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Abstract. We propose an algorithm for learning the Markov boundary
of a random variable from data without having to learn a complete Baye-
sian network. The algorithm is correct under the faithfulness assumption,
scalable and data efficient. The last two properties are important because
we aim to apply the algorithm to identify the minimal set of random va-
riables that is relevant for probabilistic classification in databases with
many random variables but few instances. We report experiments with
synthetic and real databases with 37, 441 and 139352 random variables
showing that the algorithm performs satisfactorily.

1 Introduction

Probabilistic classification is the process of mapping an assignment of values
to some random variables F, the features, into a probability distribution for a
distinguished random variable C, the class. Feature subset selection (FSS) aims
to identify the minimal subset of F that is relevant for probabilistic classification.
The FSS problem is worth of study for two main reasons. First, knowing which
features are relevant and, thus, which are irrelevant is important in its own
because it provides insight into the domain at hand. Second, if the probabilistic
classifier is to be learnt from data, then knowing the relevant features reduces
the dimension of the search space.

In this paper, we are interested in solving the FSS problem following the
approach proposed in [9, 10, 11]: Since the Markov boundary of C, MB(C), is
defined as any minimal subset of F such that C is conditionally independent
of the rest of F given MB(C), then MB(C) is a solution to the FSS problem.
Under the faithfulness assumption, MB(C) can be obtained by first learning a
Bayesian network (BN) for {F, C}: In such a BN, MB(C) is the union of the
parents and children of C and the parents of the children of C [6]. Unfortunately,
the existing algorithms for learning BNs from data do not scale to databases with
thousands of features [3, 10, 11] and, in this paper, we are interested in solving
the FSS problem for databases with thousands of features but with many less
instances. Such databases are common in bioinformatics and medicine.

In this paper, we propose an algorithm for learning MBs from data and prove
its correctness under the faithfulness assumption. Our algorithm scales to data-
bases with thousands of features because it does not require learning a complete



BN. Furthermore, our algorithm is data efficient because the tests of conditional
independence that it performs are not conditioned on unnecessarily large sets of
features. In Section 3, we review other existing scalable algorithms for learning
MBs from data and show that they are either data inefficient or incorrect. We
describe and evaluate our algorithm in Sections 4 and 5, respectively. We close
with some discussion in Section 6. We start by reviewing BNs in Section 2.

2 Preliminaries on BNs

The following definitions and theorems can be found in most books on BNs, e.g.
[6, 8]. We assume that the reader is familiar with graph and probability theories.
We abbreviate if and only if by iff, such that by st, and with respect to by wrt.

Let U denote a nonempty finite set of discrete random variables. A Bayesian
network (BN) for U is a pair (G, θ), where G is an acyclic directed graph (DAG)
whose nodes correspond to the random variables in U, and θ are parameters
specifying a conditional probability distribution for each node X given its parents
in G, p(X|PaG(X)). A BN (G, θ) represents a probability distribution for U,
p(U), through the factorization p(U) =

∏
X∈U p(X|PaG(X)). In addition to

PaG(X), two abbreviations that we use are PCG(X) for the parents and children
of X in G, and NDG(X) for the non-descendants of X in G.

Any probability distribution p that can be represented by a BN with DAG
G, i.e. by a parameterization θ of G, satisfies certain conditional independencies
between the random variables in U that can be read from G via the d-separation
criterion, i.e. if d-sepG(X,Y|Z), then X⊥⊥pY|Z with X, Y and Z three mutually
disjoint subsets of U. We say that d-sepG(X,Y|Z) holds when for every undirec-
ted path in G between a node in X and a node in Y there exits a node Z in the
path st either (i) Z does not have two incoming edges in the path and Z ∈ Z,
or (ii) Z has two incoming edges in the path and neither Z nor any of its des-
cendants in G is in Z. The d-separation criterion in G enforces the local Markov
property for any probability distribution p that can be represented by a BN with
DAG G, i.e. X ⊥⊥ p(NDG(X) \ PaG(X))|PaG(X). A probability distribution p
is said to be faithful to a DAG G when X⊥⊥pY|Z iff d-sepG(X,Y|Z).

