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ABSTRACT

Motivation: For the last few years, Bayesian networks (BNs) have
received increasing attention from the computational biology com-
munity as models of gene networks, though learning them from
gene expression data is problematic: Most gene expression databa-
ses contain measurements for thousands of genes, but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases. This means that the user has to decide in
advance which genes are included in the learning process, typically
no more than a few hundreds, and which genes are excluded from it.
This is not a trivial decision. We propose an alternative approach to
overcome this problem.

Results: We propose a new algorithm for learning BN models of gene
networks from gene expression data. Our algorithm receives a seed
gene S and a positive integer R from the user, and returns a BN for
those genes that depend on S such that less than R other genes
mediate the dependency. Our algorithm grows the BN, which initially
only contains .S, by repeating the following step R+ 1 times and, then,
pruning some genes: Find the parents and children of all the genes
in the BN and add them to it. Intuitively, our algorithm provides the
user with a window of radius R around S to look at the BN model of
a gene network without having to exclude any gene in advance. We
prove that our algorithm is correct under the faithfulness assumption.
We evaluate our algorithm on simulated and biological data (Rosetta
compendium) with satisfactory results.

Contact: jmp@ifm.liu.se

1 INTRODUCTION

by taking advantage of the conditional independencies between the
genes. These conditional independencies are encoded in an acyclic
directed graph (DAG) to help visualization and reasoning. Learning
BN models of gene networks from gene expression data is proble-
matic: Most gene expression databases contain measurements for
thousands of genes, e.g. (Hugleeal., 2000; Spellmaet al., 1998),

but the existing algorithms for learning BNs from data do not scale
to such high-dimensional databases (Friedetzad., 1999; Tsamar-
dinoset al., 2003). This implies that in the papers cited above, for
instance, the authors have to decide in advance which genes are
included in the learning process, in all the cases less than 1000, and
which genes are excluded from it. This is not a trivial decision. We
propose an alternative approach to overcome this problem.

In this paper, we propose a new algorithm for learning BN models
of gene networks from gene expression data. Our algorithm receives
a seed gen& and a positive integeR from the user, and returns a
BN for those genes that depend Snsuch that less tha® other
genes mediate the dependency. Our algorithm grows the BN, which
initially only containsS, by repeating the following ste@+1 times
and, then, pruning some genes: Find the parents and children of all
the genes in the BN and add them to it. Intuitively, our algorithm
provides the user with a window of radifisarounds to look at the
BN model of a gene network without having to exclude any gene in
advance.

The rest of the paper is organized as follows. In Section 2, we
review BNs. In Sections 3, we describe our new algorithm. In
Section 4, we evaluate our algorithm on simulated and biological
data (Rosetta compendium (Huglegsal.,, 2000)) with satisfactory
results. Finally, in Section 5, we discuss related works and possible

Much of a cell's complex behavior can be explained through thegytensions to our algorithm.
concerted activity of genes and gene products. This concerted acti-

vity is typically represented as a network of interacting genes.

Identifying this gene network is crucial for understanding the beha-

vior of the cell which, in turn, can lead to better diagnosis andp BAYESIAN NETWORKS

treatment of diseases.

For the last few years, Bayesian networks (BNs) (Neapolitan
2003; Pearl, 1988) have received increasing attention from the co
putational biology community as models of gene networks, e.g
(Badea, 2003; Bernard and Hartemink, 2005; Friedetai, 2000;
Harteminket al, 2002; Ottet al, 2004; Pe’eret al., 2001; Péa,
2004). A BN model of a gene network represents a probability
distribution for the genes in the network. The BN minimizes the
number of parameters needed to specify the probability distributio

*To whom correspondence should be addressed.

m-

n

The following definitions and theorem can be found in most books
on Bayesian networks, e.g. (Neapolitan, 2003; Pearl, 1988). We ass-
ume that the reader is familiar with graph and probability theories.
We abbreviate if and only if by iff, such that by st, and with respect
to by wrt.

Let U denote a non-empty finite set of random variables. A Baye-
sian network (BN) forU is a pair(G, 6), whereG is an acyclic
directed graph (DAG) whose nodes correspond to the random varia-
bles inU, andf are parameters specifying a conditional probability
distribution for each nod& given its parents it7, p(X | Pac(X)).

