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Abstract

The use of causal rules or fluent dependency constraints
has proven to provide a versatile means of dealing with the
ramification problem. In this paper we show how fluent de-
pendency constraints together with the use of durational
fluents can be used to deal with problems associated with
action qualification. We provide both a weak and strong
form of qualification and demonstrate the approach using
an action scenario which combines solutions to the frame,
ramification and qualification problems in the context of ac-
tions with duration, concurrent actions, non-deterministic
actions and the use of both boolean and non-boolean flu-
ents. The circumscription policy used for the combined
problems is reducible to the 1st-order case. In addition, we
demonstrate the use of a research tool VITAL, for querying
and visualizing action scenarios.

1. Introduction

In this paper, we provide a challenge in the form of a
complex action scenario description, the Russian Airplane
Hijack Scenario (RAH) which requires robust solutions to
the frame, ramification and qualification problems. We
say robust because the scenario requires the representation
of concurrent actions, incomplete specification of states,
ramification with chaining, the use of non-boolean fluents,
fine-grained dependencies among objects in different flu-
ent value domains, actions with duration, ramification con-
straints as qualifications to actions, two types of qualifica-
tion, weak and strong, and the use of explicit time, in ad-
dition to other features. Although some of these features
have been reported in previous work, the approach to quali-
fication is new, the use of a research tool VITAL [9], which
provides an implementation and visualization of action sce-

narios is new, and the action scenario, to our knowledge,
is one of the more challenging and complex scenarios pro-
posed as a test example. We will use Temporal Action Logic
(TAL) to reason about action scenarios.

Temporal Action Logics (TAL) have their origin in
the Features and Fluents framework proposed by Sande-
wall [12], where both a variety of logics of preferential en-
tailment for reasoning about action and change and a frame-
work for assessing the correctness of these and future logics
were proposed. One of the definitions of preferential en-
tailment, PMON, was proposed by Sandewall and assessed
correct for the K–IA class of action scenarios, a broad class
of scenarios which dealt with nondeterministic actions, in-
complete specification of state and the timing of actions,
and observations at arbitrary states in a scenario. PMON
solved the frame problem for the K–IA class. Later, Do-
herty [1, 2] translated and generalized PMON into an order-
sorted first-order logic with a circumscription axiom captur-
ing the PMON definition of preferential entailment.

Recently, a number of additional extensions and gener-
alizations have been added to the original PMON and the
logics generated belong to what we call the TAL family.
Although the logics belong to the TAL family, each is es-
sentially an incremental addition to the base logic PMON.
TAL-RC, proposed by Gustafsson and Doherty [7], pro-
vides a solution to the ramification problem for a broad,
but as yet unassessed class of action scenarios. The main
idea is the addition of a specialization of fluent dependency
constraints which we called causal constraints. The solution
was based on the insight that the Occlude predicate used to
solve the frame problem for PMON was all that was needed
to define causal rules which turn out to be very similar to
action effect axioms. The solution is also extremely fine-
grained in the sense that one can easily encode dependen-
cies between individual objects in the domain, work with
both boolean and non-boolean fluents and represent both
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Markovian and non-Markovian dependencies [6]. TAL-C,
recently proposed by Gustafsson and Karlsson [8], uses flu-
ent dependency constraints as a basis for representing con-
current actions. A number of phenomena related to action
concurrency such as interference between one action’s ef-
fects and another’s execution, bounds on concurrency and
conflicting, synergistic, and cumulative effects of concur-
rent actions are studied.

In this paper, we will consider two problems: the qual-
ification problem and the ramification constraints as quali-
fication constraints problem [5, 10]. We call the logic used
TAL-Q, and note that it is an incremental extension of TAL-
C, just as TAL-C is an incremental extension of TAL-RC.
In fact, the logical language and minimization policy is
roughly the same for TAL-RC, TAL-C, and TAL-Q. The
novelty of the solution to these problems is in the combined
use of fluent dependency constraints and an additional idea
introduced in TAL-C, durational fluents. The advantage of
leaving the logic and minimization policy intact is that the
new class of action scenarios representable in TAL-Q sub-
sumes previous classes and any circumscribed scenario in
TAL-Q is provably and automatically reducible to a com-
pact first-order theory efficiently implemented in a research
tool called VITAL [9]. VITAL is an on-line tool which per-
mits both the visualization and querying of action scenarios.