Theorem1. If a probability distribution p is faithful to a DAG G, then (i) for
each pair of nodes X and Y in G, X and Y are adjacent in G iff X 6⊥⊥pY |Z for
all Z st X, Y /∈ Z, and (ii) for each triplet of nodes X, Y and Z in G st X and
Y are adjacent to Z but X and Y are non-adjacent, X → Z ← Y is a subgraph
of G iff X 6⊥⊥pY |Z for all Z st X, Y /∈ Z and Z ∈ Z.

Let p denote a probability distribution for U. The Markov boundary of a
random variable X ∈ U, MBp(X), is defined as any minimal subset of U st
X⊥⊥p(U \ (MBp(X) ∪ {X}))|MBp(X).

Theorem2. If a probability distribution p is faithful to a DAG G, then MBp(X)
for each node X is unique and is the union of PCG(X) and the parents of the
children of X in G.

We denote MBp(X) by MBG(X) when p is faithful to a DAG G.



Table 1. IAMB

IAMB(T, D)

/* add true positives to MB */
1 MB = ∅
2 repeat
3 Y = arg maxX∈U\(MB∪{T})depD(X, T |MB)
4 if Y 6⊥⊥DT |MB then
5 MB = MB ∪ {Y }
6 until MB does not change

/* remove false positives from MB */
7 for each X ∈ MB do
8 if X⊥⊥DT |(MB \ {X}) then
9 MB = MB \ {X}

10 return MB

3 Previous Work on Scalable Learning of MBs

In this section, we review two algorithms for learning MBs from data that
Tsamardinos et al. introduce in [9, 10, 11, 12], namely the incremental asso-
ciation Markov blanket (IAMB) algorithm and the max-min Markov blanket
(MMMB) algorithm. To our knowledge, these are the only algorithms that
have been experimentally shown to scale to databases with thousands of fea-
tures. However, we show that IAMB is data inefficient and MMMB incorrect.
In the algorithms, X 6⊥⊥DY |Z (X ⊥⊥DY |Z) denotes conditional (in)dependence
wrt a learning database D, and depD(X, Y |Z) is a measure of the strength of
the conditional dependence wrt D. In particular, the algorithms run a test with
the G2 statistic in order to decide on X 6⊥⊥DY |Z or X⊥⊥DY |Z [8], and use the
negative p-value of the test as depD(X, Y |Z). Both algorithms are based on the
assumption that D is faithful to a DAG G, i.e. D is a sample from a probability
distribution p faithful to G.

3.1 IAMB

Table 1 outlines IAMB. The algorithm receives the target node T and the
learning database D as input and returns MBG(T ) in MB as output. The
algorithm works in two steps. First, the nodes in MBG(T ) are added to MB
(lines 2-6). Since this step is based on the heuristic at line 3, some nodes not in
MBG(T ) may be added to MB as well. These nodes are removed from MB in
the second step (lines 7-9). Tsamardinos et al. prove the correctness of IAMB
under some assumptions.

Theorem 3. Under the assumptions that the learning database D is an inde-
pendent and identically distributed sample from a probability distribution p faith-
ful to a DAG G and that the tests of conditional independence and the measure
of conditional dependence are correct, the output of IAMB(T,D) is MBG(T ).

The assumption that the tests of conditional independence and the measure
of conditional dependence are correct should be read as follows: X ⊥⊥ DY |Z



and depD(X, Y |Z) = −1 if X ⊥⊥ pY |Z, and X 6⊥⊥ DY |Z and depD(X, Y |Z) = 0
otherwise. In order to maximize accuracy in practice, IAMB performs a test
if it is reliable and skips it otherwise. Following the approach in [8], IAMB
considers a test to be reliable when the number of instances in D is at least five
times the number of degrees of freedom in the test. This means that the number
of instances required by IAMB to identify MBG(T ) is at least exponential in
the size of MBG(T ), because the number of degrees of freedom in a test is
exponential in the size of the conditioning set and some tests will be conditioned
on at least MBG(T ). However, depending on the topology of G, it can be the
case that MBG(T ) can be identified by conditioning on sets much smaller than
MBG(T ), e.g. if G is a tree (see Sections 3.2 and 4). Therefore, IAMB is data
inefficient because its data requirements can be unnecessarily high. Note that
this reasoning applies not only to the G2 statistic but to any other statistic as
well. Tsamardinos et al. are aware of this drawback and describe some variants
of IAMB that alleviate it, though they do not solve it, while still being scalable
and correct: The first and second steps can be interleaved (interIAMB), and the
second step can be replaced by the PC algorithm [8] (interIAMBnPC). Finally,
as Tsamardinos et al. note, IAMB is similar to the grow-shrink (GS) algorithm
[5]. In fact, the only difference is that GS uses a simpler heuristic at line 3:
Y = arg maxX∈U\(MB∪{T})depD(X, T |∅). GS is correct under the assumptions
in Theorem 3, but it is data inefficient for the same reason as IAMB.

