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Abstract. We perform a systematic evaluation of feature selection (FS)
methods for support vector machines (SVMs) using simulated high-dimen-
sional data (up to 5000 dimensions). Several findings previously reported
at low dimensions do not apply in high dimensions. For example, none of
the FS methods investigated improved SVM accuracy, indicating that the
SVM built-in regularization is sufficient. These results were also validated
using microarray data. Moreover, all FS methods tend to discard many
relevant features. This is a problem for applications such as microarray
data analysis, where identifying all biologically important features is a
major objective.

1 Introduction

In pattern recognition, feature selection (FS) is traditionally viewed as a pre-
processing step that simplifies the task of learning classifiers, rather than a learn-
ing objective in itself [1]. On the other hand, there is currently considerable
interest within the bioinformatics community to apply FS methods to discover
biologically important genes (features) that are not captured by traditional sta-
tistical testing [2]. For example, in cancer research, the primary interest is to
identify all cancer-related genes from microarray data [3]. This is a fundamen-
tally different problem, because many of the biologically important features may
not be needed for classification [4], and will therefore be discarded by FS methods
that optimize for classification accuracy.

In addition, data dimensionality is growing rapidly: in microarray data anal-
ysis, the number of genes (features) is now on the order of 104, whereas sample
sizes are small, on the order of 102 or less. This is a problem as to the validity
of existing FS methods, as they are typically tested on larger sample sizes and
much lower dimensions PC. Furthermore, recent classification methods such as
support vector machines (SVMs) provide built-in regularization [8], and it is not
yet clear whether such methods benefit from FS (which may be viewed as a
different type of regularization [9]).

To assess the applicability of FS methods to microarray data, we performed
a systematic evaluation of a number of FS methods in conjunction with SVMs.
To our knowledge, this study is the first systematic evaluation of feature set



accuracy, and the first to simulate high-dimensional data of the order found in
microarray studies.

2 Preliminaries

2.1 Classification accuracy

Throughout, we assume that examples (x(i), y(i)) are independent observations of
the random variable pair (X,Y ) with distribution f(x, y) on the domain X ×Y.
We will denote components of a vector x by xi, and restrictions to a given
feature set S by xS = {xi : i ∈ S}. A classifier is defined simply as a function
g(x) : X 7→ Y, predicting a category y for each observed example x. As we
will consider binary classification exclusively in this paper, we will have Y =
{−1, +1} throughout. For a given sample size l, a classifier is induced from data
Dl = {(x(i), y(i))}l

i=1 ∈ (X × Y)l by an inducer (a learning algorithm), defined
as a function I : (X × Y)l 7→ G, where G is some set of possible classifiers.
The optimal (Bayes) classifier g∗ is defined as the one that minimizes the risk
functional

R(g) =
∑

y∈Y
p(y)

∫

X
1{g(x) 6= y)}f(x|y)dx, (1)

where 1{·} is the set indicator function [10]. In our simulations we use gaussian
densities, for which R(g) is easy to calculate directly from (1), and g∗ is unique
and can be derived analytically (see appendix B). Of course, for real data f(x, y)
is unknown, so R(g) is not observable. However, R(g) can still be estimated using
cross-validation or a separate test set [10].

The functional R(g) measures the performance of a specific classifier g =
I(Dl), induced from a particular training set Dl. However, for comparing learn-
ing algorithms we are more interested in the overall performance of the inducer
I, rather than the performance of a particular g [11]. Because the training data
Dl is a random variable, the performance of I is described by the distribution
of R(I(Dl)). Interesting performance measures derived from this density include
the expected risk

ρ = ED[R(I(Dl))] (2)

and probabilities such as P (R(I(Dl)) > 0.5) as well as confidence intervals for
ρ. All of these quantities are easily estimated to any desired precision in our
simulations.

