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Abstract. This paper deals with different chain graph interpretations
and the relations between them in terms of representable independence
models. Specifically, we study the Lauritzen-Wermuth-Frydenberg,
Andersson-Madigan-Pearlman and multivariate regression interpretations
and present the necessary and sufficient conditions for when a chain
graph of one interpretation can be perfectly translated into a chain graph
of another interpretation. Moreover, we also present a feasible split for
the Andersson-Madigan-Pearlman interpretation with similar features as
the feasible splits presented for the other two interpretations.
Keywords: Chain Graphs, Lauritzen-Wermuth-Frydenberg interpreta-
tion, Andersson-Madigan-Pearlman interpretation, multivariate regres-
sion interpretation.

1 Introduction

Today there exist mainly three interpretations of chain graphs (CGs). These
are the Lauritzen-Wermuth-Frydenberg (LWF) interpretation presented by Lau-
ritzen, Wermuth and Frydenberg in the late eighties [6, 7], the Andersson-Madigan-
Pearlman (AMP) interpretation presented by Anderson, Madigan and Pearlman
in 2001 [2] and the multivariate regression (MVR) interpretation presented by
Cox and Wermuth in the nineties [3, 4]. A fourth interpretation of CGs can also
be found in a study by Drton [5] but this interpretation has not been further
studied and will not be discussed in this paper.

Each interpretation has a different separation criterion and do therefore rep-
resent different independence models. So far most papers have studied the dif-
ferent interpretations independently with a few exceptions such as the study of
discrete CG models by Drton [5] and the study of CGs representing Gaussian
distributions by Wermuth et al. [12]. Therefore it has not really been studied
what differences and similarities that exist between the different interpretations
in terms of representable independence models. Andersson et al. made a small
study of this when they presented their new (AMP) interpretation and managed
to show when the independence model of a CG of the AMP interpretation could
be represented perfectly by a CG of the LWF interpretation. They did however
not show when the opposite held and did no comparison with CGs of the MVR
interpretation. Wermuth and Sadeghi did on the other hand present conditions
for when a CG of the MVR interpretation could be translated into a CG of the
LWF or AMP interpretation when they introduced regression graphs [11]. The



conditions were however only necessary and sufficient if the two CGs contained
the same connectivity components and not the more general case where the CGs
could take any form.

In this paper we hope to fill this gap and hence the main contribution of this
paper is a table where we show the necessary and sufficient conditions for when
a CG of one interpretation can be perfectly translated into a CG of another
interpretation. First we do however define a feasible split for the AMP inter-
pretation, with similar features as the feasible splits shown for the LWF [10]
and MVR [9] interpretation, that are used in these conditions. Hence this is our
second contribution. Finally we also show that there for all three CG interpre-
tations exists a minimal set of non-directed edges for each Markov equivalence
class and that the CG containing these, and only these, non-directed edges can
be reached through repeated feasible splits from any member of the class.

The remainder of the article is organized as follows. In the next section we
present the notation we will use throughout the article. This is followed by the
definitions of the feasible splits for each interpretation as well as the proof that
the feasible split for CGs of the AMP interpretation is sound. In section 4 we
start by presenting the conditions of when a CG of one interpretation can be
perfectly represented by a CG of another interpretation. This is then followed
by the proofs that these conditions are sound.

2 Notation

All graphs are defined over a finite set of variables V . If a graph G contains an
edge between two nodes V1 and V2, we denote with V1→V2 a directed edge, with
V1←→V2 a bidirected edge and with V1−V2 an undirected edge. By V1 ←⊸V2 we mean
that either V1→V2 or V1←→V2 is in G. By V1⊸V2 we mean that either V1→V2 or
V1 − V2 is in G. By V1 ⊸⊸V2 we mean that there exists an edge between V1 and
V2 in G while we with V1 . . . .V2 mean that there might or might not exist an edge
between V1 and V2. By a non-directed edge we mean either a bidirected edge
or an undirected edge. A set of nodes is said to be complete if there exist edges
between all pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {V1∣V1→V2 is in
G, V1 ∉ X and V2 ∈ X}. The children of X is the set chG(X) = {V1∣V2→V1 is in
G, V1 ∉ X and V2 ∈ X}. The spouses of X is the set spG(X) = {V1∣V1←→V2 is in
G, V1 ∉ X and V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1∣V1−V2 is
in G, V1 ∉ X and V2 ∈ X}. The boundary of X is the set bdG(X) = paG(X) ∪
nbG(X) ∪ spG(X). The adjacents of X is the set adG(X) = {V1∣V1→V2,V1←V2,
V1←→V2 or V1−V2 is in G, V1 ∉X and V2 ∈X}.