3.2 MMMB

MMMB aims to reduce the data requirements of IAMB while still being sca-
lable and correct. MMMB identifies MBG(T ) in two steps: First, it identifies
PCG(T ) and, second, it identifies the rest of the parents of the children of T
in G. MMMB uses the max-min parents and children (MMPC) algorithm to
solve the first step. Table 2 outlines MMPC. The algorithm receives the target
node T and the learning database D as input and returns PCG(T ) in PC as
output. MMPC is similar to IAMB, with the exception that MMPC considers
any subset of the output as the conditioning set for the tests that it performs
and IAMB only considers the output. Tsamardinos et al. prove that, under the
assumptions in Theorem 3, the output of MMPC is PCG(T ). We show that this
is not always true. The flaw in the proof is the assumption that if X /∈ PCG(T ),
then X⊥⊥pT |Z for some Z ⊆ PCG(T ) and, thus, any node not in PCG(T ) that
enters PC at line 7 is removed from it at line 11. This is not always true for the
descendants of T . This is illustrated by running MMPC(T, D) with D faithful
to the DAG (a) in Table 2. Neither P nor R enters PC at line 7 because P ⊥⊥pT |∅
and R⊥⊥pT |∅. Q enters PC because Q 6⊥⊥pT |Z for all Z st Q,T /∈ Z. S enters PC
because S 6⊥⊥pT |∅ and S 6⊥⊥pT |Q. Then, PC = {Q,S} at line 9. Neither Q nor S
leaves PC at line 11. Consequently, the output of MMPC includes S which is
not in PCG(T ) and, thus, MMPC is incorrect.

Table 2 outlines MMMB. The algorithm receives the target node T and
the learning database D as input and returns MBG(T ) in MB as output. The
algorithm works in two steps. First, PC and MB are initialized with PCG(T )



Table 2. MMPC and MMMB

MMPC(T, D)

/* add true positives to PC */
1 PC = ∅
2 repeat
3 for each X ∈ U \ (PC ∪ {T}) do
4 Sep[X] = arg minZ⊆P CdepD(X, T |Z)
5 Y = arg maxX∈U\(P C∪{T})depD(X, T |Sep[X])
6 if Y 6⊥⊥DT |Sep[Y ] then
7 PC = PC ∪ {Y }
8 until PC does not change

/* remove false positives from PC */
9 for each X ∈ PC do

10 if X⊥⊥DT |Z for some Z ⊆ PC \ {X} then
11 PC = PC \ {X}
12 return PC

MMMB(T, D)

/* add true positives to MB */
1 PC = MMPC(T, D)
2 MB = PC
3 CanMB = PC ∪X∈P C MMPC(X, D)

/* add more true positives to MB */
4 for each X ∈ CanMB \ PC do
5 find any Z st X⊥⊥DT |Z and X, T /∈ Z
6 for each Y ∈ PC do
7 if X 6⊥⊥DT |Z ∪ {Y } then
8 MB = MB ∪ {X}
9 return MB

(a)

