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Linköping University, SE-58183 Linköping, Sweden

Abstract

This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg in-
terpretation. We prove that the strictly positive discrete probability distributions with the
prescribed sample space that factorize according to a chain graph G with dimension d have
positive Lebesgue measure wrt Rd, whereas those that factorize according to G but are
not faithful to it have zero Lebesgue measure wrt Rd. This means that, in the measure-
theoretic sense described, almost all the strictly positive discrete probability distributions
with the prescribed sample space that factorize according to G are faithful to it.
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1. Introduction

This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg inter-
pretation. The use of chain graphs to represent independence models in artificial intelligence
and statistics has increased over the years, particularly in the case of undirected graphs and
acyclic directed graphs. However, the vast majority of independence models that can be
represented by chain graphs cannot be represented by undirected graphs or acyclic directed
graphs (Peña, 2007). As Studený (2005, Section 1.1) points out, something that would help
to judge whether this is an advantage of chain graphs would be proving that any indepen-
dence model represented by a chain graph exists within an uncertainty calculus of artificial
intelligence, e.g. a class of probability distributions or a class of relational databases. In
this paper, we prove that for any chain graph there exists a discrete probability distribution
with the prescribed sample space that is faithful to it. Actually, we prove a stronger re-
sult, namely that the strictly positive discrete probability distributions with the prescribed
sample space that factorize according to a chain graph G with dimension d have positive
Lebesgue measure wrt Rd, whereas those that factorize according to G but are not faithful
to it have zero Lebesgue measure wrt Rd. This means that, in the measure-theoretic sense
described, almost all the strictly positive discrete probability distributions with the pre-
scribed sample space that factorize according to G are faithful to it. Previously, it has only
been proven that for any chain graph there exists a discrete probability distribution that is
faithful to it for some sample space, most likely different from the prescribed sample space
(Studený & Bouckaert, 1998, Theorem 7.2). Another related result is that in (Peña et al.,
2009, Theorem 3), where it is proven that for any undirected graph there exists a discrete
probability distribution with the prescribed sample space that is faithful to it. This result
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has also been proven for acyclic directed graphs (Meek, 1995, Theorem 7). The result in
Meek (1995) is actually stronger, as it proves that, in a certain measure-theoretic sense,
almost all the discrete probability distributions with the prescribed sample space that fac-
torize according to an acyclic directed graph are faithful to it. This paper extends that
result to chain graphs.

The rest of the paper is organized as follows. We start by reviewing some concepts
in Section 2. In Section 3, we describe how we parameterize the strictly positive discrete
probability distributions with the prescribed sample space that factorize according to a
chain graph. We present our results on faithfulness in Section 4. In Section 5, we present
some results about chain graph equivalence that follow from the results in Section 4. Finally,
we close with some discussion in Section 6.

2. Preliminaries

In this section, we define some concepts used later in this paper. The definitions are based
upon those in Lauritzen (1996) and Studený (2005). Let X denote a set of discrete random
variables. We assume that every random variable A ∈ X has a prescribed finite sample
space of cardinality nA (nA ≥ 2). For simplicity, we assume that the sample space of A are
the integer numbers 0, 1, . . . , nA− 1. We denote the number of random variables in U ⊆ X
as |U |. The elements of X are not distinguished from singletons and the union of the sets
U1, . . . , Un ⊆ X is written as the juxtaposition U1 . . . Un. We assume throughout the paper
that the union of sets precedes the set difference when evaluating an expression. We use
upper-case letters to denote random variables and the same letters in lower-case to denote
their states. We use xU with U ⊆ X to denote the projection of x onto U . Unless otherwise
stated, all the probability distributions and graphs in this paper are defined over X.