The paper is structured as follows. In Section 2, we
briefly describe TAL-Q. We then provide a brief descrip-
tion of the surface language for action scenarios and their
translation into an order-sorted first-order language with a
circumscription axiom. In Section 3, we describe a com-
plex action scenario, the Russian Airplane Hijack Scenario
(RAH), and provide a formal description in Figures 1 and 2
which will be used throughout the paper. In Section 4, we
consider weak and strong qualification and provide a pre-
liminary proposal for representing both types in TAL-Q.
Figure 3 contains a visualization of the preferred entail-
ments of the RAH scenario. The visualization has been
generated automatically from the VITAL tool. Due to page
limitations, we have to be very brief with our descrip-
tion of action scenario translation macros and the under-
lying logic, referring the reader to the following sources
([12, 1, 2, 7, 8, 9]).

2. TAL-Q: Temporal Action Logic with Quali-
fication

In this section, we introduce TAL-Q, which will be used
as a basis for a preliminary proposal for dealing with qual-
ification of actions. The basic approach we use for reason-
ing about action and change is as follows. First, represent
an action scenario in the surface language L(SD) which is
a high-level language for representing observations, action
types and action occurrences, dependency constraints, do-

main constraints, and timing constraints about actions and
their duration.1 Second, translate L(SD) into the base lan-
guage L(FL) which is an order-sorted first-order language
with four predicates Occlude(t, f), Holds(t, f, v), Per(f),
and Dur(f, v), where t, f , and v are variables for time-
point, fluent, and value expressions, respectively. Holds ex-
presses what value a fluent has at each timepoint. Occlude
expresses that a fluent at a timepoint is allowed to change
value at that timepoint. Each fluent has to be characterized
as either a durational fluent, Dur(f, v), with default value
v, or a persistent fluent Per(f), but not both. The idea is
that unless a durational fluent is occluded at a timepoint, it
will retain its default value, while a persistent fluent at t+1
retains whatever value it has at t unless it is occluded.

A linear discrete time structure is used in TAL-Q. The
minimization policy is based on the use of filtered prefer-
ential entailment [11] where action occurrences (occ-) and
dependency constraints (dep-) are circumscribed with Oc-
clude minimized and Holds fixed. The result is then filtered
with two nochange axioms, the observations, and some
foundational axioms such as unique names and temporal
structure axioms.

Let Γobs, Γocc, Γdep, and Γacc denote the translations into
L(FL) of the observation, occurrence, dependency and do-
main constraints in an action scenario, respectively. In ad-
dition, let Γfnd denote the foundational axioms which in-
clude axioms for the time structure, unique names and the
Dur/Per specification of fluents. The nochange axioms in
Γncg are

∀t, f, v[Per(f) → (¬Occlude(t + 1, f) →
(Holds(t, f, v) ↔ Holds(t + 1, f, v)))]

which states that persistent fluents that are not occluded at
time t + 1 retain their value from t, and

∀t, f, v[Dur(f, v) → (¬Occlude(t, f) →
Holds(t, f, v))]

which states that durational fluents have a default value of
v, but when occluded can take on arbitrary values. Since
each fluent is either durational or persistent, inertia of fluent
values or default behavior is dependent on the extension of
Occlude which is minimized relative to Γdep and Γocc.

If Υ is an action scenario in L(SD), then Trans(Υ) is
its translation into L(FL) which includes all of the sets of
formulas Γx.

The following definition of preferential entailment ap-
plies:

Definition 1 The formula α is entailed by Trans(Υ) iff

(Γfnd∧Γacc∧Γobs∧Γncg∧CircSO(Γocc∧Γdep; Occlude)) |= α

1Figure 2 lists the RAH action scenario in language L(SD) which is
described informally in Section 3.



Since there are only positive occurrences of the Occlude
predicate in the circumscription context, CircSO(. . .) is re-
ducible to a logically equivalent first-order formula.

The translation from L(SD) to L(FL) is straightforward
and the reader is referred to [3, 8] for details concerning
translation and the logic used. We simply translate one of
each type of statement in the scenario in Figure 2 to provide
some understanding, but first we discuss the macro opera-
tors CT , R, I , and X .