A BN (G, 0) represents a probability distribution fag, p(U),
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through the factorizatiop(U) = []ycyp(X|Pac(X)). Her-  AlgorithmPCD andAlgorithm PC solve this step. We have pre-

eafter, PC(X) denotes the parents and childrenXfin G, and  viously introduced these two functions in fiReet al.,, 2005) to learn

NDc¢(X) the non-descendants &f in G. Markov boundaries from high-dimensional data. They are correct
Any probability distributionp that can be represented by a BN versions of an incorrect function proposed in (Tsamardigiosl.,

with DAG G, i.e. by a parameterizatioi of GG, satisfies cer- 2003).

tain conditional independencies between the random variables in Hereafter, X I pY|Z (X L pY|Z) denotes conditional

U that can be read frondr via the d-separation criterion, i.e. if (in)dependence wrt the learning databdseanddepp (X, Y |Z)

d-sepe(X,Y|Z) thenX L, Y|Z with X, Y andZ three mutually  is a measure of the strength of the conditional dependenc@®wrt

disjoint subsets otJ. The statemeni-sepc (X, Y|Z) is true when  In order to decide oiX £ pY'|Z or X L pY'|Z, AlgorithmGPC

for every undirected path i between a node iXX and a node in  runs ax? test whenD is discrete and a Fisher’s test whenD

Y there exits a nod®’ in the path st either (i)) does not have two is continuous and, then, uses the negative p-value of the test as

parents in the path ardd” € Z, or (ii) W has two parents in the path depp (X, Y|Z). See (Spirtest al., 1993) for details on these tests.

and neithe#? nor any of its descendants@iis in Z. A probability Table 1 outlinesAlgorithmPCD. The algorithm receives the
distributionp is said to be faithful to a DAGY whenX 1L, Y |Z iff nodeS as input and returns a supersetif'«(S) in PCD. The
d-sepc(X,Y|Z). algorithm tries to minimize the number of nodes notAd'¢(.S)

The nodedV, X andY form an immorality in a DAGG when  that are returned i?C D. The algorithm repeats the following three
X — W « Y is the subgraph aff induced byiv, X andY". Two steps untilPC D does not change. First, some nodes n@ i (S)
DAGs are equivalent when they represent the same d-separati@re removed fromC'anPC D, which contains the candidates to
statements. The equivalence class of a DBAGs the set of DAGs enterPCD (lines 4-8). Second, the candidate most likely to be in
that are equivalent t&. PC¢(S) is added taPC D and removed fronC'an PC D (lines 9-

11). Since this step is based on the heuristic at line 9, some nodes not

Theorem 1. Two DAGs are equivalent iff they have the samein PC¢(.S) may be added t&C D. Some of these nodes are remo-
adjacencies and the same immoralities. ved from PC'D in the third step (lines 12-16). The first and third

steps are based on the faithfulness assumptidgorithm PC D is

Two nodes are at distandein a DAG G when the shortest undi-  correct under some assumptions. See Appendix A for the proof.
rected path irG between them is of lengtR. G(X)™ denotes the

subgraph of% induced by the nodes at distance at mBstom X Theorem 2. Under the assumptions that the learning databBse

in G. is an independent and identically distributed sample from a probabi-
lity distribution p faithful to a DAGG and that the tests of conditio-
nal independence are correct, the outputAifgorithmPCD(S)

3 GROWING PARENTS AND CHILDREN includes PC(S) but does not include any node iNDg(S) \

ALGORITHM Pac(S).

Caﬁ:bgogf Ins ozge\r/]veenr?;\t,éotrﬁ aﬁytﬁgLg:ggoizcgge;ixfho?;angﬁg The assumption that the tests of conditional independence are
: 9 orrect means that L pY'|Z iff X 1L ,Y|Z.

network does not necessarily represent physical interactions bef— The output ofAlgorithm PCD(S) must be further processed in

ween genes but conditional (in)dependencies. We aim to learn BN . - -
models of gene networks from gene expression data. This will hel|5)rder to obtainPC' (), because it may contain some descendants
: of S in G other than its children. These nodes can be easily iden-

us to understand the probability distributions underlying the 9eNE.cd If X is in the output ofAlgorithm PC.D(S), then X is a
networks in terms of conditional (in)dependencies between genes'descéndant of in G other than one of its children i’B‘ is not in the

