Planning for Loosely Coupled Agents using Partial Order Forward-Chaining

Jonas Kvarnstrom
Department of Computer and Information Science
Linkdping University, SE-58183 Link&ping, Sweden (jonkv@ida.liu.se)

Abstract

We investigate a hybrid between temporal partial-order and
forward-chaining planning where each action in a partially
ordered plan is associated with a partially defined state. The
focus is on centralized planning for multi-agent domains and
on loose commitment to the precedence between actions be-
longing to distinct agents, leading to execution schedules that
are flexible where it matters the most. Each agent, on the
other hand, has a sequential thread of execution reminiscent
of forward-chaining. This results in strong and informative
agent-specific partial states that can be used for partial evalu-
ation of preconditions as well as precondition control formu-
las used as guidance. Empirical evaluation shows the result-
ing planner to be competitive with TLpLAN and TALplanner,
two other planners based on control formulas, while using a
considerably more expressive and flexible plan structure.

1 Introduction

A major earthquake has struck in the middle of the night
with devastating effects. Injured people are requesting med-
ical assistance, many of them spread out in sparsely located
homes in the countryside. Clearing all roadblocks will take
days. Fortunately we have access to a fleet of unmanned
aerial vehicles (UAVs) that can rapidly be deployed to send
crates of medical and food supplies. In preparation, ground
robots can move crates out of warehouses and onto carriers
that allow a UAV to carry multiple crates.

This dramatic scenario is just one example of a wide class
of domains involving multiple agents in the sense of “execu-
tion entitites” that may or may not be autonomous. Other do-
mains abound, with planning competitions providing a vari-
ety of examples such as the ZenoTravel, Satellite, Rovers,
Elevators and Storage domains.

Though any planner can plan for multiple agents by mod-
eling them as action arguments, some plan structures are
more suitable than others. For example, a sequential planner
may generate a plan where a single UAV delivers all crates,
as this would have exactly the same apparent quality as a
plan making good use of all available agents in parallel. This
cannot be remedied by relaxing precedence constraints after
planning (Béckstrom 1998). We therefore prefer to work

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

directly with partial-order (PO) plans, giving the planner ac-
cess to a suitable model for concurrent execution.

Most planners generating partially ordered plans use
partial-order causal link (POCL') techniques, which were
initially conceived to increase the efficiency of planning:
Least commitment, avoiding “premature commitments to
a particular [action] order” (Sacerdoti 1975), requires less
backtracking. Sequential execution was usually assumed,
as reflected in the common definition of a PO plan being
correct iff every compatible total ordering is correct. Thus,
partial ordering was originally a means to an end.

Despite lacking the benefits of least commitment, current
forward-chaining (FC) planners tend to be more efficient
than PO planners, as they can generate complete state infor-
mation and take advantage of powerful state-based heuris-
tics or domain-specific control (Bacchus and Kabanza 2000;
Kvarnstrém and Doherty 2000). However, such planners do
not generate partial-order plans, which for us is an end in
itself. This leads to the question of whether some aspects of
forward-chaining could be used in the generation of partial-
order plans, combining the flexibility of one with the perfor-
mance of the other — for example through the generation of
stronger state information for partial-order plans.

Related work. The idea of combining these types of plan-
ning is not new. For example, FLECS (Veloso and Stone
1995) uses means-ends analysis to add relevant actions to a
partial-order plan. A FLExible Commitment Strategy then
determines when an action should be moved to the end of
a totally ordered plan prefix, in essence updating the initial
state. As sequential execution is assumed, committing to
arbitrary total orderings is not considered harmful if it im-
proves planning performance.

A planner by Brenner (2003) uses a PO plan structure
whose frontier contains those state variable assignments that
are “achieved”, meaning that they occur in the plan and can-
not be interfered with. As only actions whose precondi-
tions hold in the frontier are considered applicable, it can
efficiently be determined which actions can be added to the
current plan. Each new action is placed after the “achiev-
ers” supporting its precondition, and additional constraints
are added to ensure potential threats are resolved, resulting

"We assume basic familiarity with POCL planning and refer to
e.g. Weld (1994) for an overview of concepts and terminology.

in a new valid plan. The algorithm is sound but incomplete.

Coles et al. (2010) independently developed a similar ap-
proach in popF, also keeping track of a completely defined
frontier state and placing new actions after the achievers sup-
porting their preconditions. However, popr is complete, inte-
grates interesting features such as continuous linear change,
and provides effective domain-independent heuristics.

The TFPOP approach. Some time ago, we began ex-
ploring another approach to making use of forward-chaining
when generating partially ordered plans (Kvarnstrom 2010).
This approach has a stronger focus on execution flexibility
for multiple agents and is therefore in several ways closer
to standard partial-order planning than either of the planners
above. For example, it neither uses a total-order prefix nor
keeps track of a completely defined frontier state, but retains
a partially ordered plan structure at all times and allows any
action in a plan to support new causal links.

