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Abstract

An elementary triplet in an independence model represents a condi-
tional independence statement between two singletons. It is known that
these triplets can be used to represent the independence model unam-
biguously under some conditions. In this paper, we show how this repre-
sentation helps performing efficiently some operations with independence
models, such as finding the dominant triplets or a minimal independence
map of an independence model, or computing the intersection or union of
a pair of independence models.

1 Representation

Let V denote a finite set of elements. Subsets of V are denoted by upper-case
letters, whereas the elements of V are denoted by lower-case letters. Given
three sets I, J,K ⊆ V , the triplet I⊥J ∣K denotes that I and J are conditionally
independent given K. Given a set of triplets G, also known as an independence
model, I ⊥ GJ ∣K denotes that I ⊥ J ∣K is in G. A triplet I ⊥ J ∣K is called
elementary if ∣I ∣ = ∣J ∣ = 1. We shall not distinguish between elements of V
and singletons. We use IJ to denote I ∪ J . Union has higher priority than set
difference in expressions. Consider the following properties:

(CI0) I⊥J ∣K⇔ J ⊥I ∣K.

(CI1) I⊥J ∣KL, I⊥K ∣L⇔ I⊥JK ∣L.

(CI2) I⊥J ∣KL, I⊥K ∣JL⇒ I⊥J ∣L, I⊥K ∣L.

(CI3) I⊥J ∣KL, I⊥K ∣JL⇐ I⊥J ∣L, I⊥K ∣L.

A set of triplets with the properties CI0-1/CI0-2/CI0-3 is also called a sem-
igraphoid/graphoid/ compositional graphoid.1 The CI0 property is also called
symmetry property. The ⇒ part of the CI1 property is also called contraction

1For instance, the independencies in a probability distribution form a semigraphoid, while
the independencies in a strictly positive probability distribution form a graphoid, and the
independencies in a regular Gaussian distribution form a compositional graphoid.
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property, and the ⇐ part corresponds to the so-called weak union and decom-
position properties. The CI2 and CI3 properties are also called intersection and
composition properties.2 In addition, consider the following properties:

(ci0) i⊥j∣k⇔ j⊥i∣k.

(ci1) i⊥j∣kL, i⊥k∣L⇔ i⊥k∣jL, i⊥j∣L.

(ci2) i⊥j∣kL, i⊥k∣jL⇒ i⊥j∣L, i⊥k∣L.

(ci3) i⊥j∣kL, i⊥k∣jL⇐ i⊥j∣L, i⊥k∣L.

Note that CI2 and CI3 only differ in the direction of the implication. The
same holds for ci2 and ci3.

Given a set of triplets G = {I ⊥ J ∣K}, let P = p(G) = {i ⊥ j∣M ∶ I ⊥ GJ ∣K
with i ∈ I, j ∈ J and K ⊆ M ⊆ (I ∖ i)(J ∖ j)K}. Given a set of elementary
triplets P = {i ⊥ j∣K}, let G = g(P ) = {I ⊥ J ∣K ∶ i ⊥ P j∣M for all i ∈ I, j ∈ J
and K ⊆ M ⊆ (I ∖ i)(J ∖ j)K}. The following two lemmas prove that there
is a bijection between certain sets of triplets and certain sets of elementary
triplets. The lemmas have been proven when G and P satisfy CI0-1 and ci0-1
[6, Proposition 1]. We extend them to the cases where G and P satisfy CI0-
2/CI0-3 and ci0-2/ci0-3.

Lemma 1. If G satisfies CI0-1/CI0-2/CI0-3 then (a) P satisfies ci0-1/ci0-
2/ci0-3, (b) G = g(P), and (c) P = {i⊥j∣K ∶ i⊥Gj∣K}.

Proof. The proof of (c) is trivial. We now prove (a). That G satisfies C0 implies
that P satisfies ci0 by definition of P.

Proof of CI1 ⇒ ci1
Since ci1 is symmetric, it suffices to prove the ⇒ implication of ci1.

1. Assume that i⊥Pj∣kL.

2. Assume that i⊥Pk∣L.

3. Then, it follows from (1) and the definition of P that i⊥Gj∣kL or I⊥GJ ∣M
with i ∈ I, j ∈ J and M ⊆ kL ⊆ (I ∖ i)(J ∖ j)M . Note that the latter case
implies that i⊥Gj∣kL by CI1.

4. Then, i⊥Gk∣L by the same reasoning as in (3).

5. Then, i⊥Gjk∣L by CI1 on (3) and (4), which implies i⊥Gk∣jL and i⊥Gj∣L
by CI1. Then, i⊥Pk∣jL and i⊥Pj∣L by definition of P.