A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn
such that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only distinct
nodes. The length of a path is the number of edges in the path. A path is called
a cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1)∪spG(Vi+1)∪nbG(Vi+1)
for all 1 ≤ i < n. A path π = V1, . . . , Vn is minimal if there exists no other path π2
between V1 and Vn st π2 ⊂ π holds. The descendants of a set of nodes X of G is



the set deG(X) = {Vn∣ there is a descending path from V1 to Vn in G, V1 ∈X and
Vn ∉X}. A path is strictly descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The strict
descendants of a set of nodes X of G is the set sdeG(X) = {Vn∣ there is a strict
descending path from V1 to Vn in G, V1 ∈ X and Vn ∉ X}. The ancestors (resp.
strict ancestors) of X is the set anG(X) = {V1∣Vn ∈ deG(V1), V1 ∉ X,Vn ∈ X}
(resp. sanG(X) = {V1∣Vn ∈ sdeG(V1), V1 ∉ X,Vn ∈ X}). A cycle is called a semi-
directed cycle if it is descending and Vi→Vi+1 is in G for some 1 ≤ i < n. A CG
under the Lauritzen-Wermuth-Frydenberg (LWF) interpretation, denoted LWF
CG, contains only directed and undirected edges but no semi-directed cycles.
Likewise a CG under the Andersson-Madigan-Perlman (AMP) interpretation,
denoted AMP CG, is a graph containing only directed and undirected edges but
no semi-directed cycles. A CG under the multivariate regression (MVR) inter-
pretation, denoted MVR CG, is a graph containing only directed and bidirected
edges but no semi-directed cycles. A connectivity component C of a LWF CG
or an AMP CG (resp. MVR CG) is a maximal (wrt set inclusion) set of nodes
such that there exists a path between every pair of nodes in C containing only
undirected edges (resp. bidirected edges). We denote the set of all connectivity
components in a CG G by cc(G) and the component to which a set of nodes X
belong in G by coG(X). A subgraph of G is a subset of nodes and edges in G. A
subgraph of G induced by a set of its nodes X is the graph over X that has all
and only the edges in G whose both ends are in X. A bidirected flag is an induced
subgraph of the form X←→Y←→Z in a MVR CG. With the moral closure graph
of a component C in a LWF CG G, denoted (Gcl(C))m, we mean the subgraph
of G induced by C ∪ paG(C) where every edge have been made undirected and
every pair of nodes in paG(C) have been made adjacent with undirected edges.

Let X, Y and Z denote three disjoint subsets of V . We say that X separated
from Y given Z denoted as X⊥GY ∣Z if the following criteria is met: If G is a
LWF CG then X and Y are separated given Z iff there exists no route between
X and Y such that every node in a non-collider section on the route is not in
Z and some node in every collider section on the route is in Z. A section of a
route is a maximal (wrt set inclusion) non-empty set of nodes B1...Bn such that
the route contains the subpath B1−B2− . . .−Bn. It is called a collider section if
B1 . . .Bn together with the two neighbouring nodes in the route, A and C, form
the subpath A→B1−B2− . . .−Bn←C. For any other configuration the section is
a non-collider section. If G is an AMP CG then X and Y is separated given Z
iff there exists no S-open path between X and Y . A path is said to be S-open
iff every non-head-no-tail node on the path is not in Z and every head-no-tail
node on the path is in Z or sanG(Z). A node B is said to be a head-no-tail in
an AMP CG G between two nodes A and C on a path if one of the following
configurations exists in G: A→B←C, A→B−C or A−B←C. Moreover G is also
said to contain a triplex ({A,C},B) iff one such configuration exists in G and
A and C are not adjacent in G. For any other configuration the node B is a
non-collider. If G is a MVR CG then X and Y are separated given Z iff there
exists no d-connecting path between X and Y . A path is said to be d-connecting
iff every non-collider on the path is not in Z and every collider on the path is



in Z or sanG(Z). A node B is said to be a collider in a MVR CG G between
two nodes A and C on a path if one of the following configurations exists in
G: A→B←C, A→B←→C,A←→B←C or A←→B←→C. For any other configuration the
node B is a non-collider.

The independence model M induced by a graph G, denoted as I(G) or
IPGM−class(G), is the set of separation statements X⊥GY ∣Z that hold in G ac-
cording to the interpretation to which G belongs or the subscripted PGM-class.
We say that two graphs G and H are Markov equivalent (under the same inter-
pretation) or that they are in the same Markov equivalence class iff I(G) = I(H).

3 Feasible Splits

For the LWF and MVR interpretation, operations for altering a CG structure
without changing its Markov equivalence class have been presented [9, 10]. One
such operation is called feasible split and is in this article used to prove certain
theorems. Hence we repeat the definitions here. Moreover, we also present the
corresponding operation, called feasible split for AMP CGs, for the AMP CG
interpretation and prove that it is sound. Note that this is not the inverse op-
eration to a legal merging presented in the deflagging procedure for AMP CGs
by Roverto and Studený [8]. Their operation was applied to so called strong
equivalence classes, not the more general Markov equivalence classes used here.

Definition 1. Feasible split for LWF CGs [10]
A connectivity component C of CG G under the LWF interpretation can be
feasibly split into two disjoint sets U and L st U ∪ L = C by replacing every
undirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ neG(L) ∩U, paG(L) ⊆ paG(A)
2. neG(L) ∩U is complete

Definition 2. Feasible split for AMP CGs
A connectivity component C of CG G under the AMP interpretation can be
feasibly split into two disjoint sets U and L st U ∪ L = C by replacing every
undirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ neG(L) ∩U,L ⊆ neG(A)
2. neG(L) ∩U is complete
3. ∀B ∈ L, paG(neG(L) ∩U) ⊆ paG(B)

Definition 3. Feasible split for MVR CGs [9]
A connectivity component C of CG G under the MVR interpretation can be
feasible split into two disjoint sets U and L st U ∪ L = C by replacing every
bidirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ spG(U) ∩L, U ⊆ spG(A) holds
2. ∀A ∈ spG(U) ∩L, paG(U) ⊆ paG(A) holds
3. ∀B ∈ spG(L) ∩U , spG(B) ∩L is a complete set



Definition 4. Maximally orientated CG
A CG G (under any interpretation) is maximally orientated iff no feasible splits
can be performed on G.