Creating highly informative states from a partial-order
plan does require some form of additional structural con-
straint, though. The key is that for flexible execution, partial
ordering is considerably more important between different
agents than within the subplan assigned to any given agent:
Each UAV can only perform its flight and delivery actions in
sequence, as it cannot be in several places at once. Gener-
ating the actions for each agent in sequential temporal order
would be a comparatively small sacrifice, allowing actions
belonging to distinct agents to remain independent to exactly
the same extent as in a standard partial order plan. Each
agent-specific thread of actions can then be used to generate
informative agent-specific states in a forward-chaining man-
ner, resulting in a Threaded Forward-chaining Partial Order
Planner called TFPOP.

In particular, many state variables are associated with a
specific agent and are only affected by the agent itself. This
holds for the location of an agent (unless some agents can
move others) and for the fact that an agent is carrying a par-
ticular object (unless one agent can “make” another carry
something). Complete information about such state vari-
ables can easily be generated at any point along an agent’s
sequential thread and is in fact particularly useful for the
agent itself. For example, whether a given UAV can fly to a
particular location depends on its own current location and
fuel level, not those of other agents. Additionally, we have
complete information about static facts such as the location
of a depot and the carrying capacity of a carrier.

This usually results in sufficient information to quickly
determine whether a given precondition holds, thus allow-
ing TFPOP to very efficiently rule out most inapplicable ac-
tions. Agents are also often comparatively loosely coupled
(Brafman and Domshlak 2008): Not every action requires an
interaction with other agents. Therefore, agents will for ex-
tended periods of time mostly depend on state variables that
are not currently affected by other agents. This is not crucial
for the approach to be applicable but does further strengthen
the available information. A fallback procedure reminiscent
of the operation of a standard POCL planner takes care of
the comparatively rare cases where states are too weak.

Partial states could be used to support new state-based
heuristics for PO planning. In this paper, we instead use

them to evaluate precondition control formulas (Bacchus
and Ady 1999) which have previously proven highly effec-
tive in pruning the search space for sequential planning. The
result is a new knowledge-rich partial-order planner compet-
itive with the sequential versions of the award-winning plan-
ners TLpLAN (Bacchus and Kabanza 2000) and TALplanner
(Kvarnstrom and Doherty 2000) in terms of performance.
We will now present TFPOP. We first describe planning
domains, problem instances and plan structures. We then
give a brief high-level description of the planner and its
search space before discussing the algorithms involved in
detail. Finally, we discuss soundness and completeness and
provide an empirical evaluation before concluding the paper.

2 Domains, Problems, Plans, Solutions

We assume a typed finite-domain state-variable or fluent rep-
resentation. For example, loc(crate) might be a location-
valued fluent taking a crate as its only parameter.

An operator has a list of typed parameters, where the first
parameter always specifies the executing agent. For exam-
ple, flying between two locations may be modeled using
the operator fly(uav, from, to), where the uav is the executing
agent. An action is a fully instantiated (grounded) operator.

To simplify the presentation, an agent has a single thread
of execution. The extension to multiple threads is trivial.

Each operator o has a precondition formula pre(o) that
may be disjunctive and quantified. We currently assume all
effects are conjunctive and unconditional and take place in a
single effect state at the end of an action.

Action durations often depend on circumstances outside
the control of a planner or execution mechanism: The time
required for flying between two locations may depend on
wind, temporary congestion at a depot, and other factors. We
therefore model expected action durations expdur(a) > 0 but
never use such durations to infer that two actions will end in
a specific order. Each duration is specified as a temporal
expression that may depend on operator arguments.

Many domains involve mutual exclusion, as when only
one UAV can refuel at a time. To explicitly model this, each
operator is associated with a set of binary parameterized
semaphores that are acquired throughout the execution of an
action. For example, use-of(location) may be a semaphore
ensuring exclusive access to a particular location. The set of
semaphores acquired by an action a is denoted by sem(a).

For any problem instance, the initial state must com-
pletely define the values of all fluents. Goal formulas, like
preconditions, may be disjunctive and quantified.

2.1 Plan Structures
A plan is a tuple m = (A, L, O, M), where:
e A is the set of all action instances occurring in the plan.

e [isasetof ground causal links a; =, aj representing the
commitment that a; will achieve the condition f = v for a;.

e O is a set of ordering constraints on A whose transitive
closure is a partial order denoted by <. The index of
< will be omitted when obvious from context. As usual,
a; < a;jiff a; < a; and a; # a;. The fact that a < b means
that a ends strictly before b begins.

e M is a set of mutex sets, where no two actions belonging to
the same mutex set can be executed concurrently (maybe
due to explicit semaphores or because their effects inter-
fere) but whose order is not necessarily defined before ex-
ecution. This enhances execution flexibility compared to
a pure partial order where such actions must be ordered at
plan time. M(a) denotes the possibly empty set of actions
with which a is mutex according to M.

As each action instance specifies the thread it is associated
with, explicit separation into thread-specific action sets is
unnecessary. Instead, act(r,t) denotes the set of action in-
stances executed by a given thread ¢ and we add the struc-
tural constraint that such sets must be totally ordered by O.
Though we may use expected durations to infer approx-
imately when an action is expected to start, actions are not
actually scheduled to execute at a specific timepoint. In-
stead, they can only be invoked when explicitly notified that
all predecessors have finished, which may take longer than
initially expected. Therefore the PDDL2.1 issue of non-zero
action separation (Fox and Long 2003) does not arise. Note
also that plans with this structure are always dynamically
controllable (Morris, Muscettola, and Vidal 2001).