Proof of CI1-2 ⇒ ci1-2
Assume that i ⊥ Pj∣kL and i ⊥ Pk∣jL. Then, i ⊥Gj∣kL and i ⊥Gk∣jL by the

same reasoning as in (3), which imply i ⊥ Gj∣L and i ⊥ Gk∣L by CI2. Then,
i⊥Pj∣L and i⊥Pk∣L by definition of P.

2Intersection is typically defined as I ⊥J ∣KL, I ⊥K∣JL⇒ I ⊥JK∣L. Note however that this
and our definition are equivalent if CI1 holds. First, I ⊥JK∣L implies I ⊥J ∣L and I ⊥K∣L by
CI1. Second, I ⊥J ∣L together with I ⊥K∣JL imply I ⊥JK∣L by CI1. Likewise, composition is
typically defined as I ⊥JK∣L⇐ I ⊥J ∣L, I ⊥K∣L. Again, this and our definition are equivalent
if CI1 holds. First, I ⊥JK∣L implies I ⊥J ∣KL and I ⊥K∣JL by CI1. Second, I ⊥K∣JL together
with I ⊥J ∣L imply I ⊥JK∣L by CI1. In this paper, we will study sets of triplets that satisfy
CI0-1, CI0-2 or CI0-3. So, the standard and our definitions are equivalent.



Proof of CI1-3 ⇒ ci1-3
Assume that i⊥ Pj∣L and i⊥ Pk∣L. Then, i⊥Gj∣L and i⊥Gk∣L by the same

reasoning as in (3), which imply i⊥Gj∣kL and i⊥Gk∣jL by CI3. Then, i⊥Pj∣kL
and i⊥Pk∣jL by definition of P.

Finally, we prove (b). Clearly, G ⊆ g(P) by definition of P. To see that
g(P) ⊆ G, note that I ⊥ g(P)J ∣K ⇒ I ⊥GJ ∣K holds when ∣I ∣ = ∣J ∣ = 1. Assume
as induction hypothesis that the result also holds when 2 < ∣IJ ∣ < s. Assume
without loss of generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 =
∅. Then, I ⊥ g(P)J1∣K and I ⊥ g(P)J2∣J1K by ci1 and, thus, I ⊥ GJ1∣K and
I⊥GJ2∣J1K by the induction hypothesis, which imply I⊥GJ ∣K by CI1.

Lemma 2. If P satisfies ci0-1/ci0-2/ci0-3 then (a) G satisfies CI0-1/CI0-
2/CI0-3, (b) P = p(G), and (c) P = {i⊥j∣K ∶ i⊥Gj∣K}.

Proof. The proofs of (b) and (c) are trivial. We prove (a) below. That P satisfies
ci0 implies that G satisfies C0 by definition of G.

Proof of ci1 ⇒ CI1
The ⇐ implication of CI1 is trivial. We prove below the ⇒ implication.

1. Assume that I⊥Gj∣KL.

2. Assume that I⊥GK ∣L.

3. Let i ∈ I. Note that if i /⊥P j∣M with L ⊆M ⊆ (I ∖ i)KL then (c) i /⊥P j∣kM
with k ∈ K ∖M , and (d) i /⊥ P j∣KM . To see (c), assume to the contrary
that i ⊥ P j∣kM . This together with i ⊥ P k∣M (which follows from (2)
by definition of G) imply that i ⊥ P j∣M by ci1, which contradicts the
assumption of i /⊥P j∣M . To see (d), note that i /⊥P j∣M implies i /⊥P j∣kM
with k ∈K ∖M by (c), which implies i /⊥P j∣kk

′M with k′ ∈K ∖kM by (c)
again, and so on until the desired result is obtained.

4. Then, i⊥P j∣M for all i ∈ I and L ⊆ M ⊆ (I ∖ i)KL. To see it, note that
i⊥P j∣KM follows from (1) by definition of G, which implies the desired
result by (d) in (3).

5. i⊥P k∣M for all i ∈ I, k ∈K and L ⊆M ⊆ (I ∖ i)(K ∖ k)L follows from (2)
by definition of G.

6. i⊥P k∣jM for all i ∈ I, k ∈K and L ⊆M ⊆ (I ∖ i)(K ∖ k)L follows from ci1
on (4) and (5).

7. I⊥GjK ∣L follows from (4)-(6) by definition of G.

Therefore, we have proven above the ⇒ implication of CI1 when ∣J ∣ = 1.
Assume as induction hypothesis that the result also holds when 1 < ∣J ∣ < s. Let
J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

8. I⊥GJ1∣KL follows from I⊥GJ ∣KL by definition of G.

9. I⊥GJ2∣J1KL follows from I⊥GJ ∣KL by definition of G.

10. I⊥GJ1K ∣L by the induction hypothesis on (8) and I⊥GK ∣L.

11. I⊥GJK ∣L by the induction hypothesis on (9) and (10).



Proof of ci1-2 ⇒ CI1-2

12. Assume that I⊥Gj∣kL and I⊥Gk∣jL.

13. i⊥ P j∣kM and i⊥ P k∣jM for all i ∈ I and L ⊆ M ⊆ (I ∖ i)L follows from
(12) by definition of G.

