
Spoken Language Translator:
Phase Two Report (Draft)

Ralph Becket�, Pierrette Bouillon�, Harry Bratt�, Ivan Bretan�,
David Carter�, Vassilios Digalakis�, Robert Eklund�, Horacio Franco�,

Jaan Kaja�, Martin Keegan�, Ian Lewin�, Bertil Lyberg�,
David Milward�, Leonardo Neumeyer�, Patti Price�, Manny Rayner�,

Per Sautermeister�, Fuliang Weng� and Mats Wirén�

February 1997

SRI Project 6393

This is a joint report by SRI International and Telia Research AB;
published simultaneously by Telia and SRI Cambridge.

� SRI International, Cambridge
� SRI International, Menlo Park

� Telia Research
� ISSCO, Geneva

Executive summary

Spoken Language Translator (SLT) is a project whose long-term goal is the construc-
tion of practically useful systems capable of translating human speech from one lan-
guage into another. The current SLT prototype, described in detail in this report, is ca-
pable of speech-to-speech translation between English and Swedish in either direction
within the domain of airline flight inquiries, using a vocabulary of about 1500 words.
Translation from English and Swedish into French is also possible, with slightly poorer
performance.

A good English-language speech recognizer existed before the start of the project,
and has since been improved in several ways. During the project, we have constructed
a Swedish-language recognizer, arguably the best system of its kind so far built. This
has involved among other things collection of a large amount of Swedish training data.
The recognizer is essentially domain-independent, but has been tuned to give high
performance in the air travel inquiry domain.

The main version of the Swedish recognizer is trained on the Stockholm dialect of
Swedish, and achieves near-real-time performance with a word error rate of about 7%.
Techniques developed partly under this project make it possible to port the recognizer
to other Swedish dialects using only modest quantities of training data.

On the language-processing side, we had at the start of the project a substantial
domain-independent language-processing system for English, a preliminary Swedish
version, and a sketchy set of rules to permit English to Swedish translation. We
now have good versions of the language-processing system for English, Swedish and
French, and fair to good support for translation in five of the six possible language-
pairs. Translation is carried out using a novel robust architecture developed under the
project. In essence, this translates as much of the input utterance as possible using a
sophisticated grammar-based method, and then employs a much simpler set of word-
to-word translation rules to fill in the gaps.

The language-processing modules are all generic in nature, are based on large,
linguistically motivated grammars, and can fairly easily be tuned to give good perfor-
mance in new domains. Much of the work involved in the domain adaptation process
can be carried out by non-experts using tools developed under the project.

Formal comparisons are problematic, in view of the different domains and lan-
guages used and the lack of accepted evaluation criteria. None the less, the evidence
at our disposal suggests that the current SLT prototype is no worse than the German
Verbmobil demonstrator, in spite of a difference in project budget of more than an order
of magnitude.

i

Acknowledgements

The Spoken Language Translation project was funded by Telia Nät Tjänster (Swedish
Telecom Networks Division) and the work was carried out jointly by Telia Research
and SRI International.

We would like to thank Christer Samuelsson for making available to us the LR
compiler described in Chapter 6, and Steve Pulman and Christer Samuelsson for helpful
comments on the material in 6.

The work described in Appendix A was partly funded by the Defence Research
Agency, Malvern, UK, under Strategic Research Project AS04BP44. We are grateful to
Małgorzata Stýs for comments on the material in that appendix and also for providing
her analysis of the Polish examples in it. The greater part of the work described in
Chapter 11 was carried out under funding from SRI International (at SRI Cambridge)
and Suissetra (at ISSCO, Geneva).

Much of the material in this report is based on published papers. Permission to
re-use parts of those papers is gratefully acknowledged. Chapter 2 uses material from
[IVTTA96], c�IEEE; Chapter 5 uses Rayner and Carter (1997),c�IEEE; Chapters 5
and 6 draw on Rayner and Carter (1996), and Appendix A uses Carter (1995), which
are bothc�Association for Computational Linguistics; Chapter 11 is an edited version
of Rayner, Carter and Bouillon (1996); Chapter 12 uses Rayner and Bouillon (1995);
Chapter 14 is based on Rayneret al (1996); part of Chapter 16 uses Carteret al (1996)
and Chapter 17 uses Rayneret al (1994), both of which arec�IEEE.

ii

Contents

Executive summary . .. i
Acknowledgements . .. ii
Table of contents iii
List of tables . xi
List of figures . xiii

1 Introduction 1
1.1 Overview of the project .. 1

1.1.1 Why do spoken language translation?. 1
1.1.2 What are the basic problems?. 2
1.1.3 What is it realistic to attempt today? 3
1.1.4 What have we achieved? 4

1.2 Overall system architecture 5
1.3 An SLT session .. 9

1.3.1 The Interface Elucidated 9
1.3.2 Synthesis. 13
1.3.3 Final Comments. 13

2 Language Data Collection 15
2.1 Rationale and Requirements 15
2.2 Methodology . .. 17

2.2.1 Wizard-of-Oz Simulations 17
2.2.2 American ATIS Simulations 17
2.2.3 Swedish ATIS Simulations 17

2.3 Translations of American WOZ Material 18
2.3.1 Translations... A First Step 19
2.3.2 Email Corpus . .. 19
2.3.3 Sundry Comments on Email Corpus Editing 21

2.4 A Comparison of the Corpora 21
2.5 Concluding Remarks . .. 23

3 Speech Data Collection 25
3.1 Rationale and Requirements 25
3.2 Text Material . .. 26

3.2.1 ATIS Material: LDC CD-ROMs 26

iii

iv

3.2.2 Swedish Material: The Stockholm-Umeå Corpus 26
3.3 Text Material Used in Data Collection. 26

3.3.1 Practice Sentences 27
3.3.2 Calibration Sentences 27
3.3.3 Calibration Sentences – ATIS. 28
3.3.4 Calibration Sentences – Newspaper Texts 28
3.3.5 ATIS Sentences .. 28
3.3.6 Expanded Phone Set 28

3.4 Dialect Areas . .. 30
3.4.1 Subjects .. 30

3.5 Recording Procedures . .. 30
3.5.1 Computer. 30
3.5.2 Headset .. 31
3.5.3 Telephones 31
3.5.4 The SRI Generic Recording Tool 32
3.5.5 Settings .. 32

3.6 Checking . 32
3.7 Lexicon . 33
3.8 Concluding Remarks . .. 35

4 Speech Recognition 36
4.1 The Swedish Speech Corpus 37
4.2 The Swedish Lexicon . .. 37

4.2.1 Introduction 37
4.2.2 Phone Set. 37
4.2.3 Morphology . .. 38
4.2.4 Lexicon Statistics. 39

4.3 The English/Swedish Speech Recognition System 39
4.3.1 Diagnostic Experiments 39
4.3.2 Speed Optimization 41
4.3.3 Swedish Recognition 43
4.3.4 Summary. 44

4.4 Dialect Adaptation 44
4.4.1 Dialect Adaptation Methods 45
4.4.2 Experimental Results 46
4.4.3 Summary. 50

4.5 Language Modeling 50
4.5.1 Interpolating In-domain LMs with Out-of-domain LMs 50
4.5.2 Class-Based Language Modeling 51
4.5.3 Compound Splitting in the Swedish System 51

4.6 Development of a phone backtrace for the n-best decoding algorithm . 54
4.7 The Bilingual Speech Recognition System 56

4.7.1 Experimental Setup 57
4.7.2 Multilingual Recognition 57
4.7.3 Language Identification 58
4.7.4 Summary. 59

v

5 Overview of Language Processing 60
5.1 Introduction 60
5.2 Linguistically Motivated Robust Parsing 61
5.3 Semi-automatic domain adaptation of grammars 63

5.3.1 Rational Development of Rule Sets 63
5.3.2 Training by Interactive Disambiguation 64

5.4 Summary . 65

6 Customization of Linguistic Knowledge 67
6.1 Linguistic Analysis in the Core Language Engine 67
6.2 Constituent Pruning 69

6.2.1 Discriminants for Pruning 69
6.2.2 Deciding which Edges to Prune 72
6.2.3 Probability Estimates for Pruning 72
6.2.4 Relation to other pruning methods 77

6.3 Grammar specialization .. 78
6.4 Discriminant-Based QLF Preferences. 79

6.4.1 Discriminant Scoring for Analysis Choice 79
6.4.2 Advantages of a Discriminant Scheme. 80
6.4.3 Numerical Metrics 81

