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Abstract

We propose algorithms for learning Markov boundaries from data without having
to learn a Bayesian network first. We study their correctness, scalability and data
efficiency. The last two properties are important because we aim to apply the al-
gorithms to identify the minimal set of features that is needed for probabilistic
classification in databases with thousands of features but few instances, e.g. gene
expression databases. We evaluate the algorithms on synthetic and real databases,
including one with 139351 features.
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1 Introduction

Probabilistic classification is the process of mapping an assignment of values
to some random variables F, the features, into a probability distribution for
a distinguished random variable C| the class. Feature subset selection (FSS)
aims to identify the minimal subset of F' that is needed for probabilistic clas-
sification. Solving the FSS problem is important for two main reasons. First,
it provides insight into the domain at hand and, second, it reduces the search
space if the probabilistic classifier is to be learnt from data.

In this paper, we are interested in solving the FSS problem as follows. Since a
Markov boundary (MB) of C' is defined as any minimal subset of F that ren-
ders the rest of F independent of C', then a MB of C' is a solution to the FSS
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problem. If the probability distribution of {F,C'} can be faithfully represented
by a Bayesian network (BN) for {F,C'}, then the MB of C' is unique and can
easily be obtained because it consists of the union of the parents and children
of C' and the parents of the children of C' [12]. In this paper, we are interes-
ted in solving the FSS problem for databases with thousands of features but
few instances. Such databases are common in domains like bioinformatics and
medicine, e.g. gene expression databases [16]. Unfortunately, having to learn
a BN for {F,C} in order to learn a MB of C' can be painfully time consuming
for such high-dimensional databases [22]. This is particularly true for those
algorithms for learning BNs from data that are (asymptotically) correct un-
der the faithfulness assumption [22], which are the ones we are interested in.
Fortunately, there exists an algorithm for learning a MB of C' from data that
scales to high-dimensional databases and that is correct under the faithfulness
assumption, the incremental association Markov boundary algorithm (IAMB)
[19]. TAMB is scalable because it does not learn a BN for {F,C}. However,
IAMB is data inefficient because it may require an unnecessarily large amount
of learning data to identify a MB of C. This raises the first question addres-
sed in this paper: Can we develop an algorithm for learning MBs from data
that is scalable, data efficient, and correct under the faithfulness assumption
? The answer is yes. In Section 4, we present such an algorithm, the parents
and children based Markov boundary algorithm (PCMB). This leads us to
the second question addressed in this paper: Can we relax the faithfulness
assumption and develop an algorithm that is correct, scalable and data effi-
cient 7 We prove that IAMB is still correct under the composition property
assumption, which is weaker than the faithfulness assumption. The proof also
applies to a stochastic variant of IAMB that we propose in order to overcome
the data inefficiency of TAMB. We call it KIAMB. This algorithm has the
following additional advantage over IAMB. If C' has several MBs (something
impossible under the faithfulness assumption but possible under the compo-
sition property assumption), then KIAMB does not only return a MB of C
but any MB of C' with non-zero probability. Therefore, KIAMB can discover
different MBs of C' when run repeatedly while IAMB cannot because it is de-
terministic. We report experiments showing that PCMB outperforms IAMB
and that KIAMB outperforms both IAMB and PCMB considerably often. To
show that these algorithms are scalable, part of the experiments are run on
the Thrombin database which contains 139351 features [2]. Before going into
the details of our contribution, we review some key concepts in the following
section.



2 Preliminaries

The following definitions can be found in most books on Bayesian networks,
e.g. [12,17,18]. Let U denote a set of discrete random variables. A Bayesian
network (BN) for U is a pair (G,#), where G is an acyclic directed graph
(DAG) whose nodes correspond to the random variables in U, and 6 are
parameters specifying a probability distribution for each node X given its
parents in G, p(X|Pa(X)). A BN (G, 6) represents a probability distribution
for U, p(U), through the factorization p(U) = [[xcy p(X|Pa(X)). In addition
to Pa(X), two other abbreviations that we use are PC(X) for the parents
and children of X in G, and ND(X) for the non-descendants of X in G.
Hereinafter, all the probability distributions and DAGs are defined over U,
unless otherwise stated. We call the members of U interchangeably random
variables and nodes.

Let X I Y|Z denote that X is independent of Y given Z in a probability
distribution p. Any probability distribution p that can be represented by a BN
with DAG G satisfies certain independencies between the random variables in
U that can be read from G via the d-separation criterion, i.e. if d-sep(X, Y |Z)
then X 1L Y|Z with X, Y and Z three mutually disjoint subsets of U. The
statement d-sep(X, Y|Z) is true when for every undirected path in G between
a node in X and a node in Y there exists a node Z in the path such that
either (i) Z does not have two parents in the path and Z € Z, or (ii) Z has
two parents in the path and neither Z nor any of its descendants in G is in Z.
A probability distribution p is said to be faithful to a DAG G when X 1L Y|Z
iff d-sep(X,Y|Z). Let p denote a probability distribution and X € U, any
Y C (U\{X}) such that X L (U\Y \{X})|Y is called a Markov blanket of
X. Any minimal Markov blanket of X is called a Markov boundary (MB) of
X, i.e. no proper subset of a MB of X is a Markov blanket of X. The following
three theorems are proven in [12], [17] and [12], respectively.

Theorem 1 Let X, Y, Z and W denote four mutually disjoint subsets of U.
Any probability distribution p satisfies the following four properties: Symmetry
X 1LY|Z =Y LX|Z, decomposition X L (Y UW)|Z = X L Y|Z, weak
union X L(YUW)|Z=XLY[(ZUW), and contraction X LY|(Z U W)A
X 1LW|Z = X1L(YUW)|Z. If p is strictly positive, then p satisfies the
previous four properties plus the intersection property X LY [(ZUW) A X L
WI|(ZUY) = X L(YUW)|Z. Ifp is faithful to a DAG G, then p satisfies the
previous five properties plus the composition property X LY|ZANX L W|Z =
X L (YUW)|Z and the local Markov property X L (ND(X)\ Pa(X))|Pa(X)
for each X € U.

Theorem 2 If a probability distribution p is faithful to a DAG G, then (i)
for each pair of nodes X andY in G, X andY are adjacent in G iff X L Y|Z



Table 1
TAMB.

TAMB(T)

/* add true positives to M B */
MB=10
repeat
Y = arg maz x¢u\mB\{T})dep(T, X|M B)
if T LY|MB then
MB=MBU{Y}
until M B does not change
/* remove false positives from M B */
for each X € M B do
if 7L X|(MB\ {X}) then
MB=MB\ {X}
return M B

DO W
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for all Z such that X,Y ¢ Z, and (ii) for each triplet of nodes X, Y and Z
i G such that X and Y are adjacent to Z but X and Y are non-adjacent,
X — Z <Y is a subgraph of G iff X L Y|Z for all Z such that X,Y ¢ Z and
Z el.

Theorem 3 If a probability distribution p satisfies the intersection property,
then each X € U has a unique MB, MB(X). If p is faithful to a DAG G,
then M B(X) is the union of PC(X) and the parents of the children of X in
G.