14. i⊥P j∣M and i⊥P k∣M for all i ∈ I and L ⊆M ⊆ (I ∖ i)L by ci2 on (13).

15. I⊥Gj∣L and I⊥Gk∣L follows from (14) by definition of G.

Therefore, we have proven the result when ∣J ∣ = ∣K ∣ = 1. Assume as induction
hypothesis that the result also holds when 2 < ∣JK ∣ < s. Assume without loss of
generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

16. I⊥GJ1∣J2KL and I⊥GJ2∣J1KL by CI1 on I⊥GJ ∣KL.

17. I ⊥ GJ1∣J2L and I ⊥ GJ2∣J1L by the induction hypothesis on (16) and
I⊥GK ∣JL.

18. I⊥GJ ∣L by the induction hypothesis on (17).

19. I⊥GK ∣L by CI1 on (18) and I⊥GK ∣JL.

Proof of ci1-3 ⇒ CI1-3

20. Assume that I⊥Gj∣L and I⊥Gk∣L.

21. i⊥P j∣M and i⊥P k∣M for all i ∈ I and L ⊆M ⊆ (I ∖ i)L follows from (20)
by definition of G.

22. i⊥P j∣kM and i⊥P k∣jM for all i ∈ I and L ⊆M ⊆ (I ∖ i)L by ci3 on (21).

23. I⊥Gj∣kL and I⊥Gk∣jL follows from (22) by definition of G.

Therefore, we have proven the result when ∣J ∣ = ∣K ∣ = 1. Assume as induction
hypothesis that the result also holds when 2 < ∣JK ∣ < s. Assume without loss of
generality that 1 < ∣J ∣. Let J = J1J2 st J1, J2 ≠ ∅ and J1 ∩ J2 = ∅.

24. I⊥GJ1∣L by CI1 on I⊥GJ ∣L.

25. I⊥GJ2∣J1L by CI1 on I⊥GJ ∣L.

26. I⊥GK ∣J1L by the induction hypothesis on (24) and I⊥GK ∣L.

27. I⊥GK ∣JL by the induction hypothesis on (25) and (26).

28. I⊥GJK ∣L by CI1 on (27) and I⊥GJ ∣L.

29. I⊥GJ ∣KL and I⊥GK ∣JL by CI1 on (28).

The following two lemmas generalize Lemmas 1 and 2 by removing the as-
sumptions about G and P .

Lemma 3. Let G∗ denote the CI0-1/CI0-2/CI0-3 closure of G, and let P∗
denote the ci0-1/ci0-2/ci0-3 closure of P. Then, P∗ = p(G∗

), G∗
= g(P∗) and

P∗ = {i⊥j∣K ∶ i⊥G∗j∣K}.



Proof. Clearly, G ⊆ g(P∗) and, thus, G∗
⊆ g(P∗) because g(P∗) satisfies CI0-

1/CI0-2/CI0-3 by Lemma 2. Clearly, P ⊆ p(G∗
) and, thus, P∗ ⊆ p(G∗

) because
p(G∗

) satisfies ci0-1/ci0-2/ci0-3 by Lemma 1. Then, G∗
⊆ g(P∗) ⊆ g(p(G∗

))

and P∗ ⊆ p(G∗
) ⊆ p(g(P∗)). Then, G∗

= g(P∗) and P∗ = p(G∗
), because

G∗
= g(p(G∗

)) and P∗ = p(g(P∗)) by Lemmas 1 and 2. Finally, that P∗ = {i⊥
j∣K ∶ i⊥G∗j∣K} is now trivial.

Lemma 4. Let P ∗ denote the ci0-1/ci0-2/ci0-3 closure of P , and let G∗ denote
the CI0-1/CI0-2/CI0-3 closure of G. Then, G∗

= g(P ∗
), P ∗

= p(G∗
) and

P ∗
= {i⊥j∣K ∶ i⊥G∗j∣K}.