6.5 Experiments 82
6.6 Conclusions and further directions 84

7 Acquisition of Linguistic Knowledge 88
7.1 The Acquisition of Lexical Entries 88

7.1.1 lexmake Tool Description 89
7.1.2 Example . 90

7.2 Swedish Usage .. 91
7.2.1 Nouns . .. 91
7.2.2 Adjectives. 92
7.2.3 Verbs . .. 93
7.2.4 Evaluation and Conclusion 95

7.3 The TreeBanker .. 96
7.3.1 Motivation 96
7.3.2 Overview of the TreeBanker 97
7.3.3 The Supervised Training Process 98
7.3.4 Evaluation and Conclusions 102

8 Rational development methodology 103
8.1 Introduction 103
8.2 Constructing representative corpora 104

vi

9 English Coverage 109
9.1 Overview of English linguistic coverage 109

9.1.1 Non-standard aspects of the CLE grammar 110
9.2 Lexical items . .. 112
9.3 Non-recursive NPs 113

9.3.1 “Basic” non-recursive NPs 113
9.3.2 Time and date NPs 116
9.3.3 “Code” NPs 116
9.3.4 Bare determiner NPs 117
9.3.5 “Kind of” NPs . 117
9.3.6 Special non-recursive NP constructions 118

9.4 Recursive NPs . .. 118
9.4.1 Basic recursive NPs 119
9.4.2 Conjoined NPs .. 120
9.4.3 Sentential NPs .. 120
9.4.4 “Quote apposition” NPs 120

9.5 Preposition phrases 120
9.6 Numbers .. 121
9.7 Verb phrases 122

9.7.1 Types of verb . .. 122
9.7.2 Transformations and modifications of verb phrases 124
9.7.3 Verb phrase contexts 126

9.8 Clauses and top-level utterances 126
9.8.1 Clauses .. 128
9.8.2 Utterances 129

9.9 Coverage failures. 131
9.9.1 “Grammatical” coverage failures 131
9.9.2 “Ungrammatical” coverage failures 136
9.9.3 Summary of coverage failures. 136

10 Swedish Coverage 138
10.1 Introduction 138
10.2 Morphology 138

10.2.1 Declensions/conjugations 138
10.2.2 Null derivation .. 139
10.2.3 Umlaut .. 139
10.2.4 Adverb from Adjp 139
10.2.5 Verbal Constructions 139
10.2.6 Lexical passive and deponent verbs 139
10.2.7 Separable verbs .. 140
10.2.8 Lexically reflexive verbs 140

10.3 Clausal Constructions . .. 140
10.3.1 Inversion . 140
10.3.2 Mobile adverbs and negation 140
10.3.3 Vad ... för. 141
10.3.4 Swedish embedded Q with "som" 141

vii

10.4 NP Constructions. 141
10.4.1 Definiteness 141
10.4.2 Bare adjp. 142
10.4.3 Possessive constructions 142
10.4.4 Compound nominals 142
10.4.5 Modifier Constructions 143
10.4.6 -ing VP modifier . 143
10.4.7 Extraction from of-PP 143
10.4.8 Phrasal Constructions 143
10.4.9 Time of day 143
10.4.10 Date expressions. 144

11 French Coverage 145
11.1 Introduction 145
11.2 Morphology and spelling. 146

11.2.1 Intra-word spelling changes 146
11.2.2 Inter-word spelling changes 147

11.3 French syntax . .. 148
11.3.1 Question-formation 148
11.3.2 Clitics . 151
11.3.3 Agreement 153

11.4 Spanish syntax .. 154
11.5 Conclusions . 155

12 Transfer and Robust Translation 156
12.1 Introduction 156
12.2 QLF-based transfer 157

12.2.1 Introduction 157
12.2.2 Combining transfer rules and transfer preferences 160
12.2.3 Training transfer preferences 163
12.2.4 Transfer packing. 165
12.2.5 Pre- and post-transfer 166
12.2.6 Logical variables in QLF transfer 167

12.3 Robust transfer .. 167
12.3.1 Introduction 167
12.3.2 Word-to-Word Transfer 168
12.3.3 Chart-based transfer 170

13 Transfer Coverage 175
13.1 The transfer formalism .. 175
13.2 Adequacy of the formalism 176

13.2.1 Lexically triggered complex transfer 177
13.2.2 Compositionality and simplicity 179
13.2.3 Monotonicity . .. 182

13.3 Dealing with transfer ambiguity 183
13.3.1 Preferences on English QLFs 183

viii

13.3.2 Preferences on Swedish QLFs. 184
13.3.3 Implementation of hand-coded triple-scores for transfer ambi-

guity . 185
13.3.4 Problems with hand-coded triples 186

13.4 Rule types. 187
13.4.1 Statistics on rule types 188

13.5 Overview of the rules . .. 188
13.5.1 Identities . 189
13.5.2 Proper names . .. 189
13.5.3 Nouns . .. 189
13.5.4 Adjectives. 190
13.5.5 Prepositions 190
13.5.6 Pronouns. 191
13.5.7 Adverbs .. 192
13.5.8 Determiners 192
13.5.9 Verbs . .. 192
13.5.10 Mood, tense, aspect, and modality 193
13.5.11 Structural rules for copula 194
13.5.12 Structural rules for possessives. 195
13.5.13 Structural rules for temporal expressions 196
13.5.14 Structural rules for adjectives. 196
13.5.15 Other rules 196

14 Transfer Composition 198
14.1 Introduction 198
14.2 Automatic transfer rule composition 199

14.2.1 Transfer composition as a program transformation 199
14.2.2 Procedural realisation of transfer-rule composition 202
14.2.3 Composing transfer preferences 204

14.3 Improving automatically composed rule-sets 204
14.3.1 Overgeneration of composed rules 205
14.3.2 Composed preferences 205
14.3.3 Lack of coverage in hand-coded rules. 205

14.4 Swedish� English� French:
a case study 206
14.4.1 Experimental results 206
14.4.2 Translation failures 206
14.4.3 Incorrect translations 206

14.5 Conclusions and further directions 209

15 Database Interface 211
15.1 Overview of Database Processing 211
15.2 Translation and the Domain Theory 213

15.2.1 Abductive Equivalential Translation 213
15.2.2 Summary of the ATIS Linguistic Domain Theory 216

15.3 What Has Been Achieved. 219

ix

15.3.1 Scores on the New Context Independent Repcorpus (Small and
Full-Size versions of Database) 219

15.3.2 Reorganisation and Recoding of Equivalences. 221
15.4 Context-Dependent Database Query 223

15.4.1 Overview. 223
15.4.2 Reference Resolution Component 224
15.4.3 Sticky defaults .. 225
15.4.4 Development suites 226

16 Common Language-Speech Issues 227
16.1 The Speech-Language Interface 227
16.2 The N-best interface: what should N be? 228
16.3 Handling Compound Nouns in Swedish 230

16.3.1 Introduction 230
16.3.2 Corpus .. 231
16.3.3 Speech-Recognition Experiments 232
16.3.4 Split vs. Unsplit Compounds

in Speech Understanding 233
16.3.5 Conclusions 235

17 Summary and Conclusions 237

A Morphology 238
A.1 Introduction . 238
A.2 The Description Language 240

A.2.1 Morphophonology 240
A.2.2 Word Formation and Interfacing to Syntax 241

A.3 Compilation . 242
A.3.1 Compiling Spelling Patterns 243
A.3.2 Representing Lexical Roots 244
A.3.3 Applying Obligatory Rules 245
A.3.4 Timings . 245

A.4 Some Examples .. 246
A.4.1 Multiple-letter spelling changes 246
A.4.2 Using features to control rule application 247

A.5 Debugging the Rules . .. 247
A.6 Conclusions and Further Work 249

B SLT in the Media 251
B.1 SLT-1 . 251

B.1.1 Aftonbladet 251
B.1.2 Computer Sweden 252
B.1.3 Televärlden (1) .. 252
B.1.4 Televärlden (2) .. 252

B.2 SLT-2 . 253
B.2.1 Verkstäderna . .. 253

x

B.2.2 Mitt i Haninge . 253
B.2.3 Expressen. 253
B.2.4 BBC World Service 254
B.2.5 Ny Teknik. 254
B.2.6 Metro . 254
B.2.7 Televärlden (3) .. 255
B.2.8 Radio-Vian 255
B.2.9 Rapport .. 255
B.2.10 Nova . .. 255