P
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S

T

(b)
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and CanMB with PCG(T ) ∪X∈PCG(T ) PCG(X) by calling MMPC (lines 1-
3). CanMB contains the candidates to enter MB. Second, the parents of the
children of T in G that are not yet in MB are added to it (lines 4-8). This
step is based on the following observation. The parents of the children of T in
G that are missing from MB at line 4 are those that are non-adjacent to T in
G. These parents are in CanMB \ PC. Therefore, if X ∈ CanMB \ PC and
Y ∈ PC, then X and T are non-adjacent parents of Y in G iff X 6⊥⊥pT |Z ∪ {Y }
for any Z st X ⊥⊥ pT |Z and X, T /∈ Z. Note that Z can be efficiently obtained
at line 5: MMPC must have found such a Z and could have cached it for later
retrieval. Tsamardinos et al. prove that, under the assumptions in Theorem 3,
the output of MMMB is MBG(T ). We show that this is not always true even
if MMPC were correct. The flaw in the proof is the observation that motivates
the second step of MMMB, which is not true. This is illustrated by running
MMMB(T, D) with D faithful to the DAG (b) in Table 2. Let us assume that
MMPC is correct. Then, MB = PC = {Q,S} and CanMB = {P,Q, R, S, T}
at line 4. P enters MB at line 8 if Z = {Q} at line 5, because P ∈ CanMB\PC,
S ∈ PC, P ⊥⊥ pT |Q and P 6⊥⊥ pT |{Q,S}. Consequently, the output of MMMB
can include P which is not in MBG(T ) and, thus, MMMB is incorrect even if
MMPC were correct.

In practice, MMMB performs a test if it is reliable and skips it otherwise.



Table 3. AlgorithmPCD, AlgorithmPC and AlgorithmMB

AlgorithmPCD(T, D)

1 PCD = ∅
2 CanPCD = U \ {T}
3 repeat

/* remove false positives from CanPCD */
4 for each X ∈ CanPCD do
5 Sep[X] = arg minZ⊆P CDdepD(X, T |Z)
6 for each X ∈ CanPCD do
7 if X⊥⊥DT |Sep[X] then
8 CanPCD = CanPCD \ {X}

/* add the best candidate to PCD */
9 Y = arg maxX∈CanP CDdepD(X, T |Sep[X])

10 PCD = PCD ∪ {Y }
11 CanPCD = CanPCD \ {Y }

/* remove false positives from PCD */
12 for each X ∈ PCD do
13 Sep[X] = arg minZ⊆P CD\{X}depD(X, T |Z)
14 for each X ∈ PCD do
15 if X⊥⊥DT |Sep[X] then
16 PCD = PCD \ {X}
17 until PCD does not change
18 return PCD

AlgorithmPC(T, D)

1 PC = ∅
2 for each X ∈ AlgorithmPCD(T, D) do
3 if T ∈ AlgorithmPCD(X, D) then
4 PC = PC ∪ {X}
5 return PC

AlgorithmMB(T, D)

/* add true positives to MB */
1 PC = AlgorithmPC(T, D)
2 MB = PC

/* add more true positives to MB */
3 for each Y ∈ PC do
4 for each X ∈ AlgorithmPC(Y, D) do
5 if X /∈ PC then
6 find Z st X⊥⊥DT |Z and X, T /∈ Z
7 if X 6⊥⊥DT |Z ∪ {Y } then
8 MB = MB ∪ {X}
9 return MB

MMMB follows the same criterion as IAMB to decide whether a test is reliable
or not. If MMMB were correct, then it would be data efficient because the
number of instances required to identify MBG(T ) would not depend on the size
of MBG(T ) but on the topology of G.

4 Scalable, Efficient and Correct Learning of MBs

In this section, we present a new algorithm for learning MBs from data that scales
to databases with thousands of features. Like IAMB and MMMB, our algo-
rithm is based on the assumption that the learning database D is a sample from
a probability distribution p faithful to a DAG G. Unlike IAMB, our algorithm is
data efficient. Unlike MMMB, our algorithm is correct under the assumptions
in Theorem 3. Our algorithm identifies MBG(T ) in two steps: First, it identifies
PCG(T ) and, second, it identifies the rest of the parents of the children of T in G.
Our algorithm, named AlgorithmMB, uses AlgorithmPCD and AlgorithmPC
to solve the first step. X 6⊥⊥ DY |Z, X ⊥⊥ DY |Z and depD(X,Y |Z) are the same
as in Section 3. Table 3 outlines AlgorithmPCD. The algorithm receives the
target node T and the learning database D as input and returns a superset of
PCG(T ) in PCD as output. The algorithm tries to minimize the number of
nodes not in PCG(T ) that are returned in PCD. The algorithm repeats three
steps until PCD does not change. First, some nodes not in PCG(T ) are removed
from CanPCD, which contains the candidates to enter PCD (lines 4-8). This
step is based on the observation that X ∈ PCG(T ) iff X 6⊥⊥ pT |Z for all Z st
X,T /∈ Z. Second, the candidate most likely to be in PCG(T ) is added to PCD
and removed from CanPCD (lines 9-11). Since this step is based on the heuristic



at line 9, some nodes not in PCG(T ) may be added to PCD as well. Some of
these nodes are removed from PCD in the third step (lines 12-16). This step is
based on the same observation as the first step.

