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Abstract. This paper studies filter and hybrid filter-wrapper feature
subset selection for unsupervised learning (data clustering). We constrain
the search for the best feature subset by scoring the dependence of ev-
ery feature on the rest of the features, conjecturing that these scores
discriminate some irrelevant features. We report experimental results on
artificial and real data for unsupervised learning of naive Bayes models.
Both the filter and hybrid approaches perform satisfactorily.

1 Introduction

One of the main problems that arises in a great variety of fields, including artifi-
cial intelligence, machine learning, and statistics, is the so-called data clustering
problem. Given some data in the form of a set of instances with an underlying
group-structure, data clustering may be roughly defined as the search for the
best description of this group-structure, when the true group membership of
every instance is unobserved. Each of the groups in the data at hand is called a
cluster. The lack of knowledge of the cluster membership for every instance in
the data makes data clustering be also referred to as unsupervised learning.

Among the different interpretations and expectations that the term unsuper-
vised learning gives rise to, we are concerned in this paper with those unsuper-
vised learning problems basically defined by the following assumptions:

• A database d containing N instances or cases, i.e. d = {x1, . . . , xN}, is
available. The l-th case of d is represented by an (n + 1)-dimensional dis-
crete vector xl = (xl1, . . . , xln+1) partitioned as xl = (cl, yl): cl is the unob-
served cluster membership of xl, and yl = (yl1, . . . , yln) is the n-dimensional
discrete vector of observations of xl.

• The number of clusters underlying d, denoted by K, is known.
• Each of the K clusters in d represents a physical process defined by an un-

known joint probability distribution. Then, every case in d may be seen as
sampled from exactly one of these K unknown joint probability distribu-
tions. This corresponds to assuming the existence of an (n + 1)-dimensional
discrete random variable X = (X1, . . . , Xn+1) partitioned as X = (C, Y ):
C is a unidimensional discrete hidden random variable that represents the
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unobserved cluster membership, and Y = (Y1, . . . , Yn) is an n-dimensional
discrete random variable that represents the observations. Each Yi is called a
feature. It is usual to assume that the mechanism that generated d works in
two stages: first, one of the physical processes associated with the K clusters
that exist in d is somehow selected according to a probability distribution
for C and, then, an instance is somehow generated according to the joint
probability distribution for Y that defines the selected physical process.

• The parametric forms of the joint probability distributions that govern the
mechanism that generated d are all known to be multinomial.

Under the assumptions above, unsupervised learning can be approached from
a model-based perspective: the description of the K clusters in d is accomplished
through the probabilistic modelling of the mechanism that generated d. Then,
unsupervised learning reduces to learning a joint probability distribution for X
from d. This is the approach to unsupervised learning this paper deals with.

Among the many challenges that unsupervised learning involves, one that
has received little attention so far in the literature is unsupervised feature sub-
set selection. Given a database d over X = (C, Y ), it may happen that a subset
of the original features R ⊆ Y contains (almost) all the information about the
group-structure underlying d. When this is the case, the features in R are con-
sidered relevant for unsupervised learning from d, while the features in I = Y \R
are deemed irrelevant (e.g. noise). Unsupervised feature subset selection aims at
identifying the feature subsets R and I so that a model describing accurately
the clusters in d can be obtained from the projection of d onto the random
variable (C, R) via unsupervised learning. This provides the user with better
understanding of d as relevant and irrelevant features are identified. Moreover,
the final model is more comprehensible as it only involves relevant features.

The remainder of this paper is structured as follows. Section 2 introduces the
class of probabilistic graphical models for unsupervised learning that we consider
in this paper, namely naive Bayes models. Section 3 describes our proposals for
unsupervised feature subset selection. Section 4 evaluates these proposals on
artificial and real data. Finally, Section 5 closes with some discussion.