2.2 Feature selection accuracy

As discussed in the introduction, one may consider two different goals of feature
selection, naturally leading to two different ways of assessing performance: if the
accuracy of the induced classifier is the main objective, then the expected risk
can be used; however, if finding relevant features is the end goal, then we should
define accuracy with respect to the set of relevant features instead. Features
relevance can be defined as follows [4].



Definition 1. For a given data distribution, the set of relevant features Srel
is defined as

Srel = {i : ∃S : p(y|xi, xS) 6= p(y|xS)}
where p(y|xS) is the conditional density of Y after observing XS = xS.

Informally, a feature is considered relevant if it carries some ”information” about
the target variable Y . Relevant features are either strongly or weakly relevant;
the latter may be ”redundant” in the sense that they are not required for optimal
classification [4]. Including such features may deteriorate classification accuracy
due to increasing design cost [12]. Therefore, to optimize classification accuracy,
a FS method must instead find the following feature set.

Definition 2. For a given data distribution, sample size l and inducer IS, the
optimal feature set Sopt is defined as the one that minimizes the expected risk

Sopt = arg min
S

EDS
[R(IS(Dl

S))],

where IS is a suitable inducer for the data Dl
S over the feature set S.

Clearly, Sopt ⊆ Srel, since no irrelevant feature can improve the expected
risk. In general, Sopt may not be unique, and the minimization may require
an exhaustive search among all subsets of Srel, which is an NP-complete prob-
lem [13]. However, in our simulations we found that Sopt was identical to the
features used by the Bayes rule g∗, which is easy to determine for our data
distributions (see appendix B). Therefore, for simulated data we know the true
Srel and Sopt exactly. We then measure feature set accuracy using precision
and recall.

Definition 3. For a selected feature set S, we define the precision and recall
with respect to a ”true” set T as

Precision(S) =
|S ∩ T |
|S| Recall(S) =

|S ∩ T |
|T |

In analogue with the risk measure in the previous section, for describing the per-
formance of a FS algorithm we consider the distribution of these measures when
Dl is a random variable, and estimate the expected value of this distribution.

3 Methods

An overview of our simulation/evaluation procedure is shown in figure 1. For a
given data distribution f(x, y), we first take a sample Dl to be used as training
data (step 1). We then perform FS and classifier (SVM) induction (step 2) as
discussed in section 3.1. We calculate classifier error probabilities (steps 3,4)
as described in section 2.1. For assessing the accuracy of selected feature sets,
we first calculate Srel and Sopt for the given distribution (step 5) and then



Feature setsFeature sets

Fig. 1. A schematic view of the evaluation process.

Method Type Output Ref.

PC Filter Ranking [1]
WR Embedded Ranking [6]
RFE Wrapper Ranking [6]
LP-SVM Embedded Set [5]
AROM Wrapper Set [7]

Table 1. Feature selection methods tested.

measure precision and recall (step 6) as described in section 2.2, with respect to
Srel and Sopt.

For evaluating the expected performance of a given algorithm and obtaining
statistical confidence measures, this process is repeated a number of times. This
yields a number of independent observations of each error measure. Standard
non-parametric statistical methods can then be used to obtain correct confidence
intervals for each error measure.

3.1 Feature selection methods

We chose five well-known FS methods for evaluation: Pearson Correlation (PC),
SVM Naive Weight Rank (WR), Recursive Feature Elimination (RFE), Linear
Programming-SVM (LPSVM) and Approximation of the zeRO-norm Minimiza-
tion (AROM); their properties are briefly described in table 1. We categorize
methods into the types ”filter”, ”wrapper” or ”embedded” as described by Guyon
and Elisseff [1]. Moreover, we designate methods as ”ranking” or ”set” depend-
ing on whether they output a ranking of features, so that one has determine the
number of features |S| by other means, or whether they output a set S, thus de-
termining |S| automatically (see section 4.4). For comprehensive information on
these methods, we refer to each respective original paper. Initially, we also tried
Radius-Margin Descent [14] and Incremental Associative Markov Blanket [15],
but these methods were unfortunately too slow to permit a thorough evaluation
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Fig. 2. A: Plot of expected SVM risk ρ vs. number of relevant features m and total
number of features n. B: Dotted line, plot of SVM risk vs. n for simulations, corre-
sponding to the dotted diagonal in (A). Solid line, SVM risk vs. n for microarray data.
Here m is unknown but proportional to n.

and were therefore discarded. We did not consider feature extraction methods
such as PCA, since these construct new features rather than select among exist-
ing ones [1].

