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Abstract

This paper deals with multivariate regression chain graphs, which were introduced by
Cox and Wermuth (1993, 1996) to represent linear causal models with correlated errors.
Specifically, we present a constraint based algorithm for learning a chain graph a given
probability distribution is faithful to. We also show that for each Markov equivalence
class of multivariate regression chain graphs there exists a set of chain graphs with a
unique minimal set of lines. Finally, we show that this set of lines can be identified from
any member of the class by repeatedly splitting its connectivity components according to
certain conditions.
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1 Introduction

In this paper we deal with multivariate regres-
sion chain graphs (CGs) which were introduced
by Cox and Wermuth (1993, 1996). Graphically
Cox and Wermuth represent these CGs with
dashed edges to distinguish them from other in-
terpretations, e.g. LWF (Lauritzen, 1996) or
AMP (Andersson et al., 2001). Multivariate re-
gression CGs also coincide with the acyclic di-
rected mixed graphs without semi-directed cy-
cles presented by Richardson (2003). A fourth
interpretation of CGs can also be found in Dr-
ton (2009). The different interpretations of CGs
have different merits, but none of the interpreta-
tions subsumes another interpretation (Drton,
2009).

The multivariate regression CG interpreta-
tion still misses some fundamental elements
found and proven in the LWF and AMP in-
terpretations. In this article we study and de-
scribe two of these elements. The first is a learn-
ing algorithm for learning a CG from a proba-

bility distribution faithful to a multivariate re-
gression CG. Similar algorithms have been pre-
sented for the LWF (Studený, 1997; Ma et al.,
2008) as well as the AMP (Peña, 2012) interpre-
tations. The algorithm presented is constraint
based and resembles both Studený’s and Peña’s
algorithms. The second element we present is
a feasible split operation and a feasible merge
operation similar to the ones presented for the
LWF and AMP interpretations (Studený et al.,
2009). These splits and mergings can be used
to alter the structure of a multivariate regres-
sion CG in such a way that it does not change
the CG’s Markov equivalence class. Finally we
show that for each Markov equivalence class of
multivariate regression CGs there exists a set
of CGs with a unique minimal set of lines. We
also show that this set of CGs can be reached by
applying feasible splits to any CG in the same
Markov equivalence class.

The rest of the paper is organised as follows.
Section 2 reviews the concepts used in the rest of
the article. Section 3 presents the feasible split
and merge operations. Section 4 presents the
learning algorithm and proves its correctness.
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Section 5 closes the article with some discussion.

2 Preliminaries

In this section, we review some concepts from
probabilistic graphical models that are used
later in this paper. All the graphs and probabil-
ity distributions in this paper are defined over a
finite set of variables V . With ∣V ∣ we mean the
number of variables in the V and with ∣VG∣ the
number of variables in the graph G. Through-
out the paper the intended meaning of CGs is
multivariate regression CGs if no other inter-
pretation is mentioned. To allow more read-
able figures bidirected edges are used instead of
dashed edges or lines. To not confuse the reader
these edges will also be denoted bidirected edges
throughout the article.

If a graph G contains an edge between two
nodes V1 and V2, we write that V1 → V2 is in
G for a directed edge, V1 ←→ V2 is in G for a
bidirected edge, and V1 −V2 is in G for an undi-
rected edge. With V1 ←⊸V2 we mean that either
V1 → V2 or V1 ←→ V2 is in G. With V1 ⊸ V2 we
mean that either V1 → V2 or V1 − V2 is in G.
With V1 ⊸⊸ V2 we mean that there exists an
edge between V1 and V2 in G. A set of nodes
is said to be complete if there exists edges be-
tween all pairs of nodes in the set. A complete
set of nodes is said to be a clique if there exists
no superset of it that is complete.