If a graph G contains an undirected (resp. directed) edge between two nodes A1 and
A2, then we say that A1 − A2 (resp. A1 → A2) is in G. A path from a node A1 to a node
An in a graph G is a sequence of distinct nodes A1, . . . , An such that there exists an edge in
G between Ai and Ai+1 for all 1 ≤ i < n. A path from A1 to An in G is called descending
if Ai−Ai+1 or Ai → Ai+1 is in G for all 1 ≤ i < n. If there is a descending path from A1 to
An in G, then A1 is called an ancestor of An. Let AnG(U) denote the set of ancestors of the
nodes in U ⊆ X. If A1 → A2 is in G then A1 is called a parent of A2. Let PaG(U) denote
the set of parents of the nodes in U ⊆ X. When G is evident from the context, we drop the
G from AnG(U) and PaG(U), and use An(U) and Pa(U) instead. A directed cycle in G is
a sequence of nodes A1, . . . , An such that Ai −Ai+1 or Ai → Ai+1 is in G for all 1 ≤ i < n,
Ai → Ai+1 is in G for some 1 ≤ i < n, A1, . . . , An−1 are distinct, and An = A1. A chain
graph (CG) is a graph (possibly) containing both undirected and directed edges and no
directed cycles. An undirected graph (UG) is a CG containing only undirected edges. The
nodes of a CG G can be partitioned into sets B1, . . . , Bn called blocks that are well-ordered,
i.e. if A1 − A2 is in G then A1, A2 ∈ Bi for some 1 ≤ i ≤ n, whereas if A1 → A2 is in G
then A1 ∈ Bi and A2 ∈ Bj for some 1 ≤ i < j ≤ n. The moral graph of a CG G, denoted
Gm, is the undirected graph where two nodes are adjacent iff they are adjacent in G or
they are both in Pa(Bi) for some block Bi of G. The subgraph of G induced by U ⊆ X,
denoted GU , is the graph over U where two nodes are connected by an (un)directed edge
if that edge is in G. A set U ⊆ X is complete in an UG G if there is an undirected edge in
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G between every pair of distinct nodes in U . We denote the set of complete sets in G by
C(G). We treat all singletons as complete sets and, thus, they are included in C(G).

Let U , V and W denote three disjoint subsets of X. We represent by U ⊥⊥ pV |W that
U is independent of V given W in a probability distribution p. Likewise, we represent by
U⊥⊥GV |W that U is separated from V given W in a CG G. Specifically, U⊥⊥GV |W holds
when every path in (GAn(UV W ))m from a node in U to a node in V contains a node from
W . The independence model represented by a CG G is the set of separation statements
U ⊥⊥ GV |W . We say that a probability distribution p is Markovian wrt a CG G when
U⊥⊥pV |W if U⊥⊥GV |W for all U , V and W disjoint subsets of X. We say that p is faithful
to G when U⊥⊥pV |W iff U⊥⊥GV |W for all U , V and W disjoint subsets of X. We represent
by U 6⊥⊥ pV |W and U 6⊥⊥ GV |W that U ⊥⊥ pV |W and U ⊥⊥ GV |W do not hold, respectively.
Given U, V ⊆ X such that UV = X, we say that an UG G decomposes into GU and GV if
U ∩ V is a complete set in G and U \ V ⊥⊥GV \ U |U ∩ V .

3. Parameterization of Chain Graphs

In this section, we describe how we parameterize the strictly positive probability distribu-
tions that factorize according to a CG. This is a key issue, because our results about faith-
fulness are not only relative to the CG at hand and the measure considered, the Lebesgue
measure, but also to the dimension of the strictly positive probability distributions that
factorize according to the CG at hand. Our parameterization is inspired by Besag (1974,
p. 197).

We say that a strictly positive probability distribution p factorizes according to a CG
G with n blocks if the following two conditions are met (Lauritzen, 1996, p. 53):

1. p(x) =
∏n

i=1 p(xBi |xPa(Bi)) where

2. p(xBi |xPa(Bi)) =
∏

C∈C((GBiPa(Bi)
)m) ψ

i
C(xC) where ψi

C(xC) are positive real functions.

Let 0U denote that every random variable in U ⊆ X takes value 0. Then, Condition 2
above is equivalent to the following condition:

2′. p(xBi |xPa(Bi)) = p(0Bi |xPa(Bi))
∏

C∈C((GBiPa(Bi)
)m) φ

i
C(xC) where φi

C(xC) are positive
real functions.

To see it, let ψi
C(xC) = p(0Bi |xPa(Bi))φ

i
C(xC) if C = Pa(Bi), and ψi

C(xC) = φi
C(xC)

otherwise. Note that Pa(Bi) ∈ C((GBiPa(Bi))
m). The motivation behind this redefinition

of the factorization according to a CG is to use p(0Bi |xPa(Bi)) as a reference probability
and define the rest of the probabilities p(xBi |xPa(Bi)) relative to it.

Since
∑

xBi
p(xBi |xPa(Bi)) = 1 for all xPa(Bi), it follows from Condition 2′ above that

p(0Bi |xPa(Bi)) =
1∑

xBi

∏
C∈C((GBiPa(Bi)

)m) φ
i
C(xC)

.