Proof. Clearly, P ⊆ p(G∗
) and, thus, P ∗

⊆ p(G∗
) because p(G∗

) satisfies ci0-
1/ci0-2/ci0-3 by Lemma 1. Clearly, G ⊆ g(P ∗

) and, thus, G∗
⊆ g(P ∗

) because
g(P ∗

) satisfies CI0-1/CI0-2/CI0-3 by Lemma 2. Then, P ∗
⊆ p(G∗

) ⊆ p(g(P ∗
))

and G∗
⊆ g(P ∗

) ⊆ g(p(G∗
)). Then, P ∗

= p(G∗
) and G∗

= g(P ∗
), because

P ∗
= p(g(P ∗

)) and G∗
= g(p(G∗

)) by Lemmas 1 and 2. Finally, that P ∗
= {i⊥

j∣K ∶ i⊥G∗j∣K} is now trivial.

The parts (a) of Lemmas 1 and 2 imply that every set of triplets G satisfying
CI0-1/CI0-2/CI0-3 can be paired to a set of elementary triplets P satisfying ci0-
1/ci0-2/ci0-3, and vice versa. The pairing is actually a bijection, due to the parts
(b) of the lemmas. Thanks to this bijection, we can use P to represent G. This
is in general a much more economical representation: If ∣V ∣ = n, then there up
to 4n triplets,3 whereas there are n2 ⋅ 2n−2 elementary triplets at most. We can
reduce further the size of the representation by iteratively removing from P an
elementary triplet that follows from two others by ci0-1/ci0-2/ci0-3. Note that
P is an unique representation of G but the result of the removal process is not
in general, as ties may occur during the process.

Likewise, Lemmas 3 and 4 imply that there is a bijection between the CI0-
1/CI0-2/CI0-3 closures of sets of triplets and the ci0-1/ci0-2/ci0-3 closures of
sets of elementary triplets. Thanks to this bijection, we can use P∗ to represent
G∗. Note that P∗ is obtained by ci0-1/ci0-2/ci0-3 closing P, which is obtained
from G. So, there is no need to CI0-1/CI0-2/CI0-3 close G and so produce
G∗. Whether closing P can be done faster than closing G on average is an open
question. In the worst-case scenario, both imply applying the corresponding
properties a number of times exponential in ∣V ∣ [7]. We can avoid this problem
by simply using P to represent G∗, because P is the result of running the removal
process outline above on P∗. All the results in the sequel assume that G and
P satisfy CI0-1/CI0-2/CI0-3 and ci0-1/ci0-2/ci0-3. Thanks to Lemmas 3 and
4, these assumptions can be dropped by replacing G, P , G and P in the results
below with G∗, P ∗, G∗ and P∗.

Let I = i1 . . . im and J = j1 . . . jn. In order to decide whether I ⊥GJ ∣K, the
definition of G implies checking whether m ⋅ n ⋅ 2(m+n−2) elementary triplets are
in P . The following lemma simplifies this for when P satisfies ci0-1, as it implies

3A triplet can be represented as a n-tuple whose entries state if the corresponding node is
in the first, second, third or none set of the triplet.



checking m ⋅n elementary triplets. For when P satisfies ci0-2 or ci0-3, the lemma
simplifies the decision even further as the conditioning sets of the elementary
triplets checked have all the same size or form.

Lemma 5. Let H1 = {I ⊥ J ∣K ∶ is ⊥ P jt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤ m
and 1 ≤ t ≤ n}, H2 = {I ⊥ J ∣K ∶ i ⊥ P j∣(I ∖ i)(J ∖ j)K for all i ∈ I and j ∈ J},
and H3 = {I ⊥J ∣K ∶ i⊥ P j∣K for all i ∈ I and j ∈ J}. If P satisfies ci0-1, then
G = H1. If P satisfies ci0-2, then G = H2. If P satisfies ci0-3, then G = H3.

Proof. Proof for ci0-1
It suffices to prove that H1 ⊆ G, because it is clear that G ⊆ H1. Assume that

I ⊥ H1J ∣K. Then, is ⊥ P jt∣i1 . . . is−1j1 . . . jt−1K and is ⊥ P jt+1∣i1 . . . is−1j1 . . . jtK
by definition of H1. Then, is ⊥ P jt+1∣i1 . . . is−1j1 . . . jt−1K and is ⊥ P jt∣i1 . . . is−1
j1 . . . jt−1jt+1K by ci1. Then, is⊥Gjt+1∣i1 . . . is−1j1 . . . jt−1K and is⊥Gjt∣i1 . . . is−1
j1 . . . jt−1jt+1K by definition of G. By repeating this reasoning, we can then
conclude that is⊥Gjσ(t)∣i1 . . . is−1jσ(1) . . . jσ(t−1)K for any permutation σ of the
set {1 . . . n}. By following an analogous reasoning for is instead of jt, we can then
conclude that iς(s) ⊥Gjσ(t)∣iς(1) . . . iς(s−1)jσ(1) . . . jσ(t−1)K for any permutations
σ and ς of the sets {1 . . . n} and {1 . . .m}. This implies the desired result by
definition of G.

