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Abstract

We present a sound and complete graphical criterion for reading dependencies from the
minimal undirected independence map of a graphoid that satisfies weak transitivity. We
argue that assuming weak transitivity is not too restrictive.

1 Introduction

A minimal undirected independence map G of
an independence model p is used to read inde-
pendencies that hold in p. Sometimes, however,
G can also be used to read dependencies hol-
ding in p. For instance, if p is a graphoid that is
faithful to G then, by definition, vertex separa-
tion is a sound and complete graphical criterion
for reading dependencies from G. If p is simply
a graphoid, then there also exists a sound and
complete graphical criterion for reading depen-
dencies from G (Bouckaert, 1995).

In this paper, we introduce a sound and com-
plete graphical criterion for reading dependen-
cies from G under the assumption that p is a
graphoid that satisfies weak transitivity. Our
criterion allows reading more dependencies than
the criterion in (Bouckaert, 1995) at the cost of
assuming weak transitivity. We argue that this
assumption is not too restrictive. Specifically,
we show that there exist important families of
probability distributions that are graphoids and
satisfy weak transitivity.

The rest of the paper is organized as follows.
In Section 5, we present our criterion for reading
dependencies from G. As will become clear la-
ter, it is important to first prove that vertex
separation is sound and complete for reading
independencies from G. We do so in Section
4. Equally important is to show that assuming
that p satisfies weak transitivity is not too res-
trictive. We do so in Section 3. We start by
reviewing some key concepts in Section 2 and

close with some discussion in Section 6.

2 Preliminaries

The following definitions and results can be
found in most books on probabilistic graphi-
cal models, e.g. (Pearl, 1988; Studený, 2005).
Let U denote a set of random variables. Un-
less otherwise stated, all the independence mo-
dels and graphs in this paper are defined over
U. Let X, Y, Z and W denote four mutually
disjoint subsets of U. An independence mo-
del p is a set of independencies of the form
X is independent of Y given Z. We represent
that an independency is in p by X⊥⊥Y|Z and
that an independency is not in p by X 6⊥⊥Y|Z.
An independence model is a graphoid when
it satisfies the following five properties: Sym-
metry X ⊥⊥ Y|Z ⇒ Y ⊥⊥ X|Z, decomposi-
tion X ⊥⊥ YW|Z ⇒ X ⊥⊥ Y|Z, weak union
X ⊥⊥YW|Z ⇒ X ⊥⊥Y|ZW, contraction X ⊥⊥
Y|ZW∧X⊥⊥W|Z ⇒ X⊥⊥YW|Z, and intersec-
tion X⊥⊥Y|ZW ∧X⊥⊥W|ZY ⇒ X⊥⊥YW|Z.
Any strictly positive probability distribution is
a graphoid.

Let sep(X,Y|Z) denote that X is separated
from Y given Z in a graph G. Specifically,
sep(X,Y|Z) holds when every path in G bet-
ween X and Y is blocked by Z. If G is an undi-
rected graph (UG), then a path in G between X
and Y is blocked by Z when there exists some
Z ∈ Z in the path. If G is a directed and acyclic
graph (DAG), then a path in G between X and
Y is blocked by Z when there exists a node Z



in the path such that either (i) Z does not have
two parents in the path and Z ∈ Z, or (ii) Z has
two parents in the path and neither Z nor any of
its descendants in G is in Z. An independence
model p is faithful to an UG or DAG G when
X ⊥⊥ Y|Z iff sep(X,Y|Z). Any independence
model that is faithful to some UG or DAG is a
graphoid. An UG G is an undirected indepen-
dence map of an independence model p when
X⊥⊥Y|Z if sep(X,Y|Z). Moreover, G is a mi-
nimal undirected independence (MUI) map of p
when removing any edge from G makes it cease
to be an independence map of p. A Markov
boundary of X ∈ U in an independence model
p is any subset MB(X) of U \X such that (i)
X⊥⊥U\X\MB(X)|MB(X), and (ii) no proper
subset of MB(X) satisfies (i). If p is a graphoid,
then (i) MB(X) is unique for all X, (ii) the
MUI map G of p is unique, and (iii) two nodes
X and Y are adjacent in G iff X ∈ MB(Y ) iff
Y ∈ MB(X) iff X 6⊥⊥Y |U \ (XY ).