Thus,

p(xBi |xPa(Bi)) =

∏
C∈C((GBiPa(Bi)

)m) φ
i
C(xC)∑

xBi

∏
C∈C((GBiPa(Bi)

)m) φ
i
C(xC)

.
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Besides, letK((GBiPa(Bi))
m) = {C ∈ C((GBiPa(Bi))

m) : C∩Bi 6= ∅} = {C ∈ C((GBiPa(Bi))
m) :

C * Pa(Bi)}. Then,
p(xBi |xPa(Bi))

=
[
∏

C∈C((GBiPa(Bi)
)m)\K((GBiPa(Bi)

)m) φ
i
C(xC)][

∏
C∈K((GBiPa(Bi)

)m) φ
i
C(xC)]

[
∏

C∈C((GBiPa(Bi)
)m)\K((GBiPa(Bi)

)m) φ
i
C(xC)][

∑
xBi

∏
C∈K((GBiPa(Bi)

)m) φ
i
C(xC)]

=

∏
C∈K((GBiPa(Bi)

)m) φ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) φ
i
C(xC)

. (1)

Let D(G)+ denote the set of strictly positive probability distributions that factorize
according to G. We parameterize the probability distributions in D(G)+ by parameterizing
the functions φi

C(xC) in Equation 1 for all 1 ≤ i ≤ n. In particular, let θi
C(xC) denote

the parameter corresponding to the value φi
C(xC). Thus, we can express any probability

distribution p ∈ D(G)+ in terms of the parameters as p(x) =
∏n

i=1 p(xBi |xPa(Bi)) where

p(xBi |xPa(Bi)) =

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

. (2)

We say that a parameter is freely assignable (fa) if it can take different values inde-
pendently of the other parameters. We restrict the parameters θi

C(xC) where xA = 0 for
some A ∈ C to take value one and, thus, these parameters are not fa. The rest of the
parameters are fa, as we will show in Lemma 1. For example, consider C = AB where A
and B are two random variables that can take three possible values (0, 1 and 2). Then,
θi
AB(ab) with a, b ∈ {1, 2} are fa, whereas θi

AB(0b) and θi
AB(a0) with a, b ∈ {0, 1, 2} are

not fa because we have restricted them to take value one. Lemma 1 describes the val-
ues that the fa parameters can take. The goal with our parameterization is to use as few
parameters as possible so that the parameter values corresponding to each probability dis-
tribution in D(G)+ are uniquely determined. We show that we achieve this goal in Lemma
2, which is crucial in proving the main result in this paper (Theorems 3 and 5). It is
worth mentioning that if we did not restrict the parameters θi

C(xC) where xA = 0 for some
A ∈ C to take value one, then the parameter values corresponding to each probability
distribution in D(G)+ would not be uniquely determined. An example follows. Consider
X = AB where A and B are two random variables that can take two possible values
(0 and 1). Consider G = {A − B}. Then, the parameters involved in the example are
θ1
AB(00), θ1

AB(01), θ1
AB(10), θ1

AB(11), θ1
A(0), θ1

A(1), θ1
B(0) and θ1

B(1). Consider the uniform
probability distribution, which obviously is in D(G)+. Then, there are at least two sets of
parameter values that give rise to this probability distribution: One, the set where every
parameter takes value one and, two, the set where every parameter takes value one except
θ1
AB(01) = θ1

AB(10) = 2, θ1
AB(11) = 4, and θ1

A(1) = θ1
B(1) = 1/2. This can easily be checked

with the help of Equation 2. It is also worth mentioning that parameterizing the func-
tions in Condition 2 above directly also results in overparameterization and arbitrariness in
parameter values (Lauritzen, 1996, p. 35).

We define the dimension of G as the number of fa parameters in our parameteri-
zation of the probability distributions in D(G)+ and we denote it as d. Then, d =
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∑n
i=1

∑
C∈K((GBiPa(Bi)

)m)

∏
A∈C(nA − 1). We define the fa parameter space for D(G)+ as

the set of values that the fa parameters are allowed to take. In this paper, the fa parameter
space for D(G)+ is (0,∞)d. The following lemma supports this choice.

Lemma 1 Let G be a CG of dimension d. Any element of the fa parameter space for
D(G)+ corresponds to some probability distribution in D(G)+.