Executability. To determine whether a plan (A, L, O, M) is
executable, we must consider all possible orders in which
it permits (potentially concurrent) actions to start and end.
Each action a € A is therefore associated with an invocation
node inv(a) where preconditions must hold and semaphores
are acquired, and an effect node eff(a) where effects are guar-
anteed to have taken place and semaphores are released. Ac-
tion precedence carries over directly to such nodes: If a € A
then inv(a) < eff(a), and if a < b then eff(a) < inv(b).

The node sequences that may arise from execution are ex-
actly those that (a) are consistent with < and (b) ensure that
no two actions that are mutually exclusive according to M
are executed concurrently. Durations cannot be used to infer
additional necessary orderings, only probable orderings.

A plan is executable iff all associated node sequences
[10, 71, ..., 1] satisfy the following constraints. First, for
every pair of distinct actions {a;,a;} € A whose execution
overlaps in the given node sequence:

e sem(a;) N sem(a;) = @: Two concurrently executing ac-
tions cannot require the same semaphore.

e affected(a;)Naffected(a;) = @, where affected(a) is the set
of fluents occurring in the effects of a: Two concurrently
executing actions cannot affect the same fluent.

e affected(a;) N required(a;) = @, where required(a) is the
set of fluents represented in incoming causal links to a:
No action can affect a fluent used to support the precondi-
tion of another concurrently executing action.

Second, the effects of any action a € A must be internally
consistent. Third, all preconditions must be satisfied: Let s
be the initial state and for all 0 < i < k, let 5,41 be

s; modified with the effects of n; if n; is an effect node,
S; otherwise.

Then for every invocation node n; corresponding to an ac-
tion a, we must have s; = pre(a).

Solutions. An executable plan is a solution iff every associ-
ated node sequence results in a state s satisfying the goal.

3 The TFPOP Planner

We now turn our attention to how to find a solution, starting
with an overview of the TFPOP search space, its use of par-
tial states and the planner itself. In the subsequent sections,
the algorithms involved will be discussed in detail.

Search Space. The initial node in the search space is the
executable plan ({ay}, @, @, @), where q is a special initial
action not associated with a specific thread. As in POCL
planning, this action has no preconditions or semaphores
and its effects define the initial state. For all other a; € A
in any plan, ap < a;. As means-ends analysis is not used, the
initial plan does not contain an action representing the goal.
A successor is a new executable plan 7 where exactly one
new action has been added to the end of a specific thread ¢
(occurring last in act(nw, t)), possibly also constrained to oc-
cur before or after certain actions in other threads. Thus,
unlike POCL planners, TFPOP does not allow intermedi-
ate plans to have “flaws” such as unsatisfied preconditions.
Allowing flaws would weaken state information, and as
all flaws must be corrected in the final solution, delaying
their correction would not increase execution flexibility. As
shown in Section 5, this does not affect completeness.

Partial States. Our intention is to improve performance by
generating informative states to be used in precondition eval-
uation. Each action in a plan is therefore associated with
a state specifying facts known to be true from the instant
the action ends until the start of the next action in the same
thread, or “forever” if there is no next action yet. The initial
action is a special case, belonging to no thread and providing
an initial state for all threads. Section 3.4 shows how states
are generated and updated when new actions are added.

In general, one cannot infer complete information about
any point during the execution of a partially ordered plan.
Therefore, a formula can evaluate to true, false, or unknown.

Also, ensuring states contain all information that can the-
oretically be inferred from a partial order requires compara-
tively complex state structures and state update procedures.
This tends to require more time than is saved by rapid evalu-
ation. Formula evaluation is therefore permitted to return
unknown even when it would be theoretically possible to
determine whether a formula holds at a certain point in a
plan, and a complete but more complex fallback procedure
is called for any unknown formula (make-true, see below).

As maximal state information is not required, a partial
state can be a simple structure specifying a finite set of pos-
sible values for each fluent (f € {vy,...,v,}). The evaluation
procedure eval(¢, s) is the natural extension of a standard re-
cursive formula evaluator to three truth values. For example,
suppose ¢ is a A B. If eval(a, s) = false or eval(B, s) = false,
then eval(¢, s) = false. If both subformulas are frue, the
conjunction is true. Otherwise, the conjunction is unknown.
This combination has proven to yield a good balance be-
tween information and speed, representing most of the use-
ful information that can be inferred but also supporting very
efficient state updates and formula evaluation.

The Planner. First, the planner (pseudocode outline below)
tests whether the goal is already satisfied (Section 3.5). If
so, a solution is returned. If not, a successor must be found.

By definition, any successor of a node adds a single new
action a to the end of an existing thread ¢. The planner there-
fore begins by determining which thread ¢ to extend (Section
3.1). The last state associated with this thread specifies facts
that must hold when a is invoked and can therefore be used
to evaluate the preconditions of potential candidates.