B.3 Final Remarks . .. 256

References 257

List of Tables

2.1 Overview of quantitative data for different corpora. 23

4.1 VQ, PTM, and Genonic word error rates on a 10-city English ATIS task. 40
4.2 Word error rates on a 46-city English ATIS task. HMMs are trained

using ATIS or WSJ acoustic data. 40
4.3 Optimization of the English ATIS PTM system. 42
4.4 Mapping phonemes from English To Swedish for initialization. 43
4.5 Comparison of English and Swedish baseline recognition experiments. 44
4.6 Word recognition performance across Scanian-dialect test speakers us-

ing non-adapted and combined-methodadapted Stockholm dialect mod-
els . 49

4.7 Word error rates of word bigrams vs. class bigrams with respect to
different amounts of data.. 52

4.8 Word error rates of word bigram model, class bigram model, and inter-
polated models for English 52

4.9 PPLs of word bigram model, class bigram model, and interpolated
models for English. 53

4.10 Word error rates of word bigram model, class bigram model, and inter-
polated models for Swedish 53

4.11 PPLs of word bigram model, class bigram model, and interpolated
models for Swedish . 53

4.12 Word error rates of split vs. unsplit compounds for Swedish 54
4.13 English/Swedish word error rates for various speech recognition systems 58
4.14 Comparison of English and Swedish language models. 58
4.15 Language identification errors for words and sentences 59
4.16 Language identification errors after taking simple majority of words in

hypothesis. 59

6.1 Discriminant counts for a numerical preference function 82
6.2 EBL rules and EBL coverage loss against number of training examples 83
6.3 Breakdown of average time spent on each processing phase for each

type of processing (seconds per utterance) 84
6.4 Comparison between translation results 85

13.1 Examples of complex transfer phenomena 177

xi

xii

13.2 Examples of head-switching 178
13.3 Distribution of unexpanded transfer rules over rule types 187
13.4 Distribution of expanded transfer rules over rule types. 188
13.5 Reversibility of unexpanded transfer rules 188

14.1 Inadequate translations in Swe� Fre tests 207

16.1 “Correct” N-best lists for various N and corresponding shortfalls . . . 228
16.2 Analysis performance for different N values 229
16.3 Word-error rates obtained in the experiments.. 232
16.4 End-to-end evaluation comparison, giving each judge’s preferences for

utterances where the translation was affected by compound splitting. . 234

List of Figures

1.1 Basic SLT processing . .. 8
1.2 Demo session window for English-to-Swedish translation (1) 10
1.3 Demo session window for English-to-Swedish system (2) 11
1.4 Demo session window with “detail” mode set. 12
1.5 Demo session window for Swedish-to-French translation 14

2.1 Experimental set-up for Swedish ATIS simulation. 18
2.2 Lexicon growth as a function of number of sentences. To avoid sequen-

tial effects the data were collected several times in different orders and
later averaged. . .. 22

3.1 Non-Swedish phonemes without close approximations in Swedish. . . 29
3.2 Non-Swedish phonemes with reasonable Swedish approximations. . . 29
3.3 List of telephones used in the speech data collection.. 31
3.4 Example of phonological rewrite rules. 34

4.1 Dialect adaptation results for adaptation methods I, II, their combina-
tion with Bayes and standard ML training. 48

4.2 Comparison of dialect training and adaptation results for different num-
ber of speakers. .. 49

6.1 N-best list and part of word lattice for example sentence 68

7.1 Initiallexmake display . 90
7.2 lexmake display for noun 93
7.3 lexmake display for adjective 94
7.4 Initial TreeBanker display for “Show me the flights to Boston serving

a meal” . 99
7.5 TreeBanker display after approving topmost “np” discriminant 100

11.1 Main French question constructions 150

A.1 Three spelling rules 241
A.2 Partitioning ofchèreascher+e+ 241
A.3 Syntactic and semantic morphological production rules 242
A.4 Spelling pattern application to the analysis ofchère 245

xiii

xiv

A.5 Incorrect partitioning forbeau+e+ 246
A.6 Feature-dependent dropping of accent. 247
A.7 Debugger trace of derivation ofchère 248

Chapter 1

Introduction

Robert Eklund, Ian Lewin, Manny Rayner, and Per Sautermeister

1.1 Overview of the project

The Spoken Language Translator (SLT) project has now been running under sponsor-
ship from Telia Research since the middle of 1992. Its long term goal is to produce a
realistic system capable of translating human speech from one language into another.
A previous report (Agnäset al, 1994) described the results of the first, one-year, phase
of the project. The present report will focus on work performed since then, during
the period ending in January 1997; however, in order to make the document more self-
contained, we will include some material from the earlier report.Note that the version
you are reading here is only a draft, and several chapters still require extensive
revision. We expect the final version of the report to be completed not later than
March 30, 1997.

We will start this introductory section by looking at the most basic questions: why
we want to build spoken language translation systems at all, what the basic problems
are, what we can realistically attempt today, and what we have in fact achieved. Later in
the chapter, we present an overview of the main system architecture (Section 1.2) and
an example session (Section 1.3). The remainder of the report describes the technical
aspects of the system in extensive detail.

1.1.1 Why do spoken language translation?

The SLT project represents a substantial investment in time and money, and it is only
natural to ask what the point is. Why is it worth trying to build spoken language
translation systems? We think there are several reasonable answers, depending on
one’s perspective.

In the long term, it is obvious that a readily available, robust, general-purpose ma-
chine for automatic translation of speech would be unbelievably useful. It is in fact

1

2

almost meaningless to talk about the commercial value of such a device; it would prob-
ably transform human society as much as, for example, the telephone or the personal
computer. However, it is only realistic to admit that we are still at least 10 or 20 years
from being able to build a system of this kind. To be able to maintain credibility, we
also want to point to closer and more tangible goals.

In the medium term, it is uncontroversial to state that the field of speech and lan-
guage technology is growing at an explosive rate. Spoken language translation is
an excellent test-bed for investigating the problems which arise when trying to in-
tegrate different sub-fields within this general area. It involved attacking most of
the key problems, in particular speech recognition, speech synthesis, language anal-
ysis/understanding, language generation and language translation. By its very nature,
it also requires a multi-lingual approach. These are exactly the reasons which have
prompted the German government to organize its whole speech and language research
programme around the Verbmobil spoken language translation project.

In the short term, spoken language translation is one of the most accessible speech
and language processing tasks imaginable. Technical explanations are not necessary:
one just has to pick up the microphone, say something in one language, and hear the
translated output a few seconds later. We know no simpler way to convey to outsiders
the excitement of working in this rapidly evolving field, and quickly demonstrate the
increasing maturity and relevance of the underlying technology. We have been stag-
gered by the media interest which the SLT project has attracted (a summary appears
in Appendix B). If people are this curious about what we are up to, we feel that, at
the very least, our research must be asking the right questions. We hope that the rest
of the report will help convince the reader that we are making good progress towards
identifying acceptable answers.

1.1.2 What are the basic problems?

We will now take a step backwards and spend a few paragraphs evaluating where we
are with respect to our long term goals in spoken language translation. Many of these
are clearly still distant, and will not be achieved within a two- or three-year project. It
is none the less important to satisfy ourselves and our critics that we are moving in the
right direction.

To fully realize our long term goals, then, we would need to solve nearly every
major problem in speech and language processing. On the speech side, we would
need to be able to recognize continuous, unconstrained, spontaneous speech in a large
number of languages, using an unlimited vocabulary and achieving a high level of
accuracy. It would be desirable to be able to do this either over the telephone, or using
a hand-held device, or both. We would want recognition to be speaker-independent (no
previous training on a given speaker should be necessary), and robust to many kinds
of variation, in particular variation in dialect; if we are in a translation situation, we
expect at least two different linguistic groups to be present. We would also need to be
able to synthesize high-quality output speech. Recognition and synthesis would need
be able to take account of both the words that are spoken, and also of theway that
they are spoken (their prosody) since this often conveys an important component of the
meaning.

3

On the language side, we would need to be able to produce accurate, high-quality
translations of unconstrained, spontaneous speech, again including both the actual
words and their prosody. In practice, this would probably involve being able to analyse
arbitrary utterances in the source language into some kind of abstract representation of
their meaning; transforming the source-language meaning representation into a corre-
sponding structure for the target language; and generating target-language translations
annotated with the extra information (emphasis, punctuation, etc) needed to allow syn-
thesis of natural-sounding speech. It is highly desirable that the techniques used to
perform these various processing stages should be domain-independent, or at least eas-
ily portable between domains.