The parents of a set of nodes X of G is the
set paG(X) = {V1∣V1 → V2 is in G, V1 ∉ X and
V2 ∈X}. The children of X is the set chG(X) =
{V1∣V2 → V1 is in G, V1 ∉ X and V2 ∈ X}. The
spouses of X is the set spG(X) = {V1∣V1 ←→ V2

is in G, V1 ∉ X and V2 ∈ X}. The adjacents of
X is the set adjG(X) = {V1∣V1 → V2,V1 ← V2,
V1 ←→ V2 or V1 − V2 is in G, V1 ∉X and V2 ∈X}.
A path from a node V1 to a node Vn in G is a
sequence of distinct nodes V1, . . . , Vn such that
Vi ∈ adjG(Vi+1) for all 1 ≤ i < n. The length
of a path is the number of edges in the path.
A path is called a cycle if Vn = V1. A path is
called descending if Vi ∈ paG(Vi+1) ∪ spG(Vi+1)

for all 1 ≤ i < n. The descendants of a set of
nodes X of G is the set deG(X) = {Vn∣ there is
a descending path from V1 to Vn in G, V1 ∈ X

and Vn ∉ X}. A path is called strictly descend-
ing if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The strict
descendants of a set of nodes X of G is the set
sdeG(X) = {Vn∣ there is a strict descending path
from V1 to Vn in G, V1 ∈ X and Vn ∉ X}. The
ancestors (resp. strict ancestors) of X is the set
anG(X) = {V1∣Vn ∈ deG(V1), V1 ∉ X,Vn ∈ X}
(resp. sanG(X) = {V1∣Vn ∈ sdeG(V1), V1 ∉

X,Vn ∈ X}). Note that the definition for strict
descendants given here coincides to the defini-
tion of descendants given by Richardson (2003).
Our definition of descendants is however needed
for certain proofs.

A cycle is called a semi-directed cycle if it
is descending and Vi → Vi+1 is in G for some
1 ≤ i < n. A CG is a graph containing only
directed and bidirected edges with no semi-
directed cycles. An undirected graph is said to
be chordal if every cycle of length four or more
has an edge between two non-consecutive ver-
tices in the cycle. A CG is said to be connected
if there exists a path between every pair of nodes
in it. A connectivity component C of a CG is a
maximal set of nodes (wrt to inclusion) st there
exists a path between every pair of nodes in C
containing only bidirected edges. The connec-
tivity component of a node X in a CG G, de-
noted coG(X), is the connectivity component
in G to which X belongs. A subgraph of G is a
subset of nodes and edges in G. A subgraph of
G induced by a set of its nodes X is the graph
over X that has all and only the edges in G
whose both ends are in X.

A node C is a collider between two nodes A
and B in a CG G if there exists edges A ←⊸C
←⊸ B in G. An unshielded collider is a collider
where A ∉ adjG(B) and we then say that A and
B have an unshielded collider over C. With a
non-collider node C between two nodes A and
B we mean that A ⊸⊸ C ⊸ B is in G.

Let X, Y and Z denote three disjoint subsets
of nodes in a CG G. X is said to be separated
from Y given Z iff there exists no path between
any node in X and any node in Y st: (1) every
non-collider on the path is not in Z and (2) ev-
ery collider on the path is in Z or in sanG(Z).
We denote this by X⊥GY ∣Z. Likewise, we de-
note by X⊥pY ∣Z that X is independent of Y
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given Z in a probability distribution p. The
independence model induced by G, denoted as
I(G), is the set of separation statements X⊥G

Y ∣Z.
We say that a probability distribution p is

Markovian with respect to a CG G when X⊥p

Y ∣Z if X⊥GY ∣Z for all X, Y and Z disjoint sub-
sets of V . We say that p is faithful to G when
X⊥pY ∣Z iff X⊥GY ∣Z for all X, Y and Z disjoint
subsets of V . We say that two CGs G and H
are Markovian equivalent or that they are in the
same Markov equivalence class iff I(G) = I(H).
If G and H have the same adjacencies and un-
shielded colliders, then I(G) = I(H) (Wermuth
and Sadeghi, 2012, Theorem 1).

3 Feasible split and merging

In this section we present the feasible split and
feasible merge operations. We also show that
there exists a set of CGs with a unique minimal
set of bidirected edges for each Markov equiva-
lence class and that these CGs can be reached
by repeatedly applying feasible splits to any CG
in that Markov equivalence class.