A Bayesian network (BN) is a pair (G, θ)
where G is a DAG and θ are parameters spe-
cifying a probability distribution for each X ∈
U given its parents in G, p(X|Pa(X)). The
BN represents the probability distribution p =∏

X∈U p(X|Pa(X)). Then, G is an indepen-
dence map of a probability distribution p iff p
can be represented by a BN with DAG G.

3 WT Graphoids

Let X, Y and Z denote three mutually disjoint
subsets of U. We call WT graphoid to any
graphoid that satisfies weak transitivity X ⊥⊥
Y|Z ∧X⊥⊥Y|ZV ⇒ X⊥⊥V |Z ∨ V ⊥⊥Y|Z with
V ∈ U\ (XYZ). We now argue that there exist
important families of probability distributions
that are WT graphoids and, thus, that WT gra-
phoids are worth studying. For instance, any
probability distribution that is Gaussian or fai-
thful to some UG or DAG is a WT graphoid
(Pearl, 1988; Studený, 2005). There also exist
probability distributions that are WT graphoids
although they are neither Gaussian nor faithful
to any UG or DAG. For instance, it follows from
the theorem below that the probability distribu-
tion that results from marginalizing some nodes

out and instantiating some others in a probabi-
lity distribution that is faithful to some DAG
is a WT graphoid, although it may be neither
Gaussian nor faithful to any UG or DAG.

Theorem 1. Let p be a probability distribution
that is a WT graphoid and let W ⊆ U. Then,
p(U \W) is a WT graphoid. If p(U \W|W =
w) has the same independencies for all w, then
p(U\W|W = w) for any w is a WT graphoid.

Proof. Let X, Y and Z denote three mutually
disjoint subsets of U \W. Then, X⊥⊥Y|Z in
p(U \W) iff X⊥⊥Y|Z in p and, thus, p(U \W)
satisfies the WT graphoid properties because p
satisfies them. If p(U \ W|W = w) has the
same independencies for all w then, for any w,
X⊥⊥Y|Z in p(U\W|W = w) iff X⊥⊥Y|ZW in
p. Then, p(U \W|W = w) for any w satisfies
the WT graphoid properties because p satisfies
them.

We now show that it is not too restrictive to
assume in the theorem above that p(U\W|W =
w) has the same independencies for all w, be-
cause there exist important families of proba-
bility distributions whose all or almost all the
members satisfy such an assumption. For ins-
tance, if p is a Gaussian probability distribution,
then p(U \W|W = w) has the same indepen-
dencies for all w, because the independencies in
p(U\W|W = w) only depend on the variance-
covariance matrix of p (Anderson, 1984). Let
us now consider all the multinomial probability
distributions for which a DAG G is an indepen-
dence map and denote them by M(G). The
following theorem, which is inspired by (Meek,
1995), proves that the probability of randomly
drawing from M(G) a probability distribution
p such that p(U\W|W = w) does not have the
same independencies for all w is zero.

Theorem 2. The probability distributions p in
M(G) for which there exists some W ⊆ U such
that p(U \W|W = w) does not have the same
independencies for all w have Lebesgue measure
zero wrt M(G).

Proof. The proof basically proceeds in the same
way as that of Theorem 7 in (Meek, 1995), so we
refer the reader to that paper for more details.