3 Previous Work on Scalable Learning of MBs

In this section, we review three algorithms for learning MBs from data, na-
mely the incremental association Markov boundary algorithm (IAMB) [19],
the max-min Markov boundary algorithm (MMMB) [20], and HITON-MB
[1]. To our knowledge, these algorithms and some minor variants of them are
the only algorithms for learning MBs from data that have experimentally been
shown to scale to databases with thousands of features. However, we show that
IAMB is data inefficient and that MMMB and HITON-MB do not guaran-
tee the correct output under the faithfulness assumption. In the algorithms,
X LY|Z (X LY|Z) denotes (in)dependence with respect to a learning data-
base D, and dep(X,Y|Z) is a measure of the strength of the dependence with
respect to D. In particular, the algorithms run a y? independence test with the
G? statistic in order to decide on X £ Y|Z or X 1 Y|Z [17], and they use the
negative p-value of the test as dep(X,Y|Z). The three algorithms are based
on the assumption that D is faithful to a DAG G, i.e. D is a sample from a
probability distribution p faithful to GG, and thus each node has a unique MB.



3.1 IAMB

Table 1 outlines IAMB. The algorithm receives the target node T" as input and
returns M B(T') in M B as output. The algorithm works in two steps. First,
the nodes in M B(T') are added to M B (lines 2-6). Since this step is based
on the heuristic at line 3, some nodes not in M B(T) may be added to M B
as well. These nodes are removed from M B in the second step (lines 7-9).
Tsamardinos et al. prove in [19] that IAMB is correct under the faithfulness
assumption.

Theorem 4 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distributed
sample from a probability distribution p faithful to a DAG G, IAMB(T ) returns
MB(T).

The assumption that the independence tests are correct means that they de-
cide (in)dependence iff the (in)dependence holds in p. We elaborate further
on this assumption in Section 6. In order to maximize accuracy in practice,
IAMB performs a test if it is reliable and skips it otherwise. Following the
approach in [17], TAMB considers a test to be reliable when the number of
instances in D is at least five times the number of degrees of freedom in the
test. This means that the number of instances required by TAMB to identify
MB(T) is at least exponential in the size of M B(T'), because the number of
degrees of freedom in a test is exponential in the size of the conditioning set
and the test to add to M B the last node in M B(T") will be conditioned on
at least the rest of the nodes in M B(T'). However, depending on the topology
of G, it can be the case that M B(T) can be identified by conditioning on
sets much smaller than those used by IAMB, e.g. if G is a tree (see Sections
3.2 and 4). Therefore, IAMB is data inefficient because its data requirements
can be unnecessarily high. Tsamardinos et al. are aware of this drawback and
describe in [19] some variants of IAMB that alleviate it, though they do not
solve it, while still being scalable and correct under the assumptions in Theo-
rem 4: The second step can be run after each node addition at line 5, and/or
the second step can be replaced by the PC algorithm [17]. Finally, as Tsa-
mardinos et al. note in [19], IAMB is similar to the grow-shrink algorithm
(GS) [10]. The only difference is that GS uses a simpler heuristic at line 3:
Y = arg mazrxew\mp\(ry)dep(T, X|0). GS is correct under the assumptions
in Theorem 4, but it is data inefficient for the same reason as IAMB.



Table 2

MMPC and MMMB.
MMPC(T)

/* add true positives to PC */
PC =0
repeat
for each X € (U\ PC\ {T}) do
Sep[X] = arg mingc pcdep(T, X|Z)
Y = arg mazx ¢\ pco\{r})dep(T; X |Sep[X])
if T LY|Sep[Y] then
PC=PCU{Y}
until PC does not change
/* remove false positives from PC */
9 for each X € PC do
10 if T 1L X|Z for some Z C PC'\ {X} then

(a)
D ¢
(20 o)
D
11 PC= PO\ (X) (b)
(D
(D
D (o)
D

W0 U W

12 return PC
MMMB(T)

/* add true positives to M B */
1 PC = MMPC(T)
MB = PC
CanMB = (PCUxecpc MMPC(X))\{T}
/* add more true positives to M B */
for each X € CanM B\ PC do
find any Z such that T L X|Z and T, X ¢ Z
for each Y € PC do
if T4 X|ZU{Y} then
MB=MBU{X}
return M B

3.2 MMMB
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MMMB aims to reduce the data requirements of [AMB while still being sca-
lable and correct under the faithfulness assumption. MMMB takes a divide-
and-conquer approach that breaks the problem of identifying M B(T) into
two subproblems: First, identifying PC(T') and, second, identifying the rest
of the parents of the children of T" in G. MMMB uses the max-min parents
and children algorithm (MMPC) to solve the first subproblem. Table 2 out-
lines MMPC. The algorithm receives the target node T as input and returns
PC(T) in PC as output. MMPC is similar to IAMB, with the exception that
MMPC considers any subset of the output as the conditioning set for the
tests that it performs and TAMB only considers the output. Tsamardinos et
al. prove in [20] that, under the assumptions in Theorem 4, the output of
MMPC is PC(T). However, this is not always true. The flaw in the proof is
the assumption that if X ¢ PC(T), then T 1L X|Z for some Z C PC(T") and,
thus, any node not in PC(T") that enters PC' at line 7 is removed from it at
line 11. This is not always true for the descendants of T". This is illustrated by
running MMPC(T') with D faithful to the DAG (a) in Table 2. Neither P nor
R enters PC' at line 7 because T I P|() and T I R|(. Q enters PC because
T L Q|Z for all Z such that T,Q ¢ Z. S enters PC because T £ S|() and
T L S|Q. Then, PC = {Q, S} at line 9. Neither @) nor S leaves PC' at line 11.
Consequently, the output of MMPC includes S which is not in PC(T) and,



Table 3
CMMPC.

CMMPC(T)

PC=0
for each X € MMPC(T) do
if T e MMPC(X) then
PC =PCU{X}
return PC

U Wi

thus, MMPC does not guarantee the correct output under the faithfulness
assumption.

Table 2 outlines MMMB. The algorithm receives the target node T as input
and returns M B(T') in M B as output. The algorithm works in two steps. First,
PC and M B are initialized with PC(T) and CanM B with (PC(T) Uxecpc(r)
PC(X))\{T} by calling MMPC (lines 1-3). CanM B contains the candidates
to enter M B. Second, the parents of the children of 7" in GG that are not yet in
M B are added to it (lines 4-8). This step is based on the following observation.
The parents of the children of T"in G that are missing from M B at line 4 are
those that are non-adjacent to 7" in G. These parents are in CanM B \ PC.
Therefore, if X € CanM B\ PC' and Y € PC, then X and T are non-adjacent
parents of Y in G ift T' £ X|ZU{Y} for any Z such that T L X|Z and T', X ¢ Z.
Tsamardinos et al. prove in [20] that, under the assumptions in Theorem 4, the
output of MMMB is M B(T"). However, this is not always true even if MMPC
were correct under the faithfulness assumption. The flaw in the proof is the
observation that motivates the second step of MMMB, which is not true. This
is illustrated by running MMMB(T") with D faithful to the DAG (b) in Table
2. Let us assume that MMPC is correct under the faithfulness assumption.
Then, MB = PC ={Q,S} and CanM B = {P,Q, R, S} at line 4. P enters
MB at line 8 if Z = {Q} at line 5, because P € CanMB \ PC, S € PC,
T 1 P|Q and T £ P|{Q, S}. Consequently, the output of MMMB can include
P which is not in M B(T) and, thus, MMMB does not guarantee the correct
output under the faithfulness assumption even if MMPC were correct under
this assumption.