Learnlng_ a BN from dat"’? CO.nS'StS in, first, 'e"’.‘r“'“g a DAG a.nd’output of AlgorithmPC D(X). AlgorithmPC, which is outli-
then, learning a parameterization of the DAG. Like the works cited . . ! - . .
ned in Table 1, implements this observation. The algorithm receives

in Se.ct|on 1, we focug on the former task pecguse, under the asﬁw_e nodeS as input and returnBC¢ (S) in PC'. AlgorithmPC'is
umption that the learning data contain no missing values, the latter

task can be efficiently solved according to the maximum IikelihoodCOrrect under some assumptions. See Appendix A for the proof.

(ML) or maximum a posteriori (MAP) criterion (Neapolitan, 2003;  Theorem 3. Under the assumptions that the learning database
Pearl, 1988). To appreciate the complexity of learning a DAG, Wep js an independent and identically distributed sample from a pro-
note that the number of DAGs is super-exponential in the number ofpility distributiony faithful to a DAGG and that the tests of con-

nodes (Robinson, 1973). In this section, we present a new algorithigitional independence are correct, the outputidforithmPC/(S)
for learning a DAG from a databage. The algorithm, named gro- g PCs(S).

wing parents and children algorithm digorithmGPC for short,

is based on the faithfulness assumption, i.e. on the assumption thatFinally, Table 1 outlinesAlgorithmGPC. The algorithm

D is a sample from a probability distributignfaithful to a DAG receives the seed nod€ and the positive integeRR as input,

G. AlgorithmGPC receives a seed nodg and a positive inte- and returns a DAG inDAG that is equivalent toG(S)%.
ger R as input, and returns a DAG that is equivalent@¢S)”. The algorithm works in two phases based on Theorem 1. In
AlgorithmGPC grows the DAG, which initially only contain§, the first phase, the adjacencies G{(S)" are added toDAG,

by repeating the following stefi + 1 times and, then, pruning some which initially only containsS, by repeating the following step
nodes: Find the parents and children of all the nodes in the DAGR + 1 times and, then, pruning some nodd3C(X) is obtai-
and add them to it. Therefore, a key steplityorithmGPC'is the ned by calling AlgorithmPC(X) for each nodeX in DAG
identification of PCz(X) for a given nodeX in G. The functions  (lines 3-4) and, then,PCq(X) is added toDAG by calling
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Table 1. AlgorithmPC D, AlgorithmPC and AlgorithmGPC'

AlgorithmPCD(S) AlgorithmPC(S)
1 PCD=10 1 PC=0
2 CanPCD =U\{S} 2 foreachX € AlgorithmPCD(S) do
3 repeat 3 if S € AlgorithmPCD(X) then
/* step 1: remove false positives fro@lan PC D */ 4 PC =PCU{X}
4 foreachX € CanPCD do 5 return PC
5 Sep[X] = arg minzc pcpdepp (X, S|Z)
6 foreachX € CanPCD do
7 if X I pS|Sep[X]then
8 CanPCD = CanPCD \ {X}

/* step 2: add the best candidateRR@' D */
9 Y =arg mazrxccanpcpdepp (X, S|Sep[X]) AlgorithmGPC(S, R)
10 PCD =PCDU{Y}

11  CanPCD = CanPCD\ {Y} 1 DAG = {S}
/* step 3: remove false positives frofAC' D */ 2 forl,...,R+1do
12 foreachX € PCD do 3 foreachX € DAG do
13 Sep[X] = arg mingzc pop\{x}ydepp (X, S|Z) 4 PC[X] = AlgorithmPC(X)
14 foreachX € PCD do 5 foreachX € DAG do
15 if X 1L pS|Sep[X] then 6 AddAdjacencies(DAG, X, PC[X])
16 PCD = PCD\ {X} 7 Prune(DAG)
17 until PC'D does not change 8 AddImmoralities(DAG)
18 return PCD 9 return DAG
AddAdjacencies(DAG, X, PCg(X)) for each nodeX in DAG Though the assumptions in Theorem 4 may not hold in practice,