Lemma 1. A CG G of the AMP interpretation is in the same Markov equiva-
lence class before and after a feasible split.

Proof. Assume the contrary. Let G be a CG under the AMP interpretations
and G′ a graph st G′ is G with a feasible split performed upon it. G and G′

are in different Markov equivalence classes or G′ is not a CG under the AMP
interpretation iff (1) G and G′ does not have the same adjacencies, (2) G and
G′ does not have the same triplexes or (3) G′ contains semi-directed cycles.

First it is clear that G and G′ contains the same adjacencies since a feasible
split does not change the adjacencies of any node in G. Secondly let us assume
G and G′ does not have the same triplexes. First let us assume that G′ contains
a triplex ({X,Y }, Z that does not exist in G. It is clear that such a triplex can
only occur if Z ∈ L since the only difference between G and G′ is that G′ contains
some directed edges orientated towards L where G contains undirected edges. It
is clear that if the triplex is a flag then the one of the node X or Y , let’s say X,
must be in U and the other one, let’s say Y , must be in L. However, according to
condition 1 Y must be adjacent to X which causes a contradiction. If the triplex
is not a flag both X and Y must be in U . They also have to be in neG(L),
which, together with condition 2, contradicts that they are not adjacent. Hence
we have a contradiction for that G′ contains a triplex that does not exist in G.

Secondly assume G contains a triplex ({X,Y }, Z) that does not exist in G′.
It is clear that this new triplex cannot be over a node in L since these nodes only
have edges orientated towards them. Instead assume Z ∈ U . This gives that one
of the nodes X or Y , let’s say X, must be a parent of Z and the other, let’s say
Y , must be in L. This does however contradict condition 3, since every parent
of Z also must be a parent of Y , and hence X and Y must be adjacent. This
gives us a contradiction.

Finally assume G′ contain a semi-directed cycle. This means there exists
two nodes X and Y st X ∈ paG′(Y ) but X ∈ deG′(Y ) ∪ coG′(Y ). It is clear
that ∀A ∈ V deG′(A) ⊆ deG(A) and coG′(A) ⊆ coG(A) hold. Hence we must
have that X ∈ deG(Y ) ∪ coG(Y ) also hold which, together with ∀B ∈ V ∖ L
paG′(B) = paG(B), means that Y is in L and since ∀D ∈ L paG′(D) = paG(D)∪U
holds X must be in U . However, at the same time coG′(Y ) = coGY ∖ U and
deG′(Y ) ⊆ deGY must hold and hence we have a contradiction.

A maximally orientated CG can be obtained from any member of its Markov
equivalence class by performing feasible splits until no more feasible splits can
be performed.

Theorem 1. A CG (under any interpretation) has the minimal set of non-
directed edges for its Markov equivalence class if no feasible split is possible.

The following theorem shows that there may exist several maximally orien-
tated CGs in a given Markov equivalence class but all of them share the same
non-directed edges.



Theorem 2. For any Markov equivalence class of CGs (under any interpreta-
tion), there exists a unique minimal (wrt inclusion) set of non-directed edges
that is shared by all members of the class.

The proofs of the Theorem 1 and 2 for the MVR interpretation can be found
in the article by Sonntag and Peña [9]. These proofs can easily be adapted for
the LWF and AMP interpretations.

4 Translations between Interpretations

In this section the main result of this paper is presented, namely what the
conditions are for a CG of one interpretation to be possible to translate into a CG
of another interpretation. With translate we mean that the induced independence
model of a CG of one interpretation can be represented perfectly by a CG of
another interpretation. A summary of these results is presented in Table 1.

LWF AMP MVR

LWF - Unidentified
(Gcl(K))

m is chordal for
all K ∈ cc(G).

AMP
G contains no k-biflag

where k ≥ 2 [2]
-

G′ does not contain any
induced subgraph of the

form X−Y −Z

MVR
G′ contains no
bidirected edge

G′ contains no
bidirected flag

-

Table 1: Given a CG G of the interpretation denoted in the row, and a maximally
oriented CG G′ in the Markov equivalence class of G, there exists a CG H of
the interpretation denoted in the column st G and H are Markov equivalent iff
the condition in the intersecting cell is fulfilled.

From the table two things can be noted. First that the conditions given in
the table may include a maximally oriented CG G′ in the same equivalence
class as G. This is done for several reasons. First, such a graph is easy and
computationally simple to find. Secondly, this allows the proofs to be based on
the idea that no feasible split is possible for the interpretation in mind. Third
and last, the search space of CGs is smaller and more assumptions can be made
on the CG. This in turn allows for more efficient algorithms when calculating
if the condition holds for some CG. The second note that can be made is that
there still does not exist any necessary and sufficient condition for when a perfect
translation of a LWF CG G into an AMP CG H is possible. Andersson et al.
gave a necessary condition but also showed that this condition was not sufficient
[2]. We have managed to prove the necessity of more elaborate conditions but
still been unable to prove sufficiency for these. Hence this condition is left for
future work.



The rest of this section contains the theorems stating the conditions shown
in Table 1 together with their proofs.

4.1 Translation of MVR CGs to AMP CGs

Theorem 3. Given a MVR CG G, and a maximally oriented MVR CG G′ in
the Markov equivalence class of G, there exists an AMP CG H st IMVR(G) =
IAMP (H) iff G′ contains no bidirected flag.