Proof for ci0-2
It suffices to prove that H2 ⊆ G, because it is clear that G ⊆ H2. Note that

G satisfies CI0-2 by Lemma 2. Assume that I⊥H2J ∣K.

1. i1⊥Gj1∣(I ∖ i1)(J ∖ j1)K and i1⊥Gj2∣(I ∖ i1)(J ∖ j2)K follow from i1⊥P
j1∣(I ∖ i1)(J ∖ j1)K and i1⊥P j2∣(I ∖ i1)(J ∖ j2)K by definition of G.

2. i1⊥Gj1∣(I ∖ i1)(J ∖ j1j2)K by CI2 on (1), which together with (1) imply
i1⊥Gj1j2∣(I ∖ i1)(J ∖ j1j2)K by CI1.

3. i1⊥Gj3∣(I∖i1)(J∖j3)K follows from i1⊥P j3∣(I∖i1)(J∖j3)K by definition
of G.

4. i1⊥Gj1j2∣(I ∖ i1)(J ∖ j1j2j3)K by CI2 on (2) and (3), which together with
(3) imply i1⊥Gj1j2j3∣(I ∖ i1)(J ∖ j1j2j3)K by CI1.

By continuing with the reasoning above, we can conclude that i1 ⊥GJ ∣(I ∖
i1)K. By an analogous reasoning, we can conclude that i1i2 ⊥ GJ ∣(I ∖ i1i2)K,
i1i2i3⊥GJ ∣(I ∖ i1i2i3)K and so on until the desired is obtained.

Proof for ci0-3
It suffices to prove that H3 ⊆ G, because it is clear that G ⊆ H3. Note that

G satisfies CI0-3 by Lemma 2. Assume that I⊥H3J ∣K.

1. i1⊥Gj1∣K and i1⊥Gj2∣K follow from i1⊥P j1∣K and i1⊥P j2∣K by definition
of G.

2. i1⊥Gj1∣j2K by CI3 on (1), which together with (1) imply i1⊥Gj1j2∣K by
CI1.

3. i1⊥Gj3∣K follows from i1⊥P j3∣K by definition of G.

4. i1⊥Gj1j2∣j3K by CI3 on (2) and (3), which together with (3) imply i1⊥G
j1j2j3∣K by CI1.



By continuing with the reasoning above, we can conclude that i1⊥GJ ∣K. By
an analogous reasoning, we can conclude that i1i2⊥GJ ∣K, i1i2i3⊥GJ ∣K and so
on until the desired result is obtained.

We are not the first to use some distinguished triplets of G to represent it.
However, most other works use dominant triplets for this purpose [1, 4, 5, 9].
The following lemma shows how to find these triplets with the help of P. A
triplet I ⊥ J ∣K dominates another triplet I ′ ⊥ J ′∣K ′ if I ′ ⊆ I, J ′ ⊆ J and K ⊆

K ′
⊆ (I ∖ I ′)(J ∖ J ′)K. Given a set of triplets, a triplet in the set is called

dominant if no other triplet in the set dominates it.

Lemma 6. If G satisfies CI0-1, then I ⊥ J ∣K is a dominant triplet in G iff
I = i1 . . . im and J = j1 . . . jn are two maximal sets st is⊥Pjt∣i1 . . . is−1j1 . . . jt−1K
for all 1 ≤ s ≤ m and 1 ≤ t ≤ n and, for all k ∈ K, is /⊥Pk∣i1 . . . is−1J(K ∖ k) and
k /⊥ Pjt∣Ij1 . . . jt−1(K ∖ k) for some 1 ≤ s ≤ m and 1 ≤ t ≤ n. If G satisfies CI0-
2, then I ⊥J ∣K is a dominant triplet in G iff I and J are two maximal sets st
i⊥Pj∣(I∖i)(J∖j)K for all i ∈ I and j ∈ J and, for all k ∈K, i /⊥Pk∣(I∖i)J(K∖k)
and k /⊥ Pj∣I(J ∖ j)(K ∖ k) for some i ∈ I and j ∈ J . If G satisfies CI0-3, then
I ⊥J ∣K is a dominant triplet in G iff I and J are two maximal sets st i⊥Pj∣K
for all i ∈ I and j ∈ J and, for all k ∈ K, i /⊥Pk∣K ∖ k and k /⊥Pj∣K ∖ k for some
i ∈ I and j ∈ J .