Let W ⊆ U and let X, Y and Z denote three
disjoint subsets of U\W. For a constraint such
as X ⊥⊥ Y|Z to be true in p(U \ W|W = w)
but false in p(U \ W|W = w′), two condi-
tions must be met. First, sep(X,Y|ZW) must
not hold in G and, second, the following equa-
tions must be satisfied: p(X = x,Y = y,Z =
z,W = w)p(Z = z,W = w) − p(X = x,Z =
z,W = w)p(Y = y,Z = z,W = w) = 0
for all x, y and z. Each equation is a poly-
nomial in the BN parameters corresponding to
G, because each term p(V = v) in the equa-
tions is the summation of products of BN para-
meters (Meek, 1995). Furthermore, each poly-
nomial is non-trivial, i.e. not all the values of
the BN parameters corresponding to G are so-
lutions to the polynomial. To see it, note that
there exists a probability distribution q in M(G)
that is faithful to G (Meek, 1995) and, thus,
that X 6⊥⊥ Y|ZW in q because sep(X,Y|ZW)
does not hold in G. Then, by permuting the
states of the random variables, we can trans-
form the BN parameter values corresponding to
q into BN parameter values for p so that the po-
lynomial does not hold. Let sol(x,y, z,w) de-
note the set of solutions to the polynomial for
x, y and z. Then, sol(x,y, z,w) has Lebesgue
measure zero wrt Rn, where n is the number of
linearly independent BN parameters correspon-
ding to G, because it consists of the solutions
to a non-trivial polynomial (Okamoto, 1973).
Let sol =

⋃
X,Y,Z,W

⋃
w

⋂
x,y,z sol(x,y, z,w)

and recall from above that the outer-most
union only involves those cases for which
sep(X,Y|ZW) does not hold in G. Then, sol
has Lebesgue measure zero wrt Rn, because the
finite union and intersection of sets of Lebesgue
measure zero has Lebesgue measure zero too.
Consequently, the probability distributions p in
M(G) such that p(U \ W|W = w) does not
have the same independencies for all w have
Lebesgue measure zero wrt Rn because they
are contained in sol. These probability distri-
butions also have Lebesgue measure zero wrt
M(G), because M(G) has positive Lebesgue
measure wrt Rn (Meek, 1995).

Finally, we argue in Section 6 that it is not

unrealistic to assume that the probability dis-
tribution underlying the learning data in most
projects on gene expression data analysis, one
of the hottest areas of research nowadays, is a
WT graphoid.

4 Reading Independencies

By definition, sep is sound for reading indepen-
dencies from the MUI map G of a WT graphoid
p, i.e. it only identifies independencies in p.
Now, we prove that sep in G is also complete
in the sense that it identifies all the indepen-
dencies in p that can be identified by studying
G alone. Specifically, we prove that there exist
multinomial and Gaussian probability distribu-
tions that are faithful to G. Such probability
distributions have all and only the independen-
cies that sep identifies from G. Moreover, such
probability distributions must be WT graphoids
because sep satisfies the WT graphoid proper-
ties (Pearl, 1988). The fact that sep in G is
complete, in addition to being an important re-
sult in itself, is important for reading as many
dependencies as possible from G (see Section 5).

Theorem 3. Let G be an UG. There exist mul-
tinomial and Gaussian probability distributions
that are faithful to G.

Proof. We first prove the theorem for multino-
mial probability distributions. Create a copy H
of G and, then, replace every edge X − Y in
H by X → WXY ← Y where WXY /∈ U is an
auxiliary node. Let W denote all the auxiliary
nodes created. Then, H is a DAG over UW.
Moreover, for any three mutually disjoint sub-
sets X, Y and Z of U, sep(X,Y|ZW) in H iff
sep(X,Y|Z) in G.

The probability distributions p(U,W) in
M(H) that are faithful to H and satisfy that
p(U|W = w) has the same independencies for
all w have positive Lebesgue measure wrt M(H)
because (i) M(H) has positive Lebesgue mea-
sure wrt Rn (Meek, 1995), (ii) the probabi-
lity distributions in M(H) that are not faithful
to H have Lebesgue measure zero wrt M(H)
(Meek, 1995), (iii) the probability distributions
p(U,W) in M(H) such that p(U|W = w) does
not have the same independencies for all w have



Lebesgue measure zero wrt M(H) by Theorem
2, and (iv) the union of the probability distri-
butions in (ii) and (iii) has Lebesgue measure
zero wrt M(H) because the finite union of sets
of Lebesgue measure zero has Lebesgue measure
zero.