Spontaneous speech is frequently ill-formed in a variety of ways; in particular,
speakers can and often do change their minds in mid-sentence about what it is that they
are going to say, and speech recognition is certain to fail at least some of the time.
Translation must thus be robust enough to deal with more or less seriously ill-formed
input. One would also prefer translation to be “simultaneous”, in the sense that it should
lag a short distance behind production of the source-language utterance. This implies
that processing for both speech and language should work incrementally in real-time.

The requirements outlined above are naturally well beyond the state of the art in
automatic spoken language translation, and would indeed tax the capabilities of even
the most skilled human interpreters. (Anyone who has listened to the simultaneous
translation channel at a bilingual conference will testify to this). Some compromise
with the current limitations of speech and language technology is necessary. This leads
on to our next question.

1.1.3 What is it realistic to attempt today?

If we are to cut the problem down to a size where we can expect to show plausible
results using today’s speech and language technology, we must above all limit the vari-
ability of the language by confining ourselves to a specific, fairly concrete domain.
Partly because of the availability of recorded data, we have chosen airline flight in-
quiries. Other groups working on similar projects have chosen conference registration
and meeting scheduling. Domains like these have core vocabularies of about 1000 to
2500 words, which is about all that the current generation of continuous-speech speech
recognizers can manage. In view of the non-trivial effort required to port speech and
language technology to a new language, it is also sensible to start with a small number
of languages.

The speech technology we are using is speaker-independent, and can be run on
high-end workstations, either directly or via a telephone connection. Recognition per-
formance is most simply measured in terms of theword error rate(WER), roughly the
proportion of input words incorrectly identified by the recognizer. Current technology
places a lower limit of about 3–10% on the WER for tasks of the type considered here,
depending on various factors; in particular, the nature of the communication channel
(close-talking microphoneversustelephone), the degree to which the system is opti-
mized for speed as opposed to accuracy, the language in question, and the amount of
training data available.

We expect that continuing advances in hardware will in the near future make it

4

possible to package sufficiently powerful processors in wearable or hand-held devices,
though we have not made any attempt as yet to realise this idea concretely. It also
appears quite feasible to aim for systems that permit a high level of dialectal variation,
and this, in contrast, is a goal we have actively pursued.

Speech synthesis technology has made great progress over the last few years, and
with today’s technology it is possible to produce synthesis of fairly high quality. The
challenge is now to incorporate natural-sounding prosody into the synthesized output;
this is a hot research topic. When determining the correct prosody for the output, it is
feasible, though challenging, to try to take account of the prosody of the input signal.

With regard to language processing, it appears that high-quality translation requires
some kind of fairly sophisticated grammatical analysis: it is difficult to translate a sen-
tence well without precisely identifying the key phrases and their grammatical func-
tions. All grammars constructed to date “leak”, in the sense of only being able to as-
sign reasonable analyses to some fraction of the space of possible input utterances. The
grammar’s performance on a given domain is most simply defined as itscoverage, the
proportion of sentences which receive an adequate grammatical analysis. It is feasible
in restricted domains of the kind under discussion to construct grammars with a cov-
erage of up to 85–90%. Going much higher is probably beyond state-of-the art. Sim-
ilar coverage figures apply to the tasks of converting (transferring) a source-language
representation into a target-language representation, and generating a target-language
utterance from a target-language representation.

Achieving this kind of performance using domain-independent techniques is once
again feasible but challenging. There are a number of known ways to attempt to make
language processing robust to various kinds of ill-formedness, and it is both feasible
and necessary to make efforts in this direction. Simultaneous translation, in contrast,
still appears to be somewhat beyond state-of-the art.

The preceding paragraphs sketch the limits within which we currently have to work.
In the the next section, we give an overview of what we have achieved to date during
the SLT project.

1.1.4 What have we achieved?

The current SLT prototype is capable of good speech-to-speech translation between
English and Swedish in either direction within the airline flight inquiry (ATIS) domain.
Translation from English and Swedish into French is also possible, with nearly the
same performance. There is an initial version of the system which translates from
French into English.

A good English-language speech recognizer existed before the start of the project,
and has since been improved in several ways. During the project, we have constructed
a good Swedish-language recognizer. This has involved among other things collection
of a large amount of Swedish training data. The recognizer is essentially domain-
independent, but has been tuned to give high performance in the air travel inquiry
domain. There is also a credible first version of a French-language recognizer.

The main version of the Swedish recognizer is trained on the Stockholm dialect of
Swedish, and achieves near-real-time performance with a word error rate of about 7%.

5

Techniques developed partly under this project make it possible to port the recognizer
to other Swedish dialects using only modest quantities of training data.

On the language-processing side, we had at the start of the project a substantial
domain-independent language-processing system for English, a preliminary Swedish
version, and a sketchy set of rules to permit English to Swedish translation. We
now have good versions of the language-processing system for English, Swedish and
French. There is good coverage for each language within the chosen domain, and fair
to good support for translation in five of the six possible language-pairs. Translation is
carried out using a novel robust architecture developed under the project. In essence,
this translates as much of the input utterance as possible using a sophisticated grammar-
based method, and then employs a much simpler set of word-to-word translation rules
to fill in the gaps.

The language-processing modules are all generic in nature, are based on large,
linguistically motivated grammars, and can fairly easily be tuned to give good perfor-
mance in new domains. Much of the work involved in the domain adaptation process
can be carried out by non-experts using tools developed under the project.

Formal comparisons are problematic, in view of the different domains and lan-
guages used and the lack of accepted evaluation criteria. None the less, the evidence
at our disposal suggests that the current SLT prototype is no worse than the German
Verbmobil demonstrator, in spite of a difference in project budget of more than an or-
der of magnitude1. We think we are making good progress in a challenging and topical
research area.

1.2 Overall system architecture

The SLT system architecture can best be understood through its fundamental design
philosophy which is to combine processing efficiency in any one configuration of the
system with relatively easy reconfigurability of the system to new language pairs and
application areas. The SLT translation system for given language-pairs in given ap-
plication areas is therefore configured fromgeneral-purposespeech and language pro-
cessing components. Throughout the system there is a basic distinction betweenpro-
cessing enginesandcustomization data. The engines are as far as possible general-
purpose “shells”; to be useful for a specific purpose, they need to be supplied with
customization data.

The two main engines in the SLT system are the speech-recognition component, the
DECIPHER(TM) recognizer, and the Core Language Engine (CLE), designed for the
semantic processing of text. We shall first describe each engine in terms of our general
architectural principle and then describe their functioning in the overall information
flow within the SLT system.

Over-simplifying the picture a little, one can say that the recognizer is a general
tool for recognition of speaker-independent, connected speech. It is not tied to any par-
ticular language or domain. To port the recognizer to a new language, three basic types
of customization data need to be supplied. Firstly, the recognizer requires samples of

1At least one knowledgeable and impartial observer who has recently seen both systems claimed that SLT
was the better of the two.

6

the language’s basic sounds (roughly speaking, its vowels and consonants). These are
recorded by native speakers of the language in question, using enough different speak-
ers to capture common variations in pronunciation. The second piece of data needed
is a pronunciation dictionary; this lists several tens or hundreds of thousands of words,
together with their valid pronunciations. Pronunciation dictionaries are now available
for most major languages. The third main piece of customization data is a few million
words of sample text in the language; this most commonly consists of material taken
from newspapers, which are often available in machine-readable form. The text mate-
rial is used to build up a basiclanguage model, allowing the system to get some idea of
which words tend to follow which; this means that the recognizer can use the preceding
words in the current sentence to guess the next one, which in practice greatly increases
its accuracy.

To port the recognizer to a specific domain, one also needs a sample of a few tens
of thousands of words of dialogue taken specifically from that domain; this material is
used to “tune” the language model more closely to the idiosyncrasies of the domain. So
for example in the Air Travel Inquiry domain currently being used in the SLT demon-
strator, even a small sample is enough to be able to discover that the word “show” is
frequently followed by the word “flights”, that names of airlines and airports are much
more common than in general speech, and so on.