Throughout, we used a linear SVM [8] as the inducer I(Dl). For SVM train-
ing, we used an in-house Java implementation based on the SMO optimization
scheme [16].

4 Results

We used a gaussian data distribution for all simulations. This was designed so
that a subset of m features X1, . . . , Xm were relevant to Y , while Xm+1, . . . , Xn

were irrelevant. Of the m relevant features, m/2 were in the optimal feature
set; further, half these (m/4) were marginally independent of Y and thus un-
detectable by univariate filter methods like PC. See appendix A for details. We
sampled 100 training data points from this distribution and normalized to zero
mean and unit variance before applying each method, following standard prac-
tise for SVMs [6]. The key parameters to the ”difficulty” of the learning problems
represented by this data distribution are m and n. We chose a parameter grid
8 ≤ m ≤ 500, 20 ≤ n ≤ 5000, with values evenly spaced on a logarithmic scale
(figure 2A). For each (m,n) we repeated the simulations 100 times.

4.1 The SVM is robust against irrelevant features

The expected risk ρ for the SVM without FS on the (m,n) parameter grid is
shown in figure 2A (we set the regularization parameter C to 1; see next section).
We find that ρ increases slightly with n, but decreases rapidly with respect to m.
Thus, more features is in general better for the SVM: as long as we can obtain
a few more relevant features, we can afford to include many irrelevant ones.
Therefore, improving SVM performance by FS is very difficult. In particular, an
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Fig. 3. Sensitivity to the SVM C-parameter. A: Sensitivity defined as maxC R̂−minC R̂
plotted against m and n. B: For simulated data, detailed plot of R̂ against C for the
cases (m, n) marked by arrows in (A), roughly corresponding to the cases in (C). C:
For microarray data, plot of R̂ against C for n = 20 and n = 2000.

FS method must provide very good recall (preserve the relevant features), or
SVM performance will degrade quickly.

To validate our results, we also tested the FS methods on a large microarray
data set consisting of 12, 600 features (genes) and 136 samples [17]. For com-
parison with our simulations, we first extracted the 5000 features with largest
variance and then extracted random subsets of sizes 10, . . . , 5000 from these.
Although m is unknown in this case, in expectation this procedure gives a con-
stant m/n ratio, since we draw features with equal probability. This roughly
corresponds to a diagonal in figure 2A. We used random subsets of l = 100 sam-
ples for FS and classifier induction and estimated R̂(g) by the hold-out error on
the remaining 36 samples. This procedure was repeated 300 times for each n.
The resulting risk estimate was found to agree qualitatively with our simulations
(figure 2B).

4.2 The SVM C-parameter has no influence in high dimensions

The value of the regularization parameter C has been found to strongly impact
SVM classification accuracy in low dimensions [18]. In our simulations, we op-
timized C over a range 10−4, . . . , 104 for each (m,n). We found that C was no
longer important in higher dimensions (figure 3A), regardless of the value of m.
At lower dimensions, C ≈ 1 provided good performance (figure 3B), so we fixed
C = 1 for the remainder of this study. We observed the same (and even stronger)
trend for the microarray data (figure 3C). We conclude that the parameter C
has virtually no impact on classification accuracy in high dimensions.