Let p(U,W) denote any probability distribu-
tion in M(H) that is faithful to H and satis-
fies that p(U|W = w) has the same indepen-
dencies for all w. As proven in the paragraph
above, such a probability distribution exists.
Fix any w and let X, Y and Z denote three
mutually disjoint subsets of U. Then, X⊥⊥Y|Z
in p(U|W = w) iff X ⊥⊥ Y|ZW in p(U,W)
iff sep(X,Y|ZW) in H iff sep(X,Y|Z) in G.
Then, p(U|W = w) is faithful to G.

The proof for Gaussian probability distribu-
tions is analogous. In this case, p(U,W) is a
Gaussian probability distribution and thus, for
any w, p(U|W = w) is Gaussian too (Ander-
son, 1984). Theorem 2 is not needed in the proof
because, as discussed in Section 3, any Gaussian
probability distribution p(U,W) satisfies that
p(U|W = w) has the same independencies for
all w.

The theorem above has previously been pro-
ven for multinomial probability distributions
in (Geiger and Pearl, 1993), but the proof
constrains the cardinality of U. Our proof does
not constraint the cardinality of U and applies
not only to multinomial but also to Gaussian
probability distributions. It has been proven
in (Frydenberg, 1990) that sep in an UG G is
complete in the sense that it identifies all the
independencies holding in every Gaussian pro-
bability distribution for which G is an indepen-
dence map. Our result is stronger because it
proves the existence of a Gaussian probability
distribution with exactly these independencies.
We learned from one of the reviewers, whom we
thank for it, that a rather different proof of the
theorem above for Gaussian probability distri-
butions is reported in (Lněnička, 2005).

The theorem above proves that sep in the
MUI map G of a WT graphoid p is complete
in the sense that it identifies all the indepen-
dencies in p that can be identified by studying

G alone. However, sep in G is not complete if
being complete is understood as being able to
identify all the independencies in p. Actually,
no sound criterion for reading independencies
from G alone is complete in the latter sense.
An example follows.

Example 1. Let p be a multinomial (Gaussian)
probability distribution that is faithful to the
DAG X → Z ← Y . Such a probability dis-
tribution exists (Meek, 1995). Let G denote
the MUI map of p, namely the complete UG.
Note that p is not faithful to G. However, by
Theorem 3, there exists a multinomial (Gaus-
sian) probability distribution q that is faithful
to G. As discussed in Section 3, p and q are WT
graphoids. Let us assume that we are dealing
with p. Then, no sound criterion can conclude
X ⊥⊥Y |∅ by just studying G because this inde-
pendency does not hold in q, and it is impossible
to know whether we are dealing with p or q on
the sole basis of G.