2 Naive Bayes Models for Unsupervised Learning

As seen above, solving an unsupervised learning problem from a model-based ap-
proach reduces to learning a joint probability distribution. One of the paradigms
specially well suited for such a purpose are Bayesian networks.

Let X = (C, Y ) be a random variable as stated above. A Bayesian network
(BN) for unsupervised learning for X is a pair (s, θ), where s is the model
structure and θ are the model parameters [13]. The model structure s is an
acyclic directed graph whose nodes correspond to the unidimensional random
variables in X. Throughout the text, the terms node and random variable are
used interchangeably. The model parameters θ specify a conditional probability
distribution for each node Xi in s given its parents Pai in s, p(xi | pai). These
conditional probability distributions are all typically multinomial.
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A BN (s,θ) for unsupervised learning for X represents a joint probability
distribution for X, p(x), through the following graphical factorization:

p(x) =
n+1∏

i=1

p(xi | pai) . (1)

Therefore, s encodes a set of conditional (in)dependencies between the random
variables in X. Moreover, s is usually constrained so that every Yi is a child
of C. This restriction is imposed by the assumption about how the generative
mechanism underlying the modelled domain works (recall Section 1).

A simple but competitive class of BNs for unsupervised learning that has
received much attention in the literature are the so-called naive Bayes (NB)
models (e.g. [3]). They are regular BNs for unsupervised learning with the only
peculiarity that their model structures enforce features being conditionally in-
dependent given C. Then, the only arcs in the model structures are those due to
the structural constraint previously stated, i.e. every Yi is a child of C. Eq. (1)
can be rewritten as follows for a NB model for unsupervised learning for X:

p(x) = p(c, y) = p(c)p(y | c) = p(c)
n∏

i=1

p(yi | c) . (2)

Given some data d = {x1, . . . , xN} as defined above, unsupervised learning of
a NB model for X from d reduces to unsupervised parameter estimation, thanks
to the fact that the model structure is fixed beforehand. Maximum likelihood or
maximum a posteriori estimates can be effectively obtained via approximation
techniques such as the EM algorithm. In the terms introduced in Section 1, a NB
model for unsupervised learning for X induced from d represents a description
of the K clusters in d through (i) p(c) modelling the selector, and (ii) p(y | c) =∏n

i=1 p(yi | c) modelling the physical processes to select among.

3 Feature Subset Selection for Unsupervised Learning

Given a database d over X = (C, Y ), it is not unusual that only a subset of the
original features R ⊆ Y is informative about the clusters in d, while the rest of
the features I = Y \R are marginally informative or totally uninformative (e.g.
noise). When this is the case, d and the projection of d onto the random variable
(C,R), denoted by d(C,R), have the same underlying group-structure because
the only difference between them are the features in I, which are uninformative
about this structure. Therefore, it is possible to obtain a NB model for unsu-
pervised learning from d(C,R) such that it describes the clusters in d (almost)
as accurately as the best NB model for unsupervised learning induced from the
original database d. The features in R are named relevant for unsupervised
learning from d, whereas the features in I are deemed irrelevant.

Feature subset selection for unsupervised learning or unsupervised feature
subset selection (UFSS) aims at identifying the feature subsets R and I so
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that a NB model describing accurately the clusters in d can be obtained from
d(C,R) via unsupervised learning. This improves the interpretability of the in-
duced model, as only relevant features are involved in it, without degrading
its descriptive accuracy, as only irrelevant features are excluded from it. Addi-
tionally, the identification of relevant and irrelevant features for unsupervised
learning provides valuable insight into the nature of the group-structure of d.
Finally, UFSS reduces the risk of overfitting and, thus, increases the reliability
on the final model.