In practice, MMMB performs a test if it is reliable and skips it otherwise.
MMMB follows the same criterion as IAMB to decide whether a test is reliable
or not. MMMB is data efficient because the number of instances required to
identify M B(T) does not depend on the size of M B(T) but on the topology
of G.

In [22], Tsamardinos et al. identify the flaw in MMPC and propose a corrected
MMPC (CMMPC). The output of MMPC must be further processed in order
to obtain PC(T), because it may contain some descendants of 7" in G other
than its children. Fortunately, these nodes can be easily identified: If X is in
the output of MMPC(T"), then X is a descendant of 7" in G other than one
of its children iff 7" is not in the output of MMPC(X). CMMPC, which is



Table 4

HITON-PC and HITON-MB.
HITON-PC(T)

1 PC=0
2 CanPC=U\{T}
3 repeat

/* add the best candidate to PC */
Y = arg mazxecanpcdep(T, X|0)
PC=PCU{Y}
CanPC = CanPC\ {Y}
/* remove false positives from PC */
for each X € PC do
if T L X|Z for some Z C PC \ {X} then
PC =PC\{X}
until CanPC is empty
return PC

[=INCL I
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HITON-MB(T)

/* add true positives to M B */
PC = HITON-PC(T)
MB = (PC Uxepc HITON-PC(X))\ {T}
/* remove false positives from M B */
for each X € M B do

for each Y € PC do

if T 1 X|Z for some Z C {Y}U(U\{T,X,Y}) then
MB=MB\ {X}

return M B

N =

N ootk W

outlined in Table 3, implements this observation. The algorithm receives the
target node 7" as input and returns PC(T') in PC' as output. As shown above,
however, correcting MMPC does not make MMMB correct. Independently of
Tsamardinos et al., we identify and fix the flaws in both MMPC and MMMB
in [13]. We discuss our work in Section 4.

3.3 HITON-MB

Like MMMB, HITON-MB aims to reduce the data requirements of TAMB
while still being scalable and correct under the faithfulness assumption. Like
MMMB, HITON-MB identifies M B(T') by first identifying PC(T") and, then,
identifying the rest of the parents of the children of 7" in G. HITON-MB
uses HITON-PC to solve the first subproblem. Table 4 outlines HITON-PC.
The algorithm receives the target node 7' as input and returns PC(T) in
PC as output. HITON-PC is similar to MMPC, with the exception that the
former interleaves the addition of the nodes in PC(T) to PC (lines 4-5) and
the removal from PC of the nodes that are not in PC(T) but that have
been added to PC by the heuristic at line 4 (lines 7-9). Note also that this
heuristic is simpler than the one used by MMPC, because the conditioning set
is always the empty set. Aliferis et al. prove in [1] that, under the assumptions
in Theorem 4, the output of HITON-PC is PC(T"). However, this is not always
true. The flaw in the proof is the same as that in the proof of correctness of
MMPC. Running HITON-PC(T') with D faithful to the DAG (a) in Table 2



can produce the same incorrect result as MMPC(T'). Obviously, the flaw in
HITON-PC can be fixed in the exactly the same way as the flaw in MMPC
was fixed above.

Table 4 outlines HITON-MB. The algorithm receives the target node 7' as
input and returns M B(T") in M B as output. HITON-MB is similar to MMMB.
The algorithm works in two steps. First, PC' and M B are initialized with
PC(T) and (PC(T) Uxepery PC(X))\{T}, respectively, by calling HITON-
PC (lines 1-2). Second, the nodes in M B that are neither in PC(T") nor have
a common child with 7" in G are removed from M B (lines 3-6). This step is
based on the following observation. If X € M B and Y € PC, then X must
be removed from M B iff T' L X|Z for some Z such that T, X ¢ Z. Aliferis
et al. prove in [1] that, under the assumptions in Theorem 4, the output of
HITON-MB is M B(T'). However, this is not always true even if HITON-PC
were correct under the faithfulness assumption. The flaw in the proof is the
observation that motivates the second step of HITON-MB, which is not true.
This is illustrated by running HITON-MB(7") with D faithful to the DAG (b)
in Table 2. Let us assume that HITON-PC is correct under the faithfulness
assumption. Then, PC = {Q, S} and MB = {P,Q, R, S} at line 3. P and R
are removed from M B at line 6 because @) € PC and T L P|@Q and T' L R|Q.
Then, M B = {Q, S} at line 7. Consequently, the output of HITON-MB does
not include R which is in M B(T') and, thus, HITON-MB does not guarantee
the correct output under the faithfulness assumption even if HITON-PC were
correct under this assumption.

In practice, HITON-MB performs a test if it is reliable and skips it other-
wise. HITON-MB follows the same criterion as IAMB and MMMB to decide
whether a test is reliable or not. HITON-MB is data efficient because the
number of instances required to identify M B(T') does not depend on the size
of MB(T) but on the topology of G.

4 Improving Data Efficiency

This section addresses the same question that motivated MMMB and HITON-
MB: Can we develop an algorithm for learning MBs from data that is scalable,
data efficient, and correct under the faithfulness assumption ? The answer
is yes. We call this new algorithm the parents and children based Markov
boundary algorithm (PCMB) and prove that, unlike MMMB and HITON-
MB, it is correct under the faithfulness assumption. Like IAMB, MMMB and
HITON-MB, PCMB is based on the assumption that the learning database
D is faithful to a DAG G and, thus, each node has a unique MB.

PCMB takes a divide-and-conquer approach that breaks the problem of iden-



Table 5
GetPCD, GetPC and PCMB.