The CT operator stands for becomes true. For
example, its use in dependency constraint cc3,
CT ([t] loc(airplane) =̂ loc3), would be translated as
follows:

Holds(t, loc(airplane), loc3)∧
∀u[t = u + 1 → ¬Holds(u, loc(airplane), loc3)]

Translations of the next operators are shown after they
are discussed. The R operator stands for fluent reassign-
ment and where an interval is used, occludes the fluent in
the interval and gives it a new value at the last timepoint.
For example the action occurrence occ3 uses the R operator
as follows: R([4] loc(dimiter) =̂ office). Here, because of
the use of a single timepoint, it is only changing at 4.

The I operator stands for exceptional assignment and
is often used in combination with durational fluents. It
states that a fluent will have a particular value which holds
throughout the interval or at the timepoint. For example, the
dependency constraint cc1 contains the following:

I([t] ∀airplane[¬poss board(person, airplane)]),

which states that the default value for the durational fluent
poss board does not apply and the fluent is false at t.

The X operator stands for occlude assignment. Its pur-
pose is simply to allow a fluent’s value to vary at a time-
point or interval. For example, the dependency constraint
cc2 contains the following:

X([t] ∀airplane[¬poss board(person, airplane)]),

which states that poss board may be true or false at t.
The observation statement obs2, the action occurrence

statement occ3 which uses the R operator, the dependency
statement cc1 which uses the I operator and the dependency
statement cc2 which uses the X operator are translated into
L(FL) as follows:

obs2 Holds(0, loc(erik), home2) ∧
Holds(0, loc(comb2), home2) ∧
¬Holds(0, drunk(erik), true)

occ3 Holds(2, loc(dimiter), home3) →
Holds(4, loc(dimiter), office) ∧
Occlude(4, loc(dimiter))

cc1 ∀t, person[Holds(t, inpocket(person, gun), true) →
∀airplane[¬Holds(t, poss board(person, airplane),
true) ∧ Occlude(t, poss board(person, airplane))]]

cc2 ∀t, person[Holds(t, drunk(person), true) →
Occlude(t, poss board(person, airplane))]

3. The Russian Airplane Hijack Scenario

In this section, we will use the methodology of represen-
tative examples as a means of considering and proposing a
preliminary solution to the qualification and ramification as
qualification problems. The proposal, while conveyed via a
specific action scenario, can easily be presented in a more
generic, but less intuitive manner. We leave that for a longer
paper. We will use a new action scenario, the Russian Air-
plane Hijack scenario, as a representative example.2 The
scenario is described informally below and the formal ac-
tion scenario can be found in Figures 1 and 2.

A Russian businessman, Vladimir, travels a lot and is concerned about
both his hair and safety. Consequently, when traveling, he places both
a comb and a gun in his pocket. A Bulgarian businessman, Dimiter, is
less concerned about his hair, but when traveling by air, has a tendency to
drink large amounts of vodka before boarding a flight to subdue his fear of
flying. A Swedish businessman, Erik, travels a lot, likes combing his hair,
but is generally law abiding. Now, one ramification of putting an object
in your pocket is that it will follow with you as you travel from location
to location. Generally, when boarding a plane, the only preconditions are
that you are at the gate and you have a ticket. One possible qualification
to the boarding action is if you arrive at the gate in a sufficiently inebriated
condition, as will be the case for Dimiter. A ramification that may in some
cases play a dual role as a qualification to the boarding action is if you
try to board a plane with a gun in your pocket, which may be the case for
Vladimir. Now, Vladimir, Erik and Dimiter start from home, stop by the
office, go to the airport, and try to board flight SAS609 to Stockholm. Both
Erik and Vladimir put combs in their pockets at home, and Vladimir picks
up a gun at the office, while Dimiter is already drunk at home. Who will
successfully board the plane? What are their final locations? What is in
their pockets after attempting to board the plane and after the plane has
arrived at its destination?

If the scenario is encoded properly and our intuitions
about the frame, ramification and qualification problems are
correct then we should be able to entail the following from
the scenario in Figure 2:

1. Erik will board the plane with comb2 in his pocket and
eventually board the plane successfully ending up at
his destination.

2. Vladimir will get as far as the airport with a gun and
comb1 in his pocket. He will be unable to board the
plane.

2This scenario is an elaboration and concretization of a sketch for a
scenario proposed by Vladimir Lifschitz in recent on-line discussions in
the European Transactions on Artificial Intelligence (ETAI/ENAI).