UFSS can be stated as an optimization problem in terms of search space,
search strategy and objective function. The search space consists of all the sub-
sets of the original features. An exhaustive search strategy is, therefore, unaf-
fordable in most cases (2n feature subsets exist for n original features). Instead,
greedy hill-climbing is commonly used. This approach is referred to as sequen-
tial selection and it can be either forwards or backwards [10]. Sequential forward
selection (SFS) starts with no feature being selected and, iteratively, the most
rewarding feature among the unselected ones is selected until the stopping crite-
rion is satisfied. Similarly, sequential backward selection (SBS) begins with the
whole set of features being selected and, iteratively, the least rewarding feature
among the selected ones is unselected until the stopping criterion is met. The ob-
jective function scores the relevance of every feature subset in the search space
or, alternatively, the relevance of each feature alone. Objective functions for
UFSS can be classified as being either filters or wrappers [9]. Filter approaches
assess features or feature subsets from data exclusively, ignoring the subsequent
unsupervised learning algorithm. On the other hand, wrapper approaches eval-
uate a feature subset according to the performance of the unsupervised learning
algorithm on the original data projected onto the features in the subset.

3.1 Filter Unsupervised Feature Subset Selection

In this section we describe in detail our first proposal for UFSS: a filter approach
combined with SFS. In particular, SFS proceeds as follows. Initially, no feature
in Y is selected. Then, the most relevant feature among those unselected ones
that are significantly relevant is iteratively selected. The search stops when no
feature can be selected. We suggest below two filter relevance scores for features
as well as a method for assessing whether or not a feature is significantly relevant.

The filter relevance scores that we describe below are based on the following
observations. Each truly relevant feature in R must be dependent on the cluster
random variable C, and in most cases strongly dependent. Therefore, the features
in R must be all pairwise dependent. On the other hand, those features that
are independent or weakly dependent on the rest of the features must be truly
irrelevant for unsupervised learning from d and belong to I. We conjecture that
scoring the dependence of every feature in Y on the rest of the features helps in
discriminating some irrelevant features. This reasoning assumes that there are
at least two relevant features in Y . Some other works that make use of similar
observations are [6, 12, 17].
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The first pairwise dependence score that we propose is mutual information.
The dependence score for features Yi and Yj , DS(Yi, Yj), is computed as the
mutual information between Yi and Yj , MI(Yi, Yj):

DS(Yi, Yj) = MI(Yi, Yj) = H(Yi)−H(Yi | Yj) (3)

where H(Yi) and H(Yi | Yj) are the entropy of Yi and the conditional entropy
of Yi given Yj , respectively.

The second pairwise dependence score that we consider is based on mutual
prediction. The dependence score for features Yi and Yj , DS(Yi, Yj), can be seen
as the mutual prediction between Yi and Yj , MP (Yi, Yj):

DS(Yi, Yj) = MP (Yi, Yj) = 1− 1
2

(
PA(Yi)

PA(Yi | Yj)
+

PA(Yj)
PA(Yj | Yi)

)
(4)

where PA(Yi) and PA(Yi | Yj), similarly PA(Yj) and PA(Yj | Yi), are:

PA(Yi) = max
yi

p(yi) ; PA(Yi | Yj) =
∑
yj

p(yj)max
yi

p(yi | yj) . (5)

PA(Yi), similarly PA(Yj), is the probability of predicting the state of Yi correctly
by predicting the most probable state of Yi a priori. PA(Yi | Yj), similarly
PA(Yj | Yi), is the expected probability of predicting the state of Yi correctly
by predicting the most probable state of Yi given that the state of Yj is known.

The probability distributions involved in the computation of the two depen-
dence scores DS(Yi, Yj) introduced above are estimated from d according to the
maximum likelihood criterion. Note that both dependence scores are symmetric,
i.e. DS(Yi, Yj) = DS(Yj , Yi). In both cases the lower the value of DS(Yi, Yj),
the weaker the dependence between Yi and Yj . Finally, we suggest computing
the relevance score for each feature Yi, RS(Yi), as the average dependence score
between Yi and the rest of the features:

RS(Yi) =
1

n− 1

n∑

j=1
j 6=i

DS(Yi, Yj) . (6)

The lower the value of RS(Yi), the less relevant Yi is for unsupervised learning
from d. Note that RS(Yi) is a filter measure, as it is based on d exclusively.

