represent that there is an undirected and
directed edge from X to Y after having intervened on the
node I. The observational regime corresponds to I = 0.
The rules 2-3 encode a non-deterministic guess of the edges
for the observational regime, which means that the ASP
solver with implicitly consider all possible graphs during
the search, hence the exactness of the search. The edges
under the observational regime are used in the rules 4-6
to define the edges in the graph after having intervened
on I, following the description in Section 5.1. There-
fore, the algorithm assumes continuous random variables
and additive normal noise when the input contains inter-
ventions. It makes no assumption though when the input
consists of just observations. The rules 7-8 enforce the
fact that undirected edges are symmetric and that there is
at most one directed edge between two nodes. The predi-
cate ancestor (X, Y) represents that X is an ancestor of
Y. The rules 9-11 enforce that the graph has no directed
cycles. The predicates in the rules 12-13 represent whether
anode X is or is not in a set of nodes C. The rules 14-25
encode the separation criterion 2 in Section 3. The predi-
cate con (X, Y,C, I) inrules 26-29 represents that there
is a connecting route between X and Y given C' after hav-
ing intervened on I. The rule 30 enforces that each depen-
dence in the input must correspond to a connecting route.
The rule 31 represents that each independence in the input
that is not represented implies a penalty of W units. The
rules 32-33 represent a penalty of 1 unit per edge. Other
penalty rules can be added similarly.

Figure 6 shows the ASP encoding of all the
(in)dependences in the probability distribution at hand,
e.g. as determined by some available data. Specif-
ically, the predicate nodes (3) represents that there
are three nodes in the domain at hand, and the pred-
icate set (0..7) represents that there are eight sets
of nodes, indexed from O (empty set) to 7 (full set).
The predicate indep(X,Y,C,I,W) (respectively
dep (X,Y,C,I,W)) represents that the nodes X and Y
are conditionally independent (respectively dependent)



% input predicates
% nodes(N): N is the number of nodes
% set(X): X is the index of a set of nodes
% dep(X,Y,C,I,W) (resp. indep(X,Y,C,I,W)): the nodes X and Y are dependent (resp.
% independent) given the set of nodes C
% after having intervened on the node I
% nodes
node (X) :— nodes(N), X=1..N. $ rule 1
% edges
{ line(X,Y,0) } := node(X), node(Y), X != Y. % 2
{ arrow(X,Y,0) } :— node(X), node(Y), X != Y. % 3
line(X,Y,I) :- line(X,Y,0), node(I), X !=1I, Y !=1I, I > 0. % 4
line(X,Y,I) :- line(X,I,0), line(I,Y,0), node(I), X != Y, I > 0.
arrow(X,Y,I) :- arrow(X,Y,0), node(I), Y != I, I > 0. % 6
line(X,Y,I) :— line(Y,X,I). % 7
:— arrow (X,Y,I), arrow(Y,X,I). % 8
% directed acyclity
ancestor (X,Y) :- arrow(X,Y,0). % 9
ancestor (X,Y) :— ancestor(X,Z), ancestor(z,Y).
:— ancestor (X,Y), arrow(Y,X,0). % 11
% set membership
inside_set (X,C) :— node(X), set(C), 2+x(X-1) & C != 0. % 12
outside_set (X,C) :— node(X), set(C), 2%*(X-1) & C = 0. % 13
% end_line/head/tail(X,Y,C,I) means that there is a connecting route
% from X to Y given C that ends with an line/arrowhead/arrowtail
% single edge route
end_line (X,Y,C,I) :- line(X,Y,I), outside_set (X,C). % 14
end_head (X,Y,C,I) :— arrow(X,Y,I), outside_set (X,C).
end_tail (X,Y,C,I) :— arrow(Y,X,I), outside_set (X,C).
% connection through non-collider
end_line (X,Y,C,I) :- end_line(X,%,C,I), line(Z,Y,I), outside_set (Z,C).
end_line(X,Y,C,I) :- end_tail(X,Z,C,I), line(Z,Y,I), outside_set (Z,C).
end_head (X,Y,C,I) :— end_line(X,%,C,I), arrow(Z,Y,I), outside_set (Z,C)
end_head (X,Y,C,I) :- end_head(X,z,C,I), arrow(Z,Y,I), outside_set (Z,C).
end_head (X,Y,C,I) :- end_tail(X,%,C,I), arrow(Z,Y,I), outside_set (Z,C).
end_tail (X,Y,C,I) - end_tail(X,z,C,I), arrow(Y,Z,I), outside_set (Z,C)
% connection through collider
end_line(X,Y,C,I) :- end_head(X,%,C,I), line(Z,Y,I), inside_set (Z,C).
end_tail (X,Y,C,I) :- end_line(X,z,C,I), arrow(Y,Z,I), inside_set (Z,C).
end_tail (X,Y,C,I) :- end_head(X,z,C,I), arrow(Y¥,Z2,I), inside_set (Z,C). % 25
% derived non-separations
con(X,Y,C,I) :- end_line(X,Y,C,I), X != Y, outside_set (Y,C). % 26
con(X,Y,C,I) - end_head(X,Y,C,I), X != Y, outside_set (Y,C).
con(X,Y,C,I) :- end_tail (X,Y,C,I), X != Y, outside_set (Y,C).
con(X,Y,C,I) - con(Y,X,C,I). % 29
% satisfy all dependences
:— dep(X,Y,C,I,W), not con(X,Y,C,I). % 30
% maximize the number of satisfied independences
indep(X,Y,C,I,W), con(X,Y,C,I). [W,X,Y,C,I] % 31
% minimize the number of lines/arrows
line(X,Y,0), X < Y. [1,X,Y,1] % 32
arrow(X,Y,0). [1,X,Y,2] % 33