3. Dimiter will get as far as the airport and may or may
not have boarded the plane. He may or may not have
comb3 in his pocket. A weaker form of qualification
(use of the X operator) is used here. For example, if
he is observed to be on the plane then he successfully
slipped by security and there is no inconsistency. If
he is observed not to be on the plane, then the action
failed and there is also no inconsistency.

4. An indirect effect of flying is that the person ends up at
the same location as the airplane. In addition, because
items in pockets follow the person, a transitive effect
results where the items in the pocket are at the same lo-
cation as the plane. Consequently, Erik and comb2 end
up at run609b, the final destination of flight sas609.

In fact, we do entail this and more. The facts true in
all preferred models for this scenario can be viewed in Fig-
ure 3. The diagram is automatically generated using the
VITAL tool.

4. Representing the Qualification Problem in
TAL-Q

In comparison with the frame and ramification problems,
the qualification problem is still one of the least understood
and with few satisfactory solutions. This is most probably
due to the fact that there are many different types of qual-
ification problem, or reasons for qualifying an action de-
scription. The main problem is that in general, it is compu-
tationally, ontologically and epistemologically infeasible to
represent complete specifications of all the preconditions to
actions which would include all possible qualifications. In
this section, we will propose a default-based solution within
the TAL-Q framework that has a number of novelties. We
can express both strong and weak forms of qualification, the
representation is efficient, and one can model ramification
constraints as qualifications in a number of ways although
we do not claim to have solved this problem in a completely
satisfactory manner. We consider both forms of qualifica-
tion using the RAH scenario from Figure 2 to describe the
approach.

Boarding an airplane might have a number of different
qualifications, for example, being drunk or carrying a gun
in your pocket. In other contexts, these facts may be per-
fectly natural. The difficulty, especially when such facts are
inferred indirectly as ramifications, is in providing a flexible
enough representation to allow the facts to play dual roles
as either ramifications, or ramifications that may qualify an
action. One ramification of traveling or boarding a plane,
is that everything in my pocket travels with me, including
guns and combs. So if I have a gun in my pocket before
boarding a plane, one ramification of the boarding action is

that the gun is on the plane. Now, one could argue that hav-
ing a gun in my pocket plays the role of a qualification to
the boarding action and the action should fail. On the other
hand, it is perfectly possible that one could slip by with a
gun if it is made of a special type of plastic.

So, how do we know that an action has been qualified?
It would appear that some qualifications to actions are more
certain than others. Although the fact that a person has a
gun provides evidence that the action of boarding the plane
may be qualified, one would have to interpret this qualifi-
cation together with other information such as information
encoded as domain or dependency constraints. One way
to test whether a qualification of this weaker form applies
would be to observe the result of an action’s effects after
the action is executed. For example, if vladimir is observed
to be on the plane even though he has a gun, then he has
slipped by and the action was possible after all. If we ob-
serve that he is not on the plane, then possession of the gun
actually qualified the action. This weaker form of qualifi-
cation which we call weak qualification can also be repre-
sented.

Let’s start with strong qualification. A qualified action
contains a fluent enabling the action in its precondition
with the same number of arguments as its associated action
type. For example, the boarding action contains a fluent
poss board(person, airplane):
acs4 [t1, t2] board(person, airplane) 

[t1] poss board(person, airplane) ∧
loc(person) =̂ airport →

R([t2] loc(person) =̂ value(t2, loc(airplane)) ∧
onplane(airplane, person))

Note that the fluent poss board is a durational fluent
Dur(poss board) with default value true, which means it
can only take on another value false at a timepoint if it is
occluded at that timepoint for some reason. Such reasons
are described as dependency constraints:

cc1 ∀t, person[[t] inpocket(person, gun) →
I([t] ∀airplane[¬poss board(person, airplane)])]

This dependency constraint together with the assertion
that poss board is durational implies that as long as a per-
son has a gun in his pocket, poss board will be false for
that person on all airplanes. This approach has similarities
to a standard default solution to the qualification problem,
but with some subtle differences. For example, it permits
more control of the enabling precondition, even allowing it
to change during the execution of an action. More impor-
tantly, it involves no change to the minimization policy al-
ready used to deal with the frame and ramification problems
and the circumscription policy inherits 1st-order reducibil-
ity. A visualization of the preferred entailments for the sce-
nario which is listed in Figure 2 is provided in Figure 3.3

