JessTab Tutorial

JessTab Tutorial

Henrik Eriksson

2. Background

Ontologies are nice to look at, but...

...they do not do anything.

Why Jess and JessTab?

* Jess
= Popular language/shell
= Active user community
= Implemented in Java

» JessTab
= A Protégé plug-in for running Jess under Protégé
= Combines the strengths of Protégé and Jess

&

Henrik Eriksson

Outline

Introduction
Background
Installation

Interaction with JessTab

o os e N

Introduction to Jess programming
Jess functions
Rule-based reasoning with Jess

6. Managing Protégé ontologies with Jess

7. Mapping Protégé ontologies to Jess

8. Metalevel mappings

9. JessTab and Protégé OWL

10. Example

11. Conclusion

Tip: Slides available at
http://www.ida.liu.se/~her/JessTab/tutorial06/

Background (cont.)

* Protégé-related problems
= Difficult to directly integrate problem solving and ontology
development in Protégé
= Languages/shells need direct access to Protégé
= Difficult manage large/complex ontologies
= Ontology editors should be programmable

* Protégé allows alternative problem-solving engines
through the plug-in API
= The Java APl allows access to the internal ontology representation

Practical uses of JessTab

¢ Macro language
= Creating lots of classes quickly
= Making large changes to ontologies

¢ Rule engine
Information retrieval
Classification
Decision support
Planning

JessTab Tutorial

Examples of applications

* Ontology engineering and reengineering
= Jess as macro/scripting for ontologies

» Importing ontologies
= Jess as input filter

¢ Semantic Web

* Problem-solving methods

* Agent frameworks
= JadeJessProtege

» Classic expert-system development

[T ¥ me—r

Henrik Eriksson

What is Jess?

« Java Expert System Shell; based on CLIPS
* Forward chaining; production rules

« Fact-base and pattern matching

* Lisp-like syntax

* No support for object orientation
= The Cool subsystem of CLIPS not implemented

« Developed by Sandia Laboratories
= http://herzberg.ca.sandia.gov/jess/

Historical background
OPS5 Protégé-|
Cool \ / l
CLIPS Protégé-11
Java Protégé/Win
Jess KIF/OKBC/Clos y Java
@ Descendants —» T CurrentIProtégé

froPPu—w PN Influences 1

Tool integration — Two possibilities

* Looseintegration
= No changes to each representation model
= Translators between formats
= Independent software

« Tightintegration
= Changes to representation models when needed
= Integrated software (e.g., same Java VM)
= Unified user interface

‘ JessTab supports tight integration

Approach — JessTab plug-in for Protégé
» Jess console window in Protégé
* Mapping instances to Jess facts
« Functions for knowledge-base operations
* Mirroring Jess definitions in Protégé knowledge bases
* Support for metalevel objects
* Support for methods and message handlers
Lkttt

3. Installation

» JessTab is bundled with the Protégé distribution
* Latest JessTab version available from SourceForge

* Itis necessary to download and install Jess separately
= Because of licensing

JessTab Tutorial

Enabling JessTab

Henrik Eriksson

|5 s et

R s | e

» Enable the tab

JessTab with no Jess engine

[T T = |
T L s i T
| + LT D protégd |

® Clovees | s | 8 fs | @ i | O | o

Welcome fo Je:

Jess installation

» Visit http://www.jessrules.com/

* Choose license type
= Trial —expires after 30 days
= Licensed — commercial or academic (includes source)

+ Choose version e
= Stable (e.g., 6.1p8) —

= Development (e.g., 7.0b7) % ;in 3

Tip: Development versions of
Jess are usually stable

&®

Jess installation (cont.)

« Thedistribution contains the file jess. jar

* Put thefile jess.jar in the Protege/plugins/JessTab
directory in the Protégé installation
‘—h_“ o '_:} Jjess.jar

5 JessTab.jar

\ plugin.properties

Tip: The file names
sometimes contain version
number. Protégé will
usually find them anyway

Installation troubleshooting tips

* Make sure everything is in the correct directory
= Thefiles jess.jar, JessTab.jar, and plugin.properties
should be in the plugins/JessTab directory

* Two or more versions of the same .jar file on the
CLASSPATH means trouble. Double check this.