Proof First, we show that any element of (0,∞)d gives rise to some strictly positive
probability distribution. Note that any such element gives rise to some strictly positive
probability distribution qi(xBi |xPa(Bi)) for all 1 ≤ i ≤ n by Equation 2, because

0 <

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

< 1

for all xBi and xPa(Bi), and

∑
xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

= 1

for all xPa(Bi). Therefore, any element of (0,∞)d gives rise to some strictly positive proba-
bility distribution q(x) =

∏n
i=1 q

i(xBi |xPa(Bi)), because

0 <
n∏

i=1

qi(xBi |xPa(Bi)) < 1

for all x, and ∑
xB1...Bn

n∏
i=1

qi(xBi |xPa(Bi))

=
∑
xB1

q1(xB1 |xPa(B1))[
∑
xB2

q2(xB2 |xPa(B2))[. . . [
∑
xBn

qn(xBn |xPa(Bn))] . . .]] = 1.

Now, we show that q ∈ D(G)+. Note that for all 1 ≤ i < n

∑
xBi+1...Bn

n∏
l=i+1

ql(xBl
|xPa(Bl))

=
∑

xBi+1

qi+1(xBi+1 |xPa(Bi+1))[
∑

xBi+2

qi+2(xBi+2 |xPa(Bi+2))[. . . [
∑
xBn

qn(xBn |xPa(Bn))] . . .]] = 1.

Thus, for all 1 ≤ i ≤ n, it follows from the equation above that

q(xBiPa(Bi)) =
∑

xB1...Bn\BiPa(Bi)

n∏
l=1

ql(xBl
|xPa(Bl))
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=
∑

xB1...Bi−1\Pa(Bi)

[[
i∏

l=1

ql(xBl
|xPa(Bl))][

∑
xBi+1...Bn

n∏
l=i+1

ql(xBl
|xPa(Bl))]]

=
∑

xB1...Bi−1\Pa(Bi)

i∏
l=1

ql(xBl
|xPa(Bl))

= qi(xBi |xPa(Bi))
∑

xB1...Bi−1\Pa(Bi)

i−1∏
l=1

ql(xBl
|xPa(Bl)). (3)

Thus, for all 1 ≤ i ≤ n, it follows from the equation above that

q(xPa(Bi)) =
∑
xBi

q(xBiPa(Bi)) = [
∑
xBi

qi(xBi |xPa(Bi))][
∑

xB1...Bi−1\Pa(Bi)

i−1∏
l=1

ql(xBl
|xPa(Bl))]

=
∑

xB1...Bi−1\Pa(Bi)

i−1∏
l=1

ql(xBl
|xPa(Bl)). (4)

Then, for all 1 ≤ i ≤ n

q(xBi |xPa(Bi)) =
q(xBiPa(Bi))
q(xPa(Bi))

= qi(xBi |xPa(Bi)) (5)

due to Equations 3 and 4. Therefore,

q(x) =
n∏

i=1

qi(xBi |xPa(Bi)) =
n∏

i=1

q(xBi |xPa(Bi))

and, thus, q satisfies Condition 1 above. Moreover, q(xBi |xPa(Bi)) satisfies Condition 2 above
for all 1 ≤ i ≤ n: It suffices to note that q(xBi |xPa(Bi)) = qi(xBi |xPa(Bi)) by Equation 5,
and that qi(xBi |xPa(Bi)) satisfies Condition 2 because

qi(xBi |xPa(Bi)) =

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

=
∏

C∈C((GBiPa(Bi)
)m)

ψi
C(xC)

where ψi
C(xC) = 1 if C ⊂ Pa(Bi),

ψi
C(xC) =

1∑
xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

if C = Pa(Bi), and ψi
C(xC) = θi

C(xC) otherwise. Note that Pa(Bi) ∈ C((GBiPa(Bi))
m).

Lemma 2 Let G be a CG. There is a one-to-one correspondence between the elements of
the fa parameter space for D(G)+ and the probability distributions in D(G)+.
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Proof First, we show that any probability distribution p ∈ D(G)+ corresponds to some
element of the fa parameter space for D(G)+. The fa parameter values corresponding to p
can be computed from p as follows. Consider any fa parameter θi

K(xK) such that the values
of the fa parameters θi

C(xC) for all C ∈ K((GBiPa(Bi))
m) such that C ⊂ K have already

been computed. The value of θi
K(xK) can be computed as follows. Note that

p(0Bi |xPa(Bi)) =
1∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

by Equation 2. To see this, recall from above that C ∩Bi 6= ∅ for all C ∈ K((GBiPa(Bi))
m).