4.3 Rankings methods are comparable in high dimensions

Next, we investigated the accuracy of the feature rankings produced by PC, WR
and RFE. To address this question without involving the problem of choosing |S|
at this stage, we measured precision and recall for |S| = 1, . . . , n and visualized
the results using ROC-curves (figure 4). We found that RFE outperforms WR,
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Fig. 5. A: Number of selected features |S| for each (m, n) for simulated data. All plots
are scaled equally to (0,300). B: Number of selected features |S| vs. n, corresponding
to the dashed diagonal in (A), for simulated and microarray data. Plots are scaled
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which in turn outperforms PC, in agreement with Guyon et al. [6]. This was
expected, since 1/4 of the relevant features are not detectable by PC. However,
these differences diminished with increasing n. At n = 5000, the simpler WR
method was as accurate as RFE.

4.4 Number of selected features increases with dimension

To use ranking methods in practise, a critical issue is how to determine |S|
(LPSVM and AROM decide this automatically by heuristics that favor small
feature sets [5, 7]). A common strategy is to minimize some risk estimate R̂(gS)
for the classifier gS induced using the feature set S, over a number of possible
choices of |S| [19]. For this purpose, we chose the radius-margin bound [20,
section 10.7], which provided reasonable estimates in preliminary studies.

Overall, we found that the ranking methods tend to select more features
than AROM or LPSVM (figure 5A). We also found that |S| tends to increase
with n. This can be explained by noting that with better rankings (i.e., higher
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Fig. 6. A: Risk difference ρ(g)− ρ(gS), using each respective FS method to obtain S
(negative means worse accuracy with FS), simulated data. B: Estimated risk vs. n,
corresponding to the dashed diagonal in (A), for simulated and microarray data.

area-under-curve in figure 4), we can reach low classifier risk R(gS) for small
|S|. Conversely, as n increases and the rankings degrade, we must choose a
larger |S| to optimize R(gS). Accordingly, PC chooses the largest |S|, and RFE
the smallest. This was also verified for the microarray data (figure 5B). More
surprisingly, there was also a tendency for |S| to decrease with m (most evident
for RFE). This can be understood in the same fashion: the FS problem becomes
harder as m decreases, so that the rankings become more inaccurate, and a larger
|S| must be used. We conclude that, by selecting |S| to minimize risk, we obtain
methods that attempt to control recall but sacrifice precision (see also section
4.6).

LPSVM produced smaller feature sets than RFE, but otherwise exhibited the
same tendencies discussed above. AROM gave the smallest |S| of all methods,
but dependence on n was more complicated: |S| was maximal at n ≈ 100 (similar
to the data set used in the original paper [7]) and decreased for n > 100. We
are not certain as to the cause of this behavior, but we note that AROM merely
guarantees convergence to a local maxima of its heuristic (the zero-norm); this
might be problematic in higher dimensions. Again, the simulation results were
consistent with microarray data (figure 5B).

4.5 No FS method improves SVM accuracy

In principle, if R̂(gS) is accurate, then optimizing this estimate over |S| should at
least guarantee that ranking methods do not increase classifier risk; at worst, we
should reach an optimum at |S| = n. Our simulations verified this intuition. In
figure 6A, the difference ρ(g)− ρ(gS) is close to 0 (where g is the SVM classifier
without FS). We did find ρ(gS) > ρ(g) at some (m,n) for all ranking methods,
but the difference was not large. The discrepancy may be because our procedure
chose smaller |S| in cases where R̂(gS) was constant over a range of |S|. Overall,
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Fig. 7. Feature set accuracy measures for each FS method.

the radius-margin bound seems to be accurate, so our results concerning the
ranking methods should be attributed to the rankings themselves.

LPSVM and AROM worked best around n ≈ 100 (figure 6A,B), correspond-
ing to the data sets used in the original publications [5, 7]. In higher dimensions
however, these methods tend to increase the SVM risk. AROM performed par-
ticularly bad in this respect, increasing ρ by up to 15%, probably because it
insisted on very small feature sets. Results on microarray data were similar (fig-
ure 6B) except possibly for RFE, which was less accurate on microarray data.
In summary, none of the FS methods improved SVM accuracy.