* Check Jess version number in startup message
e Check the plugin.properties file
e Try running Jess without Protégé/JessTab

« |If all else fails, try a clean installation of Protégé

4. Interaction with JessTab

* Ready to go
= Jess installation completed
= JessTab enabled

* Interaction based on read-evaluate-print loop
= Just like Lisp

JessTab Tutorial

Jess console window in Protégé

| e Fiakdgd T i oe
e U Do e T B
0 provégé

Console window (lower part)

Enter Jess
expressions here

Command Clear console
history window

Exeer O Brmak | O Warskow

Tip: It is possible to copy &
paste commands with ctrl-C

@ and ctrl-V

Evaluate
expression

Break execution

5. Introduction to Jess programming

e The CLIPS heritage
» Jess basics

* Running Jess

» Jess facts

« Jess constructs

&

[it)

Henrik Eriksson

Console window (upper part)

‘ Console selected ‘ ‘ Default engine ‘ ‘JessTab selected ‘

| < [Frwtgs 17 bt

o protégé

[surabs |

Torms | % stmces | & Gueres | o dess

; Jess startup message
n

;

Jess prompt

Console Window (subtabs)

Console | Facts | Bues | Funcions | Meghadlers | Metheds | Deipiobals | Duflemplates | Dullacts | Sefiings

+ Console The Jess console

* Facts

* Rules

* Functions

* Message handlers

« Methods Lists of Jess constructs

« Defglobals
Deftamplates
Deffacts

Settings Various settings

CLIPS

¢ Forward-chaining system
* Object-oriented part (COOL)
* Lisp-like syntax

» Based on Art

LIPS

* Developed by NASA

e Implemented in C
= available on several platforms (e.g., Unix, PC, and Macintosh)
= source code available

* Homepage: http://www.ghg.net/clips/CLIPS.html
= documentation, discussion forum, download area

JessTab Tutorial

Henrik Eriksson

Jess

+ Based on CLIPS
= Rules from CLIPS but no object-oriented part

* Developed by Dr. Ernest Friedman-Hill at Sandia National

Laboratories

e Implemented in Java
= source code license available

» Homepage: http://www.jessrules.com/

= documentation, download area

Running Jess

> jess o

Jess, the Rule Engine for the Java Platform
Copyright (C) 2004 Sandia Corporation

Jess Version 7.0a5 2/2/2005

Jess> exit J
exit
Jess> (+ 3 4) J

7
o> Goxity 4 | gt |

>

Jess Facts

Jess manages a list of known facts

Sample Jess fact:

(person (hair-color black)
(name John Smith”)
(eye-color blue)

(age 23))

The Deftemplate Construct

Declaration of valid slots for a given relation name

The general format of deftemplate is

(deftemplate <relation-name> [<optional-comment>]

<slot-definition>*)

where <slot-definition> is defined as

(slot <slot-name>) | (multislot <slot-name>)

Sample Deftemplate

Information about a person

(deftemplate person A sample deftemplate”

(slot name)
(slot age)
(slot eye-color)

(slot hair-color))

Multifield slots

* Normal, single-field slots can hold only one value
« Multifield slots can hold several values

* Thevalues are ordered in alist

JessTab Tutorial

Henrik Eriksson

Sample Fact Revisited

(person (name John Smith)
(age 23)
(eye-color blue)

(hair-color brown))

» lllegal if name is a single-field slot, but

» legal is name is a multifield slot

Ordered Facts

« Implied deftemplate: Single implied multifield slot
* List of elements
« Order of elements important; slot names not required

« Example: list of numbers

(number-list 7 9 3 4 20)

Adding and Removing Facts

» All facts known to Jess are stored in the fact list
» Add new facts with the assert command:
(assert <fact>+)

* More than one fact can be added with assert

Adding Facts: Example

Jess>
(deftemplate person
(slot name)
(slot age)
(slot eye-color)
(slot hair-color))d
Jess>
(assert (person (name “John Q. Public™)
(age 23)
(eye-color blue)
(hair-color black))) 4
<Fact-0>

Jess>

Displaying Facts

* The facts command: (facts)

» Example:

Jess> (facts) J

-0 (MAIN::person (name “John Smith”) (age 23)
(eye-color blue) (hair-color black))

For a total of 1 fact.