Thus, every fa parameter in the numerator of Equation 2 takes value one due to our restric-
tion that θi

C(xC) = 1 if xA = 0 for some A ∈ C. Then, it follows from the equation above
and Equation 2 that

p(xBi |xPa(Bi)) = p(0Bi |xPa(Bi))
∏

C∈K((GBiPa(Bi)
)m)

θi
C(xC).

Therefore,
p(xBi∩K ,0Bi\K |xPa(Bi)∩K ,0Pa(Bi)\K) =

p(0Bi |xPa(Bi)∩K ,0Pa(Bi)\K)
∏

{C∈K((GBiPa(Bi)
)m):C⊆K}

θi
C(xC).

Consequently,

θi
K(xK) =

p(xBi∩K ,0Bi\K |xPa(Bi)∩K ,0Pa(Bi)\K)
p(0Bi |xPa(Bi)∩K ,0Pa(Bi)\K)

∏
{C∈K((GBiPa(Bi)

)m):C⊂K} θ
i
C(xC)

.

Note that θi
K(xK) always takes a positive real value because p is strictly positive. More-

over, different probability distributions in D(G)+ correspond to different elements of the fa
parameter space for D(G)+. To see it, assume to the contrary that there exist two distinct
probability distributions p, p′ ∈ D(G)+ that correspond to the same element. Note that
this element uniquely identifies p(xBi |xPa(Bi)) by Equation 2 for all 1 ≤ i ≤ n. Likewise, it
uniquely identifies p′(xBi |xPa(Bi)) for all 1 ≤ i ≤ n. Then, p(xBi |xPa(Bi)) = p′(xBi |xPa(Bi))
for all 1 ≤ i ≤ n. However, this contradicts the assumption that p and p′ are distinct by
Condition 1 above.

Finally, we show that different elements of the fa parameter space for D(G)+ corre-
spond to different probability distributions in D(G)+. Assume to the contrary that two
distinct elements of the fa parameter space for D(G)+ correspond to the same probability
distribution q ∈ D(G)+. There are two scenarios to consider:

• If there exists some xPa(Bi) such that
∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC) takes different

value for the two elements, then the two elements differ in the value of qi(0Bi |xPa(Bi)),
because

qi(0Bi |xPa(Bi)) =
1∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

by Equation 2. To see it, recall from above that C∩Bi 6= ∅ for all C ∈ K((GBiPa(Bi))
m).

Thus, every parameter in the numerator of Equation 2 takes value one due to our re-
striction that θi

C(xC) = 1 if xA = 0 for some A ∈ C.
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• Assume that
∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC) takes the same value for the two ele-

ments for all xPa(Bi). Since the two elements are different, it is possible to find a
fa parameter θi

K(xK) that takes different value in the two elements whereas for all
C ⊂ K the fa parameter θi

C(xC) takes the same value in the two elements. Then, the
two elements differ in the value of qi(xBi∩K ,0Bi\K |xPa(Bi)∩K ,0Pa(Bi)\K), because

qi(xBi∩K ,0Bi\K |xPa(Bi)∩K ,0Pa(Bi)\K) =

∏
{C∈K((GBiPa(Bi)

)m):C⊆K} θ
i
C(xC)∑

xBi

∏
C∈K((GBiPa(Bi)

)m) θ
i
C(xC)

by Equation 2.

Either scenario implies that the two elements differ in q(xBi |xPa(Bi)) by Equation 5, which
is a contradiction.

4. Faithfulness in Chain Graphs

The two theorems below are the main contribution of this manuscript. They prove that
for any CG G, in the measure-theoretic sense described below, almost all the probability
distributions in D(G)+ are faithful to G.

Theorem 3 Let G be a CG of dimension d. D(G)+ has positive Lebesgue measure wrt Rd.

Proof The one-to-one correspondence proved in Lemma 2 enables us to compute the
Lebesgue measure wrt Rd of D(G)+ as the Lebesgue measure wrt Rd of the fa parameter
space for D(G)+. It follows from Lemma 1 that the fa parameter space for D(G)+ has
positive volume wrt Rd and, thus, that it has positive Lebesgue measure wrt Rd.