4.6 Feature set accuracy

For the simulated data, we measured the accuracy of selected feature sets by
precision and recall vs. Sopt (figure 7A,B) and Srel (figure 7C,D). There are
interesting differences between these two feature sets (recall that Sopt consti-
tutes half of Srel). Concerning recall vs. Srel, we see that PC > WR > RFE >
LPSVM > AROM. The filter method PC presumably performs best here since it
does not distinguish between strong and weak relevance. In fact, we see that PC



selects more weakly than strongly relevant features (since it gives lower recall
vs. Sopt). In contrast, RFE, LPSVM and AROM have higher recall vs. Sopt
than vs. Srel. All of these methods involve some form of risk optimization, and
therefore target Sopt. Consequently, they tend to miss — or, avoid, depending
on one’s perspective — many of the weakly relevant features. WR seems to lie
somewhere in-between RFE and PC in this respect.

All methods have low precision. AROM provided the best precision, but at
the price of lower recall. This is natural since AROM was biased towards very
small |S| (figure 5). The remaining methods were comparable.

These results cannot be validated on microarray data since the true feature
sets are unknown (which of course is the reason for performing simulation studies
in the first place). However, given the good agreement demonstrated in the
previous tests (figures 3,5,6), it is likely that the findings in this section also
apply to real data.

5 Discussion

A striking trend in our results is that both classification and feature selection
(FS) methods behave very differently in high vs. low dimensions. For example,
while AROM and LPSVM have previously been found to improve classification
accuracy for SVMs at lower dimensions with m ¿ n [5, 7], we find no such
improvement at high dimensions (figure 6). Also, while the SVM C-parameter
has been shown to be crucial in low dimensions, it has little or no influence in
high dimensions (figure 3). Thus, we recommend that simulation studies of FS
methods are performed with dimensions comparable to those found in real data.

None of the FS methods tested improved SVM classification accuracy in high
dimensions. To explain this, one may consider FS as an approximate minimiza-
tion of the L0-norm of a vector of feature weights, while the SVM minimizes the
L2-norm [9]. From this perspective, our results on simulated and real data imply
that in high dimensions, the L2-norm is simply the better choice. The LPSVM
method on the other hand explicitly minimizes the L1-norm, and accordingly
seems to be closer to SVM performance (figure 6B). However, one should keep
in mind that sometimes small |S| is an objective in itself, in which case these
FS methods may still be useful. Also, other types of inducers (without built-in
regularization) may benefit from FS.

In microarray data analysis, it is common to use statistical testing to control
precision (often referred to as the false discovery rate) while maximizing recall
[21], in order to obtain high quality gene (feature) sets. It is clear from figure
7 and the discussion in section 4.4 that none of the methods tested provide
such control. On the contrary, optimizing classifier risk results in a behavior
very different from that of statistical tests. On the other hand, the filter method
PC (which provided the best recall) cannot detect multivariate relationships. A
feature selection method that solves both of these problems would be most useful
for microarray data analysis, as a direct multivariate analogue of the statistical
methods currently available.



A Data distributions used

We used Bayesian networks [22] to represent data distributions. We used a small
network of 4 nodes and simply repeated this distribution to obtain the desired
number of relevant features m. The network is defined by the following local
(conditional) distributions:

f(x1) = N(x1|0, 32)
f(x2|x1, y) = N(x2|y − x1, 1)

f(x3|x2) = N(x3|x2, 1)
f(x4|x3) = N(x4|x3, 1).

All irrelevant features were N(xi|0, 1), and we set p(y) = 1/2.

B Obtaining the Bayes classifier and the optimal feature
set

As seen above, the family of distributions used in this paper are the gaussian
distributions

f(x, y) = p(y)N(x|yµ,Σ),

where ±µ are the class-conditional expectations and Σ is the covariance matrix
(equal for both classes). It is well-known that for this family the Bayes classifier
is given by

g∗(x) = sgn(µT Σ−1x).

This is a hyperplane through the origin x = 0, and therefore the features needed
by g∗ are exactly those for which the corresponding component of µT Σ−1 is
nonzero. For more details see for example Devroye et al. [10].
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