5 Reading Dependencies

In this section, we propose a sound and com-
plete criterion for reading dependencies from
the MUI map of a WT graphoid. We define the
dependence base of an independence model p as
the set of all the dependencies X 6⊥⊥Y |U \ (XY )
with X, Y ∈ U. If p is a WT graphoid, then ad-
ditional dependencies in p can be derived from
its dependence base via the WT graphoid pro-
perties. For this purpose, we rephrase the WT
graphoid properties as follows. Let X, Y, Z
and W denote four mutually disjoint subsets
of U. Symmetry Y 6⊥⊥X|Z ⇒ X 6⊥⊥Y|Z. De-
composition X 6⊥⊥ Y|Z ⇒ X 6⊥⊥ YW|Z. Weak
union X 6⊥⊥Y|ZW ⇒ X 6⊥⊥YW|Z. Contraction
X 6⊥⊥YW|Z ⇒ X 6⊥⊥Y|ZW ∨X 6⊥⊥W|Z is pro-
blematic for deriving new dependencies because
it contains a disjunction in the right-hand side
and, thus, it should be split into two properties:
Contraction1 X 6⊥⊥YW|Z ∧ X ⊥⊥Y|ZW ⇒ X
6⊥⊥ W|Z, and contraction2 X 6⊥⊥ YW|Z ∧ X
⊥⊥ W|Z ⇒ X 6⊥⊥ Y|ZW. Likewise, intersec-
tion X 6⊥⊥YW|Z ⇒ X 6⊥⊥Y|ZW ∨X 6⊥⊥W|ZY
gives rise to intersection1 X 6⊥⊥ YW|Z ∧ X
⊥⊥ Y|ZW ⇒ X 6⊥⊥ W|ZY, and intersection2



X 6⊥⊥ YW|Z ∧ X ⊥⊥ W|ZY ⇒ X 6⊥⊥ Y|ZW.
Note that intersection1 and intersection2 are
equivalent and, thus, we refer to them simply
as intersection. Finally, weak transitivity X 6⊥⊥
V |Z ∧ V 6⊥⊥Y|Z ⇒ X 6⊥⊥Y|Z ∨X 6⊥⊥Y|ZV with
V ∈ U \ (XYZ) gives rise to weak transitivity1
X 6⊥⊥V |Z ∧ V 6⊥⊥Y|Z ∧X⊥⊥Y|Z ⇒ X 6⊥⊥Y|ZV ,
and weak transitivity2 X 6⊥⊥V |Z∧ V 6⊥⊥Y|Z∧X
⊥⊥ Y|ZV ⇒ X 6⊥⊥ Y|Z. The independency in
the left-hand side of any of the properties above
holds if the corresponding sep statement holds
in the MUI map G of p. This is the best solution
we can hope for because, as discussed in Section
4, sep in G is sound and complete. Moreover,
this solution does not require more information
about p than what it is available, because G can
be constructed from the dependence base of p.
We call the WT graphoid closure of the depen-
dence base of p to the set of all the dependencies
that are in the dependence base of p plus those
that can be derived from it by applying the WT
graphoid properties.

We now introduce our criterion for reading
dependencies from the MUI map of a WT gra-
phoid. Let X, Y and Z denote three mutually
disjoint subsets of U. Then, con(X,Y|Z) de-
notes that X is connected to Y given Z in an
UG G. Specifically, con(X,Y|Z) holds when
there exist some X1 ∈ X and Xn ∈ Y such that
there exists exactly one path in G between X1

and Xn that is not blocked by (X \ X1)(Y \
Xn)Z. Note that there may exist several unblo-
cked paths in G between X and Y but only one
between X1 and Xn. We now prove that con is
sound for reading dependencies from the MUI
map of a WT graphoid, i.e. it only identifies
dependencies in the WT graphoid. Actually, it
only identifies dependencies in the WT graphoid
closure of the dependence base of p. Hereinaf-
ter, X1:n denotes a path X1, . . . , Xn in an UG.

Theorem 4. Let p be a WT graphoid and G
its MUI map. Then, con in G only identifies
dependencies in the WT graphoid closure of the
dependence base of p.

Proof. We first prove that if X1:n is the only
path in G between X1 and Xn that is not blo-
cked by Y ⊆ U \ X1:n, then X1 6⊥⊥Xn|Y. We