Proof. Sufficiency follows from from Lemmas 4 and 5 and necessity follows from
Lemma 2.

Lemma 2. A MVR CG G and an AMP CG H with the same structure, except
that every bidirected edge in G is replaced by a undirected edge in H and where
G contains no bidirected flag, represent the same independence model.

Proof. Assume to contrary that there exists two CGs, G under the MVR in-
terpretation and H under the AMP interpretation, st G does not contain any
bidirected flag, i.e induced subgraph of the form X←→Y←→Z, G and H contain the
same directed edges, and for every bidirected edge in G H has an undirected edge
instead (and only contains those undirected edges) but IMVR(G) ≠ IAMP (H).
Clearly we must have VG = VH and that adjG(X) = adjH(X), paG(X) = paH(X)
and coG(X) = coH(X) holds for all X ∈ VG. Given the definition of strict de-
scendants sanG(X) = sanH(X) must also hold. Moreover note that H cannot
contain any induced subgraph of the form X−Y −Z. Finally note that both G
and H contains the same paths between X and Y .

For I(G) ≠ I(H) to hold there has to exist a path π in G (resp. H) that is
d-connecting (resp. S-open) st there exist no path in H (resp. G) that is S-open
(resp. d-connecting). Let π be a minimal d-connecting (resp. S-open) path in
G (resp. H). Note that π cannot contain any contain any subpath of the form
V1←→V2←→V3 (resp. V1−V2−V3) since the edge V1←→V3 (resp. V1−V3) must exist
in G (resp. H) or G contains a bidirected flag or semi-directed cycle. This in
turn would mean that π is not minimal since the path π ∖ V2 also must be d-
connecting and shorter than π. For π to be both d-connecting and S-open for
any set of nodes Z it must contain the same colliders and head-no-tail nodes.
A node W ∈ π is a collider if it is part of the following configurations of edges
in π (1) →W←, (2) ←→W←, (3) →W←→ and (4) ←→W←→. Clearly the fourth case
cannot occur. Case 1-3 would be translated into (1) →W←, (2) −W←, (3)→W−

in H which are all (and the only) head-no-tail configurations. Hence π must be
d-connecting in G iff π is S-open in H which contradicts the assumption.

Lemma 3. If a maximally oriented CG G of the MVR interpretation contains
a bidirected flag X←→Y←→Z then G also contains an induced subgraph of the form
shown in (1) Figure 1a or (2) 1b or (3) P ←⊸Q←→Y←→Z or (4) P ←⊸Q←→W←→Z st
bdG(Q) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(Q) hold.



Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally orientated. Let C be
the component of which X,Y and Z belongs. Let A be the set of nodes Ak st
Ak ∈ spG(Y ) but Ak ∉ spG(Z). We know that X fulfills these criteria and hence
∣A∣ ≥ 1.

First note that if there exists a node Ak ∈ A st bdG(Ak) /⊆ bdG(Y ) ∪ Y
then there exists an induced subgraph P ←⊸Ak←→Y←→Z . . . .P in G for some node
P ∈ bdG(Ak)∖bdG(Y )∖Y . Hence we have a contradiction since G either contains
an induced subgraph of the form shown in Figure 1b (P ∈ bdG(Z)) or of the form
P ←⊸Q←→Y←→Z (P ∉ bdG(Z)). Therefore we must have that bdG(Ak) ⊆ Y ∪bdG(Y )
holds for all Ak ∈ A, i.e. that bdG(A) ⊆ Y ∪ bdG(Y ) holds.

Secondly note that we can let B be a subset of A st B consists of the nodes
in one connected subgraph in the subgraph of G induced by A (any connected
subgraph will do). Let D be the set of nodes st D = spG(Y ) ∩ spG(Z) ∩ spG(B).
With these sets we know that the spouses of Y can be either adjacent of Z or
not, hence spG(Y ) = D ∪A must hold. This in turn gives that spG(A) = D ∪ Y
and bdG(A) ⊆ D ∪ Y ∪ paG(Y ) since ∀Ak ∈ A bdG(Ak) ⊆ Y ∪ bdG(Y ) holds.
Moreover spG(B) =D∪Y and bdG(B) ⊆D∪Y ∪paG(Y ) must also hold. Hence,
if D is empty then spG(B) = {Y } and bdG(B) ⊆ Y ∪ paG(Y ) must hold. This
does however lead to a contradiction because a split then is possible st U consists
of B and L consists of C ∖U . Hence there has to exists at least one node in D.

Thirdly note that D ∪Y must be complete or the induced subpath Bk←→DYi
←→Z←→DYj←→B1←→...←→Bl←→Bk, l ≥ 0, exists in G for some nodes Bk,B1, ...,Bl ∈ B
and DYi,DYj ∈D ∪ Y . This means that G contains an induced subgraph of the
form shown in either Figure 1a (l > 0) or 1b (l = 0).

Fourth and finally note that there must exist a node P st P ∈ bdG(B)∪B but
P ∉ bdG(Dj) for some Dj ∈D∪Y or a split is feasible where U consists of B and L
consists of C∖U . Note thatDj ≠ Y must hold since bdG(B)∪B ⊆ bdG(Y )∪Y . This
means that there must exist 2 nodes Bi,Dj st P ∈ bdG(Bi), P ∉ bdG(Dj),Bi ∈ B,
Bi ∈ sp(Dj) and Dj ∈ D st the induced subgraph P ←⊸Bi←→Dj←→Z . . . .P exist in
G. This is a contradiction either because G contains an induced subgraph of the
form shown in Figure 1b (P ∈ bdG(Z)) or P ←⊸Bi←→Dj←→Z (P ∉ bdG(Z)) where
bdG(Bi) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(Bi) holds.