GetPCD(T) GetPC(T)
1 PCD=90 1 PC=0
2 CanPCD =U\{T} 2 for each X € GetPCD(T) do
3 repeat 3 if T € GetPCD(X) then
/* remove false positives from CanPCD */ 4 PC =PCU{X}
4 for each X € CanPCD do 5 return PC
5 Sep[X] = arg minzc pcpdep(T, X|Z)
6 for each X € CanPCD do
7 if T 1 X|Sep[X] then
8 CanPCD = CanPCD \ {X} PCMB(T)
/* add the best candidate to PCD */
9 Y = arg mazxccanpcpdep(T, X|Sep[X]) /* add true positives to M B */

10 PCD = PCDU{Y}

fuy

PC = GetPC(T)

11 CanPCD = CanPCD\ {Y'} 2 MB=PC
/* remove false positives from PCD */ /* add more true positives to M B */
12 for each X € PCD do 3 for each Y € PC do
13 Sep[X] = arg mingcpop\ (x}ydep(T, X|Z) 4 for each X € GetPC(Y) do
14 for each X € PCD do 5 if X ¢ PC then
15 if T 1 X|Sep[X] then 6 findZst TLX|Zand T, X ¢ Z
16 PCD = PCD\ {X} 7 if T4 X|ZU{Y} then
17 until PCD does not change 8 MB=MBU{X}
18 return PCD 9 return MB

tifying M B(T') into two subproblems: First, identifying PC(T") and, second,
identifying the rest of the parents of the children of 7" in G. PCMB uses
the functions GetPCD and GetPC to solve the first subproblem. X t Y|Z,
X 1 Y|Z and dep(X,Y|Z) are the same as in Section 3. Table 5 outlines
GetPCD. The algorithm receives the target node T' as input and returns a
superset of PC(T) in PCD as output. The algorithm tries to minimize the
number of nodes not in PC(7T) that are returned in PCD. The algorithm
repeats three steps until PC'D does not change. First, some nodes not in
PC(T) are removed from CanPCD, which contains the candidates to enter
PCD (lines 4-8). This step is based on the observation that X € PC(T) iff
T X X|Z for all Z such that T, X ¢ Z. Second, the candidate most likely to be
in PC(T) is added to PCD and removed from CanPCD (lines 9-11). Since
this step is based on the heuristic at line 9, some nodes not in PC(T") may be
added to PCD as well. Some of these nodes are removed from PCD in the
third step (lines 12-16). This step is based on the same observation as the first
step.

Theorem 5 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distributed
sample from a probability distribution p faithful to a DAG G, GetPCD(T)
returns a superset of PC(T') that does not include any node in N D(T)\ Pa(T).

Proof: First, we prove that the nodes in PC(7T) are included in the output
PCD. If X € PC(T), then T f X|Z for all Z such that T, X ¢ Z owing
to Theorem 2. Consequently, X enters PC'D at line 10 and does not leave it
thereafter.

10



Second, we prove that the nodes in ND(T) \ Pa(T) are not included in the
output PCD. It suffices to study the last time that lines 12-16 are executed. At
line 12, Pa(T) C PCD owing to the paragraph above. Therefore, if PC'D still
contains some X € ND(T)\ Pa(T), then T I X|Z for some Z C PCD\ {X}
owing to the local Markov property. Consequently, X is removed from PCD
at line 16. O

The output of GetPCD must be further processed in order to obtain PC(T),
because it may contain some descendants of 7" in GG other than its children.
These nodes can be easily identified: If X is in the output of GetPCD(T'), then
X is a descendant of 7" in G other than one of its children iff 7" is not in the
output of GetPCD(X). GetPC, which is outlined in Table 5, implements this
observation. The algorithm receives the target node T as input and returns
PC(T) in PC as output. We prove that GetPC is correct under the faithfulness
assumption.

Theorem 6 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distribu-
ted sample from a probability distribution p faithful to a DAG G, GetPC(T)
returns PC(T).

Proof: First, we prove that the nodes in PC(7T) are included in the output
PC. It X € PC(T), then T' € PC(X). Therefore, X and T satisfy the condi-
tions at lines 2 and 3, respectively, owing to Theorem 5. Consequently, X
enters PC' at line 4.

Second, we prove that the nodes not in PC(T') are not included in the output
PC. Let X ¢ PC(T). If X does not satisfy the condition at line 2, then X
does not enter PC' at line 4. On the other hand, if X satisfies the condition at
line 2, then X must be a descendant of 7" in G other than one of its children
and, thus, 7" does not satisfy the condition at line 3 owing to Theorem 5.
Consequently, X does not enter PC' at line 4. O

Finally, Table 5 outlines PCMB. The algorithm receives the target node T
as input and returns M B(T) in M B as output. The algorithm works in two
steps. First, M B is initialized with PC(T') by calling GetPC (line 2). Second,
the parents of the children of 7" in G that are not yet in M B are added to it
(lines 3-8). This step is based on the following observation. The parents of the
children of T"in G that are missing from M B at line 3 are those that are non-
adjacent to 7" in G. Therefore, if Y € PC(T), X € PC(Y) and X ¢ PC(T),
then X and T are non-adjacent parents of Y in G iff T { X|ZU{Y} for any Z
such that 7' I X|Z and T, X ¢ Z. Note that Z can be efficiently obtained at
line 6: GetPCD must have found such a Z and could have cached it for later
retrieval. We prove that PCMB is correct under the faithfulness assumption.

Theorem 7 Under the assumptions that the independence tests are correct

11



and that the learning database D 1is an independent and identically distribu-
ted sample from a probability distribution p faithful to a DAG G, PCMB(T)
returns M B(T).

Proof: First, we prove that the nodes in M B(T') are included in the output
MB. Let X € MB(T). Then, either X € PC(T) or X ¢ PC(T) but X and
T have a common child Y in G owing to Theorem 3. If X € PC(T'), then X
enters M B at line 2 owing to Theorem 6. On the other hand, if X ¢ PC(T)
but X and T have a common child Y in G, then X satisfies the conditions at
lines 3-5 owing to Theorem 6 and the condition at line 7 owing to Theorem 2.
Consequently, X enters M B at line 8.

Second, we prove that the nodes not in M B(T') are not included in the output
MB. Let X ¢ MB(T). X does not enter M B at line 2 owing to Theorem 6.
If X does not satisfy the conditions at lines 3-5, then X does not enter M B
at line 8. On the other hand, if X satisfies the conditions at lines 3-5, then
it must be due to either " - YV — X or T «— Y « X or T « Y — X.
Therefore, X does not satisfy the condition at line 7 owing to the faithfulness
assumption. Consequently, X does not enter M B at line 8. a

In practice, PCMB performs a test if it is reliable and skips it otherwise.
PCMB follows the same criterion as IAMB, MMMB and HITON-MB to decide
whether a test is reliable or not. PCMB is data efficient because the number of
instances required to identify M B(T') does not depend on the size of M B(T)
but on the topology of GG. For instance, if G is a tree, then PCMB does not
need to perform any test that is conditioned on more than one node in order to
identify M B(T), no matter how large M B(T) is. PCMB scales to databases
with thousands of features because it does not require learning a complete BN.
The experiments in the following section confirm it. Like [AMB, MMMB and
HITON-MB, if the assumptions in Theorem 7 do not hold, then PCMB may
not return a MB of T" but an approximation. We discuss this issue further in
Section 5.

4.1  Ezxperimental Evaluation

In this section, we compare the performance of [IAMB and PCMB through
experiments on synthetic and real databases. We do not consider GS because
IAMB outperforms it [19]. We do not consider MMMB and HITON-MB be-
cause we are not interested in any algorithm that does not guarantee the cor-
rect output under the faithfulness assumption. In order to ensure that IAMB
converges to a local optimum, our implementation of it interleaves the first
and second steps until convergence, i.e. if some node removal occurs at line 9,
then TAMB jumps to line 2 after the second step is completed. This does not
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Table 6
Results of the experiments with the Alarm and Pigs databases.