prove it by induction over n. We first prove
it for n = 2. Let W denote all the nodes
in U \ X1:2 \ Y that are not separated from
X1 given X2Y in G. Since X1 and X2 are
adjacent in G, X1 6⊥⊥ X2|U \ X1:2 and, thus,
X1W 6⊥⊥X2(U \ X1:2 \Y \W)|Y due to weak
union. This together with sep(X1W,U \X1:2 \
Y \W|X2Y), which follows from the definition
of W, implies X1W 6⊥⊥ X2|Y due to contrac-
tion1. Note that if U \ X1:2 \ Y \ W = ∅,
then X1W 6⊥⊥X2(U \X1:2 \Y \W)|Y directly
implies X1W 6⊥⊥X2|Y. In any case, this inde-
pendency together with sep(W, X2|X1Y), be-
cause otherwise there exist several unblocked
paths in G between X1 and X2 which contra-
dicts the definition of Y, implies X1 6⊥⊥ X2|Y
due to contraction1. Note that if W = ∅, then
X1W 6⊥⊥X2|Y directly implies X1 6⊥⊥X2|Y. Let
us assume as induction hypothesis that the sta-
tement that we are proving holds for all n < m.
We now prove it for n = m. Since the paths
X1:2 and X2:m contain less than m nodes and
Y blocks all the other paths in G between X1

and X2 and between X2 and Xm, because other-
wise there exist several unblocked paths in G
between X1 and Xm which contradicts the de-
finition of Y, then X1 6⊥⊥X2|Y and X2 6⊥⊥Xm|Y
due to the induction hypothesis. This together
with sep(X1, Xm|YX2), which follows from the
definition of X1:m and Y, implies X1 6⊥⊥Xm|Y
due to weak transitivity2.

Let X, Y and Z denote three mutually dis-
joint subsets of U. If con(X,Y|Z) holds in G,
then there exist some X1 ∈ X and Xn ∈ Y
such that X1 6⊥⊥Xn|(X \ X1)(Y \ Xn)Z due to
the paragraph above and, thus, X 6⊥⊥Y|Z due
to weak union. Then, every con statement in
G corresponds to a dependency in p. Moreover,
this dependency must be in the WT graphoid
closure of the dependence base of p, because we
have only used in the proof the dependence base
of p and the WT graphoid properties.

We now prove that con is complete for rea-
ding dependencies from the MUI map of a WT
graphoid p, in the sense that it identifies all the
dependencies in p that follow from the informa-
tion about p that is available, namely the de-



pendence base of p and the fact that p is a WT
graphoid.

Theorem 5. Let p be a WT graphoid and G
its MUI map. Then, con in G identifies all the
dependencies in the WT graphoid closure of the
dependence base of p.

Proof. It suffices to prove (i) that all the depen-
dencies in the dependence base of p are identi-
fied by con in G, and (ii) that con satisfies the
WT graphoid properties. Since the first point
is trivial, we only prove the second point. Let
X, Y, Z and W denote four mutually disjoint
subsets of U.

• Symmetry con(Y,X|Z) ⇒ con(X,Y|Z).
Trivial.

• Decomposition con(X,Y|Z) ⇒
con(X,YW|Z). Trivial if W contains no
node in the path X1:n in the left-hand
side. If W contains some node in X1:n,
then let Xm denote the closest node to
X1 such that Xm ∈ X1:n ∩W. Then, the
path X1:m satisfies the right-hand side
because (X \ X1)(YW \ Xm)Z blocks all
the other paths in G between X1 and Xm,
since (X \ X1)(Y \ Xn)Z blocks all the
paths in G between X1 and Xm except
X1:m, because otherwise there exist several
unblocked paths in G between X1 and Xn,
which contradicts the left-hand side.

• Weak union con(X,Y|ZW) ⇒
con(X,YW|Z). Trivial because W
contains no node in the path X1:n in the
left-hand side.

• Contraction1 con(X,YW|Z) ∧
sep(X,Y|ZW) ⇒ con(X,W|Z). Since
ZW blocks all the paths in G between
X and Y, then (i) the path X1:n in the
left-hand side must be between X and W,
and (ii) all the paths in G between X1 and
Xn that are blocked by Y are also blocked
by (W \Xn)Z and, thus, Y is not needed
to block all the paths in G between X1

and Xn except X1:n. Then, X1:n satisfies
the right-hand side.