α β γ

δ λ

α β γ

δ

γ

β α

µ

λ

δ

(a) (b) (c)

Fig. 1: MVR subgraph forms



Lemma 4. If a maximally oriented CG G of the MVR interpretation contains
a bidirected flag then G at least one of the induced subgraphs shown in Figure 1
exists in G.

Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally orientated. Since G con-
tains a bidirected flag we do with Lemma 3 get that G must contain an induced
subgraph X←→Y←→Z←⊸W or a contradiction directly follows. If we now apply
Lemma 3 to X←→Y←→Z we get that, since for G to contain any induced subgraph
of the form shown in Figure 1a or 1b is a contradiction, there exist a set of
nodes (that can be renamed to) c1, c2, c3 st the induced subgraph c1 ←⊸c2←→c3←→Z
exists in G and c3 = Y holds or bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) hold.
If c3 = Y , G must contain the subgraph c1 ←⊸c2←→Y←→Z←⊸W where c1 ∉ adjG(Y )
and W ∉ adjG(Y ) must hold and c1 =W might hold. Clearly this subgraph takes
the form of either Figure 1a (c1 ≠ W ) or 1b (c1 = W ) which is a contradiction.
Hence c3 ≠ Y , bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) must hold.

Since W ∉ adjG(Y ) holds and bdG(c2) ⊆ bdG(Y ) ∪ Y it is clear that c1, c3 ∈
bdG(Y ) must hold. Hence W ≠ c2 holds since W ∉ adjG(Y ) ∪ Y . This in turn
means that W ∉ bdG(c2) holds since bdG(c2) ⊆ bdG(Y )∪Y and W ∉ bdG(Y )∪Y .
Finally we can see thatW ∈ bdG(c3) holds or the induced subgraph c1 ←⊸c2←→c3←→Z
←⊸W takes the form shown in Figure 1a (c1 ≠ W ) or 1b (c1 = W ). However, if
W ∈ bdG(c3) holds G contains an induced subgraph of the form shown in Figure
1c (where δ = W , λ = c1, µ = c3, γ = c2, β = Y and α = Z) and we have a a
contradiction.

Lemma 5. The independence model of a CG G of the MVR interpretation
which contains an induced subgraph of one of the forms shown in Figure 1 cannot
be perfectly represented as a CG H of the AMP interpretation.

Proof. Assume the contrary, that there exists a CG H under the AMP interpre-
tation that can represent these independence models.

First assume that the independence model of the graph shown in Figure 1a
can be represented in a CG H of the AMP interpretation. It is clear that H must
have the same skeleton, or clearly some separations or non-separations that hold
in G would not hold in H. The following independence statements holds in G:
δ⊥Gβ∣paG(β), α⊥Gγ∣paG(α) and β⊥Gλ∣paG(β). δ⊥Gβ∣paG(β) gives us that a
triplex ({δ, β}, α) must exist in H, since α ∉ paG(β) i.e. that (1) δ→α−β, (2)
δ−α←β or (3) δ→α←β exists in H. α⊥Gγ∣paG(α) does however also state that a
triplex ({α, γ}, β) must exist in H, since β ∉ paG(α). For this to happen the edge
between α and β cannot be orientated towards α hence the subgraph δ→α−β←γ
must exist in H. The orientation of the edge between β and γ does however
contradict the third independence statement β⊥Gλ∣paG(β) which implies that
the triplex ({β,λ}, γ) must exist in H, since γ ∉ paG(β). Hence we have a
contradiction if G contains the induced subgraph shown in Figure 1a.

Secondly assume that the independence model of the graph shown in Figure
1b can be represented in a CG H of the AMP interpretation. It is clear that
H must have the same skeleton, or clearly some separations or non-separations



that hold in G would not hold in H. The following independence statements
must then hold in G: δ⊥Gβ∣paG(β) and α⊥Gγ∣paG(α). δ⊥Gβ∣paG(β) gives us
that two triplexes must exist in H, first ({δ, β}, α) and secondly ({δ, β}, γ), since
α, γ ∉ paG(β). ({δ, β}, α) gives that one of the following configurations must
occure in H: (1) δ−α←β, (2) δ→α−β or (3) δ→α←β. However, the independence
statement α⊥Gγ∣paG(α) implies that the triplex ({α, γ}, β) must exist in H since
β ∉ paG(α). If the triplex ({α, γ}, β) should hold in H the edge between α and
β cannot be orientated towards α hence the subgraph δ→α−β←γ must exist in
H. The orientation of the edge between β and γ does however contradict the
triplex ({δ, β}, γ) and hence we have a contradiction for the G shown in Figure
1b.