Database Instances Algorithm Precision Recall Distance Time
Alarm 100 TAMB 0.8540.06 0.46+0.03  0.54+0.06 0+0
Alarm 100 PCMB 0.79+0.04 0.494+0.05  0.51+0.04 0+0
Alarm 200 IAMB 0.8740.04 0.60+0.03  0.42+0.04 0+0
Alarm 200 PCMB 0.9540.03 0.56+0.05  0.38+0.06 0+0
Alarm 500 IAMB 0.9140.03 0.724+0.04  0.30+0.04 0+0
Alarm 500 PCMB 0.9440.01 0.724+0.04  0.26+0.03 0+0
Alarm 1000 TAMB 0.9340.03 0.804+0.01  0.2240.02 0+0
Alarm 1000 PCMB 0.9940.01 0.7940.01 0.1840.02 0+0
Alarm 2000 TAMB 0.9240.04 0.8340.01 0.2240.04 0+0
Alarm 2000 PCMB 1.0040.00 0.83+0.02  0.14+0.01 0+0
Alarm 5000 IAMB 0.9240.02 0.86+0.01  0.18+0.02 0+0
Alarm 5000 PCMB 1.00+0.00 0.86+0.02  0.11+0.02 1+0
Alarm 10000 TIAMB 0.9240.04 0.9040.01 0.1440.03 0+0
Alarm 10000 PCMB 1.00+0.00 0.904£0.02  0.08+0.02 240
Alarm 20000 TAMB 0.9440.00 0.924+0.00  0.10+0.00 1+0
Alarm 20000 PCMB 1.00+0.00 0.924+0.00  0.05+0.00 440
Pigs 100 TAMB 0.8240.01 0.5940.01 0.4840.02 0+0
Pigs 100 PCMB 0.8340.01 0.824+0.02  0.29+0.02 0+0
Pigs 200 IAMB 0.80+0.00 0.824+0.00  0.37£0.00 0£0
Pigs 200 PCMB 0.9740.01 0.9640.01 0.0740.01 140
Pigs 500 TAMB 0.8240.00 0.8440.00 0.3440.00 0+0
Pigs 500 PCMB 0.9840.00 1.00+0.00  0.0240.00 1+0

invalidate Theorem 4. Our implementation of TAMB and PCMB breaks ties at
random. Both TAMB and PCMB are written in C++ and all the experiments
below are run on a Pentium 2.4 GHz, 512 MB RAM and Windows 2000.

4.1.1  Synthetic Data

The experiments in this section focus on the accuracy and data efficiency of
the algorithms, whereas the next section addresses their scalability. For this
purpose, we consider databases sampled from two known BNs, the Alarm BN
[7] and the Pigs BN [8]. These BNs have 37 and 441 nodes, respectively, and
the largest MB consists of eight and 68 nodes, respectively. We run IAMB and
PCMB with each node in each BN as the target random variable T" and, then,
report the average precision and recall over all the nodes for each BN. Precision
is the number of true positives in the output divided by the number of nodes
in the output. Recall is the number of true positives in the output divided
by the number of true positives in the BN. We also combine precision and

recall as \/ (1 — precision)? + (1 — recall)? to measure the Euclidean distance
from perfect precision and recall. Finally, we also report the running time in
seconds. The significance level for the independence tests is 0.01.

Table 6 summarizes the results of the experiments for different sample sizes.
Each entry in the table shows average and standard deviation values over
10 databases (the same 10 databases for IAMB and PCMB). For the Alarm
databases, both algorithms achieve similar recall but PCMB scores higher
precision and, thus, shorter distance than IAMB. Therefore, PCMB usually
returns fewer false positives than IAMB. The explanation is that PCMB per-

13



forms more tests than TAMB and this makes it harder for false positives to
enter the output. Compare, for instance, the heuristic at line 3 in IAMB with
the heuristic at line 9 in GetPCD and the double check at lines 2-3 in GetPC.
For the Pigs databases where larger MBs exist, PCMB outperforms IAMB in
terms of precision, recall and distance. For instance, PCMB correctly iden-
tifies the MB of the node 435 of the Pigs BN, which consists of 68 nodes,
with 500 instances while IAMB performs poorly for this node and sample size
(precision=1.00+0.00, recall=0.044-0.00 and distance=0.96+0.00). The expla-
nation is that, unlike IAMB, PCMB does not need to condition on the whole
MB to identify it. Consequently, we can conclude that PCMB is more accurate
than TAMB because it is more data efficient. It is worth mentioning that we
expect the two variants of TAMB mentioned in Section 3.1 to perform better
than TAMB, as they carry out more tests, but worse than PCMB, as they still
have to condition on the whole MB to identify it, e.g. they require a number

of instances at least exponential in 68 for perfect precision and recall for the
node 435 of the Pigs BN.

4.1.2  Real Data

The experiments in this section compare the ability of [AMB and PCMB to
solve a real-world FSS problem involving thousands of features. Specifically,
we consider the Thrombin database which was provided by DuPont Phar-
maceuticals for KDD Cup 2001 and it is exemplary of the real-world drug
design environment [2]. The database contains 2543 instances characterized
by 139351 binary features. Each instance represents a drug compound tested
for its ability to bind to a target site on thrombin, a key receptor in blood
clotting. The features describe the three-dimensional properties of the com-
pounds. Each compound is labelled with one out of two classes, either it binds
to the target site or not. The task of KDD Cup 2001 was to learn a classifier
from 1909 given compounds (learning data) in order to predict binding affinity
and, thus, the potential of a compound as anti-clotting agent. There were 114
classifiers submitted to KDD Cup 2001, whose accuracy was evaluated by the
organizers of the competition on the remaining 634 compounds (testing data).
The accuracy of a classifier was computed as the average of the accuracy on
true binding compounds and the accuracy on true non-binding compounds.
Besides the huge number of features, the Thrombin database is challenging
for two other reasons. First, the learning data are extremely imbalanced: Only
42 out of the 1909 compounds bind. Second, the testing data are not sam-
pled from the same probability distribution as the learning data, because the
compounds in the testing data were synthesized based on the assay results re-
corded in the learning data. Scoring higher than 60 % accuracy is impressive

2].

To solve the FSS problem for the Thrombin database, we run IAMB and
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Table 7
Results of the experiments with the Thrombin database.

