
Using the JOT plugin for reasoning with Protégé

Olivier Dameron

June 5, 2004

Abstract

JOT is a plugin that adds Python scripting capabilities to Protégé. It
provides a direct access to the core of the ontology through the API. It is
compatible with both the fame-based approach and the OWL plugin.

JOT is meant to be a complement to computationally-efficient dedi-
cated reasoning services.

First, we show that JOT can be used in conjunction with such services.
Second, we then show that JOT can be used to detect and to fix incon-
sistency that are beyond the realm of Description Logics based classifiers.
Eventually, we show that JOT can be used as a quick implementation of
intermediate representations.

1 Context

Maintaining ontologies involves handling tedious or complicated tasks such as
adding concepts or relationships that depend on each other, applying some
modeling patterns or making sure that the ontology complies to these patterns.

The JOT1 plugin adds Python scripting capabilities to Protégé in order to
address these requirements.

2 Architecture

JOT’s architecture relies on a Java implementation of the Python language. It
also reuses an implementation of a command-line console. These two compo-
nents are wrapped together as a Protégé plugin.

Python commands can be executed directly by the user. They can also be
saved in script files for future reuse. Eventually, thanks to the Java implemen-
tation, any compiled Java code can be called from Python script.

JOT communicates with Protégé by calling directly its Java API. The user
is provided with a kb variable that represents the current knowledge base. From
there, it is possible to reach the concepts and relationships.

JOT is compatible with plain Protégé ontologies as well as with the OWL
plugin. In the first case, the kb variable is an instance of KnowledgeBase. In
the latter, it is an instance of OWLKnowledgeBase.

1http://smi-web.stanford.edu/people/dameron/jot/index.html

1

http://smi-web.stanford.edu/people/dameron/jot/index.html


3 Calling external reasoners

Because JOT has access to the Protégé API, it can use it to call an external
classifier such as Racer if the ontology is an OWL ontology.

In addition, the JOT capability to execute arbitrary compiled Java code can
be used to call any domain-specific library. Such libraries can provide domain-
specific reasoning functions. Particularly, this principle can be used to access
remote functionalities provided as Web Services.

4 Detecting and fixing semantic inconsistencies

JOT can be used to detect and to fix contradictions with the general knowledge
of a domain that are beyond detection of insatisfiability by Description Logics
classifiers. Such problems typically arise when two sets of concepts have the
same structure or when there are dependencies between relationships.

The Heart has a structural part WallOfHeart, which is in turn composed of
three structural layers: the Epicardium, the Myocardium and the Endocardium.

The Heart is also classically decomposed into four regional parts: the left
and right atria and ventricles.

Therefore, we have to generate concepts such as WallOfLeftAtrium, which
is both a structural part of LeftAtrium, and a regional part of WallOfHeart. In
addition, we also have to deal with concept such as MyocardiumOfRightVentri-
cle, which is a structural layer of WallOfRightVentricle, and a regional part
of Myocardium.

In this example, the structural decomposition of an anatomical structures is
propagated to its regional parts. Therefore, it is necessary to ensure that this
pattern is respected. One solution is to generate automatically all the concepts
and relationships. The other solution is JOT provides a convenient framework
for implementing these two solutions.

Another example is the propagation of continuity relationships from the parts
to the superstructure. In brain cortex anatomy, the anterior and the posterior
parts of the subcentral gyrus are continuous. The former is a part of the frontal
lobe, whereas the latter is a part of the parietal lobe. From the original continu-
ity relationships, we can infer three other continuity relationships, e.g. between
the anterior part of the subcentral gyrus and the parietal lobe, or between the
fronatl and the parietal lobe.

Representing such dependencies relationships can be represented by impli-
cations that require the use of variables. No OWL-compatible implementation
of such a language exists yet. In the meanwhile, such implications can be easily
expressed in Python either for checking that they are respected, or for actually
generating the dependent relationships.

5 Intermediate representations

Intermediate representations provide a consise and high-level view on a domain.
They allow to hide the portions of an ontology that are nor relevant to a partic-

2



uliar domain, as well as some implementation details. Not only do they require
extended expressivity, but also extended reasoning capabilities. JOT can be seen
as a tool for creating such intermediate representations, and for using them.

We took advantage of Python’s capability to define functions and to save
them into separate files. A typical usage of the JOT plugin consists in load-
ing such external function, and then in a succession of fonction calls providing
higher-level functionalities. These calls can then be seen as a representation of
the model in a concise intermediate representation. The mapping between this
representation to the actual formalism, be it OWL or the classical frame-based
Protégé.

So far, we have identified two kinds of functions.
The functions of the first one implement some design pattern. They are

dependent of the representation language, but are domain-independent. For
instance, in OWL such a function makes a concept equivalent to the union of its
direct subclasses, and makes such subclasses disjoint. It can be used to easily
provide an enumeration of the fingers (i.e. a Finger has to be exactly one of
Thumb, Index,...), as well as an enumeration of Wine as RedWine, WhiteWine
or RoséWine. In the frame-based Protégéformalism, it would require slightly
different steps.

The functions of the second set are domain dependent, but independent of
the representation formalism. Typically, they reuse functions from the previ-
ous set. In the domain of anatomy, such functions allow to create lateralized
concepts (i.e. concepts that are either on the left side or on the right side of
the body, such as Thumb or Lung). Here, it consists of creating the concept and
its disjoint left and right subconcepts, and then in stating that the concept is
equivalent to the union of its subconcepts, which can be done by the function
detailed for the first set. Another example is the function allowing to create
an enumerated anatomical concept (e.g. Vertebra and its thirty three subcon-
cepts), or even an enumerated lateralized anatomical concept (e.g. Rib and its
twelve subconcepts, each in turn subsumed by a left and a right subconcept).

6 Conclusion

JOT can be used as a complement to dedicated reasoning tools for interacting
with ontologies in Protégé. It can be used for ontology-maintenance tasks re-
quiring ad-hoc primitives. Such a feature can also be exploited for providing
intermediate representations of ontologies.

3


	Context
	Architecture
	Calling external reasoners
	Detecting and fixing semantic inconsistencies
	Intermediate representations
	Conclusion