Definition 1. Feasible Split

Let C denote a connectivity component of G and U
and L two disjoint subsets of C st C = U ∪ L and the
subgraph of G induced by U is connected. A split of C,
performed by replacing every edge X ←→ Y with X → Y
st X ∈ U and Y ∈ L, is feasible iff:

1 For all A ∈ spG(U) ∩L, U ⊆ spG(A) holds
2 For all A ∈ spG(U) ∩L, paG(U) ⊆ paG(A) holds
3 For all B ∈ spG(L) ∩ U , spG(B) ∩ L is a complete set

Definition 2. Feasible Merging

Let U and L denote two connectivity components of G.
A merge between the two components, performed by
replacing every edge X → Y with X ←→ Y st X ∈ U and
Y ∈ L, is feasible iff:

1 For all A ∈ chG(U) ∩L, paG(U) ∪U ⊆ paG(A) holds
2 For all B ∈ paG(L) ∩U , chG(B) ∩L is a complete set
3 deG(U) ∩ paG(L) = ∅

Lemma 1. A CG is in the same Markov equiv-
alence class before and after a feasible split.

Proof. Let G be a CG and G′ a graph st G′ is G
with a feasible split performed upon it. G and

G′ are in different Markov equivalence classes
or G′ is not a CG iff (1) G and G′ do not have
the same adjacencies, (2) G and G′ do not have
the same unshielded colliders or (3) G′ contains
a semi-directed cycle.

First it is clear that the adjacencies are the
same before and after the split since the split
does not change the adjacencies in G. Secondly
let us assume that G and G′ do not have the
same unshielded colliders. It is clear that a split
does not introduce any new unshielded collider,
which means that an unshielded collider is re-
moved during the split. Let us say that this un-
shielded collider is between two nodes X and Y
over Z in G st X and/or Y are in L and Z ∈ U .
Without loss of generality, let us say that X is
in L. X ←→ Z and Y ←⊸Z must then hold in G
but X ∉ adjG(Y ). If Y → Z is in G this does not
fulfill constraint 2 in definition 1, hence Y ←→ Z
must hold in G. Now Y can be either in U or
L. If Y ∈ U constraint 1 in definition 1 is vio-
lated and if Y ∈ L constraint 3 in definition 1
is violated. Hence we have a contradiction. Fi-
nally let us assume a semi-directed cycle is intro-
duced. This can happen iff we have two nodes
X and Y st X ∈ deG′(Y ), X ∈ U and Y ∈ L. We
know no semi-directed cycle existed in G before
the split. Then deG′(Y ) ⊆ deG(Y ) ∖ U and by
definition X ∉ deG(Y ) ∖ U . Hence we have a
contradiction.

Lemma 2. A CG is in the same Markov equiv-
alence class before and after a feasible merging.

Proof. Let G be a CG and G′ a graph st G′ is
G with a feasible merging performed upon it.
G and G′ are in different Markov equivalence
classes or G′ is not a CG iff: (1) G and G′ do
not have the same adjacencies, (2) G and G′ do
not have the same unshielded colliders or (3) G′

contains a semi-directed cycle.
First it is clear that the adjacencies are the

same before and after the merging since the
merging does not change the adjacencies in G.
Secondly let us assume that G and G′ do not
have the same unshielded colliders. It is clear
that a merging does not remove any unshielded
colliders which means that there has to exist
an unshielded collider between two nodes X
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and Y over Z in G′ that does not exist in
G. It is clear that the following must hold:
X ∉ adjG(Y ), Z ∈ U , X and/or Y ∈ L. With-
out loss of generality, let us say that X ∈ L,
which gives us that X ∈ chG(Z). If Y ∈ L
we have Y ∈ chG(Z) which contradicts con-
straint 2 in definition 2. If Y ∉ L we have
that Y ∈ paG(Z) or Y ∈ spG(Z), either contra-
dicts constraint 1 in definition 2. Hence an un-
shielded collider can not be removed. Finally let
us assume a semi-directed cycle is introduced.
This means that we have three nodes X,Y and
Z st X ∈ L,Z ∈ U,Y ∉ U ∪ L, Z ←→ X ← Y is
in G′ and Y ∈ deG′(Z). However, this violates
condition 3 in definition 2, because Y ∈ paG(X)
and Y ∈ deG(U).

We will now show that there exists a set of
CGs which have a unique minimal set of bidi-
rected edges for each Markov equivalence class.
We also show that this set of edges is shared by
all CGs in the class and that the CGs contain-
ing no other bidirected edges than the minimal
set, can be reached by repeatedly performing
feasible splits on any CG in the class.