Jess>

Adding another Fact

Jess>

(assert (person (name “Jane Smith™)

age 36
(ag) Normally, Jess does not
(eye-color green) accept duplicate fact
entries

(hair-color red)))
<Fact-1>
Jess> (facts) J
-0 (person (name “John Smith”) (age 23)
(eye-color blue) (hair-color black))
-1 (person (name “Jane Smith”) (age 36)
(eye-color green) (hair-color red))
For a total of 2 facts.

Jess>

JessTab Tutorial

Jess Rules

Sample rule:

Henrik Eriksson

IF the emergency is a fire

THEN the response is to activate the sprinkler system

Step 1 — Define the relevant deftemplates:
(deftemplate emergency (slot type))

(deftemplate response (slot action))

B

Jess Rules (cont.)

. le head!
Step 2 — Define the rule

(defrule fire-emergency A sample rule”
(emergency (type fire))
=>
(assert (response

(action activate-sprinkler-system))))

The Run Command

Run the forward-chaining system

Jess> (run) J

Jess> (facts)

f-0 (emergency (type fire))

-1 (response (action activate-sprinkler-system))
For a total of 2 facts in module MAIN.

Jess>

Printing the Result

(defrule fire-emergency
(emergency (type fire))
=>

(printout t “Activate the sprinkler system”
crif))

output stream

(t = stdout)

Multiple Rules

(defrule fire-emergency
(emergency (type fire))
=>

(printout t “Activate the sprinkler system
crif))

(defrule flood-emergency
(emergency (type flood))
=>

(printout t ”Shut down electrical equipment”

@ crif))

Single-Field Patterns

(deftemplate person
(multislot name)
(slot social-security-number))

(deffacts some-people
(person (name John Smith)
(social-security-number 483-98-9083))
(person (name Jack Smith)
(social-security-number 483-98-9084)))

(defrule print-social-security-numbers
(print-ss-numbers-for ?last-nane)
(person (name ?first-nane ?middle-name ?last-name)
(social-security-number ?ss-number))
=

(printout t ?ss-number crif))

JessTab Tutorial Henrik Eriksson

Single-Field Wildcards Conditional Patterns

(defrule black-or-brown-hair

(person (name ?name) (hair brown | black))

(defrule print-social-security-numbers —
(print-ss-numbers-for ?last-name)

(printout t ?name ” has dark hair” crif))
(person (name ? ? ?last-name)

(social-security-number ?ss-number))
=>
@rfimee ¢ RessuiEr crio) (defrule black-or-brown-hair
(person (name ?name) (hair ?color&brown |

black))
=>
(printout t ?name ” has ” ?2color ” hair”
@ @ crif)
177 7 ey [T P imr iy
Conditional Patterns (cont.) Conditional Patterns (cont.)
(defrule complex-eye-hair-match
(person (name ?namel)
(defrule not-black-or-brown-hair (eyes ?eyesl&blue | green)
(person (name ?name) (hair ?hairlé&-black))
(person (name ?name2&-?namel)
(hair ?color&-brown&~black)) (eyes ?eyesli&-?eyes2)
= (hair ?hair2&-red | ?hairl))
=
(printout t ?name ” has ” ?color ” hair” crif)) (printout t ?namel ” has " ?eyesl " eyes and " ?hairl " hair”
(printout t ?name2 " has " ?eyes2 " eyes and " ?hair2 ” hair”
crif))
Litegltnti [T =]
Conditional Patterns (cont.) Loading Jess Constructs from a File

« Create the Jess source file with a text editor

(defrule no-identical-birthdays « Use the batch command:
(not (and (person (name ?name)
(birthday ?date))

(person (name ~?name)

(batch <file>)

- « E le:
(birthday ?date)))) xampie
= Jess> (batch "fire.clp™) J
(printout t “No two people have the same birthday” Defining deftemplate emergency
crif) Defining deftemplate response

Defining defrule: fire-emergency +j

JessTab Tutorial

6. Managing Protégé ontologies with Jess

* The Protégé GUI is nice but sometimes scripting or
programmatically modifying an ontology is better

» JessTab adds several functions and constructs for
managing ontologies

« Naturally, these functions and constructs are available
from the Jess command prompt and from Jess programs

Henrik Eriksson

Defining classes and instantiating them

Jess> (defclass Person (is-a :THING)
(slot name (type string))
(slot age (type integer)))

TRUE -

Jess> (make-instance john of Person (name *'John™)
(age 20)) T TR
<External-Address:Simplelnstance> =

Jess> AN s e x

Modifying slots

Jess> (slot-set john age 21)

Jess>
Jess> (slot-get john age) J o
21 Liohn
Jess>

e

Creating a second instance

Jess> (make-instance sue of Person (name *Sue')
(age 22))

<External-Address:Simplelnstance>

Jess>

Jess> (slot-get sue age) .