We stress that the aboveis an over-simplification; once the customization data has
been provided, a certain amount of manual adjustment by skilled software engineers
is still necessary if the recognizer is to achieve a useful level of performance. The
effort needed to perform these adjustments is however measured in person-weeks or
-months, and is orders of magnitude lower than that which would be required to build
a new system from scratch.

The DECIPHER(TM) recognizer is one of the two main processing engines in SLT;
the other is the SRI Core Language Engine (CLE), a shell designed for semantic pro-
cessing of text. The basic idea behind the CLE is to process language by converting
it into a uniform logic-based format in which the words have been linked to show the
grammatical functions that relate them. This is worth doing for reasons that have been
explored by many generations of theoretical linguists. Although languages often ap-
pear very different on the surface, at a deeper level they tend to make use of a fairly
limited repertoire of grammatical ideas, like “subject”, “object”, “tense” and so on. By
reducing language to its abstract representation, the problems involved in manipulat-
ing it are greatly simplified. Translation, in particular, becomes a relatively tractable
task, especially when the languages belong to the same family. The particular abstract
linguistic representation used by the CLE is known as Quasi-Logical Form (QLF; Al-
shawi (ed), 1992, Alshawi and Crouch, 1992; see also page 69).

The customization data needed for the CLE to be able to process the sentences from
a given language that are likely to occur in the domain(s) to be processed is called alin-
guistic description; this is essentially a detailed grammar and lexicon for that language,
written in a format which is based on current linguistic theory and directly usable by
the CLE software. A linguistic description for a new language needs to be written by a
trained linguist, and doing so is a non-trivial task. We have discovered, however, that
the task becomes much easier if a description is already available for a closely related
language. Our first linguistic description, written for English, required several person-

7

years of effort; using this as a base, it was possible to build decent Swedish and French
descriptions using about one person-year for each. We are currently implementing a
Spanish linguistic description. Because of the close relationship between Spanish and
French, we expect this to take less than six person-months.

When the CLE has been equipped with a linguistic description for a particular lan-
guage, it can be used to convert sentences from that language into their representations
in Quasi Logical Form; conversely, the system can take QLF representations and turn
them into normal language. Just as with speech recognition, a non-trivial sample of
domain text is also required if the CLE is to achieve high performance within a par-
ticular application. Since language is generally ambiguous (most sentences have more
than one possible grammatical analysis), the system needs a set of examples to show it
which analyses tend to be plausible in a specific context. For example, once the CLE
has seen a few dozen examples of flight enquiry sentences, it knows that the preposi-
tional phraseafter five P Min the sentence

Show me flights after five P M

is almost certainly a part of the noun phraseflights after five P M, making the sentence
mean “show me those flights that are after five P M”; it is most unlikely to be a verb
phrase modifier, which would make it mean “Show me some flights, and do it after five
P M”.

We now describe the information flow in the complete SLT system. The basic flow
of processing is as as shown in Figure 1.2. Speech enters the system at the top left
of the diagram. For each input, the recognizer outputs a list of the top five sentence
strings. The strings are aligned and conflated, thereby generating a speech hypothesis
lattice which forms the principal input to the CLE source language processor. A robust
bottom-up parsing method is then used to generate a QLF meaning representation.

The diagram indicates a processing stage “plausible QLF extraction” which is one
instance of a general processing principle we actually employ at several stages of anal-
ysis. At these stages, we extract, using a stack-decoder algorithm (Paul, 1992), the
current best sequence of analysis fragments. The criteria for “best sequence” include
both the acoustic plausibility scores delivered by the recognizer and the linguistic in-
formation acquired during the analysis process. The best sequence is sent over to a
target language copy of the CLE, which uses them as input to transfer and generation.
Currently, this extraction is performed at four levels, corresponding to completion of
the following processing stages: (i) receipt of raw recognizer output, (ii) lexical lookup
and tagging, (iii) parsing of small phrases and (iv) full parsing. That is, as soon as one
of these stages is complete, we send our best current candidate analysis for transfer. In
this way, the translation process can produce a first rough version of a translation very
quickly, and can then refine and improve that translation as further processing of the
source language takes place. The final level of extraction – extracting the most plausi-
ble source language QLF from a full parse of the input – is the stage indicated in the
diagram. The result of translating this represents our best effort translation, utilizing
all the knowledge sources available to the system.

The transfer process itself is performed using two different methods. The first
method, which is applied at stages (i) and (ii), uses rules that directly associate word
sequences (optionally tagged by part-of-speech) in source and target languages. The

8

[spoken input]
�

SRI DECIPHER(TM) system

Speech recognition

[Source strings]

�

SRI Core Language Engine

Source analysis Target generation

�
[Many QLFs per string] [One target QLF]

�

Plausible QLF selection Plausible QLF selection

�
[One source QLF] [Many target QLFs]

�

Transfer component

�
[Target phrase structure trees]

Telia Prophon

Speech synthesis

[spoken output]
�

Figure 1.1: Basic SLT processing

second, applied at stages (iii) and (iv), uses unification-based rules, operating on source
language QLFs, to suggest candidate target language QLFs from which target language
strings are generated using the generator described in Alshawi (1992, pp268ff). In
both methods, statistical preferences are used to choose between competing candidates.
The basic division of effort is that rules encode domain-independent grammatical and
lexical phenomena, while the preferences take care of problems concerning lexical
choice, which are usually to some extent domain-dependent.

If the unification-based method is able to produce a translation at all, it is generally
of high quality. However, it is only applicable to fragments produced during the last two
stages of processing, when at least some grammatical information has been applied.
Also, like most rule-based procedures, it tends to be somewhat fragile. This is why we
use the less sophisticated surface translation (word-sequence based) method at the first
two stages. The bilingual phrasal lexicon which encodes the required information is
built semi-automatically using a simple corpus-based tool.

9

The two translation methods both add their results into a “translation chart” which
initially mirrors the source language chart used by source language processing. At
any point in translation, it is possible to pause and extract a current best sequence
of translation fragments from the chart. This extraction is performed using the same
stack-decoder algorithm as is used on the analysis side. It is therefore simple to impose
time-limited translation – as soon as any source language processing at all has been
received, we can generate a candidate translation, and at any point after that, we can
generate a current best estimated translation.

The visible result is that the translation process produces a first rough version of
the translation very quickly, using the surface method; it then refines it over several
iterations as edges produced by the deep translation method become available. When
no more edges are available for processing, or alternately when a pre-set time-limit has
been exceeded, the best sequence of translation fragments for the final version of the
chart is extracted and sent to a speech synthesizer. Speech synthesis is handled by the
Telia Prophon system for Swedish, and by the CNET TTS system for French.

1.3 An SLT session

In this section, a typical SLT demonstration will be described. It will try to serve as a
small “demo on paper”, to give an impression of the system’s capabilities.

An SLT demonstration typically begins with a short talk, given by the demonstrator,
where the basics of speech recognition, automatic text translation and speech synthesis
are explained at a level deemed appropriate. After the talk, the demonstrator utters
a sentence to be recognized, translated and synthesized. What the spectators see is
shown in Figure 1.2, where the Swedish sentence “lista de billigaste flygningarna mel-
lan Boston och Atlanta med mellanlandning i Philadelphia på fredag eftermiddag” is
translated into its English counterpart “list the cheapest flights between Boston and At-
lanta with stopover in Philadelphia on Friday afternoon”. The interface is either viewed
on the computer screen or projected onto a larger, wall-hanging, screen.

On the present demonstration computer at Telia Research, Haninge – a Sun Ultra 2
– recognition is virtually instantaneous, translation takes approximately 15 seconds for
the sentence in Figure 1.2, and American English synthesis (TrueTalk) takes around
two seconds.

Speech translation in the SLT project is a dynamic process, and the interface brings
forth much of this process. The interface shown in Figure 1.2 will now be described in
detail.

1.3.1 The Interface Elucidated

In Figure 1.3 the Swedish sentence “Jag vill ha lunch” has been translated into its
equivalent English utterance “I want lunch” (total time required around five seconds).
As was said above, the translation is a dynamic process and things “happen” on the
interface. The different controls, buttons and labels will here be explained one by one
in the order they appear on the interface.

10

Figure 1.2: Example of demo session window. The Swedish sentence “lista de billi-
gaste flygningarna mellan Boston och Atlanta med mellanlandning i Philadelphia på
fredag eftermiddag” is translated into English “list the cheapest flights between Boston
and Atlanta with stopover in Philadelphia on Friday afternoon”. The time required on
an Ultra 2 is around 25 seconds, from the beginning of the Swedish utterance until the
end of the English utterance.