Third and last assume that the independence model of the graph shown
in Figure 1c can be represented in a CG H of the AMP interpretation. From
the Figure we can read the following independence statements: λ⊥Gµ∣paG(µ),
α ⊥ Gγ∣paG(α), β ⊥ Gδ∣paG(β). It is clear that H must have the same skele-
ton, or clearly some separations or non-separations that hold in G would not
hold in H. λ⊥Gµ∣paG(µ) and α⊥Gγ∣paG(α) gives that the triplexes ({λ,µ}, β)
and ({α, γ}, µ) must exists in H since β ∉ paG(µ) and µ ∉ paG(α). As seen
above this gives that λ→γ−µ←α must exist in H. Similarly β⊥Gδ∣paG(β) and
λ⊥Gµ∣paG(µ) gives that λ→β−µ←δ must exist in H. Finally α⊥Gγ∣paG(α) and
β⊥Gδ∣paG(β) gives that the triplexes ({α, γ}, β) and ({β, δ}, α) must hold in H,
since β ∉ paG(α) and α ∉ paG(β), which in turn gives that γ→β−α←δ must exist
in H. This does however contradict that H is a CG since the semi-directed cycle
γ→β−µ−γ exists in H. Hence we have a contradiction.

4.2 Translation of AMP CGs to MVR CGs

Theorem 4. Given an AMP CG G, and a maximally oriented AMP CG G′ in
the Markov equivalence class of G, there exists a CG H st IAMP (G) = IMVR(H)
iff G′ does not contain any induced subgraph of the form X−Y −Z.

Proof. Sufficiency follows from Lemma 2 while necessity follows from 6.

Lemma 6. If a maximally orientated CG G of the AMP interpretation contains
an induced subgraph of the form X−Y −Z then G there exists no CG H of the
MVR interpretation st IAMP (G) = IMVR(H).

Proof. Assume to the contrary that the lemma does not hold. Clearly G and
H must have the same skeleton or some separations in H do not hold in G or
vice versa. Let H have a component ordering ord for its components c1, ...ck st
ord(ci) < ord(cj) if ci is a parent of cj . Let C be the component of X in G. From
the assumption we know that X⊥GZ ∣nbG(X) ∪ paG(X ∪ nbG(X)) holds, where
Y ∈ nbG(X), and hence that H must contain one of the following induced sub-
graphs: X ←⊸Y→Z, X←Y←⊸Z or X←Y→Z. For any other configuration of edges
X⊥HZ ∣nbG(X) ∪ paG(X ∪ nbG(X)) does not hold. Moreover we can generalize
the configurations to X ←⊸Y→Z and X←Y→Z simply by choosing the nodes to
represent X and Z accordingly. Both these structures are included in X ⊸⊸Y→Z



and we will now show that this structure leads to a contradiction if a split is not
feasible in G.

The proof is iterative and when a restart is noted this is where the proof
restarts. For each restart it will be shown that there must exist a triplet of nodes
X, Y , Z st an induced subgraph of the form X−Y −Z exists in G and X ⊸⊸Y→Z
in H. Apart from this we also know that IAMP (G) = IMVR(H) holds and that
no split is feasible in G. Let the set U consist of Y and every node connected
by a path to Y in the subgraph of G induced by C ∖ Z and the set L consist
of C ∖ U . This separation of sets gives that nbG(U) = Z. For a split not to be
feasible with these sets one of the conditions in Definition 2 must fail:

Case 1, condition 1 or 2 fails. This means that there exist two nodes W ∈ C and
P ∈ C st the induced subgraph P−Z−W exists in G. Note that one of the nodes
might be Y . This means that P⊥GW ∣nbG(W )∪paG(W ∪nbG(W )) holds, where
Z ∈ nbG(W ) and hence that P ←⊸Z→W , P←Z←⊸W or P←Z→W must exist in H
as described above. Without losing generality we can say that either P ←⊸Z→W
or P←Z→W exists in H and that W ≠ Y by choosing P and W appropriately.
This means that we can restart the proof with the structure P ⊸⊸Z→W in H
(and P−Z−W in G). The number of restarts is bounded since (1) the number
of nodes in V is bounded and that ord(coH(Z)) > ord(coH(Y )).

Case 2, condition 1 and 2 hold but condition 3 fails. This means that there
exists two nodes W ∈ U and P ∉ C st the induced subgraph Z−W←P exists in
G. First let us cover the case where W = Y . This means that Z⊥GP ∣paG(Z)
holds. Since H have the same skeleton as G this means that H must contain
an induced subgraph of the form P ←⊸Y←⊸Z since Y ∉ paG(Z). At the same
time we know that H contains the edge Y→Z which causes a contradiction and
hence Y ≠W must hold. Therefore, P ∉ paG(Y ) holds which generalized means
that that paG(Y ) ⊆ paG(Z) must hold. For Z⊥GP ∣paG(Z) to hold in H there
must exist an unshielded collider between Z and P over W and hence that the
induced subgraph Z ←⊸W←⊸P exists in H. Similarly we have that Y⊥GP ∣paG(Y )
gives that H contains an induced subgraph of the form Y ←⊸W←⊸P . Note that
Y ∈ adjG(W ) must hold since condition 2 holds. Moreover for H not to contain
a semi directed cycle over Y→Z ←⊸W←⊸Y we can see that Y→W←⊸P must exist
in H. Finally note that X ≠W must hold since X ∉ adjG(Z) holds.