Algorithm Features  Accuracy Time
TAMB 6+0 5440 2426+£72
PCMB 3+1 6310 730241012
No FSS 139351 50 Not available
Winner of KDD Cup 2001 4 68 Not available
NB with the features in the winner of KDD Cup 2001 4 67 Not available
Taking into account the imbalance of the learning data 6 e Not available
Taking into account the distribution of the testing data 15 83 Not available

PCMB with the class random variable as the target random variable 7. Unlike
in the previous section, we cannot now assess the performance of IAMB and
PCMB by comparing their outputs with M B(T') because this is unknown.
Instead, we assess the performance of IAMB (PCMB) as the accuracy on the
testing data of a naive Bayesian classifier (NB) trained on the learning data
corresponding to only the features selected by IAMB (PCMB): The higher the
accuracy the better the features selected and, thus, the better the algorithm
used to select them. In order to train the NBs, we use the MLC++ software
with the default parameters, except for the Laplace correction that is switched
on [9]. We also report the number of features selected and the running time in
seconds. As in the section above, the significance level for the independence
tests in PCMB is 0.01. For ITAMB, however, better results are obtained when
the significance level for the independence tests is 0.0001. This significance
level seems to avoid better than 0.01 the spurious dependencies that may
exist in the learning data due to the large number of features. In the case of
PCMB, it seems that the criterion for a node to enter the output, which is
considerably more stringent than that in IAMB, suffices to avoid the spurious
dependencies.

Table 7 summarizes the results of the experiments. The table shows average
and standard deviation values over 114 runs for JAMB and PCMB because
ties, which are broken at random, are common due to the high dimensiona-
lity of the learning data. Clearly, PCMB returns smaller and more accurate
MBs than TAMB. Specifically, PCMB scores higher than 60 % accuracy in all
the runs, which is impressive according to [2]. For instance, the MB to which
PCMB converges most often (39 out of the 114 runs) scores 63 % accuracy
and contains only three features (12810, 79651 and 91839). Regarding run-
ning time, PCMB is slower than ITAMB because, as we have discussed in the
previous section, it performs more tests. All in all, our results illustrate that
both algorithms are scalable. We note that no existing algorithm for learning
BNs from data can handle such a high-dimensional database as the Thrombin
database. Hence, the importance of developing algorithms for learning MBs
from data that, like IAMB and PCMB, avoid learning a complete BN as an
intermediate step.

Table 7 compiles some other results that we now describe further. We do
not report the baseline accuracy of a NB with no FSS because our computer
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cannot run the MLC++ software with all the 139351 features. This illustrates
the importance of FSS. In [23], 50 % accuracy is reported for a support vector
machine with no FSS. The winner of KDD Cup 2001 was a tree augmented
naive Bayesian classifier with four features scoring 68 % accuracy. A NB with
these four features scores 67 % accuracy. In [23], a classifier that takes into
account that the learning data are imbalanced reaches 77 % accuracy with
six features, and another classifier that takes into account the distribution of
the unlabelled testing data achieves 83 % accuracy with 15 features. Since
the features used by these two classifiers are not reported in [23], we cannot
calculate the accuracy of a NB with only those features. In any case, the 67
% accuracy of the NB with only the features in the winner of KDD Cup 2001
suffices to conclude that IAMB and PCMB return suboptimal solutions to
the FSS problem for the Thrombin database. The causes of this suboptimal
behavior lie, on one hand, in the data inefficiency of IAMB and, on the other
hand, in the divide-and-conquer approach that PCMB takes, that is justified
if the faithfulness assumption holds but that may hurt performance otherwise
(see more evidence on Section 5.1). We believe that in order to improve the
performance of TAMB and PCMB we have to relax the faithfulness assumption
that underlies PCMB and avoid the data inefficiency of IAMB. We address
this question in the next section.

5 Relaxing the Faithfulness Assumption

This section studies the following question: Can we relax the faithfulness as-
sumption and develop an algorithm for learning MBs from data that is cor-
rect, scalable and data efficient 7 We prove that ITAMB is still correct under
the composition property assumption, which is weaker than the faithfulness
assumption (Theorem 1). We propose a stochastic variant of IAMB that can
overcome the data inefficiency of IAMB while being scalable and correct un-
der the composition property assumption. We show with experiments on the
Thrombin database that this new algorithm can outperform IAMB and PCMB
considerably often.

Theorem 8 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distributed
sample from a probability distribution p satisfying the composition property,

IAMB(T) returns a MB of T

Proof: First, we prove that M B is a Markov blanket of T" when the loop
in lines 2-6 is left. Let us suppose that this is not the case, i.e. T L (U \
MB\ {T})|MB when the loop in lines 2-6 is left. Then, there exists X €
(U\ MB\ {T}) such that T" £ X|MB due to the composition property
assumption. This contradicts the assumption that the loop in lines 2-6 is left
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Fig. 1. BN for the integer transmission example (n € (0,1/2)).
due to the assumption that the independence tests are correct.

Second, we prove that M B remains a Markov blanket of T' after each node
removal in line 9. It suffices to note that the independence tests are assumed
to be correct and that T L (U\ MB\{T})|MB and T L X|(M B\ {X}) yield
TLU\MB\{X}H\{TH|(MB\ {X}) due to the contraction property.

Third, we prove that M B is a minimal Markov blanket of 7" in line 10. Let
us suppose that this is not the case, i.e. there exists M C M B in line 10 such
that M is a Markov blanket of 7. Let X € (MB\M) and Y C (U\ M\
{T}\ {X}). Then, T L (U\ M\ {T})M and, thus, T' L (Y U {X})|M due
to the decomposition property and, thus, 7' L X|(M UY) due to the weak
union property. This contradicts the assumption that M C M B, because any
X € (MB\ M) would have been removed from MB in line 9 due to the
assumption that the independence tests are correct. O

The following result, which we borrow from [3], illustrates that the composition
property assumption is much weaker than the faithfulness assumption. If a
probability distribution p(U, H, S) is faithful to a DAG G over {U, H, S}, then
p(U) = Xup(U,H = h,S = s) satisfies the composition property, though it
may not be faithful to any DAG. In other words, G can include some hidden
nodes H and some selection bias S = s. Moreover, this result holds not only
for DAGs and the d-separation criterion but for any graph and any criterion
that is based on vertex separation.

As mentioned before, false positives may enter M B at line 5 in IAMB because

the heuristic at line 3 is greedy. An example, inspired by [21], follows. An inte-
ger between 0 and 3 is sent from a transmitter station 7' to a receiver station
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Table 8
KIAMB.

KIAMB(T, K)

/* add true positives to M B */
MB=10
repeat
CanMB = ()
for each X € (U\ MB\ {T}) do
if T { X|MB then
CanMB = CanMB U {X}
CanM B2 = random subset of CanM B with size maz(1, |(|CanMB| - K)|)
Y = arg maxxccannmpadep(T, X|M B)
MB=MBU{Y}
until M B does not change
/* remove false positives from M B */
11 for each X € M B do
12 if TLX|(MB)\ {X}) then
13 MB=MB\ {X}
14 return MB

COVWNDURWNH

=

R through two intermediary stations /; and /5. T does not send the integer to
I, but only wether it is in {0,1} or in {2,3}. Likewise, T" only communicates
to I whether the integer is in {0,2} or in {1,3}. Fig. 1 depicts a BN for this
example, where n € (0,1/2) represents the noise in the transmission. Since
p(T, I, I, R) satisfies the faithfulness assumption, {Iy, I} is the unique MB
of T'. If n is positive but small enough, then R has more information about the
integer transmitted by 7" than I; or I alone. Thus, owing to the greediness of
the heuristic at line 3, we expect IAMB(T') to first add R, then add I; and I5 in
any order, and finally remove R. This sequence of node additions and removals
is less data efficient and more prone to errors than directly adding /; and I5 in
any order, because the former sequence requires three independence tests to
decide dependence while the latter requires only two. Therefore, the sequence
that IAMB tries may not be the most data efficient and safe sequence avai-
lable. This leads us to propose a stochastic variant of IAMB, called KIAMB,
that can try different sequences when run repeatedly. Hopefully, some of these
sequences are more data efficient and less prone to errors than the one used
by TAMB, e.g. if they add fewer false positives.