The result may be false, in which case a candidate has ef-
ficiently been filtered out. Otherwise we check the action’s
effects for consistency. We then call make-true to search
for precedence constraints and causal links ensuring the pre-
condition will hold (Section 3.2), which might fail if the pre-
condition was unknown, and that there is no interference be-
tween a and existing actions in the plan (Section 3.3).

Resource usage is updated and resource constraints are
checked (Section 4). If no constraints are violated, we deter-
mine which existing actions a’ € A share a semaphore or an
affected fluent with the new action a and update the set M
of mutex sets to ensure such actions cannot be executed in
parallel with a. As this cannot fail, a new successor has been
found. A partial state is generated for the new action and ex-
isting states may have to be updated due to potential interfer-
ence (Section 3.4). This results in the following “skeleton”
planner, where choose refers to standard non-deterministic
choice, in practice implemented by backtracking.

procedure TFPOP
7« {ao}, @, @, @) // Initial plan
repeat
if goal satisfied return 7
choose a thread 7 to which an action should be added
/| Use partial state to filter out most potential actions
s « partial state at the end of thread ¢
choose an action a for ¢ such that pre(a) is not false in s
if effects of a are inconsistent then fail (backtrack)
/| Complete check: Can the action really be added, and how?
choose precedence constraints C and causal links L ensuring
pre(a) is satisfied, a does not interfere with existing actions
and no existing action interferes with a
update resource usage
if resource constraints violated then fail (backtrack)
add a, C, L and necessary mutex sets to 7
update existing partial states and create new partial state for a

Search Guidance. TFPOP is currently not guided by
heuristics but by precondition control formulas (Bacchus
and Ady 1999). Such formulas represent conditions that are
required not for executability but for an action to be mean-
ingful in a given context, and have been used to great ef-
fect in TLprLaN (Bacchus and Kabanza 2000) and TALplan-
ner (Kvarnstrom and Doherty 2000).

Though any planner supports preconditions, most PO
planners use means-ends techniques where stronger precon-
ditions may generate subgoals but provide no guidance. TF-
POP requires immediate support for all preconditions, yield-
ing efficient and effective pruning of the search space.

Control formulas often need to refer to the goal of the
current problem instance. For example, this is needed to de-

termine where the crates on a carrier should be delivered,
so UAVs can be prevented from flying the carrier to other
locations — which would be possible but pointless. TFPOP
therefore supports the construct goal(¢) (Bacchus and Ka-
banza 2000), which is used in preconditions to test whether ¢
is entailed by the goal.

3.1 Selecting a Thread to Extend

By default, the planner aims to minimize makespan by
distributing actions as evenly as possible across available
threads. It therefore prefers to extend threads whose current
actions are expected to finish earlier given the assumption
that each action will start as soon as its explicit predecessors
have finished and it can acquire the required semaphores.
This prioritization can be done by calculating the ex-
pected start time expstart(a) and finish time expfin(a) for
every action a € A using the procedure below. The imple-
mentation uses a variation where times are updated incre-
mentally as new actions are added. Again, timing cannot be
used to infer that one action must occur before another.

procedure calculate-expected-times(n = (A, L, O, M))
expstart(ay) = expfin(ay) = 0 // Initial action ay at time 0
while some action in A remains unhandled
E « {a € A | all parents of a are handled} /| Executable now
/| We know E # @, since the partial order is non-cyclic.
/| Calculate for each a € E when its parents should be finished.
/I several actions could start first, break ties arbitrarily.
forall a € E: t(a) = maxeparenssie) €Xpfin(p)
a « an arbitrary action in £ minimizing #(a) / Could start first
expstart(a) « t(a); expfin(a) « expstart(a) + expdur(a)
forall unhandled @’ € M(a): O « O U {a < a’}

The final step temporarily modifies O to ensure that when
one action acquires a particular mutually exclusive resource,
it will strictly precede all other actions that require it but
have not yet acquired it.

3.2 Satisfying Preconditions

When a thread ¢ has been selected, each potential action a
for the thread is considered in turn. For a to be applicable, it
must first be possible to satisfy its preconditions.

Let a; be the last action currently in the thread # (with
ar = ao if t is empty), and let s be the last state in ¢. If
eval(pre(a), s) = false, then a cannot be applicable and we
can immediately continue to consider the next action.

If unknown is returned, the reason may be that pre(a) re-
quires support from an effect that (given the current prece-
dence constraints) may or may not occur before a, that there
is potential interference from other actions, or simply that
the state was too weak to determine whether pre(a) holds.
As we do not know, we must test whether we can introduce
new precedence constraints that ensure pre(a) holds. Even if
the precondition was true, guaranteeing that support can be
found, we must still generate new causal links to protect the
precondition from interference by actions added later.