22

Jess>

Lk e el

mapclass slot-range instancep
mapinstance slot-allowed-values instance-existp
unmapinstance slot-allowed-classes. instance-name
defclass slot-allowed-parents slanceaddess
make-nstance siot-documentation instance-addressp

instance-namep
iniilize-instance siotsources

slotexistp
modify-instance facet-get

slot-defaultvalue
duplicate-instance facet.set

setkb-save
definstances class

getkb-save
unmake-instance class-existp P,
slot-get class-abstractp ()
slotset class-reactivep include-project
slotreplaces superclassp .
slotinserts subclassp jesstab-version-number
slot-deletes class-superclasses jesstab-version-string
ot lass-subclasses
slotfacets class-subclasse: P

y et-defclassist
slot-types 9 P
Lnipepembbenini

7. Mapping Protégé ontologies to Jess

« Transferring the Protégé representation to the Jess
representation

_,(\ Protégé
ontology

Jess facts

JessTab Tutorial

Mapping classes

Jess> (defclass Person (is-a :THING) i T
(slot name (type string)) IRLLE
(slot age (type integer))) .

TRUE

Jess> (make-instance john of Person (name "“John')
(age 20)) <
<External-Address:Simplelnstance>

S bum | @ bateen |

Jess> (mapclass Person) . ,I_ FlaTelx
Person ;
Jess> (facts) .
f-0 (object (is-a Person) (is-a-name "Person')
(OBJECT <External-Address:Simplelnstance>)
(age 20) (name "John'™))

For a total of 1 facts.

Modifying slots

Jess> (slot-set john age 21) J

Jess> (facts)

f-1 (object (is-a Person) (is-a-name "Person')
(OBJECT <External-Address:Simplelnstance>)
(age 21) (name "John'))

For a total of 1 facts.

Adding a Jess rule

Jess> (defrule twenty_one

(object (is-a Person)

(name ?n) (age ?a&:(>= ?a 21)))
=>
(printout t "The person "™ ?n

" is 21 or older” crif)) .

TRUE
Jess> (run) o
The person John is 21 or older
The person Sue is 21 or older
2
Jess>

&

Henrik Eriksson

The “object” fact

« Pattern for facts corresponding to Protégé instances

/ Fact name ‘ / Class name ‘

(object (is-a Person) (is-a-name '‘Person')
(OBJECT <External-Address:Simplelnstance>)
(age 20) (name "John™))

Slot values

Reference to
Protégé instance

Creating Instances

Jess> (make-instance sue of Person (name “Sue™) (age
22)) J

<External-Address:Simplelnstance>

Jess> (facts) o

f-1 (object (is-a Person) (is-a-name "Person')
(OBJECT <External-Address:Simplelnstance>)
(age 21) (name *John'™))

f-4 (object (is-a Person) (is-a-name “Person’)
(OBJECT <External-Address:Simplelnstance>)
(age 22) (name "'Sue™))

For a total of 2 facts.

More rule examples

(defrule twenty_two
(object (name ?n)
(age 22))

=>

(printout t "The object ™ ?n " is 22" crlf))

(defrule print_age
(object (is-a Person)
(name ?n)
(age ?a))
=>
(printout t "The person ™ ?n " is " ?a crlf))

10

JessTab Tutorial

Henrik Eriksson

Accessing instances from rules

(defrule print_age_2
(object (is-a Person)
(OBJECT ?0bj)
(name ?n))
=>
(printout t "The person " ?n
" is " (slot-get ?0bj age) crlif))

Modifying slot values from rules

(defrule upgrade_my_age
?f <- (object (is-a Person)
(name Joe Hacker™)
(age 20))
=>

(slot-set ?f age 21))

(defrule print_age_3
?f <- (object (is-a Person)
(name ?n))
=>
(printout t “The person " ?n
" is " (slot-get ?f age) crlif))

(defrule upgrade_my_age_2
?f <- (object (is-a Person)
(name “Joe Hacker™)
(age ?a))
= Tip: Avoid.