• Contraction2 con(X,YW|Z) ∧
sep(X,W|Z) ⇒ con(X,Y|ZW). Since Z
blocks all the paths in G between X and
W, the path X1:n in the left-hand side
must be between X and Y and, thus, it
satisfies the right-hand side.

• Intersection con(X,YW|Z) ∧
sep(X,Y|ZW) ⇒ con(X,W|ZY). Since
ZW blocks all the paths in G between X
and Y, the path X1:n in the left-hand side
must be between X and W and, thus, it
satisfies the right-hand side.

• Weak transitivity2 con(X, Xm|Z) ∧
con(Xm,Y|Z) ∧ sep(X,Y|ZXm) ⇒
con(X,Y|Z) with Xm ∈ U \ (XYZ). Let
X1:m and Xm:n denote the paths in the first
and second, respectively, con statements in
the left-hand side. Let X1:m:n denote the
path X1, . . . , Xm, . . . , Xn. Then, X1:m:n

satisfies the right-hand side because (i) Z
does not block X1:m:n, and (ii) Z blocks
all the other paths in G between X1 and
Xn, because otherwise there exist several
unblocked paths in G between X1 and Xm

or between Xm and Xn, which contradicts
the left-hand side.

• Weak transitivity1 con(X, Xm|Z) ∧
con(Xm,Y|Z) ∧ sep(X,Y|Z) ⇒
con(X,Y|ZXm) with Xm ∈ U \ (XYZ).
This property never applies because, as
seen in weak transitivity2, sep(X,Y|Z)
never holds since Z does not block X1:m:n.

Note that the meaning of completeness in the
theorem above differs from that in Theorem 3.
It remains an open question whether con in G
identifies all the dependencies in p that can be
identified by studying G alone. Note also that
con in G is not complete if being complete is
understood as being able to identify all the de-
pendencies in p. Actually, no sound criterion for
reading dependencies from G alone is complete
in this sense. Example 1 illustrates this point.
Let us now assume that we are dealing with q
instead of with p. Then, no sound criterion can



conclude X 6⊥⊥ Y |∅ by just studying G because
this dependency does not hold in p, and it is im-
possible to know whether we are dealing with p
or q on the sole basis of G.

We have defined the dependence base of a
WT graphoid p as the set of all the dependen-
cies X 6⊥⊥ Y |U \ (XY ) with X, Y ∈ U. Howe-
ver, Theorems 4 and 5 remain valid if we re-
define the dependence base of p as the set of
all the dependencies X 6⊥⊥ Y |MB(X) \ Y with
X, Y ∈ U. It suffices to prove that the WT
graphoid closure is the same for both depen-
dence bases of p. Specifically, we prove that
the first dependence base is in the WT gra-
phoid closure of the second dependence base
and vice versa. If X 6⊥⊥ Y |U \ (XY ), then
X 6⊥⊥Y (U\(XY )\(MB(X)\Y ))|MB(X)\Y due
to weak union. This together with sep(X,U \
(XY ) \ (MB(X) \ Y )|Y (MB(X) \ Y )) implies
X 6⊥⊥ Y |MB(X) \ Y due to contraction1. On
the other hand, if X 6⊥⊥ Y |MB(X) \ Y , then
X 6⊥⊥ Y (U \ (XY ) \ (MB(X) \ Y ))|MB(X) \
Y due to decomposition. This together with
sep(X,U\(XY )\(MB(X)\Y )|Y (MB(X)\Y ))
implies X 6⊥⊥Y |U \ (XY ) due to intersection.