Now assume X ∈ nbG(W ). For X⊥HZ ∣nbG(X) ∪ paG(X ∪ nbG(X)) to hold,
together with W ∈ nbG(X) and Z ←⊸W , it is easy to see that the induced sub-
graph Z ←⊸W→X must be in H. We can now see that P ∈ paG(X) must hold
or the induced subgraph X←W←⊸P in H contradicts that X⊥GP ∣paG(X) holds
in H. Moreover, for X ⊸⊸Y→W→X not to form a semi-directed cycle in H the
edge between X and Y must be orientated to X←Y . We can therefore restart
the proof by replacing X with Z, i.e. with the induced subgraph X←Y ⊸⊸Z in H
(and X−Y −Z) in G. Since we know that Z ←⊸W→X exists in H we know that
ord(coH(X)) > ord(coH(Z)). Hence we cannot get back to this subcase again
(or we would have that ord(coH(X)) < ord(coH(Z)) which is a contradiction).
This, together with that Y is kept the same and that ∣V ∣ is finite gives that the
number of restarts is bounded. Hence X /∈ nbG(W ) must hold.



Now assume that paG(Z) ⊆ paG(W ). We can now restart the proof with
X ⊸⊸Y→W . The number of iterations is then bounded since ∣V ∣ is finite and case
2 cannot occur with Z as W again, or paG(Z) /⊆ paG(W ) would have to hold
which is a contradiction. Hence paG(Z) /⊆ paG(W ) must hold. Let Q be the
parent of Z not shared by W . Since W⊥GQ∣paG(W ) holds, and we know that
H contains the induced subgraph Q ⊸⊸Z ←⊸W←⊸P , we can draw the conclusion
that H must contain the induced subgraph Q ←⊸Z←→W←⊸P since Z ∉ paG(W ).
Note that if there exist two different nodes W1 and W2 such that both have the
properties described for W in case 2 W1 and W2 must be adjacent. If this were
not the case we would have that both W1⊥GW2∣nbG(W1) ∪ paG(W1 ∪nbG(W1))

and W1 /⊥HW2∣nbG(W1) ∪ paG(W1 ∪ nbG(W1)) would hold, since Z ∈ nbG(W1).
Also note that since W1←→Z and W2←→Z exists in H and the edge between W1

and W2 must be bidirected or H contains a semi-directed cycle. Let D be a set
of nodes containg Z as well as all nodes that have the properties described for
W . From the description above we can see that D must be complete and that
the subgraph induced by D in H must only contain bidirected edges. We will
now show that a split must be feasible in G with D as L and C ∖D as U . For a
split not to be feasible one of the constraints in Definition 2 must fail.

Assume condition (1) or (2) fails. Then there exists three nodes R ∈ C,
T ∈ C and Dj ∈ D st the induced subgraph T−Dj−R exists in G. Since T ⊥

GR∣nbG(R)∪paG(R∪nbG(R)) holds we must, without losing generalization, have
that H contains the induced subgraph T ⊸⊸Dj→R, since Dj ∈ nbG(R). If this is
the case we can however restart the proof with this induced subgraph and know
that the number of iterations is bounded since ∣V ∣ is finite and ord(coH(Dj)) >

ord(coH(Y )).

Assume condition (1) and (2) holds but (3) fails. Then there exists two
nodes R ∈ U and T ∉ C st the induced subgraph Di−R←T exists in G for
some Di ∈ D. First note that R must be adjacent of all nodes in D or con-
dition 1 would have failed in this split. Secondly note that R−Y must exist
in G or condition 2 would fail if we restart the proof with X ⊸⊸Y→Di and a
contradiction follows from there. Thirdly note that R ∉ adjG(X) must hold
or the proof could be restarted with X ⊸⊸Y→Di, for which condition 3 would
fail with R as W and a contradiction would follow as shown above. Finally
note that paG(R) ⊆ paG(Z) must hold or R would be in D. This means that
paG(W ) /⊆ paG(R), and hence that P ∉ paG(R), holds. Moreover we know that
the edge Di←→W exists in G. For Di⊥GT ∣paG(Di) to hold in H it is clear that H
must contain the induced subgraph Di ←⊸R←⊸T since R ∉ paG(Di). Similarly we
have that for R⊥HP ∣paG(R) to hold H must contain an induced subgraph of the
form R ←⊸W←⊸P since W ∉ paG(R). This means that for R ←⊸W←→Di ←⊸R not to
form a semi-directed cycle in H the edge R←→Di must exist in H. Moreover, since
∀Dm ∈ D ∖Di R ∈ adjG(Dm), R←→Di and Di←→Dm hold, clearly R←→Dm must
also hold or G contains a semi-directed cycle. Hence the subgraph of H induced
by D ∪ R is complete and contains only bidirected edges. This in turn means
that for Y→Di←→R ⊸⊸Y to not form a semi-directed cycle Y→R must exist in H.



Hence we can move R into D and redo do the last split again. The number of
restarts are bounded since ∣V ∣ is finite.

Hence each condition in Definition 2 must hold and we have a contradiction.

4.3 Translation of MVR CGs to LWF CGs

Theorem 5. Given a MVR CG G, and a maximally oriented MVR CG G′

that is in the same Markov equivalence class as G, there exist a LWF CG H st
IMVR(G) = ILWF (H) iff G′ contains no bidirected edge, i.e. can be represented
as a BN.

Proof. From Lemma 7 it follows that a maximally oriented CG G′ of the MVR
interpretation with a bidirected edge must have a subgraph of the form shown
in Figure 2. If it does not contain any bidirected edge in the maximally oriented
model it trivially follows that it is a BN (and hence it can be represented as a
CG of the LWF interpretation). From Lemma 8 it then follows that no CG G of
the MVR interpretation which contains a subgraph of the form shown in Figure
2 can be represented as a CG of the LWF interpretation.