Lemma 4 Let U , V and W denote three disjoint subsets of X such that U 6⊥⊥GV |W where
G is a CG. Then, there exists a probability distribution p ∈ D(G)+ such that U 6⊥⊥pV |W .

Proof Assume for a moment that the random variables in X are all binary. Then, there
exists a strictly positive binary probability distribution q that is Markovian wrt G and such
that U 6⊥⊥ qV |W (Studený & Bouckaert, 1998, Consequence 5.2). Then, there is some state
xUV W of UVW such that

q(xUV W )q(xW )− q(xUW )q(xV W ) 6= 0. (6)

Moreover, q ∈ D(G)+ (Frydenberg, 1990, Theorem 4.1). Then, q corresponds to some fa
parameter values by Lemma 2. We can expand q to a probability distribution p ∈ D(G)+

over the original cardinalities of the random variables in X by assigning an arbitrarily small
positive real value ε to the additional fa parameters, i.e. θi

C(xC) = ε where xA ≥ 1 for all
A ∈ C and xA > 1 for some A ∈ C. This implies that p(x) can be made arbitrarily close to
q(x) for all x ∈ {0, 1}|X| which, in turn, implies that p(xUV W ), p(xW ), p(xUW ) and p(xV W )
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can jointly be made arbitrarily close to q(xUV W ), q(xW ), q(xUW ) and q(xV W ), respectively.
This implies that, for some ε,

p(xUV W )p(xW )− p(xUW )p(xV W ) 6= 0

due to Equation 6. Hence, U 6⊥⊥pV |W .

Theorem 5 Let G be a CG of dimension d. The set of probability distributions in D(G)+

that are not faithful to G has zero Lebesgue measure wrt Rd.

Proof The proof basically proceeds in the same way as that of Meek (1995, Theorem
7). Since any probability distribution p ∈ D(G)+ is Markovian wrt G (Frydenberg, 1990,
Theorem 4.1), for p not to be faithful to G, p must satisfy some independence that is not
entailed by G. That is, there must exist three disjoint subsets of X, here denoted as U , V
and W , such that U 6⊥⊥GV |W but U⊥⊥pV |W . Now, note that U⊥⊥pV |W iff

p(xUV W )p(xW )− p(xUW )p(xV W ) = 0 (7)

for all xUV W . Note that for all xUV W , each term p(xZ) in the left-hand side of the equation
above can be expressed as

p(xZ) =
∑
xX\Z

n∏
i=1

p(xBi |xPa(Bi)).

Recall from Equation 2 that, for all 1 ≤ i ≤ n, p(xBi |xPa(Bi)) is a fraction of polynomials
in the fa parameters in the parameterization of the probability distributions in D(G)+.
Therefore, by simple algebraic manipulation, we can express the left-hand side of Equation
7 as a fraction of polynomials in the fa parameters. Consequently, for U ⊥⊥ pV |W to hold,
the polynomial in the numerator of such a fraction must be zero. Note that some fa
parameters may not appear in this polynomial. Each of these fa parameters can be added
to it as a term with coefficient equal to zero. Let us allow the fa parameters to take any
real value (originally, only positive real values were allowed). Then, for every xUV W we
have a real polynomial in real variables (i.e. the fa parameters) that should be satisfied
for p not to be faithful to G. We interpret each of these polynomials as a real function
on a real Euclidean space that includes the fa parameter space for D(G)+. Furthermore,
each of these polynomials is non-trivial, that is, not all the values of the fa parameters are
solutions to the polynomial. To prove this, it suffices to prove that there exists a probability
distribution p′′ ∈ D(G)+ for which the polynomial does not hold. Consider the polynomial
for xUV W . Note that, by Lemma 4, there exits a probability distribution p′ ∈ D(G)+ such
that U 6⊥⊥p′V |W . Then, there is some state x′UV W of UVW such that

p′(x′UV W )p′(x′W )− p′(x′UW )p′(x′V W ) 6= 0.

Then, by renaming the possible states of the random variables in UVW appropriately, we
can transform p′ into the desired p′′.