Recall that SFS keeps selecting features from unselected ones as long as they
are significantly relevant. In order to decide upon the significance of the relevance
of a particular feature, we propose carrying out a distribution-free hypothesis
test. Given that Yi is the feature being considered for selection, the main idea is
to use RS(Yi) as the statistic value for a hypothesis test under the null hypothesis
that Yi is random noise and, thus, irrelevant. The probability distribution of the
statistic under the null hypothesis is estimated empirically from the statistic
values scored by m randomly chosen features that are known to satisfy the null
hypothesis, being m sufficiently large. In practice, each of these m features can
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be obtained by randomly reshuffling the entries of Yi in d or, alternatively, by
filling each of these entries in with one of the states of Yi drawn at random. Like
in a regular hypothesis test, the empirically estimated probability distribution
of the statistic under the null hypothesis is used to set a threshold for rejecting
the null hypothesis at a given significance level α, with 0 ≤ α ≤ 1. In particular,
if RS(Yi) is larger than (1 − α) · 100 % of the m statistic values scored by the
randomly created irrelevant features, the null hypothesis that Yi is irrelevant is
rejected at significance level α. See [8] for a thorough introduction and extensive
application of distribution-free hypothesis testing to clustering validation.

3.2 Hybrid Filter-Wrapper Unsupervised Feature Subset Selection

In this section we present our second proposal for UFSS: a wrapper approach
combined with SBS built on top of the filter UFSS introduced in Section 3.1.

The filter UFSS described in the previous section is likely to behave conserva-
tively: some truly irrelevant features may go undetected in the distribution-free
hypothesis testing due to random effects. Preliminary experiments for unsuper-
vised learning of NB models confirmed this and pointed out a simple way how
to correct it, at least partially. The experiments showed that the accuracy of the
description of the group-structure underlying the learning data never decreased
by adding a feature selected by the filter UFSS. In other words, the performance
of unsupervised learning of NB models was a non-decreasing function of the
number of features selected by the filter UFSS. However, this function levelled
off and became flat for the last few features selected (conservative behavior).
These truly irrelevant features that go undetected by the filter UFSS can be
spotted by running a wrapper UFSS with SBS afterwards. In the paragraphs
below we give details about this hybrid filter-wrapper UFSS.

Our proposal proceeds in two steps as follows. First, we run the filter UFSS
presented in Section 3.1. Second, we run a wrapper UFSS with SBS considering
only those features identified as relevant by the filter UFSS, Rfilter. In particular,
SBS starts by marking the features in Rfilter as selected and those in Ifilter =
Y \ Rfilter as unselected. Then, proceeding in reverse order as the features
in Rfilter were selected by the filter UFSS, i.e. from the least relevant to the
most relevant, each feature is iteratively unselected until the stopping condition
is met. The stopping criterion guarantees that the accuracy of the description
of the clusters in d does not degrade dramatically. Let Rcurrent denote the
features that are still selected at the current iteration of the wrapper UFSS. The
stopping criterion prescribes halting the wrapper UFSS if the performance of
the NB model obtained from d(C,Rcurrent) via unsupervised learning falls below
(100 − β) % of the performance of the NB model obtained from d(C,Rfilter),
where 0 ≤ β ≤ 100 is a user-defined parameter. Intuitively, β represents the loss
in performance that the user is willing to accept in the wrapper UFSS to identify
new irrelevant features and, thus, improve the interpretability of the final model.