Proof. We proof the lemma for when G satisfies CI0-1. The other two cases
can be proven in much the same way. To see the if part, note that I ⊥ GJ ∣K
by Lemmas 1 and 5. Moreover, assume to the contrary that there is a triplet
I ′⊥GJ

′
∣K ′ that dominates I⊥GJ ∣K. Consider the following two cases: K ′

=K
and K ′

⊂ K. In the first case, CI1 on I ′⊥GJ
′
∣K ′ implies that Iim+1⊥GJ ∣K or

I ⊥GJjn+1∣K with im+1 ∈ I ′ ∖ I and jn+1 ∈ J ′ ∖ J . Assume the latter without
loss of generality. Then, CI1 implies that is ⊥ Pjt∣i1 . . . is−1j1 . . . jt−1K for all
1 ≤ s ≤ m and 1 ≤ t ≤ n + 1. This contradicts the maximality of J . In the
second case, CI1 on I ′⊥GJ

′
∣K ′ implies that Ik⊥GJ ∣K ∖k or I⊥GJk∣K ∖k with

k ∈ K. Assume the latter without loss of generality. Then, CI1 implies that
is⊥Pk∣i1 . . . is−1J(K ∖ k) for all 1 ≤ s ≤m, which contradicts the assumptions of
the lemma.

To see the only if part, note that CI1 implies that is⊥Pjt∣i1 . . . is−1j1 . . . jt−1K
for all 1 ≤ s ≤m and 1 ≤ t ≤ n. Moreover, assume to the contrary that for some
k ∈K, is⊥Pk∣i1 . . . is−1J(K ∖ k) for all 1 ≤ s ≤m or k⊥Pjt∣Ij1 . . . jt−1(K ∖ k) for
all 1 ≤ t ≤ n. Assume the latter without loss of generality. Then, Ik⊥GJ ∣K ∖ k
by Lemmas 1 and 5, which implies that I ⊥ GJ ∣K is not a dominant triplet
in G, which is a contradiction. Finally, note that I and J must be maximal
sets satisfying the properties proven in this paragraph because, otherwise, the
previous paragraph implies that there is a triplet in G that dominates I⊥GJ ∣K.

Inspired by [7], if G satisfies CI0-1 then we represent P as a DAG. The
nodes of the DAG are the elementary triplets in P and the edges of the DAG
are {i⊥ Pk∣L → i⊥ Pj∣kL} ∪ {k⊥ Pj∣L ⇢ i⊥ Pj∣kL}. See Figure 1 for an example.
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Figure 1: DAG representation of P (up to symmetry).



For the sake of readability, the DAG in the figure does not include symmetric
elementary triplets. That is, the complete DAG can be obtained by adding a
second copy of the DAG in the figure, replacing every node i⊥Pj∣K in the copy
with j ⊥ Pi∣K, and replacing every edge → in the copy with ⇢. We say that a
subgraph over m ⋅ n nodes of the DAG is a grid if there is a bijection between
the nodes of the subgraph and the labels {vs,t ∶ 1 ≤ s ≤m,1 ≤ t ≤ n} st the edges
of the subgraph are {vs,t → vs,t+1 ∶ 1 ≤ s ≤ m,1 ≤ t < n} ∪ {vs,t ⇢ vs+1,t ∶ 1 ≤ s <
m,1 ≤ t ≤ n}. For instance, the following subgraph of the DAG in Figure 1 is a
grid.

2⊥P5∣4

2⊥P6∣45

1⊥P5∣24

1⊥P6∣245

The following lemma is an immediate consequence of Lemmas 1 and 5.

Lemma 7. Let G satisfy CI0-1, and let I = i1 . . . im and J = j1 . . . jn. If the
subgraph of the DAG representation of P induced by the set of nodes {is ⊥ P
jt∣i1 . . . is−1j1 . . . jt−1K ∶ 1 ≤ s ≤m,1 ≤ t ≤ n} is a grid, then I⊥GJ ∣K.

Thanks to Lemmas 6 and 7, finding dominant triplets can now be reformu-
lated as finding maximal grids in the DAG. Note that this is a purely graphical
characterization. For instance, the DAG in Figure 1 has 18 maximal grids: The
subgraphs induced by the set of nodes {σ(s)⊥Pς(t)∣σ(1) . . . σ(s−1)ς(1) . . . ς(t−
1) ∶ 1 ≤ s ≤ 2,1 ≤ t ≤ 3} where σ and ς are permutations of {1,2} and {4,5,6},
and the set of nodes {π(s)⊥P4∣π(1) . . . π(s − 1) ∶ 1 ≤ s ≤ 3} where π is a permu-
tation of {1,2,3}. These grids correspond to the dominant triplets 12⊥G456∣∅
and 123⊥G4∣∅.

2 Operations

In this section, we discuss some operations with independence models that can
efficiently be performed with the help of P. See [2, 3] for how to perform
these operations efficiently when independence models are represented by their
dominant triplets.