9
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Let sol(xUV W ) denote the set of solutions to the polynomial for xUV W referred above.
Then, sol(xUV W ) has zero Lebesgue measure wrt Rd because it consists of the solutions
to a non-trivial polynomial in real variables (i.e. the fa parameters) (Okamoto, 1973). Let
sol =

⋃
{U,V,W⊆X disjoint : U6⊥⊥GV |W}

⋂
xUV W

sol(xUV W ). Then, sol has zero Lebesgue measure
wrt Rd, because the finite union and intersection of sets of zero Lebesgue measure has zero
Lebesgue measure too. Consequently, the probability distributions in D(G)+ that are not
faithful to G correspond to a set of elements of the fa parameter space for D(G)+ that has
zero Lebesgue measure wrt Rd because it is contained in sol. Since this correspondence is
one-to-one by Lemma 2, the probability distributions in D(G)+ that are not faithful to G
also have zero Lebesgue measure wrt Rd.

The only previous result on faithfulness in CGs that we are aware of is Theorem 7.2 in
Studený & Bouckaert (1998), where it is proven that for any CG there exists a probability
distribution that is faithful to it for some sample space. The two theorems above imply a
stronger result, namely that for any CG G and any sample space there exists a probability
distribution that is faithful to G.

5. Equivalence in Chain Graphs

The space of CGs can be divided in classes of equivalent CGs according to criteria such as
Markov independence equivalence, Markov distribution equivalence, or factorization equiv-
alence. As we prove below with the help of the theorems above, these criteria actually
coincide in some cases. This result is important because the classes of Markov distribution
equivalent CGs have a simple graphical characterization and a natural representative, the
so-called largest CG, which now also apply to the classes of equivalence induced by the
other criteria. We also prove below that all equivalent CGs have the same dimension wrt
the parameterization introduced in Section 3.

Before proving our results, we formally define the equivalence criteria discussed in the
paragraph above. Recall that, unless otherwise stated, all the probability distributions in
this paper are over X. We say that two CGs are Markov independence equivalent if they
represent the same independence model. We say that two CGs are Markov distribution
equivalent wrt a class of probability distributions if every probability distribution in the
class is Markovian wrt both CGs or wrt neither of them. We say that two CGs G and
H are factorization equivalent if D(G)+ = D(H)+. The corollary below proves that these
definitions coincide in some cases.

Corollary 6 Let G and H denote two CGs. The following statements are equivalent:

1. G and H are Markov independence equivalent,

2. G and H are Markov distribution equivalent wrt the class of strictly positive probability
distributions,

3. G and H are Markov distribution equivalent wrt any superset of the class of strictly
positive probability distributions, and

4. G and H are factorization equivalent.
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Proof First, we prove that Statements 1 and 2 are equivalent. By definition, Markov
independence equivalence implies Markov distribution equivalence wrt any class of proba-
bility distributions. To see the opposite implication, note that if G and H are not Markov
independence equivalent, then one of them, say G, must represent a separation statement
U ⊥⊥GV |W that is not represented by H. Consider a probability distribution p ∈ D(H)+

faithful to H. Such a probability distribution exists due to Theorems 3 and 5, and it is
Markovian wrt H (Frydenberg, 1990, Theorem 4.1). However, p cannot be Markovian wrt
G, because U 6⊥⊥HV |W implies U 6⊥⊥pV |W .

Now, we prove that Statements 1 and 3 are equivalent. By definition, Markov inde-
pendence equivalence implies Markov distribution equivalence wrt any class of probability
distributions. To see the opposite implication, note that if G and H are Markov distribu-
tion equivalent wrt a superset of the class of strictly positive probability distributions, then
they also are Markov distribution equivalent wrt the class of strictly positive probability
distributions and, thus, they are Markov independence equivalent by the paragraph above.

Finally, the equivalence of Statements 2 and 4 follows from Frydenberg (1990, Theorem
4.1).

Frydenberg (1990, Theorem 5.6) gives a straightforward graphical characterization of
Markov distribution equivalence wrt a superset of the class of strictly positive probability
distributions. Due to the corollary above, that is also a graphical characterization of the
other three types of equivalence discussed in there. Hereinafter, we do not distinguish
anymore between the different types of equivalence discussed in the corollary above because
they coincide and, thus, we simply refer to them as equivalence. It is worth mentioning that
the corollary above has also been proven in (Studený et al., 2009, Theorem 16). However,
our proof is completely different: Our proof builds upon the fact that for any CG there
exists a strictly positive probability distribution with the prescribed sample space that is
faithful to it due to Theorems 3 and 5, whereas the proof in (Studený et al., 2009) does not
build upon this fact because it has not been proven before.