Note that each time the stopping criterion of the wrapper UFSS is evaluated,
a NB model for unsupervised learning is induced. The number of evaluations of
the stopping criterion is bounded by the number of features in Rfilter, |Rfilter|,
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because SBS performs a linear search. As mentioned above, preliminary exper-
iments showed that the performance of unsupervised learning of NB models
was a non-decreasing function of the number of features selected by the filter
UFSS. Therefore, SBS can be easily modified to perform a binary search, instead
of a linear search. This reduces considerably the number of evaluations of the
stopping criterion of the wrapper UFSS so as to be bounded by log2 |Rfilter|.
Finally, note that the assumptions made based on the preliminary experiments
are harmless: if they are not satisfied in some domains, the hybrid UFSS does
not perform worse than the filter UFSS. In fact, these assumptions are unneces-
sary if using sophisticated search strategies aimed at dealing with non-monotonic
performance scores (e.g. floating search strategies [15]).

4 Experimental Evaluation

This section is dedicated to the empirical evaluation of the filter and hybrid UFSS
described above for unsupervised learning of NB models. First, we introduce the
artificial and real databases in the evaluation. Then, we discuss the experimental
setting and performance assessment. Finally, we report the results obtained.

4.1 Databases

The first two artificial databases in the evaluation are created by sampling two
BNs. These two BNs are constructed by adding 10 and 20 irrelevant features,
respectively, to a BN for unsupervised learning reported in [14], which was in-
duced from part of the Leukemia database (see below). Irrelevant features intend
to simulate noise. They are added to the model as independent of the rest of the
features, and their probability distributions are randomly generated. Therefore,
these artificial BNs consist of 21 and 31 nodes, respectively, having three states
all of them. From each of these two BNs we sample 10000 cases and, then, remove
all the cluster labels. We refer to the samples as Syn10 and Syn20, respectively.

The third artificial database in the evaluation is obtained by processing the
Waveform database [2]. This database contains 5000 instances with each instance
being characterized by 40 continuous measurements. There are three classes.
Measurements are discretized into three bins of equal width, and class labels are
removed. We refer to the resulting database as Waveform.

The first real database in the evaluation consists of the training data of
the CoIL Challenge 2000 [16]. This database contains 5822 instances with each
instance being characterized by 85 features having between two and 41 states.
There are two classes. Class labels are removed for our evaluation. The resulting
database is referred to as CoIL in the forthcoming.

The other two real databases in the evaluation are obtained by processing the
Leukemia database [7]. This database consists of 72 cases of leukemia patients
with each case being characterized by the expression levels of 7129 genes. Gene
expression levels are discretized into three states via an information theory based
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method [1]. The resulting database is split into two auxiliary databases: one con-
taining the data of the 47 patients suffering from acute lymphoblastic leukemia
(ALL), and the other containing the data of the 25 patients suffering from acute
myeloid leukemia (AML). Finally, these two databases are transposed, so that
the 7129 genes are the cases and the measurements for the corresponding pa-
tients are the features. These databases are simply denoted by ALL and AML,
respectively, in the forthcoming discussion. Peña et al. (2003) report three sen-
sible clusters for both the ALL and AML databases.

4.2 Experimental Setting and Performance Assessment

The experimental setting is as follows. The number of randomly created irrele-
vant features via random fill-in and the significance level for the distribution-free
hypothesis testing are m = 10000 and α = 0.05, respectively. The second step
of the hybrid UFSS performs a binary search as SBS with β = 3 as stopping
criterion. Unsupervised learning of NB models is carried out by running the EM
algorithm with 10−6 as convergence criterion. Finally, the number of clusters is
set to K = 3 for the Syn10, Syn20, Waveform, ALL and AML databases, and
K = 2 for the CoIL database.

Let R be a feature subset considered by the filter or hybrid UFSS. We assess
the performance of R by measuring both the amount of information about the
clusters in d carried by R and the amount of information lost by ignoring the
features in I = Y \ R. We implement this performance score in three steps.
First, we obtain a NB model from d(C,R) via unsupervised learning. Second, we
incorporate the features in I to the model. Third, we compute and report the
log-likelihood of d, log L(d), given the resulting model. Note that this way of
assessing performance allows to compare feature subsets of different sizes.