Theorem 4. Under the assumptions that the learning database D is an inde-
pendent and identically distributed sample from a probability distribution p faith-
ful to a DAG G and that the tests of conditional independence and the measure of
conditional dependence are correct, the output of AlgorithmPCD(T, D) includes
PCG(T ) and does not include any node in NDG(T ) \ PaG(T ).

Proof. First, we prove that the nodes in PCG(T ) are included in the output
PCD. If X ∈ PCG(T ), then X 6⊥⊥ pT |Z for all Z st X, T /∈ Z (Theorem 1).
Consequently, X enters PCD at line 10 and does not leave it thereafter.

Second, we prove that the nodes in NDG(T )\PaG(T ) are not included in the
output PCD. It suffices to study the last time that lines 12-16 are executed. At
line 12, PaG(T ) ⊆ PCD (see paragraph above). Therefore, if PCD still contains
some X ∈ NDG(T ) \ PaG(T ), then X⊥⊥ pT |Z for some Z ⊆ PCD \ {X} (local
Markov property). Consequently, X is removed from PCD at line 16. ut

The output of AlgorithmPCD must be further processed in order to ob-
tain PCG(T ), because it may contain some descendants of T in G other than
its children. These nodes can be easily identified: If X is in the output of
AlgorithmPCD(T, D), then X is a descendant of T in G other than one of
its children iff T is not in the output of AlgorithmPCD(X, D). AlgorithmPC,
which is outlined in Table 3, implements this observation. The algorithm receives
the target node T and the learning database D as input and returns PCG(T ) in
PC as output. We prove that AlgorithmPC is correct under some assumptions.

Theorem 5. Under the assumptions that the learning database D is an inde-
pendent and identically distributed sample from a probability distribution p fai-
thful to a DAG G and that the tests of conditional independence and the mea-
sure of conditional dependence are correct, the output of AlgorithmPC(T,D) is
PCG(T ).

Proof. First, we prove that the nodes in PCG(T ) are included in the output PC.
If X ∈ PCG(T ), then T ∈ PCG(X). Therefore, X and T satisfy the conditions
at lines 2 and 3, respectively (Theorem 4). Consequently, X enters PC at line 4.

Second, we prove that the nodes not in PCG(T ) are not included in the
output PC. Let X /∈ PCG(T ). If X does not satisfy the condition at line 2, then
X does not enter PC at line 4. On the other hand, if X satisfies the condition
at line 2, then X must be a descendant of T in G other than one of its children
and, thus, T does not satisfy the condition at line 3 (Theorem 4). Consequently,
X does not enter PC at line 4. ut

Finally, Table 3 outlines AlgorithmMB. The algorithm receives the target
node T and the learning database D as input and returns MBG(T ) in MB as
output. The algorithm works in two steps. First, MB is initialized with PCG(T )



by calling AlgorithmPC (line 2). Second, the parents of the children of T in G
that are not yet in MB are added to it (lines 3-8). This step is based on the
following observation. The parents of the children of T in G that are missing
from MB at line 3 are those that are non-adjacent to T in G. Therefore, if
Y ∈ PCG(T ), X ∈ PCG(Y ) and X /∈ PCG(T ), then X and T are non-adjacent
parents of Y in G iff X 6⊥⊥ pT |Z ∪ {Y } for any Z st X ⊥⊥ pT |Z and X, T /∈ Z.
Note that Z can be efficiently obtained at line 6: AlgorithmPCD must have
found such a Z and could have cached it for later retrieval. We prove that
AlgorithmMB is correct under some assumptions.