Table 8 outlines KIAMB. KIAMB differs from ITAMB in that it allows the
user to specify the trade-off between greediness and randomness in the search
through an input parameter K € [0,1]. IAMB corresponds to KIAMB with
K = 1. Therefore, while IAMB greedily adds to M B the most dependant node
in CanM B which contains the candidates to enter M B, KIAMB adds to M B
the most dependant node in C'lanM B2 which is a random subset of CanM B
with size maz(1, |(|CanM B| - K)|) where |CanM B| is the size of CanM B
(lines 7-9). The proof of Theorem 8 is also valid for the following theorem.

Theorem 9 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distributed
sample from a probability distribution p satisfying the composition property,
KIAMB(T, K ) returns a MB of T' for any value of K.
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We note that Theorems 8 and 9 say “a MB of 7”7 and not “the MB of T”
because, unlike the faithfulness assumption, the composition property assump-
tion does not imply that 7" has an unique MB. A necessary condition for the
existence of more than one MB of T is that p does not satisfy the intersec-
tion property (Theorem 3), which implies that p cannot be strictly positive
(Theorem 1). A simple example of a probability distribution p that satisfies
the composition property and has several MBs of T" involves two other random
variables X and Y such that T = X = Y: Both {X} and {Y} are MBs of
T. A more elaborated example is the integer transmission scenario introduced
above with p(T) uniform and n = 0: Both {I;, I} and {R} are MBs of T.!
The following theorem extends Theorem 9 with the guarantee that KIAMB
with K = 0 can discover any MB of 7.

Theorem 10 Under the assumptions that the independence tests are correct
and that the learning database D is an independent and identically distributed
sample from a probability distribution p satisfying the composition property,
KIAMB(T,0) returns a MB of T. The MB of T returned is any MB of T with
non-zero probability.

Proof: M B is a MB of T in line 14 due to Theorem 9. Let us assume that
T has several MBs. We now prove that M B is any MB of T" in line 14 with
non-zero probability. Let M C (U \ {T'}) be any MB of T. First, we prove
that if M B C M before the node addition in line 9, then M B C M with
non-zero probability after the node addition. Let us assume that M B C M
before the node addition in line 9. Then, T" L (U \ MB \ {T'})|MB and
T L (U\M\{T})|M. These two statements together yield T £ (M\ M B)|M B
due to the contraction property and, thus, there exists X € (M \ M B) such
that 7' X X|M B due to the composition property assumption. Therefore, X
is added to M B in line 9 with non-zero probability due to K = 0 and the
assumption that the independence tests are correct.

Second, we prove that M B = M in line 14 with non-zero probability. The
paragraph above guarantees that M B = M with non-zero probability when
the loop in lines 2-10 is left, and the assumption that the independence tests
are correct guarantees that none of the nodes in M B is removed from it in
line 13. a

The theorem above does not hold for TAMB, e.g. IAMB always returns { R}
in the integer transmission example with p(7") uniform and n = 0 because the

I To show that this modification of the integer transmission example satisfies the
composition property, we reformulate it as follows. Let B; and B be the first and
second bits, respectively, of the binary code corresponding to the integer sent by 7.
Then, T=R= {Bl,BQ}, Il = {Bl}, IQ = {BQ}, and XJLY’Z iff (X\Z) nNyY = @
Consequently, X LY|ZAX LW|Z = (X\Z)NY =0AX\Z)NW =0 =
(X\Z)N(YUW)=0=XL1L(YUW)|Z.
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Fig. 2. Histograms of the accuracy of the runs of KIAMB (accuracy in the horizontal
axis and number of runs in the vertical axis).

heuristic at line 3 is greedy. However, in some cases IAMB can return any MB
of T by just breaking ties at random, e.g. in the 7' = X = Y example. The
theorem above guarantees that KIAMB with K = 0 discovers all the MBs of
T if run repeatedly enough times. However, since T can have many MBs, it
may be more realistic to say that running KIAMB repeatedly with K # 1 has
the potential to discover, if not all, at least several MBs of T'. This ability to
generate alternative hypothesis is important in domains such as bioinformatics
and medicine [16]. For instance, if the nodes in a MB of T represent genetic
markers for a disease T, then the more MBs of T are identified the more
biological insight into the disease T' is gained.

5.1  Ezxperimental Evaluation

In the previous section, we have argued that KIAMB can outperform TAMB
because it can follow a sequence of node additions and removals that is more
data efficient and, thus, less prone to errors. In this section, we confirm it by
adding to the 114 runs of IAMB in Section 4.1.2 the results of 114 runs of
KIAMB with K = 0.8. Preliminary experiments indicated that K € [0.7,0.9]
performs best. We run each algorithm 114 times to guarantee that our results
are comparable with those of KDD Cup 2001, which had 114 participants. Our
implementation of KIAMB reuses most of the code of IAMB in Section 4.1.2,
including the interleaving of the first and second steps until convergence. This
does not invalidate any of the theorems in the previous section. The rest of
the experimental setting is the same as in Section 4.1.2.

The 114 runs of TAMB return 39 different MBs, all of them containing six
features: 62 runs corresponding to 19 different MBs score 53 % accuracy, and
52 runs corresponding to 20 different MBs score 54 % accuracy. The 114 runs of
KIAMB return 85 different MBs, containing from four to seven features. The
left histogram in Fig. 2 summarizes the accuracy of the 114 runs of KIAMB,
whereas the right histogram in the figure summarizes the accuracy of the
85 different MBs found in these runs. It is clear from the histograms that
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KIAMB is able to identify many MBs that outperform those found by TAMB.
To be exact, 49 of the 114 runs of KIAMB corresponding to 38 different MBs
score higher than 54 % accuracy, which is the highest accuracy obtained by
TAMB. Only 28 of the 114 participants in KDD Cup 2001 scored higher than
54 % accuracy. Furthermore, 12 of the 114 runs of KIAMB corresponding
to 10 different MBs score 69 % accuracy, whereas the winner of KDD Cup
2001 scored 68 % accuracy. Our 10 MBs scoring 69 % accuracy contain six
features. These are 3392, 63916, 79651, 135817, 138924 and, then, one of the
following ones: 46937, 48386, 49864, 51230, 55132, 63853, 63856, 73697, 103235
or 108355. Regarding running time, IAMB takes 2426472 seconds per run and
KIAMB 2408+442. Therefore, our results confirm that KIAMB is scalable and
that it can outperform IAMB considerably often.