A provisional plan 77 = (A U {a},L,0 U {a, < a}, M) is
created, where a is placed at the end of its thread. Then,
make-true(¢, a, s,n’) determines whether it is possible to
guarantee that ¢ = pre(a) holds when a is invoked in 7’ in

the partial state s. A set of extended plans is returned, each
extending 7’ with links and possibly constraints correspond-
ing to one particular way of ensuring that ¢ will hold. If this
is impossible, the empty set of extensions is returned.

procedure make-true(p,a, s,m = (A, L, O, M))
if gpisv, =0,
if v; = v, return {7} else return @
else if ¢ is goal(¢)
if goal state |= ¢ return {r} else return @
elseif pisf=v
if s |= f # v return @ // Use state for efficiency
/| Find potential supporters a; that may be placed before a
X0
forall a; € A such that g; assigns f = vand nota < a;
/] Add supporter, find ways of fixing interference (see below)
' «— (A, LU {q; =, a}t,OU{a; < a}, M)
X « X U fix-interference(f, a;, a, n")
return X
else if ¢ is —(f = v) / Handled similarly
else if ¢ is —~«
Push negation inwards using standard equivalences
such as =(a A B) = —~a V =8 and recurse
elseif pisa A
/| For each way of satisfying «, find all ways of also satisfying 8
X2
forall n’ € make-true(a, a, s, n)
X «— X U make-true(B, a, s,n")
return X
elseif pisa Ve
/| Find all ways of satisfying either a or
return make-true(e, a, s, w) U make-true(B, a, s, 7)
else if ¢ is quantified
Instantiate with all values of the variable’s finite domain
and handle as a conjunction or disjunction
end if

/| See next section

3.3 Avoiding Interference

As shown above, when make-true finds a possible supporter
a; for an atomic formula f = v, it is placed before a and a
causal link is added. The fix-interference procedure then de-
termines if and how we can guarantee that no other actions
can interfere by also assigning a value to f between the end
of a; and the start of a. It iterates over all potential interferers
a’, adding (if permitted by) constraints that place a’ either
before a; or after a. After each iteration, X contains all min-
imally constraining ways of avoiding interference from all
actions considered so far (and possibly some that are more
constraining than necessary, which could be filtered out).

procedure fix-interference(f, a;,a,m = (A, L, O, M))
X « {m}
forall a’ € A\ {a,a;} assigning a value to f
if a’ <o a; or a <o @ then a; cannot interfere else
X' «— @ /| Then, for every solution to the earlier interferers
foralln’ = (A", L',0', M"Y e X
/| Can we place a’ before the supporter a;?
ifnota; <o a’ then X’ «— X' U{{(A’,L’,0' U{d' < a;}, M)}
/] Can we place a’ after a?
ifnota’ <y athen X’ « X' U{{A’, L', 0" U{a <d'}, M)}

/| Note that both extensions may be impossible,
// leading to a reduction of the size of X!
XX
return X

This ensures no actions in & can interfere with the precon-
ditions of a, but a may also interfere with existing actions
in 7r. That is handled by identifying all actions a’ € A whose
incoming causal links depend on fluents f affected by a and
then preventing interference using fix-interference.

3.4 Generating and Updating Partial States

A partial state represents facts that hold during a certain
interval of time. If the effects of a new action may occur
within that interval, the state must be updated and “weak-
ened” to remain sound. Suppose the state s associated with
a; = fly(uav8,depoti,loc12) claims that loc(uav5)e{depot4 }:
Given the current plan, this fact must hold from the end of a; .
Suppose further that a = fly(uav5,depot4,loc57) is added, and
that its effects may occur within the interval of time where
s should be valid. Then, s must be updated to claim that
throughout its interval, loc(uav5) takes on one of two possi-
ble values: loc(uav5)e{depot4,loc57}.

As only soundness is required, updates do not have to
yield the strongest information possible. Thus, while one
could test precedence constraints to determine exactly which
states the new action may interfere with, one can also sim-
ply weaken all existing states: If a state claims that f € V
and the new action has the effects f := v, the state would be
modified to claim f € V U {v}. For increased efficiency, we
note that only the last state in each thread is used for precon-
dition evaluation. Consequently only those states need to be
weakened to ensure soundness.

When a new action « is added, we must also generate
a new state valid from the end of that action until infin-
ity. It is clear that the state s of its predecessor in the same
thread is valid when the action is invoked. We therefore be-
gin by making a copy s" of s. Given the new precedence
constraints, we also know that any condition f = v supported

by a new causal link a’ ™, & must hold when a is invoked.
We therefore strengthen s’ with the knowledge that f = v.
New information thus flows between threads along causal
links, counteracting the weakening discussed above and re-
sulting in a stronger state valid exactly when a is invoked.

To create a state valid from the end of a until infinity,
we also apply all effects of a to s/, resulting in a state valid
exactly when a ends. Finally, we weaken this state using
all effects that may possibly occur in other threads from a
until infinity, in a procedure essentially identical to the state
update above. The result is a new sound state for a.

3.5 Testing Goal Satisfaction

The goal is satisfied iff it holds after all actions in the plan
have finished. The last state of each thread ¢ contains facts
known to be true from the end of the last action in ¢ un-
til infinity, and consequently also after all actions have fin-
ished. Conjoining the final states of all threads results in
even stronger information about what is true after all actions
finish. If evaluating the goal formula in this state returns
false, we have efficiently detected that it cannot be satisfied.