(slot-set ?f age (+ ?a 1))) Infinite Ioop! ||

Consistency rules

(defrule set_john_doe_if_no_name
?f <- (object (is-a Person)
(name nil)
(age ?a&:(numberp ?a)))
=>
(slot-set ?f name John Doe™)

D)

Matching instances in rules

* Remove duplicates

(defrule remove_if _no_name_and_no_age
?f <- (object (is-a Person)
(name nil)
(age nil))
=>

(unmake-instance ?T)

D)

(defrule remove_if _duplicate_name_and_age
(object (is-a Person)
(OBJECT ?p)
(name ?n)
(age ?a))
(object (is-a Person)
(OBJECT ~7?p)
(name ?n)
(age ?2))
=>
(unmake-instance ?p)

Matching instances in rules (cont.)

* Find pet owners

(defrule print_owner_and_pet
(object (is-a Person)
(OBJECT ?p)
(name ?n))
(object (is-a Dog|Cat|Bird)
(is-a-name ?type)
(owner ?p)
(name ?an))
=
(printout t "The person ™ ?n " has a " ?type
" called " ?an crif))

Mappings and rules — Summary

¢ Use (mapclass <class-name>) or (mapinstance
<instance>) to map instances to facts

* Use (facts) to check what facts you got
« Define the rules matching the object facts (defrule ..)

* Use (run) to invoke the rules

* Tip #1: Learn as much Jess as possible (e.g., rule patterns)

« Tip #2: Start out with simple examples (when learning and
troubleshooting)

11

JessTab Tutorial

Henrik Eriksson

Question #1: Why mappings?

* Separates the Protégé model from the Jess model
« Allows selected parts of the Protégé kb to be visible to Jess

« Allows for large ontologies and/or fact bases with a small
common part

« Different Jess engines can map in different part of a Protégé kb

* Why not have Jess index the Protégé frames directly?
= Implementation complexity
= Maintenance problem: The Jess indexing scheme changes often (due to code
optimizations;
= Several Jess versions supported simultaneously
= However, mappings increase memory consumption

Question #2: Why does mapclass map to
these “object” facts?

« Backward compatibility with CLIPS rules
= The Jess rules have (almost) the same syntax as the CLIPS rules for objects

« Support for more general patterns in rules
= Example: Find an instance of any class with a certain slot value

* No name conflicts with other types of facts
= The name object is reserved for facts coming from Protégé

* Why can't | change the mappings to something else?
= In fact, there is an API for this
= Using Java, you can write arbitrary mappings

Mirroring Jess definitions in Protégé
knowledge bases

+ Reverse mapping

« Jess definitions become instances in the Protégé kb
« Graphical browsing of definition instances in Protégé
« Definition instances visible to other tabs

+ Introspection because JessTab can access the definition instances

+ Limited support for editing and customization of definition editors in
Protégé

« Limited support for saving these Jess definitions with the Protégé kb
= Not recommended unless you know its limitations

Mirroring Jess definitions in Protégé
knowledge bases (cont.)

[g ¥ s
L e g

Your Jess definitions as
first-class citizen in Protégé

Uiyttt
Editing Jess definitions in Protégé
=6
P_WM!
@ e 2t | Jess rule editor in
Liptgratrnt Protégé

Editing Jess definitions in Protégé (cont.)

ooa

T protégé

e | RUle-editor subtab in
JessTab

12

JessTab Tutorial

8. Metalevel mappings

* The Next Level!

* Mapping classes to facts

» Good news: Classes are instances!

instance of

instance of

Class definition by instantiation

(make-instance of :STANDARD-CLASS
(:NAME LivingThing)
(:ROLE Abstract)
(:DIRECT-SUPERCLASSES :THING))
(make-instance of :STANDARD-CLASS
(:NAME Person)
(:DIRECT-SUPERCLASSES LivingThing)
(:DIRECT-TEMPLATE-SLOTS
(make-instance of :STANDARD-SLOT
(:NAME name)
(:SLOT-VALUE-TYPE String))
(make-instance of :STANDARD-SLOT

(:NAME age)
@ (:SLOT-VALUE-TYPE Integer))))

[it)
Class definition by instantiation (cont.)
¢ Resulting classes: LivingThing and Person
@ Tip: Classes can also be created programmatically
with calls to defclass (which is a construct
Lkigtenbutaiin: implemented as a function)

Class definition with custom metaclass

(make-instance of :STANDARD-CLASS
(:NAME MyMetaClass) va
(:DIRECT-SUPERCLASSES :STANDARD-CLASS) "
(:DIRECT-TEMPLATE-SLOTS .