Display Options This button provides the demonstrator with a menu of options. One
can either choose betweenExecutive or Detail modes. The former is
shown in Figure 1.2 and Figure 1.3. TheDetail mode shows more of the
process explicitly, as is shown in Figure 1.4, where the Swedish sentence “jag
skulle vilja boka en limousine till city” is translated into its English translation
“I’d like to book a limousine to downtown”. Here the differences between the
most preferred strings at the levels of the recognized surface form (S), the lexical
lookup level (L), the phrase level (P) and the full sentence levels (F) (these are
the levels (i) to (iv) we have already met on page 7) are clearly shown. A further
choice is to show CLE internal boundaries in the sentence shown underneath the
Translation label. One can also choose between three different font sizes,
small, default and large. Default size is shown in the figures in this section.

N Best This button is pushed to display a the N-best list produced by the recognizer.
The number N is presently five (see Section 16.1 for the reasons for this). A peda-
gogical point here is that the demonstrator can show that the first alternative may
not be the correct one, and that, for example, higher levels of processing have
discarded one or more hypotheses in favour of one with lesser acoustic probabil-
ity for grammatical reasons. Thus, the outputted sentence might be number three

11

Figure 1.3: Example of demo session window. The Swedish sentence “jag vill ha
lunch” is translated into its English equivalent “I want lunch”. Time required on an
Ultra 2 is approximately five seconds from the beginning of the Swedish utterance
until the end of the English utterance.

in the N-best list.

Replay This button is pushed in order to play the synthesized translation again.

Quit This button ends the session.

Start-up information This button tells the demonstrator when the different modules
are all set for demoing, i.e., it shows when the recognizer is ready, as well as
the two language modules (source and target language). It is thus used prior to a
demo session, rather than as a part of the demo.

Push to talk This button is pushed when the demonstrator speaks to the system, i.e.,
it activates the system.

STOP CLE This button is pushed in order to interrupt linguistic processing if need be.

Source ... Underneath this button-like sign the recognized source language string ap-
pears upon recognition. On the present demonstration computer, a Sun Ultra 2,
recognition occurs in close to real time. The four “lamps” on the right-hand side
of the label indicate different stages in the translation process, and correspond to
the following parts of the process, respectively:

The first (leftmost) lamp (red) This lamp indicates pure word recognition. It corre-
sponds to the letter “S” in theDetail mode.

12

Figure 1.4: Example of demo session window withDetail mode set. The Swedish
sentence “jag skulle vilja boka en limousine till city” is translated into its English equiv-
alent “I’d like to book a limousine to downtown”. Time required on an Ultra 2 is ap-
proximately thirteen seconds from the beginning of the Swedish utterance until the end
of the English utterance.

The second lamp (yellow) This lamp is lit when lexical lookup is applied. This means
that simple, grammatical information is attached to the hypothesized word. It
corresponds to the letter “L” in theDetail mode.

The third lamp (green) This lamp indicates when phrase level knowledge is used,
i.e., larger grammatical chunks such as “in Philadelphia”, “want to fly” and so
forth. It corresponds to the letter “P” in theDetail mode.

The fourth lamp (blue) This lamps shows when entire sentences are looked at and
processed. It corresponds to the letter “F” in theDetail mode.

Translation ... Underneath this label the translated sentences appear. This typically
takes a couple of seconds for a short sentence like “Jag vill ha lunch” (“I want
lunch”), and 15 to 20 seconds for longer sentences like “lista de billigaste fly-
gningarna mellan Boston och Atlanta med mellanlandning i Philadelphia på

13

fredag eftermiddag som serverar lunch” (“list the least expensive flights between
Boston and Atlanta with stopover in Philadelphia on Friday afternoon that serve
lunch”). As is the case with the recognized sentence, there are four lamps to the
right of the sign that indicate different stages in the translation process. Since
robust translation is used (see Sections 1.2 and 5.2), a translation is always avail-
able, but it typically changes as higher levels of knowledge are applied.

1.3.2 Synthesis

The synthesizers used are all state-of-the-art, and provide high-quality speech of great
naturalness. Currently, they are:

Swedish: Prophon (Bäckströmet al, 1989), a concatenation synthesizer based on
polyphones, in this case demi-syllables. It uses a female voice.

English: a licenced version of TrueTalk from Entropics (Entropic Research Labora-
tory, 1995). It is also a concatenation synthesizer, based on diphones.

French: a licenced version of CNETVOX. Once again, it is a concatenation synthe-
sizer, based on polyphones (ELAN Informatique, 1996).

1.3.3 Final Comments

This section has tried to introduce the SLT system in a synoptic, “crash-course”-like
way. Of course, there is much more behind the scenes, and the different components
will be described in detail in the following chapters.

As compared to the previous SLT-1 demonstration tools, much has been done in
order to provide the spectator with a more nice-looking and more pedagogical interface.
Emphasis has been put on a clear and attractive-looking display to demonstrate and
explain both the overall SLT process and its different sub-components.

To end this introductory chapter on an international vein, an example of Swedish-
to-French example is given in Figure 1.5. The Swedish sentence “lista de billigaste
flygen till Philadelphia” is translated into French “indiquez les vols les moins chers à
destination de Philadelphie”.

14

Figure 1.5: Example of demo session window. The Swedish sentence “lista de bil-
ligaste flygen till Philadelphia” is translated into French “Indiquez les vols les moins
chers à destination de Philadelphie”. Time required is around 7 seconds from the be-
ginning of the Swedish utterance until the end of the French utterance.

Chapter 2

Language Data Collection

Robert Eklund, Ivan Bretan and Catriona MacDermid

In this chapter language data collection is discussed. Different methods to collect lan-
guage data are described and compared. Both quantitative and qualitative aspects are
considered.

2.1 Rationale and Requirements

DECIPHER (Murveitet al, 1993) has been trained for the ATIS domain using data col-
lected in a large-scale Wizard-of-Oz (WOZ) simulation by the MADCOW (Multi-site
Atis Data Collection Working) group (Hemphillet al, 1990) to be described below.
These data are needed both to train the acoustic-phonetic model of the speech recog-
nizer, the lexical andn-gram language model. In addition, they can be used to stream-
line the development of the linguistic modules of the system, in particular the lexicon,
grammar, set of collocations, transfer rules, and dialogue model (if existing). This
streamlining can be achieved rationally by means of constructing representative cor-
pora, where utterances are sorted according to the frequency of their syntactic pattern
(Rayneret al, 1995; see also Chapter 8). In a corpus-oriented development framework,
the quality of the system is dependent on the quality of the corpora used. Thus, in
SLT, significant efforts have been devoted to obtaining high-quality linguistic data. A
question which must be answered before embarking on such an undertaking is what the
measures of quality are. One could imagine that genuine human–human conversations
would provide the best yardstick for linguistic training data, but this is not necessar-
ily true given that the linguistic performance models for users engaging in dialogue
with a machine varies with the behaviour of the system (Bretanet al, 1995). Thus,
the data obtained from human–human dialogues do not transfer straightforwardly into
the design of human–machine dialogues. There is also the ethical issue of “bugging”
people’s conversations, which is most critical if the speakers can be identified and if the
dialogue contains sensitive or personal information. Ideally, informed consent should
then be obtained.

15

16

Turning instead to data collection methods geared toward human–machine dia-
logues, there are two principal alternatives: WOZ simulations and “bootstrapping”.
WOZ simulations (see Section 2.2.1 below) are carried out by setting up a scenario
where the user interacts with an alleged speech-understanding system partly or fully
simulated by a human, exhibiting the type of capabilities that the system to be con-
structed ideally should possess.

Bootstrapping, in this context, is the procedure of constructing a rudimentary ver-
sion of a speech-understanding system with a minimal vocabulary (which may be col-
lected through a very limited WOZ study or other less costly sources and comple-
mented by means of manual inspection), and putting it into use “prematurely”. This
system will obviously not have the intended coverage, but will still elicit many user
utterances and words that were previously not recorded. These additional data can be
used to improve the system’s recognition and understanding capabilities, whereupon
new user sessions can be initiated to collect even more data, and so on. It is not clear
how useful the linguistic material thus obtained really is, especially in comparison with
a WOZ simulation. This is also highly dependent on the quality of the bootstrapped
system. One problematic issue in this context is the fact that users adapt to the quality
and language of a system over time, which could mean that subsequent versions of the
bootstrapped system are more unsophisticated than necessary. This is probably partic-
ularly true for systems where complete dialogues need to be recorded in order to obtain
the required data, as opposed to one- or two-shot interactions. Life and Salter (1996)
claim that bootstrapping and WOZ are both needed, since they are complementary.
The WOZ studies give input indispensable for dialogue and interface design, whereas
bootstrapping methods are more useful in generating large amounts of data for training
acoustic and lower-level language models.