If evaluation returns true or unknown, a pseudo-action a,
is created with the goal as precondition and constrained to
occur after the last action in all threads. Then, make-true is
called to determine whether new precedence constraints can
be introduced to arrange existing actions in such a way that
the goal will definitely hold. If so, a solution is found. If
not, the current plan cannot be a solution.

3.6 Some Efficiency Considerations

The make-true procedure may appear to investigate a com-
binatorial explosion of alternatives for conjunctive formu-
las: For every way of satisfying a, there may be many ways
of satisfying 8. In practice, though, there is often only one
way of satisfying a subformula while retaining a consistent
precedence relation, or even none at all. The same is true
for fix-interference. Note also that POCL planners need to
perform similar steps, though possibly spread out over time.

Furthermore, we have described the planning process as
if the precondition of each action instance is evaluated sep-
arately. The implementation instead splits the precondition
of any operator into the conjuncts pg in which no parameters
occur, pj in which only the first parameter occurs, and so on.
Preconditions are then evaluated using nested loops, a com-
mon approach in planners that do not pre-ground actions,
permitting large subsets of inapplicable action instances to
be detected with a single formula evaluation.

Finally, these procedures are implemented to yield a solu-
tion or applicable action when it is found rather than gener-
ating all solutions at once, saving their state for future calls.

4 Extension: Resource Constraints

Since TFPOP is based on state variables, it can easily sup-
port resources modeled as numeric fluents: Rather than
modeling each crate as a separate object and keeping track
of which crates are on a certain carrier, we model how many
crates of a given type are loaded. Not only is this closer to
how we think about the domain, since crates of a given type
are interchangeable — it also reduces the branching factor.

Resources can often be produced or consumed in parallel,
as when ground robots cooperate to load a carrier. Using
ordinary preconditions crates(carrier,type) = n and effects
crates(carrier,type) := n + 1 for resources leads to sequen-
tialization of resource effects, since exact resource amounts
must be known before and after the action. This is highly
undesirable as it decreases execution flexibility and removes
all pressure on the planner to use multiple agents to load a
carrier. We therefore add specific support for numeric re-
source fluents and effects: increase(crates(carrier,type), 1).

Each resource instance r has an upper bound u(r), such
as the number of crates permitted on a carrier, and a lower
bound I(r). After adding an action, the planner must deter-
mine if the bounds can be satisfied at all times, and if so,
which precedence constraints may need to be added.

For maximum expressivity, we can adapt existing gen-
eral results such as (Policella et al. 2007). Initially, we
instead exploit the common case where resource produc-
tion and consumption occurs in phases. For example,
crates(carrier,type) is only produced when crates are loaded

at a depot. The carrier must be fully loaded (all actions in
the production phase must be finished) before it is flown to
a destination and the unloading phase begins. Thus, each
phase can be unordered “internally” for flexibility but it is
inherent in the domain that one cannot both produce and
consume resources in parallel during the same time period.

We can thus require all actions in a production phase
to be constrained to occur strictly before all actions in a
subsequent consumption phase and vice versa. This semi-
structured approach is simple and highly efficient, yet re-
tains the flexibility to execute the actions within each phase
concurrently or in arbitrary order.

Each resource instance r is therefore associated with its
own sequence [po, ..., p,] of production and consumption
phases. When a new action is added, the planner checks
whether the initial amount available at the start of the current
phase plus what is produced within the phase exceeds the
permitted maximum. If so, no introduction of precedence
orderings can make the plan executable, and backtracking is
required. Conversely, if the bound is not exceeded, any ex-
ecution ordering compatible with the plan satisfies resource
constraints. Consumption is handled equivalently.

5 Soundness and Completeness

A detailed formal soundness and completeness proof for TF-
POP requires several pages. Instead, we provide a proof
sketch outlining the major aspects of the proof.

First, TFPOP is sound.

Proof sketch. The initial plan is clearly executable. An
action a is only added to a plan r if make-true has first found
explicit support for its precondition in 7, ensured that the
supporting actions precede a, and ensured that no existing
actions in 7 can interfere with the supporter. Thus, pre(a)
is guaranteed to hold when a is added. The procedure also
adds causal links ensuring support cannot be destroyed in
the future, and a procedure similar to fix-interference ensures
that a does not interfere with causal links for existing actions
in the plan. Thus, adding a to an executable plan results in
a new plan where all preconditions of a are satisfied and no
preconditions of existing actions are disrupted.

The planner constructs mutex sets ensuring that no two
actions acquiring the same semaphore or affecting the same
fluent can occur concurrently. Resource constraints are also
tested, and action effects are tested for internal consistency.
These are all the requirements for a plan to be executable,
and consequently TFPOP only creates executable plans.

Goal testing uses make-true, which again is sound and
only succeeds if the goal is truly satisfied. Therefore, any
plan actually returned is a solution. O

To show completeness, we first show that because there are
no circular dependencies between actions, any valid plan can
be generated through the incremental addition of actions to
the empty plan with each intermediate step being executable.
Conversely, any valid plan can be reduced to the initial plan
with each intermediate step being executable.