o
S

show results
#show.

#show line (X,Y)

line (X,Y,0),

X

< Y. #show arrow(X,Y) arrow (X,Y,0).

Figure 4: ASP encoding of the learning algorithm.




biarrow(X,Y,I) :- biarrow(Y,X,I).
end_head (X, Y,C,I)
end_head (X, Y,C, I)
end_head (X, Y,C,I)

biarrow(X,Y,I),
end_tail (X,%Z,C,I
end_head (X,2z,C, I

” biarrow(X,Y,0), X < Y. [1,X,Y,3]

#show biarrow(X,Y) : biarrow(X,Y,0),

outside_set (X,C) .

)
),

X

{ biarrow(X,Y,0) } :- node(X), node(Y),
:— biarrow(X,Y,0), line(z,W,0).
biarrow(X,Y,I) :— biarrow(X,Y,0), node(I

<

X =

), X!

outside_set (Z,C) .
inside_set (Z,C) .

biarrow(z,Y,I),
biarrow(Z,Y,I),

Y.

Figure 5: Additional ASP encoding for learning original ADMGs, in addition to ours.

o
°

three nodes
all subsets of three nodes

nodes (3) .
set (0..7).

s
C]

&
c]

observations

indep

e e e

Figure 6: ASP encoding of the (in)dependences in the do-
main.

given the set index C' after having intervened on the node
I. Observations correspond to I = 0. The penalty for
failing to represent an (in)dependence is W. The penalty
for failing to represent a dependence is actually superfluous
in our algorithm since, recall, rule 30 in Figure 4 enforces
that all the dependences in the input are represented. Note
also that it suffices to specify all the (in)dependences
between pair of nodes, because these identify uniquely the
rest of the independences in the probability distribution
(Studeny, 2005, Lemma 2.2). Note also that we do not
assume that the probability distribution at hand is faithful
to some ADMG or satisfies the composition property, as it
is the case in most heuristic learning algorithms.

By calling the ASP solver with the encodings of the
learning algorithm and the (in)dependences in the do-
main, the solver will essentially perform an exhaustive
search over the space of graphs, and will output the
graphs with the smallest penalty. Specifically, when
only the observations are used (i.e. the last five lines of
Figure 6 are removed), the learning algorithm finds 37
optimal models. Among them, we have UGs such as
line(1,2) line(1,3) line(2,3), DAGs such
as arrow (3,1) arrow(l,2) arrow(3,2), AMP

CGssuchasline(1,2)
and ADMGs such line(1,2) line (2, 3)
arrow (1, 2) or line(1,2) line (1, 3)
arrow (2,3). When all the observations and inter-
ventions available are used, the learning algorithm finds 18
optimal models. These are the models out the 37 models
found before that have no directed edge coming out of the
node 3. This is the expected result given the last four lines
in Figure 6. Note that the output still includes the ADMGs
mentioned before.

arrow(3,1) arrow(3,2),

as

Finally, the ASP code can easily be extended as
shown in Figure 5 to learn not only our ADMGs
but also original ADMGs. Note that the second
line forbids graphs with both undirected and bidi-
rected edges.  This results in 34 optimal models:
The 18 previously found plus 16 original ADMGs,
e.g. biarrow(l,2) biarrow(l,3) arrow(l,2)
orbiarrow(l,2) biarrow(l,3) arrow(2,3).

7 DISCUSSION

In this work, we have introduced ADMGs as an extension
of AMP CGs by (i) relaxing the semidirected acyclity con-
straint so that only directed cycles are forbidden, and (ii)
allowing up to two edges between any pair of nodes. We
have introduced and proved the equivalence of global, and
ordered local and pairwise Markov properties for the new
models. We have also shown that when the random vari-
ables are continuous, the new models can be interpreted
as systems of structural equations with correlated errors.
This has enabled us to adapt Pearl’s do-calculus to them.
We have shown that our models complement those used in
Pearl’s do-calculus, as there are cases where the identifi-
cation of the causal effect of an intervention is not possi-
ble with the latter but is possible with the former, and vice
versa. Finally, we have described an exact algorithm for
learning the new models from observational and interven-
tional data. Next, we plan to unify the original and our AD-
MG:s to allow directed, undirected and bidirected edges.
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