Lemma 7. If a bidirected edge exists in a maximally oriented CG G of the MVR
interpretation then G must contain an induced subgraph of the form shown in
Figure 2.

A B

C D

Fig. 2: Included subgraph in Lemma 7 and 8.

Proof. Assume to the contrary that a CG G of the MVR interpretation exists
where (1) no induced subgraph of the form shown in Figure 2 exists, (2) no split
is feasible and (3) at least one bidirected edge exists. From this assumption we
can see that there has to exist at least two nodes X and Y st X←→Y exists in G.
Let C be the connectivity component to which X and Y belongs. Separate the
nodes of C into two sets U and L st X and every node connected by a path to
X in the subgraph of G induced by C ∖Y belongs to L and C ∖L belongs to U .
This separation of nodes allows us to know that spG(L) only contains Y . For a
split not to be feasible at least one condition in Definition 3 has to fail.
Case 1. Assume constraint 1 fails. This means a node Z ∈ L exist st Z←→Y←→X
occurs in G where Z ∉ adjG(X) must hold, or Z would be in U . Now remove
Y from U and add it to L as well as all nodes not connected by a path with
Z in the subgraph of G induced by U ∖ Y and attempt another split. This



separation of nodes allows us, since we previously had nbG(L) = Y and Y now
have changed sets, to say that spG(U) = Y must hold and hence that constraint
3 cannot fail. However, if constraint 1 or 2 fails we know there exists a node W
st W ←⊸Z←→Y←→X is a subgraph of G but where W ∉ adjG(Y ), and Z ∉ adjG(X)
and W ∉ adjG(X) by definition of the initial split, which implies a contradictory
induced subgraph. Hence constraint 1 cannot fail in the initial split.
Case 2. If constraint 2 or 3 fails in the initial split we know there exists two nodes
V1 and P1 st P1 ←⊸Y←→V1 exists in G but where V1 ∉ adjG(P1) (note that V1 might
be X). Now let L consist of every node connected by a path to Y in the subgraph
of G induced by C ∖ V1 and the nodes C ∖ L belong to U . This separation of
nodes allows us to know that spG(L) only contains V1. If constraint 1 fails when
performing a split with these sets it is clear from case 1 that a contradiction
occurs. If constraint 2 or 3 fails we know there exists two new nodes V2 and P2

st P2 ←⊸V1←→V2 exists in G but where P2 ∉ adjG(V2). Note that V2 or P2 cannot
be P1 since P1 ∉ adjG(P1). We now get that V2 cannot be Y or an induced
subgraph like that in Figure 2 occurs. V2 ∈ adj(Y ) and P2 ∈ adj(Y ) must also
hold or the induced subgraph V2 (resp. P2) ←⊸V1←→Y←⊸P1 occurs. By replacing V1
with V2, setting the proper U and L as described above it we can now repeat this
procedure iteratively. Moreover, for every repetition i we must have that Vi and
Pi must be adjacent of every Vj(j < i) as well as Y or a contradiction occurs. This
means that any nodes Vi and Pi already used in a previous repetition cannot be
used in a later one, or both Pi ∈ adj(Vi) and Pi ∉ adj(Vi) would have to hold.
This in turn means that the number of repetitions is bounded since ∣C ∣ is finite
and hence we have a contradiction that condition 2 or 3 can fail.

This means that all three conditions in Definition 3 must hold and hence a
split must be feasible if the induced subgraph shown in Figure 2 does not occur.

Lemma 8. If a CG G of the MVR interpretation contains an induced subgraph
of the form shown in Figure 2 then G cannot be translated into a CG H of the
LWF interpretation.

Proof. Assume to the contrary that there exists a CG H, of the LWF interpre-
tation, with the same independence model as G while G contains an induced
subgraph of the form shown in Figure 2. Clearly H and G must contain the
same nodes and adjacencies or some separations or non-separations must exist
in G but not in H.

From Figure 2 we can read that A⊥GD∣paG(D) and C⊥GB∣paG(C) hold.
For A⊥GD∣paG(D) to hold in H C must be a collider between A and D and
hence H must contain the induced subgraph A→C←D. Similarly C⊥GB∣paG(C)
gives that H must contain the induced subgraph C→D←B and hence we have
a contradiction.

4.4 Translation of LWF CGs to MVR CGs

Theorem 6. Given a LWF CG G there exists a CG H st ILWF (G) = IMVR(H)
iff (Gcl(K))m is chordal for all K ∈ cc(G).



Proof. To prove the “if” part, note that if (Gcl(K))m is chordal for all K ∈ cc(G),
then there is a DAG D st ILWF (G) = IBN(D) [1, Proposition 4.2] and, thus, it
suffices to take H =D.

To prove the “only if” part, assume to the contrary that V1− . . .−Vn is a
chordless undirected cycle in (Gcl(K))m for some K ∈ cc(G). Note that H has
the same adjacencies as G. Therefore, Vi−1←Vi and/or Vi→Vi+1 must be in H
because, otherwise, Vi−1 ⊥GVi+1∣Z ∈ ILWF (G) for some Z st Vi ∈ Z whereas
Vi−1⊥HVi+1∣Z ∉ IMVR(H), which contradicts that ILWF (G) = IMVR(H). As-
sume without loss of generality that Vi→Vi+1 is in H. Then, Vi+1→Vi+2 must be
in H too, by an argument similar to the previous one. Repeated application of
this reasoning implies that H has a semi-directed cycle, which contradicts the
definition of CG.
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