Proof sketch. Let 7 = (A, L, O, M) be an executable plan
where A # @. Let a € A be an action that has no descen-
dants: There is no b € A such that a < b. Such an @ must

exist, or precedence would be circular and not a partial order.

An action can only support the preconditions of its ex-
plicit descendants. Since a has none, removing it cannot re-
move support from another action. Neither can a be needed
to satisfy resource constraints, as there is no descendant re-
lying on its effects. Finally, removing a can lead to fewer
semaphores being acquired, which cannot make a previously
executable plan unexecutable.

Removing a with associated links and constraints from 7
must lead to a new executable plan 7. Inductively, any exe-
cutable plan can be reduced to the initial plan by a sequence
of such steps, each resulting in an executable plan. O

There are permissible single-action extensions that TFPOP
will never generate, since it is permissible to add unneces-
sary constraints, which we naturally try to avoid. However,
we can show that for every permissible extension, TFPOP
can find one that is less or equally constraining.

Proof sketch. Let 7 = (A, L, O, M) be an executable plan
andletn’ ={(AU{a},LUL',0UO’, MU M’) be any permis-
sible single-action extension. Since 7’ is executable, pre(a)
is satisfiable in 7. Then a will not be pruned when precon-
ditions are tested: The formula evaluator is correct, and all
partial states are sound since the initial state is correct and
both state update and state generation procedures are sound.
The result of make-true includes all minimally constrain-
ing ways of supporting an action’s preconditions, and simi-
larly for interference avoidance. The planner generates the
unique minimally constraining mutex sets M € M’. Re-
source constraint checking is sound. Therefore the planner
can find suitable links L € L’ and constraints O” € O’ so
that 77 = (AU{a}, LUL”,0UO”, MUM") is an executable
plan less or equally constraining than 7’. O

Using weaker constraints when an action is added can never
reduce the options available at the next step. Therefore the
argument above can be extended: If 7 is a complete plan,
then TFPOP can extend the initial plan to an executable plan
7’ less or equally constraining than 7. As the branching fac-
tor is finite, a complete search procedure such as iterative
deepening will eventually find such a plan.
We can now finally show that TFPOP is complete.

Proof sketch. Suppose 7 is a solution. Given a complete
search procedure, TFPOP will find an executable plan 7’
less or equally constraining than z. Since the goal would
be satisfied after the execution of x, it must be possible to
satisfy it by the introduction of new precedence constraints
in ’. The state-based goal filter test is sound and will not
return false. The goal test based on make-true is sound and
complete. Thus, the required precedence constraints will be
found and a solution will be returned. m]

6 Evaluation

We now turn to the empirical evaluation, which is explicitly
intended to answer two specific questions.

How effective are partial states? The states generated by
TFPOP cannot be expected to provide perfect information
about the applicability of actions, as in planners constraining
their plan structures to generate complete states. However, it

has been our hypothesis that the information provided would
enable the planner to quickly filter out at least 95% of all
inapplicable actions using only partial states.

To test this hypothesis, we implemented a set of temporal
benchmark domains from planning competitions as well as
the UAV delivery domain used previously in this paper. We
then introduced some simple yet effective domain-specific
control for each domain. Finally, we measured the percent-
age of inapplicable actions found by precondition evaluation
in partial states for a variety of problem instances.

For several domains from the third International Planning
Competition (IPC-3), including Satellite and ZenoTravel, all
of the larger “handcoded” problems used in the competition
resulted in at least 99% of all inapplicable actions being de-
tected. For our UAV delivery domain, we generated 1440
random problems with 32 to 512 crates, 4/8/16 UAVs, 4/8/16
crates per destination, one carrier per UAV, and 8 ground
robots. This domain is designed to be more difficult by pro-
viding greater interaction among agents than Satellite and
ZenoTravel: For each carrier a UAV delivers, it is dependent
on one or more ground robots to load it, and a ground robot
cannot load a carrier until a UAV has returned it. Despite the
resulting weakening of partial states, 96%-97% of all inap-
plicable action instances are detected using partial states for
the smaller problem instances, increasing to over 99% for
the larger instances.

In summary, we consider the hypothesis validated.

What is the penalty of using partial orders? Even if all in-
applicable actions were detected early, processing the appli-
cable actions requires searching for precedence constraints
and causal links, updating partial states, and maintaining a
full partial-order plan structure. This could in theory require
so much time that the approach would be infeasible. Our
hypothesis has been that this would not be the case, and that
procedures such as make-true would be efficient in practice.

To test this, we must isolate the impact of the plan struc-
ture from unrelated issues such as using different heuris-
tics. We therefore translated the Satellite, ZenoTravel and
UAV Delivery domains used above into the languages used
by two planners based on control formulas with complete
states: The sequential versions of TLpLaAN (version “April
3rd 2006 0.1’) and TALplanner (revision 3721). Testing was
performed on a 2.4 GHz Core 2 Duo computer with 4 GB of
memory, using the JDK 6 update 23 runtime for TALplanner
and TFPOP which are written in Java.