(lines 5-6). The functionAddAdjacencies(DAG, X, PCc(X)) correctness is a desirable property for an algorithm to have and,
simply adds the nodes iRC¢(X) to DAG and, then, links each unfortunately, most of the existing algorithms for learning BNs from
of them toX with an undirected edge. In practicé/gorithm PC data lack it.
and AddAdjacencies are not called for each node IRAG but
only for those they have not been called before for. Since lines 3-6
are execute®+1 times, the nodes at distan&et-1 from S'in G are 4 EVALUATION
added taD AG, though they do not belong 16(S)%. These nodes
are removed fronD AG by calling Prune(DAG) (line 7). In the
second phase ollgorithmGPC, the immoralities inG/(S)* are
added taD AG by calling AddImmoralities(DAG) (line 8). For .
each triplet of nodedV, X andY” st the subgraph ab AG induced 4.1 Simulated Data
by them isX — W — Y, the functionAddImmoralities(DAG) We consider databases sampled from two discrete BNs that have
adds the immoralityX — W «— Y to DAG iff X L pY|Z U been previously used as benchmarks for algorithms for learning BNs
{W} foranyZ st X I pY|Z and X,Y ¢ Z. In practice, from data, namely the Alarm BN (37 nodes and 46 edges) (Hers-
such aZ can be efficiently obtaineddigorithmPCD must have  kovits, 1991) and the Pigs BN (441 nodes and 592 edges) (Jensen,
found such aZ and could have cached it for later retrieval. The 1997). We also consider databases sampled from Gaussian networks
function AddImmoralities(DAG) is based on the faithfulness (GNs) (Geiger and Heckerman, 1994), a class of continuous BNs.
assumption. We generate random GNs as follows. The DAG has 50 nodes, the
We note that the only directed edgesfinAG are those in the number of edges is uniformly drawn from [50, 100], and the edges
immoralities. In order to obtain a DAG, the undirected edges inlink uniformly drawn pairs of nodes. Each node follows a Gaussian
DAG can be oriented in any direction as long as neither directedlistribution whose mean depends linearly on the value of its parents.
cycles nor new immoralities are created. Therefore, strictly speaFor each node, the unconditional mean, the parental linear coeffi-
king, AlgorithmG PC returns an equivalence class of DAGs rather cients and the conditional standard deviation are uniformly drawn
than a single DAG (Theorem WMlgorithmGPC is correct under  from [-3, 3], [-3, 3] and [1, 3], respectively. We consider three
some assumptions. See Appendix A for the proof. sizes for the databases sampled, namely 100, 200 and 500 instan-
ces. We do not claim that the databases sampled resemble gene
Theorem 4. Under the assumptions that the learning databBse expression databases, apart from the number of instances. However,
is an independent and identically distributed sample from a probabithey make it possible to compare the outputdiforithmGPC
lity distribution p faithful to a DAGG and that the tests of conditio- with the DAGs of the BNs sampled. This will provide us with some
nal independence are correct, the outputdforithmGPC(S, R) insight into the performance olligorithmGPC' before we turn
is the equivalence class 6f(S)*. our attention to gene expression data in the next section. Since we

In this section, we evaluatdigorithmGPC on simulated and
biological data (Rosetta compendium (Hugkésal., 2000)).
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Table 2. Adjacency precision and recall efigorithmGPC Table 3. Immorality precision and recall oligorithmGPC

Data Size R Precision Recall Precisign  Recalk Data Size R  Precision Recall Precisign  Recalk