3Note that the scenario in Figure 2 shows the use of strong qualification



Strong qualification has its uses, but is not fully adequate
for dealing with ramifications when they play the role of
qualifying actions. For example, if one removed cc1 from
the scenario in appendix 1, and added the domain constraint
acc3 below, vladimir would not be able to board the plane,
but the scenario would be inconsistent. The approach used
by Thielscher [13] would have a similar outcome. In this
case, we have three choices to follow to provide a remedy
for this problem (that is, if we agree this is a problem): 1)
Modify the minimization policy by letting possibility flu-
ents vary when solving the frame and ramification prob-
lem and then minimizing possibility fluents. This is the ap-
proach used by Lin [10]. 2) Change the ontology of the
logic, or 3) model the problem in a different manner. Al-
though each of the remedies is worth investigating, in this
paper we will model the problem in a different manner by
using weak qualification.

Let’s consider the use of a weak qualification. Using the
current example, the idea here is that inpocket(person, gun)
should not be an absolute qualification, it should make it
less likely that the person can successfully board the plane,
but that would depend on additional information derived
from other domain and dependency constraints. We first re-
lax the previous dependency cc1 by replacing it with cc1.1
where the I operator is replaced with the X operator.
cc1 ∀t, person[[t] inpocket(person, gun) →

X([t] ∀airplane[¬poss board(person, airplane)])]
This change would generate two preferred models for

people with guns. In one, they successfully board the plane
with a gun, in the other they do not. In the RAH sce-
nario, this would then be the case for vladimir, but erik’s
and dimiter’s situation would remain unchanged. We can
not infer poss board(vladimir, sas609) or its negation from
timepoint 7 to infinity, where 7 is the end of the action where
vladimir places a gun in his pocket. In the case with cc1, we
could infer the negation from 7 to infinity.

Now one of the advantages of this approach is its nat-
uralness. Given a scenario, we can check whether ac-
tion occurrences are successful or not by adding observa-
tions to the scenario after the action occurrence. Adding
obs5 [13] onplane(sas609, vladimir) to the scenario would
allow us to infer that he did in fact board the plane and
poss board(vladimir, sas609) was in fact true. He would
then end up at his destination.

If instead we added the observation obs6
[13] ¬onplane(sas609, vladimir), then we could infer
that he was unable to board the plane and he did not end up
at his destination.

We are now very close to one approach toward deal-
ing with ramifications as qualification constraints. Obser-
vations are similar to domain constraints with the excep-

(guns) for vladimir and weak qualification (drunk) for dimiter described
next.

tion that observations generally assert facts about one time-
point while domain constraints (acc) assert facts generally
true about one or more timepoints. Now the idea is simply
that domain constraints, or other dependency constraints for
that matter, when used in ramification chains may implicitly
qualify actions. For example, let’s extend our scenario (us-
ing cc1.1) with the domain constraint that it is absolutely
forbidden for guns to be on planes,

acc3 ∀t, airplane[[t] ¬(loc(gun) =̂ loc(airplane))].
The location of the gun is a ramification of traveling from

place to place. We have not changed cc1.1, but in combi-
nation with the constraints we can infer from the scenario
that vladimir was unable to board the plane, not simply due
to the fact that he had a gun in his pocket, but due to that
and some additional domain constraints of a more generic
nature that sometimes function as ramification constraints
and in this case as qualification constraints.4

In conclusion, the approaches toward solving the qual-
ification problem discussed here provide a basis for con-
tinued research. The techniques described certainly offer
solutions to the qualification problem for restricted classes
of action scenarios, but assessment results are lacking as to
what classes these techniques can safely be applied. An in-
teresting aspect of the paper is the combined solution to the
frame, ramification, and qualification problem in the con-
text of concurrency and durational actions. We also demon-
strated how our research tool VITAL [9] can be used to
study problems involving action and change and generate
visualizations of action scenarios and preferred entailments.
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domain thing = {gun, comb1, comb2, comb3,
vladimir, dimiter, erik, sas609}

domain location = {home1, home2, home3, office, airport,
run609, run609b, air}

domain runway = location [run609, run609b]
domain airplane = thing [sas609]
domain person = thing [vladimir - erik]
domain pthing = thing [gun, comb1 - comb3]
domain pocket = {pocket1, pocket2, pocket3}

feature loc(thing): location showname
feature inpocket(person,pthing): boolean
durational poss˙board = true
feature poss˙board(person,airplane): boolean
feature drunk(person): boolean
feature onplane(airplane,person): boolean

action put(person, pthing, pocket)
action travel(person, location, location)
action fly(airplane, runway, runway)
action board(person, airplane)