The features in I are added to the model for d(C,R) as dependent on the
cluster random variable C but conditionally independent of the rest of the fea-
tures given C. The probability distributions for these new nodes are estimated
from d by re-running the last maximization step of EM algorithm. The fractional
completion of the entries for C is the same as in the last expectation step of the
EM algorithm, i.e. before the features in I were added to the model. Therefore,
no additional evidence propagation is required. Note that we add the features
in I to the model for (C, R) for evaluation purposes exclusively. That is, they
would have never been incorporated into the final model in a real application.

4.3 Results

The first experiment aims at evaluating RS(Yi) as a means to rank features
according to their relevance for unsupervised learning of NB models. For this
purpose, we run the filter UFSS on each database in the evaluation until all the
features are selected (no matter whether or not they are significantly relevant).
We report results in Fig. 1. For each graph in the figure, the vertical axis plots
the relevance and performance of the feature subsets considered by the filter
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Fig. 1. Feature relevance rankings, and feature subset performance as a function thereof

UFSS, whereas the horizontal axis denotes the fraction of the original features
in these subsets. The relevance of a feature subset is computed as the summation
of RS(Yi) for the features in the subset. The performance of a feature subset is
assessed as indicated in Section 4.2. In the graphs in Fig. 1, the legends “Rel-
evance MI” and “Relevance MP” denote that DS(Yi, Yj) is computed by using
MI(Yi, Yj) and MP (Yi, Yj), respectively. Likewise, the legends “Performance
MI” and “Performance MP” indicate that the performance scores correspond to
the feature subsets examined by the filter UFSS with DS(Yi, Yj) computed as
MI(Yi, Yj) and MP (Yi, Yj), respectively. For the sake of visualization, relevance
and performance scores are scaled between 0 and 1.
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Table 1. Relevant feature subsets and their performance

Original Filter UFSS Hybrid UFSS
Database DS(Yi, Yj) |Y | log L(d) |R| log L(d) |R| log L(d)

Syn10 MI(Yi, Yj) 20 −174924 10 −174924 6 −175248
MP (Yi, Yj) 20 −174924 10 −174924 6 −175447

Syn20 MI(Yi, Yj) 30 −242393 10 −242394 6 −242769
MP (Yi, Yj) 30 −242393 10 −242394 6 −242887

Waveform MI(Yi, Yj) 40 −200439 19 −200439 13 −200528
MP (Yi, Yj) 40 −200439 26 −200439 13 −200528

CoIL MI(Yi, Yj) 85 −313942 72 −315817 16 −316960
MP (Yi, Yj) 85 −313942 39 −315836 16 −316253

ALL MI(Yi, Yj) 47 −305304 47 −305304 13 −306879
MP (Yi, Yj) 47 −305304 47 −305304 8 −306902

AML MI(Yi, Yj) 25 −171940 25 −171940 10 −172755
MP (Yi, Yj) 25 −171940 25 −171940 9 −172565

The graphs in Fig. 1 confirm that both instances of RS(Yi), i.e. with ei-
ther MI(Yi, Yj) or MP (Yi, Yj) for DS(Yi, Yj) computation, are able to induce
effective decreasing relevance rankings of the features of the databases in the
evaluation. That is, the lower the value of RS(Yi), the less relevant the feature
is for unsupervised learning of NB models. In other words, the lower the value
of RS(Yi), the less the increase in performance when the feature is included in
unsupervised learning of NB models. It should be mentioned that the order in
which features are selected by the filter UFSS may vary depending on whether
MI(Yi, Yj) or MP (Yi, Yj) is used in DS(Yi, Yj). However, both instances of
RS(Yi) agree on which features are added in the first steps and which ones at
the end of the search. As a matter of fact, both instances rank the 10 and 20
truly irrelevant features in the Syn10 and Syn20 databases as the least relevant
features. The same applies to the 19 truly irrelevant features in the Waveform
database. Note in Fig. 1 that truly irrelevant features score relevance values very
close to 0. So do some of the features in the CoIL database, indicating that they
are irrelevant. On the other hand, it seems that all the features in the ALL and
AML databases are almost equally relevant. This makes sense, because all the
patients in each of these databases suffer from the same type of acute leukemia.