Alarm 100 1 0.880.06 0.52£0.05 0.89:0.06 0.34:£0.04 Alarm 100 1 0.820.14 0.28-0.09 0.06:0.00 0.06:0.00
Alarm 100 2 0.840.08 0.33:0.05 0.874:0.10 0.23:0.04 Alarm 100 2 0.790.12 0.18:0.06 0.56:0.31 0.06:0.04
Alarm 200 1 0.94:0.04 0.64:0.06 0.97:0.06 0.45:-0.05 Alarm 200 1 0.8&0.11 0.46:0.07 1.06:0.00 0.03:0.04
Alarm 200 2 0.93:0.05 0.44£0.06 0.96:-0.04 0.35:0.06 Alarm 200 2 0.78&0.10 0.29:0.05 0.52-0.11 0.12:0.03
Alarm 500 1 0.940.03 0.78:0.03 0.99:0.03 0.5%0.07 Alarm 500 1 0.9&0.07 0.62:0.04 1.06:0.00 0.19:0.12
Alarm 500 2 0.940.04 0.63:0.03 0.99-0.01 0.49:0.04 Alarm 500 2 0.92-0.05 0.46:0.06 0.82:0.13 0.24:0.05
Pigs 100 1 0.760.01 0.75:0.02 0.85:0.03 0.55:0.02 Pigs 100 1 0.6%0.02 0.46£0.03 0.49£0.05 0.35£0.05
Pigs 100 2 0.580.02 0.53:0.02 0.68:0.03 0.36:0.02 Pigs 100 2 0.5%0.02 0.410.03 0.59:0.06 0.270.02
Pigs 200 1 0.8%0.02 0.93:0.01 0.96:0.01 0.81#0.01 Pigs 200 1 0.830.02 0.76:0.03 0.69:0.08 0.64:0.04
Pigs 200 2 0.880.02 0.78:0.02 0.870.02 0.63:0.03 Pigs 200 2 0.76€0.02 0.74#0.02 0.73:0.04 0.58:-0.03
Pigs 500 1 0.880.01 1.06:0.00 0.96:0.02 1.06:0.00 Pigs 500 1 0.940.01 0.940.02 0.89-0.05 0.94:-0.04
Pigs 500 2 0.8%0.01 1.00:0.00 0.96:0.01 1.06:0.00 Pigs 500 2 0.830.02 0.95:0.02 0.82:0.04 0.94:0.02
GNs 100 1 0.860.06 0.51#0.10 0.940.09 0.38:0.09 GNs 100 1 0.590.22 0.15-0.09 0.410.32 0.04:0.07
GNs 100 2 0.840.07 0.29:0.10 0.88:-0.10 0.26:0.08 GNs 100 2 0.520.22 0.09-0.07 0.55:-0.28 0.05:0.08
GNs 200 1 0.880.05 0.606:0.12 0.92:0.09 0.43:0.12 GNs 200 1 0.760.17 0.25:0.12 0.52:0.32 0.09:0.11
GNs 200 2 0.8%0.06 0.38:0.15 0.88:0.10 0.26:0.12 GNs 200 2 0.780.17 0.170.11 0.59:0.29 0.08:0.07
GNs 500 1 0.880.05 0.670.10 0.9%0.06 0.510.14 GNs 500 1 0.6%0.14 0.34:0.13 0.56:0.29 0.19:0.17
GNs 500 2 0.8%0.07 0.46:0.13 0.86:0.09 0.33:0.14 GNs 500 2 0.680.14 0.24:0.13 0.61#0.21 0.13:0.11

useR = 1,2 in the next section, it seems reasonable toRise 1, 2
in this section as well. The columns Precisignand Recall show the average adjacency
The comparison between the outputdifgorithmGPC and the  precision and recall, respectively, over the nodes with five or more
DAGs of the BNs sampled should be done in terms of adjacencieparents and children. Each row in the table shows average and stan-
and immoralities (Theorem 1). Specifically, we proceed as followsdard deviation values over 10 databases of the corresponding size
for each database sampled from a BN with D&G We first run  for the Alarm and Pigs BNs, and over 50 databases for the GNs. We
AlgorithmGPC with each node inG as the seed nods§ and reach two conclusions from the table. First, the adjacency precision
R = 1,2 and, then, report the average adjacency (immorality)of AlgorithmGPC is high in general, though it slightly degrades
precision and recall for each value & Adjacency (immorality)  with R. Second, the adjacency recall 4fgorithmGPC is lower
precision is the number of adjacencies (immoralities) in the outputhan the adjacency precision, and degrades with both the degree of
of AlgorithmGPC that are also irG(S)* divided by the number S andR. This is not surprising given the small sizes of the learning
of adjacencies (immoralities) in the output. Adjacency (immorality) databases.
recall is the number of adjacencies (immoralities) in the output of Table 3 summarizes the immorality precision and recall of
AlgorithmGPC that are also irG(S)* divided by the number of ~ AlgorithmGPC. The main conclusion that we obtain from the
adjacencies (immoralities) i(S)®. We find important to monitor ~ table is thatAlgorithmGPC performs better for learning adja-
wether the performance oflgorithmGPC' is sensitive or not to  cencies than for learning immoralities. This is particularly noti-
the degree of. For this purpose, we also report the average adjaceable for GNs. The reason is that learning adjacencies as in
cency (immorality) precision and recall over the nodeginwith AlgorithmGPC' is more robust than learning immoralities. In
five or more parents and children (four nodes in the Alarm BN andother words, learning immoralities as #igorithmGPC' is more
39 nodes in the Pigs BN). The significance level for the tests ofsensitive to any error previously made than learning adjacencies.
conditional independence is the standard 0.05. This problem has been previously noted in (Badea, 2003, 2004;
Table 2 summarizes the adjacency precision and recall oBSpirteset al, 1993). A solution to it has been proposed in (Badea,
AlgorithmGPC'. The columns Precision and Recall show the ave-2003, 2004). We plan to implement it in a future version of
rage adjacency precision and recall, respectively, over all the nodesligorithmGPC.
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Fig. 1. BN model of the iron homeostasis pathway learntdlyorithmGPC from the Rosetta compendium with ARN1 as the seed geaad R = 2.
Gray-colored genes are related to iron homeostasis according to (Jensen and Culotta, 2002 dtedyu2@@1; Philpotet al., 2002; Protchenket al., 2001),
while white-colored genes are not known to us to be related to iron homeostasis.