Figure 1. Domain specification for the Rus-
sian Airplane Hijack Scenario



THE NARRATIVE: OBSERVATIONS, ACTION OCCURRENCES AND TIMING
obs1 [0] loc(vladimir) =̂ home1 ∧ loc(gun) =̂ office ∧ loc(comb1) =̂ home1 ∧ ¬drunk(vladimir)
obs2 [0] loc(erik) =̂ home2 ∧ loc(comb2) =̂ home2 ∧ ¬drunk(erik)
obs3 [0] loc(dimiter) =̂ home3 ∧ loc(comb3) =̂ home3 ∧ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609
occ1 [1, 2] put(vladimir, comb1, pocket1)
occ2 [1, 2] put(erik, comb2, pocket2)
occ3 [2, 4] travel(dimiter, home3, office)
occ4 [3, 5] travel(vladimir, home1, office)
occ5 [4, 6] travel(erik, home2, office)
occ6 [6, 7] put(vladimir, gun, pocket1)
occ7 [5, 7] travel(dimiter, office, airport)
occ8 [7, 9] travel(erik, office, airport)
occ9 [8, 10] travel(vladimir, office, airport)
occ10 [9, 10] board(dimiter, sas609)
occ11 [10, 11] board(vladimir, sas609)
occ12 [11, 12] board(erik, sas609)
occ13 [13, 16] fly(sas609, run609, run609b)

ACTION TYPES
acs1 [t1, t2] fly(airplane, runway1, runway2) 

[t1] loc(airplane) =̂ runway1 → I((t1, t2) loc(airplane) =̂ air) ∧R([t2] loc(airplane) =̂ runway2)
acs2 [t1, t2] put(person, pthing, pocket) [t1] loc(person) =̂ loc(pthing) → R((t1, t2] inpocket(person, pthing))
acs3 [t1, t2] travel(person, loc1, loc2) [t1] loc(person) =̂ loc1 → R([t2] loc(person) =̂ loc2)
acs4 [t1, t2] board(person, airplane) [t1] poss board(person, airplane) ∧ loc(person) =̂ airport →

R([t2] loc(person) =̂ value(t2, loc(airplane)) ∧ onplane(airplane, person))

DOMAIN CONSTRAINTS
//A pthing cannot be in two pockets at the same time.

acc1 ∀t, pthing1, person1, person2[person1 6= person2 ∧ [t] inpocket(person1, pthing1) → [t] ¬inpocket(person2, pthing1)]
//A person cannot be on board two airplanes at the same time.

acc2 ∀t, person1, airplane1, airplane2[airplane1 6= airplane2 ∧
[t] onplane(airplane1, person1) → [t] ¬onplane(airplane2, person1)]

DEPENDENCY CONSTRAINTS
//A person who has a gun cannot board any airplane.

cc1 ∀t, person[[t] inpocket(person, gun) → I([t] ∀airplane[¬poss board(person, airplane)])]
//A person who is drunk may not be able to board an airplane.

cc2 ∀t, person[[t] drunk(person) → X([t] ∀airplane[¬poss board(person, airplane)])]
//When an airplane moves, persons on board the airplane also move.

cc3 ∀t, airplane, person, loc3[[t] onplane(airplane, person) ∧
CT ([t] loc(airplane) =̂ loc3) → R([t] loc(person) =̂ value(t, loc(airplane)))]

//When persons move, things in their pockets also move.
cc4 ∀t, person, pthing, loc3[[t] inpocket(person, pthing) ∧

CT ([t] loc(person) =̂ loc3) → R([t] loc(pthing) =̂ value(t, loc(person)))]

Figure 2. Action scenario description
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Light gray and dark gray stand for true and false values for boolean fluents. Medium gray stands for an unknown
value, while black stands for a value which is unknown but will be the same as that of the previous timepoint due
to inertia. For non-boolean fluents, “∗2∗” means 2 possible values; the values are not shown in the diagram due to
lack of space.

The diagram is automatically generated using the VITAL tool.

Figure 3. Timelines for the Russian Airplane Hijack Scenario