The second experiment evaluates the filter UFSS (with the stopping criterion
introduced in Section 3.1). Table 1 summarizes the number of features declared
relevant as well as their performance for unsupervised learning of NB models as
indicated in Section 4.2. It can be appreciated from the table that the filter UFSS
performs very well: a considerable number of features are deemed irrelevant for
the Syn10, Syn20, Waveform and CoIL databases without degrading significantly
the descriptive accuracy of the final models. This contributes to improve the
comprehensibility of the final models and the databases themselves. Note that
for the Waveform database two truly relevant features are marked as irrelevant
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when using MI(Yi, Yj) (feature 0 and 20). It is known that these features are
considerably less relevant than the rest of the truly relevant features [2, 12, 17].

Finally, the third experiment evaluates the hybrid UFSS. It is clear from
Fig. 1 and Table 1 that the filter UFSS performs well but too conservatively,
specially for the ALL and AML databases. Table 1 reports the results of the
hybrid UFSS. The simplification of the final models obtained from the databases
in the evaluation is huge, while their performance degradation is always kept
under control. Note that the graphs in Fig. 1 support the observation made in
Section 3.2 about the non-decreasing performance of unsupervised learning of
NB models with respect the fraction of features selected by the filter UFSS.

5 Discussion

Feature subset selection is a central problem in data analysis, as evidenced by the
large amount of literature dedicated to it. However, the vast majority of research
is carried out within supervised learning, paying little attention to unsupervised
learning (e.g. [4, 5, 11, 12, 17]). We contribute in this paper with novel research
on feature subset selection for unsupervised learning, also called unsupervised
feature subset selection (UFSS).

We approach unsupervised learning from a model-based perspective. Our mo-
tivation for performing UFSS is two-fold: gain knowledge of which features are
informative (relevant) and which ones are uninformative (irrelevant) for unsu-
pervised learning, and improve the interpretability of the induced model without
degrading its descriptive accuracy by discarding irrelevant features.

We propose and evaluate two novel UFSS techniques. The first proposal takes
a filter approach based on the observation that features (almost) independent
of the rest of the features can be deemed irrelevant. This observation has been
made before [6, 12, 17]. In fact, our filter UFSS is inspired by [12], where the au-
thors study a filter UFSS for continuous data. The main difference between both
techniques is that our proposal is insensitive to the number of truly irrelevant
features, while the method presented in [12] is very sensitive. As a matter of
fact, it can become useless when a large number of irrelevant features exist. The
second contribution to UFSS that we make is a hybrid filter-wrapper approach
aimed at alleviating the conservative behavior of the filter UFSS proposed.

We evaluate the filter and hybrid UFSS for unsupervised learning of naive
Bayes models on artificial and real data. However, it should be mentioned that
both techniques can be readily applied to unsupervised learning of (unrestricted)
Bayesian networks (BNs), i.e. they are not tailored to a particular class of proba-
bilistic graphical models. The results obtained in the evaluation are very encour-
aging: the learnt models gain in interpretability, while keeping most descriptive
accuracy. Unfortunately, a fair comparative study between our proposals and
most existing UFSS techniques (e.g. [4, 5, 11, 12, 17]) is difficult: some of these
works focus on prediction rather than on description, while some others are cou-
pled with particular unsupervised learning algorithms and/or data types and,
therefore, it is hard to fit them into the approach to unsupervised learning this
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paper deals with. Adapting some of these UFSS techniques to unsupervised
learning of BNs may be a line of further research. Another topic for future in-
vestigation may be combining our hybrid UFSS with floating search strategies
[15], in order to deal properly with non-monotonic performance scores.
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