WOZ simulations do have drawbacks – most notably they are laborious, time-
consuming and costly. An informal figure quoted in the work on collecting ATIS data
estimates the cost of collecting 10,000 sentences to USD 1 million, i.e., $100 per sen-
tence! Although the WOZ simulations we have conducted ourselves for Swedish in-
dicate much lower costs, it is clear that this way of collecting data is expensive. The
question then arises whether it is worth initiating a new WOZ simulation for each new
language added to SLT. As a cheap substitute approach we have instead been experi-
menting with “piggy-backing” on the existing American data through textual transla-
tion by native Swedish speakers. The resulting data served as the language model for
the Swedish version of SLT. One assumption underlying such a project is that spoken
utterances can systematically be translated textually on a large scale, preserving the
idiomatic traits of spoken language. This assumption proved wrong, but the effort still
turned out to be worthwhile, partly from reasons similar to the ones that Life and Salter
quote.

Since the email study still did not provide good enough data, a WOZ study was
conducted.

17

2.2 Methodology

In this paragraph, general methodology of data collection is discussed. A number of
different methods used during SLT will be described, and a quantitative and qualitative
analysis of the different methods will be carried out. A shorter version of this analysis
is found in Bretan, Eklund and MacDermid (1996).

2.2.1 Wizard-of-Oz Simulations

In order to collect more realistic training data for a spoken dialogue system, experimen-
tal subjects can be recorded as they conduct task-oriented dialogues with a simulated
dialogue system. The subjects are most often led to believe that their dialogue part-
ner is a prototype system, when in fact an accomplice (the “wizard”) is simulating an
operational system by performing some or all of the system’s functions. Typically,
the wizard interprets the subjects’ utterances, simulating speech recognition and often
language understanding. Other functions, such as dialogue management and speech
synthesis, can be handled by a computerized tool operated by the accomplice (Amal-
berti et al, 1993). Since the subjects have no real task they wish to complete, they are
given scenarios describing a given task. Written scenarios are most common, although
these can act as a “script”, strongly influencing the subject’s vocabulary and syntactical
structures, at least in their opening utterance within the dialogue. To overcome these
limitations, the scenario can be presented in tabular or graphical form, such that the
subject has to interpret the scenario using their own words. In this case, the illustra-
tions must be unambiguous for the subjects. In yet another method, subjects are given
scenarios in picture form (MacDermid and Goldstein 1996), to be described in Section
2.5 below.

2.2.2 American ATIS Simulations

One example of a WOZ simulation (but with text instead of spoken output from the
simulated system) is MADCOW (Hemphillet al, 1990). A large number of subjects
(2,724) were given written scenarios and spoke to what they believed to be a working
system, when in fact human wizards were interpreting the subjects’ questions, querying
the database by hand, and displaying the results on the subjects’ screen. After several
months, once enough data was acquired in this way to train the system, the system
became fully operational, and the wizards were no longer needed. The expectation was
that, because the users believed that they were speaking to a real system, the wizard
data and real data were equivalent.

2.2.3 Swedish ATIS Simulations

In order to obtain high-quality data, a spoken language translation system in the ATIS
domain was simulated at Telia Research. This was done without the use of any com-
puterized simulation tool. Subjects believed that the “system” translated their Swedish
inquiries to an English-, French- or German-speaking travel agent in order to book
flights. In fact, no translation occurred in these dialogues. The subject’s utterance was

18

conveyed – usually verbatim – by a wizard (W1), a professional actor, representing the
subject’s translation system, to a second wizard (W2) representing the travel agent’s
translation system. The reason for using two wizards was to reduce cognitive overload
on the wizard(s). Certain simplifications were made to complex utterances, that is, ut-
terances that were not understood or that were longer than twenty words were rejected
by W1, who asked the subject to repeat or reformulate the utterance. The utterance
was then conveyed by W2 over the telephone to a Swedish “accomplice” (the “travel
agent”), who asked for additional parameters where necessary to complete the book-
ing. W2 then conveyed the travel agent’s replies to the subject via W1 according to
the same constraints. The two wizards sat in the same room and when they spoke to
each other to convey utterances or clarify internal misunderstandings, W1 suspended
the microphone contact with the subject. Similarly, W2 used the secrecy button on the
telephone. The wizards listened to the respective dialogue partners through headsets.
The actor was trained to speak to the subject with the unnatural prosody characteristic
of composite digitized speech and had no script apart from the requests to reformulate
or repeat. The “travel agent” used certain standard phrases based on an interview with
a real travel agent and had access to a paper database constructed with data from an
ATIS-type database used in the travel agency. Otherwise, his speech was spontaneous
in response to the subject’s queries, which were based on a combination of written
and graphical scenarios. The dialogue between the subject and the actor was recorded
as sound files on a Unix work station and all four input channels were recorded on a
DAT-recorder for later transcription. The set-up is shown in Figure 2.1.

Figure 2.1: Experimental set-up for Swedish ATIS simulation.

2.3 Translations of American WOZ Material

One way to obtain data without having to design WOZ simulations is to translate ex-
isting WOZ data collected in another language. During the SLT project, translations
of the American WOZ data described above have been used for training and language

19

modelling purposes. These translations will be described in the following.

2.3.1 Translations... A First Step

During the SLT-1 project, 4,021 American WOZ sentences were translated into Swedish
by a bilingual secretary. This corpus will be referred to as C1. Some 10% of the sen-
tences were lost in a disk crash, and were retranslated by a member of the SLT team.
This corpus was taken as the basis for the training of the Swedish language model.
However, it was quickly realised that the quality of the translations exhibited several
flaws.

First, the translations were clearly influenced from the English originals, resulting
in “Swedish” most people would find far from idiomatic, or worse.

Second, the lexical coverage was clearly narrow, since the translations fell into a
mode, where “standard patterns” recurred to a large extent, beyond doubt caused by
the fact that – apart from a few hundred sentences – single person had been involved in
the translations. In order to remedy at least the latter of the aforementioned problems,
two members of the Swedish SLT team translated a further 3,264 and 1,888 sentences,
respectively. THe SLT member who had done the translations of the original corpus
also added a further 220 sentences. In order to obtain more idiomatic data, these trans-
lators were instructed to use freer translations. In this way, a corpus of 5,372 translated
sentences was obtained. This corpus will be referred to as C2.

However, there are several, more general, problems associated with translations.
First, it is very hard for translators to avoid linguistic bias caused by the wordings in

the source language, and translations are almost certain to be influenced by expressions
idiomatic in the source language but not in the target language.

Second, phenomena like hesitations, repairs, false starts and so forth are not readily
translated in a natural way.

Third, translation is likely to miss certain features typical of spontaneous speech,
like agreement errors, especially if the target language does not make use of agreement
in the same way as the source language. If the target language has different grammat-
ical granularity than the source language, translators will not add grammatical errors
that do not exist in the source language utterances.

Fourth, a small number of translators – four in this case – are not likely to be able
to provide as great linguistic variability as will the would-be users of the system in
question. Thus, it was still felt that the quality of the material was suffering from the
translation process, lacking idioms and expressions typical of Swedish.

2.3.2 Email Corpus

Since a WOZ simulation at this point was still out of reach, it was decided to do “more
of the same” and spread the translation task between as many translators as possible,
with distinct instructions to dofreetranslations. To this end, lists of email addresses of
Telia employees were obtained. These lists were used for distributing the translation
task. The addressees were each sent two emails. The first email contained background
information about the task, and an explanation as to what the second email was for.

20

The first email also provided the addressee with instructions as to how to approach the
task. These instructions are briefly outlined below.

Instructions

The addressees were told to avoid “literal” translations. Instead, they were instructed to
ponder the “meaning” of the English sentences and then write down what they would
have said themselves in Swedish if they were to want the same information in real life.

They were also told to imagine themselves communicating with a computerized
system. Therefore, they probably should avoid using too much slang, since they proba-
bly would not use too colloquial a language when addressing an automatic, non-human,
system.