(make-instance of :STANDARD-SLOT
(:NAME AUTHOR) i
(:SLOT-VALUE-TYPE String))))|*

(make-instance of MyMetaClass

(:NAME Person2) Add AUTHOR property
(:DIRECT-SUPERCLASSES Person) to classes

(:DIRECT-TEMPLATE-SLOTS
(make-instance of :STANDARD-SLOT
(=NAME income)
(:SLOT-VALUE-TYPE Integer))))

; Set the AUTHOR value for Person2
@ (slot-set Person2 AUTHOR "The meta man'™)

Henrik Eriksson

Support for Protégé metalevel objects

« JessTab support for metaclasses, metaslots, and
metafacets

» Functions for instances work for classes too
= and for slots and facets

« Defining classes by instantiating metaclasses:

(make-instance Person of :STANDARD-CLASS
(:DIRECT-SUPERCLASSES :THING))

Resulting class with AUTHOR property

(instance of MyMetaClass)

13

JessTab Tutorial Henrik Eriksson

Class changes Rules and metalevel objects

* Change the metaclass of an existing class * Use mapclass on metaclasses
= Maps classes (as instances) to facts
= Check result with (facts)

‘(slot—set Person :DIRECT-TYPE MyMetaCIass)‘

« Define rules matching the facts representing the classes
= Rules for searching ontologies and identifying patterns
= Rules for modifying ontologies

* BTW, you can change the class of an existing ordinary

instance « Useful for ontology development and maintenance
= Rules for ontology-wide changes
‘(slot—set john :DIRECT-TYPE PersonZ)‘ = Rules for identifying inconsistencies
[T ¥ me—r [T ¥ Re————y
Printing abstract classes in Protégé Modifying ontologies

Map every Change the role to abstract for classes
class to Jess that have subclasses, but do not have
(mapclass :THING)

any instances:

i Concrete classes [—
(defrule prlr_1t—alI—abstract—classes (defrule make-classes-abstract e oo
?c <- (object) Match every object 2c <- (object (:NAME ?n)

(test (class-abstractp ?c)) (:ROLE Concrete)
Test for abstract (:DIRECT-INSTANCES))

(printout t "The class " classes (not (object (:NAME ?n) (:DIRECT-SUBCLASSES)))
=>

- _ ,) = -
.(.I r_]Stance name" 2c) (slot-set ?2c :ROLE Abstract)) ~ Notnosubclasses =
. is abstract.” crif)) subclasses exist
@ Print matches
Liegrania g Change role

=>

Methods and Message Handlers Defining methods

* Object-oriented programming for Protégé/Jess * Syntax
= Complements rule-based modeling

(defmethod <name> [<index>] [<comment>]
« Methods (fparimeter»restrlctlom* [<wildcard-parameter-restriction>])
<action>*)

= Respond to generic function calls
= Match on parameter types
e Examples
e Message handlers
* Handle messages sent to objects (defmethod add ((?a STRING) (?b STRING))
= Allow parameters, but not pattern matching (str-cat ?a ?b))
= Before, after, and around handlers

« Implementation of methods and message-handlers
supported by CLIPS ‘(defm;thod add ((?a MyClass) (?b MyCIass))‘

& &

14

JessTab Tutorial

Defining message handlers

¢ Syntax

(defi ge-handler <cl
[<handler-type>] [<comment>]
(<parameter>* [<wildcard-parameter>])
<action>*)

e Examples

(defmessage-handler MyClass get-foo ()
?self:foo)

@ ‘(defmessage—handler rectangle find-area ()

(* ?self:side-a ?self:side-b))

Methods and Message Handlers —
Summary

* Object-oriented modeling

* Methods
= Advanced parameter matching (similar to CLOS)
= Both classes and datatypes in parameter patterns
= Overloading of existing functions

* Message handlers
= Message passing
= Invoked with (send <inst> <msg> <param>*)
= Easy access to slot values (through ?self)
= Before, after, and around methods