In short, the most noteworthy feature digorithmGPC' is its them related to iron homeostasis Rf= 2, then the output involves
high adjacency precision. This is an important feature because it7 genes, 10 of them related to iron homeostasis. Therefore, the out-
implies that the adjacencies returned are highly reliable, i.e. therput of AlgorithmGPC is rich in genes related to iron homeostasis.

are few false positives among them. We note that all the genes related to iron homeostasis are dependent
one on another, and that any node that mediates these dependencies
4.2 Biological Data is also related to iron homeostasis. This is consistent with the con-

We use the Rosetta compendium (Hugkesl., 2000) in order to clusions drawn in Section 4.1, namely that the adjacencies returned
illustrate the usefulness ofigorithmGPC to learn biologically ~ bY AlgorithmGPC' are highly reliable. Regarding running time,
coherent BN models of gene networks from gene expression data\/gorithmGPC takes 6 minutes fol? = 1 and 37 minutes for
The Rosetta compendium consists of 300 full-genome expressioff = 2 (C++ implementation, not particularly optimized for speed,
profiles of the yeasSaccharomyces cereviside other words, the ~and run on a Pentium 2.4 GHz, 512 MB RAM and Windows 2000).
learning database consists of 300 instances and 6316 continuofR@ughly speaking, we expect the running timeddgorithmG PC
random variables. to be exponential irR. However, R will usually be small because
Iron is an essential nutrient for virtually every organism, but it is We Will usually be interested in those genes that depend and
also potentially toxic to cells. We are interested in learning about'one or few other genes mediate the dependency. This is also the
the iron homeostasis pathway in yeast, which regulates the uptakéase in (Margoliret al., 2004; Pe’eet al,, 2001).
storage, and utilization of iron so as to keep it at a non-toxic level. !N comparison, the model of the iron homeostasis pathway in
According to (Lesuisset al., 2001; Philpotet al, 2002; Protchenko ~ (Margolinet al, 2004) involves 26 genes (16 related to iron homeo-
et al,, 2001), yeast can use two different high-affinity mechanismsStasis), while the model in (Pe’et al, 2001) involves nine genes
reductive and non-reductive, to take up iron from the extracellulai(Six related to iron homeostasis). Further comparison with the latter
medium. Genes FRE1, FRE2, FTR1 and FET3 control the reductiv€@per which, unlike the former, learns BN models of gene networks
mechanism, while genes ARN1, ARN2, ARN3 and ARN4 control makes clear the main motivation of our work. In order for their algo-
the non-reductive mechanism. Genes FIT1, FIT2 and FIT3 facilitatdithm to be applicable, Pe’egt al. focus on 565 relevant genes
iron transport. The iron homeostasis pathway in yeast has been préélected in advance and, thus, exclude the remaining 5751 genes
viously used in (Margoliret al., 2004; Pe’eet al.,, 2001) to evaluate  from the learning process. On the other hamtdgorithmGPC
the accuracy of their algorithms for learning models of gene netPProduces a biologically coherent output, only requires identifying
works from gene expression data. Specifically, both papers repoft single relevant gene in advance, and no gene is excluded from the
models of the iron homeostasis pathway learnt from the Rosett}arning process.
compendium, centered at ARN1 and with a radius of two. The-
refore, we runAlgorithmGPC with ARN1 as the seed geng
and R = 2. The significance level for the tests of conditional inde- 5 DISCUSSION
pendence is the standard 0.05. The outputlbjorithmGPC' is We have introducedilgorithmGPC, an algorithm for growing
depicted in Figure 1. Gray-colored genes are related to iron homedN models of gene networks from seed genes. We have evaluated it
stasis, while white-colored genes are not known to us to be relatedn synthetic and biological data with satisfactory results. In (Hashi-
to iron homeostasis. The gray-colored genes include nine of the 1fotoet al., 2004), an algorithm for growing probabilistic Boolean
genes mentioned above as related to iron homeostasis, plus SME&twork models of gene networks from seed genes is proposed. Our
which has been proposed to function in iron transport in (Jensen andork can be seen as an extension of the work by Hashireoh
Culotta, 2002). IfR = 1, then the output involves four genes, all of to BN models of gene networks. However, there are some other
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significant differences between both works. Unlike them, we havdines 12-16 are executed. At line 1Bag(S) C PCD due to
proved the correctness of our algorithm. Their algorithm requireghe paragraph above. Therefore AC D still contains someX €
binary data, while ours can learn from both discrete and continuousV D¢ (S) \ Pac(S), thenX 1L ,S|Z for someZ C PCD \ {X}
data. They report results for a database with only 597 genes, whildue to the local Markov and decomposition properties. Conse-
we have showed that our algorithm can deal with databases withuently, X is removed fromPC D at line 16 due to the assumption