Figure 1 shows that TFPOP is competitive despite its
more complex plan structure, the differences between the
planners being sufficiently small that they may be due to
low-level implementation issues. This shows that using
partial-order plan structures and partial states in knowledge-
rich planning can have a minimal performance penalty.

Comparison with popr. Since popr is also built on the idea
of combining partial-order and forward-chaining planning,
a comparison is in order. However, a direct performance
comparison would not be very illuminating. Without control
formulas, the current version of TFPOP is not goal-directed
and cannot compete. With control formulas, poPr cannot
compete, as it spends a significant amount of time calcu-

1000 10000
[MTPOP ——

[TALplanner —e—
Tlplan —&—

TALplanner —e—
Tlplan —=—

1000

100

T T T T
MTPOP —+—

T T T T 700

T T T
MTPOP —+—
600 - TALplanner —e—
Tlplan —&—

500

400

300

200 -~

100 [~

0 ! 1 1 1 1 1

0 2 4 6
Handcoded Satellite Problem ID (logtime)

Handcoded ZenoTravel Problem ID (logtime)

12 14 16 18 20 0 64 128 192 256 320 384 448 512
UAV Domain: Number of Crates (linear time scale)

Figure 1: Comparison between TFPOP, TLpLaN and TALplanner. Times in milliseconds.

lating sophisticated heuristics that are no longer required in
order to find a solution. If these calculations could be turned
off, then who is faster given identical control formulas is
likely to depend to a great extent on who happens to have
the fastest low-level implementation of state structures and
formula evaluation. Therefore, we will focus on the funda-
mental differences between the two search spaces and how
this affects the planners.

In this respect, popr is closer to standard forward-chaining
in its assumption of complete states. This has several posi-
tive effects: The planner can take advantage of standard and
extended heuristics assuming completeness, it can more eas-
ily integrate facilities for linear constraint solving, and it has
no need to search plan structures to generate causal links.

The TFPOP approach is closer to standard partial-order
planning, which improves execution flexibility compared to
poPF: Actions that require the same semaphore or affect the
same fluent need not be ordered before execution, and ac-
tions may produce or consume non-exclusive resources con-
currently without serializing resource access during plan-
ning. Directly supporting this type of concurrency fur-
ther increases the pressure on the planner to spread actions
among multiple agents when possible, which can improve
makespan. Using a plan structure that is not fundamentally
based on complete states also provides a basis for extensions
to planning with incomplete information.

7 Conclusions

We have presented an approach to taking advantage of cer-
tain aspects of forward-chaining in the generation of par-
tially ordered multi-agent plans with a high degree of ex-
ecution flexibility. By making use of the fact that agents
often perform their own actions in strict sequence, a par-
tially ordered plan can be annotated with partial but strong
states used to filter out most inapplicable actions. The re-
sulting planner uses expressive precondition control formu-
las for guidance, and despite using incomplete states and
generating partially ordered plans, it is competitive with the
sequential versions of the knowledge-rich planners TLpLAN
and TALplanner in terms of performance.

In the future, we intend to investigate extensions for re-
quired concurrency as well as controllable and uncontrol-
lable action durations (Morris, Muscettola, and Vidal 2001).

Acknowledgments

This work is supported by grants from the Swedish Research
Council, CENIIT, the ELLIIT network organization for In-
formation and Communication Technology, the Swedish
National Aviation Engineering Research Program (NFFP5),
and the Linnaeus Center for Control, Autonomy, Decision-
making in Complex Systems (CADICS). We are grateful to
Mikael Nilsson for assistance in empirical testing.

References

Bacchus, F., and Ady, M. 1999. Precondition control. http:/www.
cs.toronto.edu/~fbacchus/Papers/BApre.pdf.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics to ex-
press search control knowledge for planning. Artificial Intelligence
116(1-2):123-191.

Béckstrom, C. 1998. Computational aspects of reordering plans.
Journal of Artificial Intelligence Research 9(99):137.

Brafman, R., and Domshlak, C. 2008. From one to many: Planning
for loosely coupled multi-agent systems. In Proc. ICAPS.
Brenner, M. 2003. Multiagent planning with partially ordered tem-
poral plans. Technical report, Institut fiir Informatik, Universitéit
Freiburg.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proc. ICAPS.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20(1):61-124.

Kvarnstrom, J., and Doherty, P. 2000. TALplanner: A temporal
logic based forward chaining planner. Annals of Mathematics and
Artificial Intelligence 30:119-169.

Kvarnstrom, J. 2010. Planning for loosely coupled agents using
partial order forward-chaining. In Proc. SAIS.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic control of
plans with temporal uncertainty. In Proc. IJCAL

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007. From
precedence constraint posting to partial order schedules: A CSP
approach to Robust Scheduling. Al Communications 20(3).
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In Proc.
1JCAI 206-214.

Veloso, M., and Stone, P. 1995. FLECS: Planning with a flexible
commitment strategy. JAIR 3:25-52.

Weld, D. S. 1994. An introduction to least commitment planning.
Al magazine 15(4):27.