Theorem6. Under the assumptions that the learning database D is an inde-
pendent and identically distributed sample from a probability distribution p fai-
thful to a DAG G and that the tests of conditional independence and the mea-
sure of conditional dependence are correct, the output of AlgorithmMB(T,D)
is MBG(T ).

Proof. First, we prove that the nodes in MBG(T ) are included in the output
MB. Let X ∈ MBG(T ). Then, either X ∈ PCG(T ) or X /∈ PCG(T ) but X and
T have a common child Y in G (Theorem 2). If X ∈ PCG(T ), then X enters MB
at line 2 (Theorem 5). On the other hand, if X /∈ PCG(T ) but X and T have a
common child Y in G, then X satisfies the conditions at lines 3-5 (Theorem 5)
and at lines 6-7 (Theorem 1). Consequently, X enters MB at line 8.

Second, we prove that the nodes not in MBG(T ) are not included in the
output MB. Let X /∈ MBG(T ). X does not enter MB at line 2 (Theorem 5).
If X does not satisfy the conditions at lines 3-6, then X does not enter MB at
line 8. On the other hand, if X satisfies the conditions at lines 3-6, then it must
be due to either T → Y → X or T ← Y ← X or T ← Y → X. Therefore, X
does not satisfy the condition at line 7 (faithfulness assumption). Consequently,
X does not enter MB at line 8. ut

In practice, AlgorithmMB performs a test if it is reliable and skips it other-
wise. AlgorithmMB follows the same criterion as IAMB and MMMB to de-
cide whether a test is reliable or not. AlgorithmMB is data efficient because
the number of instances required to identify MBG(T ) does not depend on the
size of MBG(T ) but on the topology of G. For instance, if G is a tree, then
AlgorithmMB does not need to perform any test that is conditioned on more
than one node in order to identify MBG(T ), no matter how large MBG(T ) is.
AlgorithmMB scales to databases with thousands of features because it does
not require learning a complete BN. The experiments in Section 5 confirm it.
Like IAMB and MMMB, if the assumptions in Theorem 6 do not hold, then
AlgorithmMB may not return a MB but an approximation.

5 Experiments

In this section, we evaluate AlgorithmMB on synthetic and real data. We use
interIAMB as benchmark (recall Section 3.1). We would have liked to include



Table 4. Results of the experiments with the Alarm and Pigs databases

Database Instances Algorithm Precision Recall Distance Time

Alarm 100 interIAMB 0.85±0.06 0.46±0.03 0.54±0.06 0±0
Alarm 100 AlgorithmMB 0.79±0.04 0.49±0.05 0.51±0.04 0±0

Alarm 200 interIAMB 0.87±0.04 0.59±0.04 0.42±0.04 0±0
Alarm 200 AlgorithmMB 0.94±0.03 0.56±0.05 0.38±0.06 0±0

Alarm 500 interIAMB 0.91±0.03 0.73±0.03 0.30±0.04 0±0
Alarm 500 AlgorithmMB 0.94±0.01 0.72±0.04 0.25±0.04 0±0

Alarm 1000 interIAMB 0.93±0.03 0.80±0.01 0.22±0.02 0±0
Alarm 1000 AlgorithmMB 0.99±0.01 0.79±0.01 0.17±0.02 0±0

Alarm 2000 interIAMB 0.92±0.04 0.83±0.01 0.21±0.04 0±0
Alarm 2000 AlgorithmMB 1.00±0.00 0.83±0.02 0.14±0.02 0±0

Alarm 5000 interIAMB 0.92±0.02 0.86±0.01 0.18±0.02 0±0
Alarm 5000 AlgorithmMB 1.00±0.00 0.86±0.02 0.11±0.02 1±0

Alarm 10000 interIAMB 0.92±0.04 0.90±0.01 0.14±0.03 0±0
Alarm 10000 AlgorithmMB 1.00±0.00 0.91±0.02 0.07±0.02 1±0

Alarm 20000 interIAMB 0.94±0.00 0.92±0.00 0.10±0.00 1±0
Alarm 20000 AlgorithmMB 1.00±0.00 0.92±0.00 0.05±0.00 3±0

Pigs 100 interIAMB 0.82±0.01 0.59±0.01 0.48±0.02 0±0
Pigs 100 AlgorithmMB 0.83±0.01 0.81±0.02 0.29±0.02 0±0