2.1 Membership

We want to check whether I⊥GJ ∣K, where G denotes a set of triplets satisfying
CI0-1/CI0-2/CI0-3. Recall that G can be obtained from P by Lemma 1. Recall
also that P satisfies ci0-1/ci0-2/ci0-3 by Lemma 1 and, thus, Lemma 5 applies
to P, which simplifies producing G from P. Specifically if G satisfies CI0-1, then
we can check whether I ⊥GJ ∣K with I = i1 . . . im and J = j1 . . . jn by checking
whether is ⊥ Pjt∣i1 . . . is−1j1 . . . jt−1K for all 1 ≤ s ≤ m and 1 ≤ t ≤ n. Thanks to
Lemma 7, this solution can also be reformulated as checking whether the DAG
representation of P contains a suitable grid. Likewise, if G satisfies CI0-2, then
we can check whether I ⊥GJ ∣K by checking whether i⊥ Pj∣(I ∖ i)(J ∖ j)K for



all i ∈ I and j ∈ J . Finally, if G satisfies CI0-3, then we can check whether
I ⊥GJ ∣K by checking whether i⊥ Pj∣K for all i ∈ I and j ∈ J . Note that in the
last two cases, we only need to check elementary triplets with conditioning sets
of a specific length or form.

2.2 Minimal Independence Map

We say that a DAG D is a minimal independence map (MIM) of a set of triplets
G relative to an ordering σ of the elements in V if (i) I ⊥DJ ∣K ⇒ I ⊥GJ ∣K,4

(ii) removing any edge from D makes it cease to satisfy condition (i), and (iii)
the edges of D are of the form σ(s) → σ(t) with s < t. If G satisfies CI0-1,
then D can be built by setting PaD(σ(s))

5 for all 1 ≤ s ≤ ∣V ∣ to a minimal
subset of σ(1) . . . σ(s − 1) st σ(s) ⊥ Gσ(1) . . . σ(s − 1) ∖ PaD(σ(s))∣PaD(σ(s))
[8, Theorem 9]. Thanks to Lemma 7, building a MIM of G relative to σ can
now be reformulated as finding, for all 1 ≤ s ≤ ∣V ∣, a longest grid in the DAG
representation of P that is of the form σ(s) ⊥ Pj1∣σ(1) . . . σ(s − 1) ∖ j1 . . . jn →
σ(s)⊥ Pj2∣σ(1) . . . σ(s − 1) ∖ j2 . . . jn → . . . → σ(s)⊥ Pjn∣σ(1) . . . σ(s − 1) ∖ jn, or
j1 ⊥ Pσ(s)∣σ(1) . . . σ(s − 1) ∖ j1 . . . jn ⇢ j2 ⊥ Pσ(s)∣σ(1) . . . σ(s − 1) ∖ j2 . . . jn ⇢
. . . ⇢ jn⊥Pσ(s)∣σ(1) . . . σ(s − 1) ∖ jn with j1 . . . jn ⊆ σ(1) . . . σ(s − 1). Then, we
set PaD(σ(s)) to σ(1) . . . σ(s − 1) ∖ j1 . . . jn.

We say that a DAG D is a perfect map (PM) of a set of triplets G if I ⊥D
J ∣K ⇔ I ⊥ GJ ∣K. We can check whether G has a PM with the help of P as
follows: G has a PM iff PM(∅,∅) returns true, where

PM(V isited,Marked)

if V isited = V then
if all the nodes in the DAG representation of P are in Marked then return true and stop

else
for each node i ∈ V ∖ V isited do

for each longest grid in the DAG representation of P that is of the form
i⊥Pj1∣V isited ∖ j1 . . . jn → i⊥Pj2∣V isited ∖ j2 . . . jn → . . .→ i⊥Pjn∣V isited ∖ jn or
j1⊥Pi∣V isited ∖ j1 . . . jn ⇢ j2⊥Pi∣V isited ∖ j2 . . . jn ⇢ . . .⇢ jn⊥Pi∣V isited ∖ jn with
j1 . . . jn ⊆ V isited do
PM(V isited ∪ {i},
Marked ∪ p({i⊥Gj1 . . . jn∣V isited ∖ j1 . . . jn}) ∪ p({j1 . . . jn⊥Gi∣V isited ∖ j1 . . . jn}))

2.3 Inclusion

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. We can
check whether G ⊆ G′ by checking whether P ⊆ P′. If the DAG representations
of P and P′ are available, then we can answer the inclusion question by checking
whether the former is a subgraph of the latter.

4I ⊥DJ ∣K stands for I and J are d-separated in D given K.
5PaD(σ(s)) denotes the parents of σ(s) in D.