Theorem 1. For a Markov equivalence class of
CGs, there exists a unique minimal (wrt inclu-
sion) set of bidirected edges that is shared by all
members of the class.

Proof. Assume to the contrary that there exists
two CGs G and G′ st I(G) = I(G′

) and G and
G′ have two different minimal sets of bidirected
edges. Now for all ordered pair of nodes A and
B st A←→ B is in G but A→ B is in G′, replace
A ←→ B in G with A → B and call this new
CG H. Obviously H has a proper subset of the
bidirected edges in G. We can also see that H
has no semi-directed cycle, because if it had a
semi-directed cycle this cycle would also have
been in G or G′ which contradicts that G and
G′ are CGs. Finally we can see that I(H) =
I(G) because H has the same adjacencies and
unshielded colliders as G. To see the last, note
that it is impossible that an unshielded collider
C ←⊸A ←→ B is in G but not in H, because G′

has no unshielded collider of B and C over A
and I(G) = I(G′

).

Theorem 2. A CG has the minimal set of bidi-
rected edges for its Markov equivalence class if
no feasible split is possible.

Proof. Assume to the contrary there exists a
CG G that does not have the minimal set of
bidirected edges for its Markov equivalence class
and no split is feasible. Hence there must exist
a bidirected edge X ←→ Y in G st X → Y exists
in a CG G′ st I(G) = I(G′

). Let C be the com-
ponent of X in G and U and L be two disjoint
subsets of C st C = U ∪ L, X ∈ U , Y ∈ L and
the subgraph of G induced by U is connected.
It is trivial to see that such sets of nodes always
must exist. If no split is feasible then we must
have that one of the conditions in definition 1
fails for U and L. Hence one of the following
assumptions must be true.

Assume there exists a node A st A ∈ spG(U)∩
L for which U ⊆ spG(A) does not hold. If this is
the case there must exist an unshielded collider
in G over a node D between A and E st D ∈

U,D ∈ spG(A),E ∈ U,E ∈ spG(D),E ∉ spG(A).
This contradicts I(G) = I(G′

) since D → A ex-
ists in G′.

Assume there exists a node A st A ∈ spG(U)∩
L for which paG(U) ⊆ paG(A) does not hold. If
this is the case there must exist an unshielded
collider in G over a node D between A and E
st D ∈ U,D ∈ spG(A),E ∈ paG(D),E ∉ paG(A).
This contradicts I(G) = I(G′

) since D → A ex-
ists in G′.

Assume there exists a B ∈ spG(L) ∩ U for
which spG(B)∩L is not complete. If this is the
case there must exist an unshielded collider in
G over a node B between D and E st D,E ∈ L∩
spG(B),E ∉ adjG(D). This contradicts I(G) =
I(G′

) since B →D exists in G′.
This shows that if one of the constrains in

definition 1 fails we can not have I(G) = I(G′
)

which contradicts the assumption.

Finally, it is worth mentioning that we
can guarantee that every member of a
Markov equivalence class can be reached
from any other member of that class by
a sequence of feasible splits and merg-
ings. The proof of this result can be seen at
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http://www.ida.liu.se/∼jospe/pgm12appendix.pdf .
This result is not used in this paper but we
conjecture that it will play a central role in
future work (see section 6).

4 Learning algorithm

In this section we present a constraint based
algorithm which learns a CG from a probabil-
ity distribution faithful to some CG. We then
prove that the algorithm is correct and that the
returned CG contains exactly the minimal set
of bidirected edges for its Markov equivalence
class.

The algorithm is very similar to the PC algo-
rithm for directed acyclic graphs (Meek, 1995;
Spirtes et al., 1993) and shares the same struc-
ture with the learning algorithms presented by
both Studený for LWF CGs (Studený, 1997)
and Peña for AMP CGs (Peña, 2012). The al-
gorithm is shown in algorithm 1 and consists
of four separate phases. In phase one (line 1-
7) the adjacencies of the CG is recovered. In
the second phase (line 8) the unshielded col-
liders are recovered. Phase three (line 9) then
orients some of the remaining edges iff they are
oriented in the same direction in all CGs G′ st
I(G) = I(G′

). What remains for phase four
(line 10-14) is then to orient the rest of the
undirected edges st no new unshielded collid-
ers or semi-directed cycles are introduced. This
is done according to an algorithm presented in
a proof by Koller and Friedman (2009, Theo-
rem 4.13) and is possible since Hu is chordal as
shown in Lemma 8.