Pigs 200 interIAMB 0.80±0.00 0.82±0.00 0.37±0.00 0±0
Pigs 200 AlgorithmMB 0.97±0.01 0.96±0.01 0.07±0.01 1±0

Pigs 500 interIAMB 0.82±0.00 0.84±0.00 0.34±0.00 0±0
Pigs 500 AlgorithmMB 0.98±0.00 1.00±0.00 0.02±0.00 2±0

interIAMBnPC in the evaluation but we were unable to finish the implemen-
tation on time. We will include it in an extended version of this paper. We do
not consider GS because interIAMB outperforms it [10]. We do not consider
MMMB because we are not interested in incorrect algorithms.

5.1 Synthetic Data

These experiments evaluate the accuracy and data efficiency of AlgorithmMB
wrt those of interIAMB. For this purpose, we consider databases sampled from
two known BNs, namely the Alarm BN [4] and the Pigs BN [11]. These BNs
have 37 and 441 nodes, respectively, and the largest MB consists of eight and
68 nodes, respectively. We run interIAMB and AlgorithmMB with each node
in each BN as target and, then, report the average precision and recall over all
the nodes for each BN. Precision is the number of true positives in the output
divided by the number of nodes in the output. Recall is the number of true
positives in the output divided by the number of true positives in the BN. We
also combine precision and recall as

√
(1− precision)2 + (1− recall)2 to measure

the Euclidean distance from perfect precision and recall. Finally, we also report
the running time in seconds. Both algorithms are written in C++ and all the
experiments are run on a Pentium 2.4 GHz, 512 MB RAM and Windows 2000.
The significance level for the tests of conditional independence is 0.01.

Table 4 summarizes the results of the experiments with the Alarm and Pigs
databases for different number of instances. Each entry in the table shows the
average and standard deviation values over 10 databases (the same 10 databases
for interIAMB and AlgorithmMB). For the Alarm databases, both algorithms



achieve similar recall but AlgorithmMB scores higher precision and, thus, shor-
ter distance than interIAMB. Therefore, AlgorithmMB usually returns fewer
false positives than interIAMB. The explanation is that AlgorithmMB per-
forms more tests than interIAMB and this makes it harder for false positives
to enter the output. See, for instance, the heuristic in AlgorithmPCD and the
double check in AlgorithmPC. For this reason, we expect interIAMBnPC
to perform better than interIAMB but worse than AlgorithmMB. For the
Pigs databases where larger MBs exist, AlgorithmMB outperforms interIAMB
in terms of precision, recall and distance. For instance, AlgorithmMB cor-
rectly identifies the MB of node 435 of the Pigs BN, which consists of 68
nodes, with only 500 instances, while interIAMB performs poorly for this
node (precision=1.00, recall=0.04 and distance=0.96). The explanation is that,
unlike interIAMB, AlgorithmMB does not need to condition on the whole
MB to identify it. Note that interIAMBnPC could not have done better than
interIAMB for this node. In fact, interIAMB and interIAMBnPC require a
number of instances at least exponential in 68 for perfect precision and recall for
this node. Consequently, we can conclude that AlgorithmMB is more accurate
and data efficient than interIAMB and, seemingly, interIAMBnPC.

5.2 Real Data

These experiments evaluate the ability of AlgorithmMB wrt that of interIAMB
to solve a real-world FSS problem involving thousands of features. Specifically,
we consider the Thrombin database which was provided by DuPont Pharma-
ceuticals for the KDD Cup 2001 and is exemplary of the real-world drug design
environment [1]. The database contains 2543 instances characterized by 139351
binary features. Each instance represents a drug compound tested for its abi-
lity to bind to a target site on thrombin, a key receptor in blood clotting. The
features describe the three-dimensional properties of the compounds. Each com-
pound is labelled with one out of two classes, either it binds to the target site
or not. The task of the KDD Cup 2001 is to learn a classifier from 1909 given
compounds in order to predict binding affinity. The accuracy of the classifier
is evaluated wrt the remaining 634 compounds. The accuracy is computed as
the average of the accuracy on true binding compounds and the accuracy on
true non-binding compounds. The Thrombin database is particularly challen-
ging for two reasons. First, the learning data are extremely imbalanced: Only
42 compounds out of 1909 bind. Second, the testing data are not sampled from
the same probability distribution as the learning data, because the compounds
in the testing data were synthesized based on the assay results recorded in the
learning data. Better than 60 % accuracy is impressive according to [1].