thousands of genes. Other work that is related to ours, though in #hat the tests of conditional independence are correct. O
less degree, is (Tanay and Shamir, 2001) where an algorithm that . .
suggests expansions to a given gene pathway is presented. PROOF OFTHEOREM3. First, we prove that the nodes in

Most of the previous works on learning BN models of gene net-’Cc(5) are included in the outpuPC'. If X € PCq(S), then
works from gene expression data, e.g. (Badea, 2003; Bernard and € PCa(X). Therefore,X andS satisfy the conditions at lines 2
Hartemink, 2005; Harteminlet al, 2002; Ottet al, 2004; P&aa, ~ and 3, respectively, due to Theorem 2. ConsequentigntersPC
2004), do not address the poor scalability of the existing algorithmgt line 4.
for learning BNs from data. They simply reduce the dimensionality Second, we prove that the nodes noHi@'c (:5) are not included
of the gene expression data in advance so that the existing algd? the outputPC. Let X ¢ PCq(S). If X does not satisfy the
rithms are applicable. To our knowledge, (Friedneral., 2000; condition at line 2, thenX does not ente?C' at line 4. On the
Pe’eret al., 2001) are the only exceptions to this trend. These workther hand, ifX satisfies the condition at line 2, theé must be a
build upon the algorithm in (Friedmaet al., 1999) which, in order descendant of in G other than one of its children and, thdsdoes
to scale to high-dimensional data, restricts the search for the parenf$t satisfy the condition at line 3 due to Theorem 2. Consequently,
of each node to a small set of candidate parents that are heuristicalfy does not entePC' at line 4. O
selected in advance. Unfortunately, they do not report results for

databases with more than 800 genes. Moreover, the performance ﬁf PROOF OFTHE.OREM 4 We have to prove that thg outp [,t G
their algorithm heavily depends on the number of candidate paren s the same adjacencies and the same immoralitiég ™ due
tto Theorem 1. It is immediate th@ AG has the same adjacencies

llowed for hn whichi r-defin rameter, and on th . . o )
alo _eql oreac c_Jde, chisause de . ed parameter, a O!o ta%G(S)R at line 8 due to Theorem 3. Likewise, it is immediate that
heuristic for selecting them. For instance, if the user underestlmateBAG has the same immoralities &S)R at line 9 due to the faith-
the number of parents of a node, then the node will lack some of i;i

. i ulness assumption and the assumption that the tests of conditional

parents in the final BN and, even worse, these errors may propag |r?dependence are correct B

to the rest of the BNAlgorithmG PC does not involve any heuri- ’
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