Frydenberg (1990, Proposition 5.7) shows that every class of equivalent CGs contains
a unique CG that has more undirected edges than any other CG in the class. Such a
CG is called the largest CG (LCG) in the class, and it is usually considered a natural
representative of the class. Studený (1998, Section 4.2) conjectures that the LCG G in a
class of equivalent CGs has fewer fa parameters than any other CG in the class. This would
imply that the most space efficient way of storing the probability distributions in D(G)+ is
by factorizing them according to G rather than according to any other CG equivalent to G.
The conjecture is stated in Studený (1998) with no particular parameterization in mind.
The corollary below disproves the conjecture for the parameterization proposed in Section
3.

Corollary 7 All equivalent CGs have the same dimension wrt the parameterization pro-
posed in Section 3.

Proof Studený et al. (2009) study the so-called feasible merging operation, which merges
two blocks of a CG that satisfy certain conditions into a larger block by dropping the
direction of the edges between the former two blocks. Let H and H ′ denote the CG before
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and after, respectively, merging the blocks U and L into the block M . It is proven in
(Studený et al., 2009, Lemma 32) that (H ′MPaH′ (M))

m decomposes into (HUPaH(U))m and
(HLPaH(L))m, with a shared set of nodes PaH(L). It follows from this decomposition that

C((H ′MPaH′ (M))
m) = C((HUPaH(U))

m) ∪ C((HLPaH(L))
m).

Note, however, that C((HUPaH(U))m) ∩ C((HLPaH(L))m) = {C : C ⊆ PaH(L)} due to the
shared set of nodes in the decomposition. Then,

C((H ′MPaH′ (M))
m) = C((HUPaH(U))

m) ∪ K((HLPaH(L))
m).

Moreover, C((HUPaH(U))m) ∩ K((HLPaH(L))m) = ∅.
It is also proven in (Studený et al., 2009, Lemma 32) that PaH′(M) = PaH(U). Then,

K((H ′MPaH′ (M))
m) = K((HUPaH(U))

m) ∪ K((HLPaH(L))
m).

Moreover, K((HUPaH(U))m)∩K((HLPaH(L))m) = ∅. Consequently, the contribution of M to
the dimension of H ′ is the same as the sum of the contributions of U and L to the dimension
of H. Thus, H and H ′ have the same dimension.

Let G denote the LCG in a class of equivalent CGs. Let G′ denote any other CG in the
class. Then, there exists a sequence of equivalent CGs G′ = G1, . . . , Gr = G such that each
Gi+1 is obtained from Gi by a feasible merging operation (Studený et al., 2009, Lemma 5
and Corollary 7). It follows from the paragraphs above that all the CGs in the sequence
have the same dimension. Consequently, any two CGs in the equivalence class of G have
the same dimension.

6. Conclusions

In this paper, we have proven that, in a certain measure-theoretic sense, almost all the
strictly positive discrete probability distributions with the prescribed sample space that
factorize according to a chain graph are faithful to it. This result extends previous results
such as

• (Studený & Bouckaert, 1998, Theorem 7.2) where it is proven that for any chain graph
there exists a discrete probability distribution that is faithful to it for some sample
space, most likely different from the prescribed sample space,

• (Peña et al., 2009, Theorem 3) where it is proven that for any undirected graph there
exists a discrete probability distribution with the prescribed sample space that is
faithful to it, and

• (Meek, 1995, Theorem 7) where it is proven that, in a certain measure-theoretic sense,
almost all the discrete probability distributions with the prescribed sample space that
factorize according to an acyclic directed graph are faithful to it.

In this paper, we have also proven a number of consequences that follow from the result
discussed above:
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• The fact that the vast majority of independence models that can be represented by
chain graphs cannot be represented by undirected graphs or acyclic directed graphs
is an advantage of chain graphs, because such models exist within an uncertainty
calculus of artificial intelligence: The class of strictly positive discrete probability
distributions with any prescribed sample space.

• Some definitions of equivalence in chain graphs coincide, which implies that the graph-
ical characterization of Markov distribution equivalence in Frydenberg (1990, Theorem
5.6) also applies to other definitions of equivalence.

• For the parameterization introduced in this paper, all the chain graphs in a class
of equivalence have the same dimension and, thus, the factorizations they induce are
equally space efficient for storing the strictly positive discrete probability distributions
that factorize according to the chain graphs in the class.

We are currently investigating whether the results in this paper can be extended to the
class of regular Gaussian distributions. The main problem lies in the derivation of a result
analogous to that in Section 3.
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