As discussed in Section 1 and in [1], solving the FSS problem for the Throm-
bin database is crucial due to the excessive number of features. Since the truly
relevant features for binding affinity are unknown, we cannot use the same per-
formance criteria for interIAMB and AlgorithmMB as in Section 5.1. Instead,
we run each algorithm on the learning data and, then, use only the features in
the output to learn a naive Bayesian (NB) classifier [2], whose accuracy on the



Table 5. Results of the experiments with the Thrombin database

Algorithm Features Accuracy Time

Winner KDD Cup 2001 with TANB 4.00 0.68 Not available
Winner KDD Cup 2001 with NB 4.00 0.67 Not available
interIAMB 8.00±0.00 0.52±0.02 3102±69
AlgorithmMB 4.00±1.00 0.60±0.02 8631±915

testing data is our performance criterion: The higher the accuracy the better
the features selected and, thus, the algorithm. We also report the number of
features selected and the running time of the algorithm in seconds. The rest of
the experimental setting is the same as in Section 5.1.

Table 5 summarizes the results of the experiments with the Thrombin data-
base. The table shows the average and standard deviation values over 10 runs of
interIAMB and AlgorithmMB because the algorithms break ties at random
and, thus, different runs can return different MBs. The table also shows the ac-
curacy of the winner of the KDD Cup 2001, a tree augmented naive Bayesian
(TANB) classifier [2] with the features 10695, 16794, 79651 and 91839 and only
one augmenting edge between 10695 and 16794, as well as the accuracy of a NB
classifier with the same features as the winning TANB. We were unable to learn
a NB classifier with all the 139351 features. The winning TANB and NB are
clearly more accurate than interIAMB and AlgorithmMB. The explanation
may be that the score used to learn the winning TANB, the area under the ROC
curve with a user-defined threshold to control complexity, works better than the
tests of conditional independence in interIAMB and AlgorithmMB when the
learning data are as imbalance as in the Thrombin database. This question is
worth of further investigation, but it is out of the scope of this paper. What is
more important in this paper is the performance of AlgorithmMB wrt that of
interIAMB. The former is clearly more accurate than the latter, though it is
slower because it performs more tests. It is worth mentioning that, while the best
run of interIAMB reaches 54 % accuracy, two of the runs of AlgorithmMB
achieve 63 % accuracy which, according to [1], is impressive. The features selected
by AlgorithmMB in these two runs are 12810, 28852, 79651, 91839 and either
106279 or 109171. We note that no existing algorithm for learning BNs from
data can handle such a high-dimensional database as the Thrombin database.

6 Discussion

We have introduced AlgorithmMB, an algorithm for learning the MB of a
node from data without having to learn a complete BN. We have proved that
AlgorithmMB is correct under the faithfulness assumption. We have shown
that AlgorithmMB is scalable and data efficient and, thus, it can solve the FSS
problem for databases with thousands of features but with many less instances.
Since there is no algorithm for learning BNs from data that scales to such high-
dimensional databases, it is very important to develop algorithms for learning



MBs from data that, like AlgorithmMB, avoid learning a complete BN as an
intermediate step. To our knowledge, the only work that has addressed the poor
scalability of the existing algorithms for learning BNs from data is [3], where
Friedman et al. propose restricting the search for the parents of each node to
some promising nodes that are heuristically selected. Therefore, Friedman et al.
do not develop a scalable algorithm for learning BNs from data but some heuris-
tics to use prior to running any existing algorithm. Unfortunately, Friedman et
al. do not evaluate the heuristics for learning MBs from data. It is worth men-
tioning that learning the MB of each node can be a helpful intermediate step in
the process of learning a BN from data [5]. As part of AlgorithmMB, we have
introduced AlgorithmPC, an algorithm that returns the parents and children
of a target node. In [7], we have reused this algorithm for growing BN models of
gene networks from seed genes.
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