2.4 Intersection

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. Note
that G∩G′ satisfies CI0-1/CI0-2/CI0-3. Likewise, P∩P′ satisfies ci0-1/ci0-2/ci0-
3. We can represent G∩G by P∩P′. To see it, note that I⊥G∩G′J ∣K iff i⊥Pj∣M
and i ⊥ P′j∣M for all i ∈ I, j ∈ J , and K ⊆ M ⊆ (I ∖ i)(J ∖ j)K. If the DAG
representations of P and P′ are available, then we can represent G ∩G by the
subgraph of either of them induced by the nodes that are in both of them.

2.5 Union

Let G and G′ denote two sets of triplets satisfying CI0-1/CI0-2/CI0-3. Note that
G∪G′ may not satisfy CI0-1/CI0-2/CI0-3. For instance, let G = {x⊥y∣z, y⊥x∣z}
and G′

= {x ⊥ z∣∅, z ⊥ x∣∅}. We can solve this problem by simply adding an
auxiliary element e (respectively e′) to the conditioning set of every triplet
in G (respectively G′). In the previous example, G = {x ⊥ y∣ze, y ⊥ x∣ze} and
G′

= {x⊥z∣e′, z⊥x∣e′}. Now, we can represent G∪G′ by first adding the auxiliary
element e (respectively e′) to the conditioning set of every elementary triplet in
P (respectively P′) and, then, taking P ∪ P′. This solution has advantages and
disadvantages. The main advantage is that we represent G∪G′ exactly. One of
the disadvantages is that the same elementary triplet may appear twice in the
representation, i.e. with e and e′ in the conditioning set. Another disadvantage
is that we need to modify slightly the procedures described above for building
MIMs, and checking membership and inclusion. We believe that the advantage
outweighs the disadvantages.

If the solution above is not satisfactory, then we have two options: Rep-
resenting a minimal superset or a maximal superset of G ∪ G′ satisfying CI0-
1/CI0-2/CI0-3. Note that the minimal superset of G∪G′ satisfying CI0-1/CI0-
2/CI0-3 is unique because, otherwise, the intersection of any two such supersets
is a superset of G ∪G′ that satisfies CI0-1/CI0-2/CI0-3, which contradicts the
minimality of the original supersets. On the other hand, the maximal sub-
set of G ∪ G′ satisfying CI0-1/CI0-2/CI0-3 is not unique. For instance, let
G = {x⊥y∣z, y⊥x∣z} and G′

= {x⊥z∣∅, z ⊥x∣∅}. We can represent the minimal
superset of G∪G′ satisfying CI0-1/CI0-2/CI0-3 by the ci0-1/ci0-2/ci0-3 closure
of P∪P′. Clearly, this representation represents a superset of G∪G′. Moreover,
the superset satisfies CI0-1/CI0-2/CI0-3 by Lemma 2. Minimality follows from
the fact that removing any elementary triplet from the representation implies
not representing some triplet in G ∪G′ by Lemma 1. Note that the DAG rep-
resentation of G ∪G′ is not the union of the DAG representations of P and P′,
because we first have to close P∪P′ under ci0-1/ci0-2/ci0-3. We can represent a
maximal subset of G∪G′ satisfying CI0-1/CI0-2/CI0-3 by a maximal subset U
of P ∪ P′ that is closed under ci0-1/ci0-2/ci0-3 and st every triplet represented
by U is in G∪G′. Recall that we can efficiently check the latter as shown above.
In fact, we do not need to check it for every triplet but only for the dominant
triplets. Recall that these can efficiently be obtained from U as shown in the
previous section.



3 Discussion

In this work, we have proposed to represent semigraphoids, graphoids and com-
positional graphoids by their elementary triplets. We have also shown how this
representation helps performing efficiently some common operations between
independence models. Whether this implies a gain of efficiency compared to
other representations (e.g. dominant triplets) is a question for future research.

References

[1] Marco Baioletti, Giuseppe Busanello, and Barbara Vantaggi. Conditional
independence structure and its closure: Inferential rules and algorithms.
International Journal of Approximate Reasoning, 50(7):1097–1114, 2009.

[2] Marco Baioletti, Giuseppe Busanello, and Barbara Vantaggi. Acyclic di-
rected graphs representing independence models. International Journal of
Approximate Reasoning, 52(1):2 – 18, 2011.

[3] Marco Baioletti, Davide Petturiti, and Barbara Vantaggi. Qualitative com-
bination of independence models. In Proceedings of the 12th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty, pages 37–48, 2013.

[4] Peter de Waal and Linda C. van der Gaag. Stable independence and com-
plexity of representation. In Proceedings of the 20th Conference on Uncer-
tainty in Artificial Intelligence, pages 112–119, 2004.

[5] Stavros Lopatatzidis and Linda C. van der Gaag. Computing concise repre-
sentations of semi-graphoid independency models. In Proceedings of the 13th
European Conference on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, pages 290–300, 2015.
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