In (Bouckaert, 1995), the following sound and
complete (in the same sense as con) criterion
for reading dependencies from the MUI map
of a graphoid is introduced: Let X, Y and
Z denote three mutually disjoint subsets of U,
then X 6⊥⊥Y|Z when there exist some X1 ∈ X
and X2 ∈ Y such that X1 ∈ MB(X2) and ei-
ther MB(X1) \ X2 ⊆ (X \ X1)(Y \ X2)Z or
MB(X2) \X1 ⊆ (X \X1)(Y \X2)Z. Note that
con(X,Y|Z) coincides with this criterion when
n = 2 and either MB(X1) \X2 ⊆ (X \X1)(Y \
X2)Z or MB(X2) \ X1 ⊆ (X \ X1)(Y \ X2)Z.
Therefore, con allows reading more dependen-
cies than the criterion in (Bouckaert, 1995) at
the cost of assuming weak transitivity which, as
discussed in Section 3, is not a too restrictive
assumption.

Finally, the soundness of con allows us to give
an alternative proof to the following theorem,
which was originally proven in (Becker et al.,
2000).

Theorem 6. Let p be a WT graphoid and G its

MUI map. If G is a forest, then p is faithful to
it.

Proof. Any independency in p for which the cor-
responding separation statement does not hold
in G contradicts Theorem 4.

6 Discussion

In this paper, we have introduced a sound
and complete criterion for reading dependencies
from the MUI map of a WT graphoid. In (Peña
et al., 2006), we show how this helps to iden-
tify all the nodes that are relevant to compute
all the conditional probability distributions for
a given set of nodes without having to learn a
BN first. We are currently working on a sound
and complete criterion for reading dependencies
from a minimal directed independence map of a
WT graphoid.

Due to lack of time, we have not been able to
address some of the questions posed by the re-
viewers. We plan to do it in an extended version
of this paper. These questions were studying
the relation between the new criterion and lack
of vertex separation, studying the complexity of
the new criterion, and studying the uniqueness
and consistency of the WT graphoid closure.

Our end-goal is to apply the results in this
paper to our project on atherosclerosis gene ex-
pression data analysis in order to learn depen-
dencies between genes. We believe that it is not
unrealistic to assume that the probability distri-
bution underlying our data satisfies strict positi-
vity and weak transitivity and, thus, it is a WT
graphoid. The cell is the functional unit of all
the organisms and includes all the information
necessary to regulate its function. This informa-
tion is encoded in the DNA of the cell, which is
divided into a set of genes, each coding for one
or more proteins. Proteins are required for prac-
tically all the functions in the cell. The amount
of protein produced depends on the expression
level of the coding gene which, in turn, depends
on the amount of proteins produced by other
genes. Therefore, a dynamic Bayesian network
is a rather accurate model of the cell (Murphy
and Mian, 1999): The nodes represent the genes
and proteins, and the edges and parameters re-



present the causal relations between the gene
expression levels and the protein amounts. It
is important that the Bayesian network is dy-
namic because a gene can regulate some of its
regulators and even itself with some time delay.
Since the technology for measuring the state of
the protein nodes is not widely available yet,
the data in most projects on gene expression
data analysis are a sample of the probability dis-
tribution represented by the dynamic Bayesian
network after marginalizing the protein nodes
out. The probability distribution with no node
marginalized out is almost surely faithful to the
dynamic Bayesian network (Meek, 1995) and,
thus, it satisfies weak transitivity (see Section 3)
and, thus, so does the probability distribution
after marginalizing the protein nodes out (see
Theorem 1). The assumption that the proba-
bility distribution sampled is strictly positive is
justified because measuring the state of the gene
nodes involves a series of complex wet-lab and
computer-assisted steps that introduces noise in
the measurements (Sebastiani et al., 2003).

Additional evidence supporting the claim
that the results in this paper can be help-
ful for learning gene dependencies comes from
the increasing attention that graphical Gaussian
models of gene networks have been receiving
from the bioinformatics community (Schäfer
and Strimmer, 2005). A graphical Gaussian mo-
del of a gene network is not more than the MUI
map of the probability distribution underlying
the gene network, which is assumed to be Gaus-
sian, hence the name of the model. Then, this
underlying probability distribution is a WT gra-
phoid and, thus, the results in this paper apply.
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