The rules used in lines 8-9 in algorithm 1 are
shown in figure 1. A rule is said to be applica-
ble if the antecedent is satisfied for an induced
subgraph of H. When a rule is applicable one
of the non-arrow edge endings is then replaced
with an arrow while the rest of the endings are
kept the same. Which edge ending is orientated
is shown in the consequent of each rule.

A rule is sound if the orientation introduced
by the rule must be shared by every CG which
contains the antecedent as an induced subgraph.

Lemma 3. The rules 0 - 3 are sound.

Proof. Rule 0: Since B ∉ SAC , A ∈ adjH(B) and

Learning Algorithm
Given a probability distribution p faithful to an
unknown CG G, the algorithm learns a CG H st
I(H) = I(G). Moreover, H has exactly the
minimum set of bidirected edges for its equivalence
class.

1 Let H denote the complete undirected graph
2 For l = 0 to l = ∣VH ∣ − 2
3 Repeat while possible
4 Select any ordered pair of nodes A and B in H

st A ∈ adjH(B) and ∣adj(A) ∖B∣ ≥ l
5 If there exists S ⊆ (adjH(A) ∖B) st ∣S∣ = l and

A⊥pB∣S then
6 Set SAB = SBA = S
7 Remove the edge A −B from H
8 Apply rule 0 while possible
9 Apply rules 1-3 while possible

10 Let Hu be the subgraph of H containing only the
nodes and the undirected edges in H

11 Let T be the clique tree of Hu

12 Order the cliques C1, ...,Cn of Hu st C1 is the root
of T and if Ci is closer to the root than Cj in T
then Ci < Cj .

13 Order the nodes st if A ∈ Ci, B ∈ Cj and Ci < Cj

then A < B
14 Orient the undirected edges in H according to the

ordering obtained in line 15
15 Return H

Algorithm 1: Learning algorithm

Figure 1: The rules

C ∈ adjH(B) but A ∉ adjH(C) we know that the
following configurations can occur: A→ B ← C,
A ←→ B ← C, A → B ←→ C, A ←→ B ←→ C. In any
other configuration, B would be in every separa-
tion set of A and C. In all these configurations
we have B ←⊸ C, so that edge must exist in
G. Rule 1: If the edge was not directed in this
direction we would have an unshielded collider
of A and C over B that is not in G, because
B ∈ SAC . Rule 2: If we did not have the edge
oriented in this direction we would have a semi-
directed cycle in G. Rule 3: If the edge was
orientated in the opposite direction, by apply-
ing rule 2 we would have an unshielded collider
of B and C over A that is not in G, because
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A ∈ SBC .

Lemma 4. G and H have the same adjacencies
after line 7.

Proof. Assume to the contrary that there exists
an adjacency between two nodes A and B in G
st B ∉ deG(A) that does not exist in H or vice
versa. We know that, since G is faithful to p, all
separation statements in G corresponds to in-
dependence statements in p and vice versa. We
will first cover the case where the adjacency is
in G but not in H. This means that there exists
no separation set S st A⊥pB∣S since A⊥GB∣S
does not hold for any S. Hence the prerequisite
for line 5 in the algorithm can never be true
and so the edge between A and B can never be
removed and we have a contradiction.

Secondly we will cover if there is an adjacency
in H but not in G. If there is no adjacency in
G between two nodes A and B we know that
there has to exist a separation set S st A⊥pB∣S
and that S ⊆ paG(A) according to the definition
of separation. We know, from the paragraph
above, that all adjacencies in G must exist in H
which means that paG(A) ⊆ adjH(A). However
no such set was found in line 5, hence we have
a contradiction.

Lemma 5. G and H have the same unshielded
colliders and adjacencies after line 8.