10. Example

+ Based on the Protégé newspaper example

* Goal: Layout rules in Jess
= Reuse ontology
= Add new rules

« Step-wise development

* Download from
http://www.ida.liu.se/~her/JessTab/tutorial06/

&

Henrik Eriksson

Invoking message handlers

* Sending messages
¢ Syntax: (send <instance> <message> <param>*)

« Example

Jess> (defclass MyClass (is-a :THING)

(slot foo (type integer))) -

TRUE

Jess> (make-instance x of MyClass (foo 42)) J
<External-Address:DefaultSimplelnstance>
Jess> (slot-get x foo)

42

Jess> (defmessage-handler MyClass get-foo () ?self:foo) .l
TRUE

Jess> (send x get-foo)

42

Jess>

9. JessTab and Protégé OWL

* Basic support for OWL

« JessTab uses the Protégé frames API
= which provides a best-effort implementation of OWL functionality

¢ Metaclasses not supported
* OWL constraints/expressions not supported

« Jess definition mirroring not supported

Steps

* Prerequisite
= Jess and JessTab installed

* Open newspaper example
= Available in the standard Protégé installation

* Enable JessTab
= Project -> Configure -> select JessTab

« Cut-and-paste from source file (newspaper.jess)

« Alternatively, load with (batch ’newspaper.jess”)
= Tip: You probably need the full pathname for this file

15

JessTab Tutorial

Rule overview

* Mapclass for newspaper articles and ads
= (mapclass Content)

* Rules for mapping instance facts to page-area facts
* page_area_rl, page_area_r2

* Rules for creating size facts from the page-area facts
= size_rl, size_r2, size_r3, size_r4

* Rules for creating layout instances from the size facts
= layout_ril

[T ¥ me—r
Rules — Code
(object (is-a Personals_Ad|Standard_Ad))
(T 2a)
(name ?n)
(page_number ?p)) (defrule size r3
= (page-area ? Article ? 7t ?a)
(assert (page-area ?p Ad ?n " ?a)) =
3 s (R 0 ((et) A5
)
(defrule area_r2
e
(OBJECT ?a) (defrule size_ra
TN e O rom
(text ?t) =
(page_number ?p)) (assert (width ?a 50.0) (height ?a 50.0))
(assert (page-area ?p Article ?h 7t ?a))
(defrule layout_rl
(width ?a ?w) (height ?a ?h)
(page-area ?p&:(< ?p 10) Article ? ? ?a) (slot-set ?a layout
(assert (width ?a 100.0)) (main_rectangle (make-instance of Rectangle
@ 3 s sy
)
Lkl rnltntis?

11. Conclusion

* Web of tools

* Future work

e Trying JessTab
e Learning more
e Summary

¢ Questions

Henrik Eriksson

Graphical rule overview

Personals Ad

Standard_Ad

page_area ri size vl Tayout_r1
page_area_r2 sizer2
sizera

D Instance
3 Fact
=) Rules

Result

Tool Web/Library

PrologTab

More Jess
extensions

More Protégé
plug-ins

16

JessTab Tutorial

&®

Ideas for future work

Improved OWL support

Custom mappings (defined in Jess)
Support for managing Protégé forms
Improved GUI

Aspect-oriented functionality (e.g., pointcut for message-
handlers)

?2??

Henrik Eriksson

Trying JessTab

* Obtain Protégé

= Download from http://protege.stanford.edu/
= License: MPL 1.1

« Obtain Jess

= Download from http://www.jessrules.com/
= License: Special Jess license (commercial or free academic)
= Compilation sometimes required

* Get JessTab

= Download from http://www.ida.liu.se/~her/JessTab/
= License: MPL 1.1

Learning more about Jess and JessTab

Jess manual
= See http://www.jessrules.com/
Jess book

= Ernest Freidman-Hill. Jess in Action: Java Rule-based Systems.
Manning Press, 2003. ISBN: 1930110898

= See http:/manning.com/friedman-hill/

Jess mailing list
= See http:/www.jessrule list.shtml

JessTab manual
= See http:/www.ida.liu.se/~her/JessTab/

Jess publication

= Henrik Eriksson. Using JessTab to |n|egra|e Protégé and Jess.
|IEEE Intelligent Systems, 18(2):43- 50, 2003.

Summary

* JessTab: Protégé — Jess integration

* Manage Protégé ontologies and knowledge bases from
Jess

¢ Rule-based reasoning in Protégé

* Protégé as graphical, object-oriented extension to Jess

17