The histograms in Fig. 2 also warn that KIAMB can perform worse than
IAMB. To be exact, 17 of the 114 runs of KIAMB corresponding to 16 dif-
ferent MBs score lower than 53 % accuracy, which is the lowest accuracy
obtained by TAMB. We note that 79 of the 114 participants in KDD Cup
2001 scored lower than 53 % accuracy. Therefore, KIAMB should be seen as
a tool to generate alternative MBs, each of which should be validated before
being accepted. The validation may resort to expert knowledge of the domain
at hand. Or, as we have done in this paper, it may use some testing data.
Obviously, having to hold some data out of the learning process for testing
purposes is a drawback when the data available are scarce. However, we prefer
it to running IAMB on all the data available which, as our experiments show,
may produce a rather inaccurate MB. It is necessary warning that selecting
the most accurate MB on some testing data out of the MBs obtained by run-
ning KIAMB repeatedly on some learning data may result in an overfitted
MB if the number of repeated runs is too large [11]. We do not think this is
an issue in our experiments because 114 is not such a large number of runs. In
any case, the risk of overfitting in our experiments should be comparable to
that in KDD Cup 2001, because we run KIAMB as many times as there were
participants in KDD Cup 2001. Moreover, we do not simply compare the best
MB obtained via KIAMB with the winner of KDD Cup 2001 but we compare
the whole distributions of results, which makes our conclusions more robust
against overfitting.

The histograms in Fig. 2 show that KIAMB can also outperform PCMB consi-
derably often. As a matter of fact, 16 of the 114 runs of KIAMB corresponding
to 14 different MBs score higher than 63 % accuracy, which is the accuracy
obtained by all the 114 runs of PCMB in Section 4.1.2. Only five of the 114
participants in KDD Cup 2001 scored higher than 63 % accuracy. Finally, we
report 114 runs of a stochastic version of PCMB, called KPCMB, in which
the greedy heuristic at line 9 in GetPCD is modified to trade-off greediness
and randomness through an input parameter K € [0, 1] in exactly the same
way as [JAMB was modified to develop KIAMB. We use K = 0.8 in the ex-
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Fig. 3. Histograms of the accuracy of the runs of KPCMB (accuracy in the horizontal
axis and number of runs in the vertical axis).

periments. The left histogram in Fig. 3 summarizes the accuracy of the 114
runs of KPCMB, whereas the right histogram in the figure summarizes the
accuracy of the 69 different MBs found in these runs. Surprisingly, none of
the runs of KPCMB scores higher than the 63 % accuracy of PCMB but 53
runs corresponding to 38 different MBs score lower than that. The reason of
such poor performance lies in that KPCMB does not always return a MB of
T, because there may exist some nodes not in the output of KPCMB that
are dependent of T" given the output. For instance, the worst run of KPCMB
scores 26 % accuracy and returns the features 3392, 79651 and 135817, but
T K 46937|{3392, 79651, 135817}. However, neither these four features are a
MB of T because T' £ 63916|{3392, 46937, 79651, 135817}. Neither these five
features are a MB of T" because T' £ 138924|{3392, 46937, 63916, 79651, 135817}.
Now, these six features are a MB of T'. Actually, they are one of the 10 MBs
scoring 69 % accuracy that are found by KIAMB. The reason why KPCMB
may not return a MB of T lies in the divide-and-conquer approach that it
takes, that is justified if the faithfulness assumption holds but that may hurt
performance otherwise. In other words, the solutions to the subproblems that
KPCMB obtains with the help of GetPCD and GetPC may not combine into
a solution to the original problem of learning a MB of T'. This illustrates the
importance of developing algorithms for learning MBs from data that, like
KIAMB, avoid the faithfulness assumption while being data efficient.

6 Discussion

In this paper, we have reported the results of our research on learning MBs
from data. We have presented algorithms for such a task, studied the condi-
tions under which they are correct, scalable and data efficient, and evaluated
them on synthetic and real databases. Specifically, we have introduced PCMB,
an algorithm that is scalable, data efficient, and correct under the faithfulness
assumption. Then, we have proven that IAMB is correct under the composi-
tion property assumption. Finally, we have introduced KIAMB, an algorithm
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that aims to overcome the data inefficiency of IAMB while being scalable and
correct under the composition property assumption. The experimental results
have shown that PCMB outperforms TAMB, and that KIAMB can outper-
form TAMB and PCMB considerably often. The experimental results have also
confirmed that these algorithms can scale to high-dimensional domains. The
reason is that they do not require learning a BN first, which can be painfully
time consuming in high-dimensional domains [22]. This is particularly true for
those algorithms for learning BNs from data that are (asymptotically) correct
under the faithfulness or composition property assumption [22], which are the
ones we are interested in.

It is worth mentioning that the proofs of correctness of the algorithms in this
paper assume that the independence tests are correct. If the tests are sim-
ply consistent, then the proofs of correctness become proofs of consistency,
because the algorithms perform a finite number of tests. Kernel-based inde-
pendence tests that are consistent for any probability distribution exist [5,6].
The probability of error for these tests decays exponentially to zero when the
sample size goes to infinity.

It is also worth mentioning that, throughout this paper, we have assumed that
all the random variables are discrete. However, the results in this paper remain
valid when all the random variables except the target node are continuous.
Furthermore, they also remain valid when all the random variables (including
the target node) are continuous. It suffices to replace the y? independence
test by an appropriate independence test, e.g. Student’s ¢-test or Fisher’s z
test. The case where all the random variables (including the target node) are
continuous is particularly interesting if the learning database is assumed to
be a sample from a Gaussian probability distribution, because any Gaussian
probability distribution satisfies the composition property, no matter whether
it is faithful to some DAG or not [18]. Therefore, IAMB and KIAMB are
correct if the learning database is assumed to be a sample from a Gaussian
probability distribution. Such an assumption is common in many domains,
e.g. when learning genetic regulatory networks from gene expression databases
[15].

We are currently working on a scalable divide-and-conquer algorithm similar to
PCMB that is data efficient as well as correct under the composition property
assumption. At the same time, we are applying the results in this paper to solve
the FSS problem for gene expression databases with thousands of features but
hundreds of instances at most. Since the existing algorithms for learning BNs
from data can be painfully time consuming for such high-dimensional database
[22], it is very important to develop algorithms for learning MBs from data
that, like those in this paper, avoid learning a complete BN as an intermediate
step. An alternative approach is to reduce the search space so as to reduce
the computational cost of the existing algorithms for learning BNs from data.
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For instance, [4,22] propose restricting the search for the parents of each node
to a small set of candidate parents that are selected in advance. According
to the experiments in the latter paper, the algorithm proposed in that paper
performs better. However, both algorithms lack a proof of (asymptotic) cor-
rectness under the faithfulness assumption. Moreover, it seems unnecessarily
time consuming to learn a complete BN to solve the FSS problem, because
we are only interested in a very specific part of it, namely M B(T'). Based on
this idea and the results in this paper, we have recently presented in [14] an
algorithm that learns a BN for the nodes in the neighborhood of a given node.
This algorithm allows us to cope with high-dimensional data by learning a
local BN around a node of interest rather than a complete BN model of the
data.
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