Proof. From Lemma 4 we know that G and
H have the same adjacencies. First, assume
to the contrary that there exists an unshielded
collider in G but not in H after line 8. That
means we have an unshielded collider between
A and B over C st C ∉ SAB, C ∈ adjG(A) and
C ∈ adjG(B) but A ∉ adjG(B). According to
Lemma 4 the same adjacencies must also hold
in H. We know that if we do not have an un-
shielded collider in H we have A ⊸⊸ C ⊸ B.
This does however fulfill the prerequisite for rule
0, and hence it should have been applied and we
have a contradiction.

Secondly it follows from Lemma 3 that rule 0
is sound so there can be no unshielded colliders
in H that are not in G after line 8. This brings
us to a contradiction.

Lemma 6. After line 9, H cannot have a sub-
graph of the form A ←⊸B−C without also having
the edge A→ C.

Proof. Assume the contrary. First we must have
A ∈ adjH(C) or rule 1 would orient B −C1. We
can see that H can not have the edge A ←⊸ C
or rule 2 would be applicable for B − C. If H
has the edge A → C we are done, which leaves
us with A −C.

Secondly we will study why A and B can have
an orientation A ←⊸B. This can be because of
one of four reasons.

Case 1: Edge A ←⊸B was orientated using
rule 0. This means that there exists a node D
st D ←⊸B and D ∉ adjH(A). D ∈ adjH(C) must
hold or rule 1 would orient B−C1, but then rule
3 is applicable for the edge B−C so this can not
be the reason.

Case 2: Edge A ←⊸B was orientated using
rule 1. This means that the edge D ←⊸A st D ∉

adj(B) existed when A ←⊸B was oriented. D ∈

adj(C) must hold or the edge A − C would be
oriented by rule 11. Restart the proof with D ←⊸

A−C and it can be seen that this configuration
is impossible. Hence this case can not be the
reason.

Case 3: Edge A ←⊸B was orientated be-
cause of rule 3. This means that we have an
unshielded collider of two nodes D and E st
D ←⊸B,E ←⊸B A ∈ adjH(D),A ∈ adjH(E)
and D ∉ adjH(E). Now D ∈ adjH(C) and
E ∈ adjH(C) must hold or rule 1 would ori-
ent B − C1. We know that there can be no
unshielded collider over C between D and E,
otherwise rule 3 would be applicable on A−C1.
This gives us that we have D−C and/or E −C,
since if the edge orientated towards D or E rule
2 would be applicable. However, with this con-
figuration rule 3 is applicable1 for edge B−C so
this can not be the reason.

Case 4: Edge A ←⊸B was directed using rule
2. This means that the edges A ←⊸D and D ←⊸

B existed in H when A ←⊸B was oriented. D ∈

adjH(C), otherwise rule 1 would orient the edge
B−C1. D−C must hold or rule 2 would cause an
orientation of B−C or A−C. Restart the proof
with A ←⊸D − C and it can be seen that this
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configuration is impossible, hence case 4 can not
be the reason of the orientation.

Lemma 7. After line 9, H can not have a sub-
graph of the form A←→ B −C.

Proof. Assume the contrary. Then, according
to Lemma 6, H also has the edge A → C. If
this is the case then rule 2 is applicable and we
have a contradiction.

Lemma 8. After line 9, removing all directed
edges and bidirected edges from H results in a
chordal graph.

Proof. Assume to the contrary that there exists
a non-chordal cycle V1 − V2 − ... − Vn − V1 and
n > 3. We know that there exists a CG G that is
faithful to the probability distribution p and has
the same unshielded colliders and adjacencies
as H by Lemma 5. From Lemma 3 we also
know that the rules are sound, i.e. that the
orientations in H are in G. Hence we know that
there still must exist a valid way to orient the
edges in H that remain undirected after line 9.

Now if we would orient an edge in the cycle
st V1 ←⊸V2− ...−Vn−V1 it is easy to see that we
would have to orient every other edge st Vi →

Vi+1 or we would have a new unshielded collider
over some Vj since Vj−1 ∉ adjH(Vj+1). If we
would orient all edges in this direction we would
however have a semi-directed cycle and hence
there exists no possible orientation that results
in a CG.

Lemma 9. In line 14, when undirected edges
are orientated, no new unshielded colliders are
introduced to H.

Proof. It follows directly from Lemma 6 that no
undirected edge can be orientated such that it
creates an unshielded collider with an edge ori-
ented by rules 0-3. Secondly it is proven (Koller
and Friedman, 2009, Theorem 4.13) that no un-
shilded colliders are created between different
undirected edges with the algorithm presented
in lines 10-14.

1Note that if we have X ⊸⊸ Y ⊸ Z in H and X ∉
adjH(Z) we must also have Y ∈ SXY or rule 0 would
have been applicable in line 8.

Lemma 10. No semi-directed cycle exists in H
after line 15.

Proof. Assume to the contrary, that a semi-
directed cycle exists. If the semi-directed cycle
is of length 3 then it could have been be created
in one of the following ways:

Case 1: All its edges got oriented by rules 0-3.
However, this is a contradiction because rule 2
would be applicable and no semi-directed cycle
would remain after applying the rule.

Case 2: All its edges got oriented by line 14.
However, this is a contradiction by Theorem
4.13 in Koller and Friedman (2009).

Case 3: Some edges got oriented by rules 0-
3 and some by line 14. Then, after applying
the rules, the cycle contained the configuration
A→ B−C or A←→ B−C for some nodes A,B,C
in the cycle. The first one is impossible because,
otherwise, A→ C by Lemma 6 and, thus, there
would not be semi-directed cycle of length 3,
which contradicts the paragraph above. The
latter one is impossible by Lemma 7.

Hence we can have no semi-directed cycle of
length 3. Now assume the semi-directed cycle
is of length 4. It could have been be created in
one of the following ways:

Case 1: All its edges got oriented by rules 0-3.
This implies that the semi-directed cycle in H
is actually a cycle with only bidirected edges in
G because the rules are sound. However, this
implies that there is an unshielded collider in G
that was not in H, which contradicts Lemma 5,
or that H had a semi-directed cycle of length 3,
which contradicts the paragraph above.

Case 2: All its edges got oriented by line 14.
However, this is a contradiction by Theorem
4.13 in Koller and Friedman (2009).

Case 3: Some edges got oriented by rules 0-3
and some by line 14. Then, after applying the
rules, the cycle contained the configuration A→
B −C or A←→ B −C. The first one is impossible
because, otherwise, A → C by Lemma 6 and
there would not be semi-directed cycle. The
latter one is impossible by Lemma 7.

Hence H has no semi-directed cycle of length
4. Now, repeating the reasoning for semi-
directed cycles of length 5, 6, etc. it is easy to
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see that no semi-directed cycle can exist since
H has a bounded number of nodes.

Theorem 3. After line 15, H is a CG and
I(H) = I(G).

Proof. Lemma 3, 5 and 9 gives that I(H) =

I(G) after line 14. Lemma 10 then refutes that
H can contain a semi-directed cycle.

Theorem 4. After line 15, H has exactly the
unique minimal set of bidirected edges for its
Markov equivalence class.

Proof. It is clear that bidirected edges only can
be introduced to H by rules 0-3. From Lemma 3
it also follows that the rules are sound meaning
that all the orientations inH caused by the rules
have to exist in every G′ st I(G′

) = I(G).

5 Conclusion

In this paper we have presented and proved two
fundamental elements for the multivariate re-
gression interpretation of CGs. The first ele-
ment was an algorithm to learn a multivariate
regression CG from a probability distribution
faithful to some CG. The second element we
have presented is a feasible split and a feasible
merging st they alter the structure of a CG but
do not change the Markov equivalence class of
the CG. We have also shown that there exists
a set of CGs with a unique minimal set of bidi-
rected edges for each Markov equivalence class
and that these CGs can be reached from any
CG in the class using the split operation.

6 Further Work

Many elements are still not presented or proven
for the multivariate regression interpretation of
CGs. The natural continuation of the work pre-
sented here would be to develop a learning al-
gorithm with weaker assumptions than the one
presented. This could for example be a learning
algorithm which only assumes that the proba-
bility distribution fullfills the composition prop-
erty. A second natural continuation of the work
here would be to use the split and merging op-
erations to prove that Meek’s conjecture holds

for the multivariate regression interpretation of
CGs, similar way to Peña’s work within the
LWF interpretation (Peña, 2011). This could
then be used to develop learning algorithms that
are correct under the composition property.
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