The risk of translating too literally was once again pointed out by referring to cer-
tain expressions and specific wordings. The example given was the English “ground
transportation”, which could easily be translated literally as “marktransport”, which is
also the professional term used in Swedish. However, most non-professional Swedes
would probably say things along the lines of “förbindelser” (“connections”) or “flyg-
bussar” (“shuttle buses”).

The addressees were also told to neglect sentences they found totally incomprehen-
sible or “absurd” in one way or another.

The format of the subsequent email, containing the sentences, was elucidated with
an example. the addressees were informed that the subsequent email would contain
pairs of sentences in the following way:

<e5233> Please list all flights between Atlanta and San Francisco

<s5233>

<e3665> Is booking necessary?

<s3665>

The addressees were asked to fill in the empty, Swedish, lines with free translations,
following the tips given in the letter. An example was given, thus:

<e5233> Please list all flights between Atlanta and San Francisco

<s5233> Lista alla flygningar mellan Atlanta och San Francico, tack

<e3665> Is booking necessary?

<s3665> Måste man reservera?

Finally, upon finishing the task, the addressees were told to send the email back by
using the “Reply” button in their email client.

A contact (address and telephone number) was also given, if the addressees should
want to ask something in connection with the task.

First Batch

The procedure described above was executed twice. In the first batch, 11,232 sentences
from the American ATIS material were divided into files of 18 sentences each and

21

emailed to 624 Telia employees. The recall here was 1,116 sentences, i.e., about 10%.

Second batch

Since it was judged that 18 sentences perhaps were a few too many to look attractive,
a second batch of 7,533 sentences were divided into files of only 3 sentences each and
emailed to 2,511 Telia employees. Recall this time was 1,080 sentences, i.e., about
14.5%.

Even more translations...

An additional 500 sentences were translated by five translators, SLT team members and
graduate students of linguistics, the latter of whom working for free, hereby acknowl-
edged.

In this way, a corpus of 4,595 sentences, translated by approximately 427 persons,
was compiled.

2.3.3 Sundry Comments on Email Corpus Editing

Before ending this section, some reactions of anecdotal character need to be mentioned
lest they go unnoticed. Obviously, a motley collection of reactions was the result of
sending out more than 3,000 emails.

First, although all the addressees, by definition, were in possession of email clients,
several did not know how to handle them properly. This meant that, instead of getting
all the translations in the desired, aforementioned, format, some translations arrived in
“hard copy” format, i.e., normal letters, some of whom in all-capitals lettering, with
the index numbers omitted, and without a sender. Hence the approximate figure 427.

Since a script, rather than a mailing list was used, the addressees could not see that
they were given the task together with hundreds of other Telia employees. Thus, some
people of foreign origin called and asked whytheyhad been chosen, since they hardly
knew Swedish.

Only one person reacted “aggressively”, out of approximately 3,140 addressees.
The reaction consisted of a couple of annoyed emails, that were responded to in a
courteous and explanatory way.

A few persons took the instructions too literally, and translatedtoo freely. Thus,
“Chicago” was translated into “Malmö”, probably caused by the instruction “The way
youwould say it” interpreted by persons who never travel to the USA.

2.4 A Comparison of the Corpora

The different corpora thus collected may vary according to several parameters, such
as lexical size, grammatical coverage and idiomaticity, i.e., the use of idiomatic ex-
pressions specific to the domain and language. In all the comparisons, C1 and C2 were
merged into one corpus,TC (four translators: the bilingual secretary of SLT-1 and three
SLT team members). TC contains 4,021 + 5,372 = 9,393 sentences. The email corpus

22

will be referred to asEC (approx. 427 translators). A small Wizard-of-Oz pilot of 127
sentences will be calledWOZp (10 subjects), whereas the WOZ simulation described
above will be calledWOZ (52 subjects).

One issue to be examined here is lexical representation. TC contains 1,581 lexical
entries (types). Here, inflected forms etc. are counted as different types. EC contains
1,789 entries, WOZ contains 977 entries and WOZp 174 entries. Fig. N shows how
the lexicon grows as a function of the number of collected sentences. As is seen, the
lexicon grows most rapidly in EC, whereas the growth rate is more or less the same for
TC and WOZ. This seems to indicate that a fast way to obtain good lexical coverage
is to involve many persons in the gathering of data for the target language. Another
consequence of this is probably reflected in the percentage of words in the lexicon that
occur only once in the corpus. In TC and WOZ, around 10% of the lexical entries have
only one token, whereas the corresponding figure for EC is 17%.

Figure 2.2: Lexicon growth as a function of number of sentences. To avoid sequential
effects the data were collected several times in different orders and later averaged.

It does not follow from the fact that EC has a larger number of lexical entries than
WOZ that EC is the most representative of Swedish usage, due to the aforementioned
problems of “colouring effects” and the lack of speech-specific phenomena associated
with textual translation. In fact, the two lexica vary in several respects. First, there are
words and constructions that exist in both lexica, but whose frequency is quite different.
As an example, the word “okay” exists in both lexica, but is far more common in the
WOZ material (sic!). It exists in 3.8% of the sentences in WOZ and 2.5% in WOZp, but
only in 0.2% of the sentences in EC. The opposite is equally true. The word “vänlig”
(literally “friendly”) is far more common in EC (4.8%) than in WOZ (0.2%), probably
as an effect of “please”, a word lacking a good counterpart in Swedish. What Swedes
would say is “tack” (“thank you”) in sentence-final position. Thus, “tack” occurs in
20% of the sentences in WOZ but only in 2% of the sentences in EC. The correspond-
ing figure for WOZp is 11.5%. Since these words have different syntagmatic properties,

23

WOZp WOZ TC EC
No. of sentences. 127 3,578 9,393 4,595

No. of subjects/translators. 10 52 4 c.427
No. of lexical entries (types) 174 977 1,581 1,789
Percentage of lexical entries

with only one token (–) c.10 c.10 c.17

Table 2.1: Overview of quantitative data for different corpora.

they also influence grammatical structure. Second, some words and/or constructions
common in WOZ do not exist at all in EC. A striking example is that 7% of the sen-
tences in WOZ begin with the word “då” or “ja, då” (fillers that roughly translates
as “well”), but not at all in EC. The corresponding figure for WOZp is 0.6%. The
idiomatic expression “det går bra” (literally “it goes well”, i.e., “that’s fine”) occurs
in both WOZ and WOZp (about 0.7%) but not in EC. Similar examples of skewed
material abound, most of which can be accounted for in terms of linguistic bias associ-
ated with the translation process. However, it must be borne in mind that the different
set-ups for the American ATIS simulations and the Swedish WOZ simulations beyond
doubt influenced the linguistic material obtained.

2.5 Concluding Remarks

One problem with the email approach is that disfluent or “strange’ sentences are less
likely to be translated than “normal” sentences, since the former require more effort
from the translator. This means that the method might act as a filter where marginal
sentences become underrepresented in the translation process. The costs of the method
are hard to judge, since the work is very much “hidden”. More than 420 persons worked
approximately 10–30 minutes each, on a voluntary basis at no cost to the project. The
bulk of the work consisted of editing the returned files, many of which did not arrive in
the desired format.

Although the email approach produced useful data and translators were instructed
to respect source language disfluencies and spoken language style, the results differed
from the data obtained in the Swedish WOZ simulation in that certain features of nat-
ural speech were notable by their absence in the former corpus. These differences can
be attributed partly to a loss of naturalness in the translation process but more impor-
tantly to the fact that typical spoken language phenomena (Tannen 1982; Linell 1981;
Fromkin 1980) are very specific to language and modality and cannot be obtained
through literal translation of text. One way to circumvent this problem is to record oral
translations from sources other than text. A method where this is used is the Story-
board method. In this method, subjects are given picture or “storyboard” scenarios and
asked to formulate an equivalent utterance (MacDermid and Goldstein 1996). In this
way, linguistic bias from written scenarios is avoided. The data is gathered as speech
rather than in written form, adding realism, though subjects are not in a “live” dialogue.
Consequently, the method is best suited to collecting an initial set of utterances and is

24

a good way to tap possible variations in use of syntax and vocabulary.
In conclusion, a general recommendation would be to use WOZ simulations to ob-

tain natural speech data, complemented by the email approach – or a similar method
– where the task is distributed among a large number of people proficient in both lan-
guages to obtain wide lexical coverage. WOZ simulations not only provided proper
dialogue data, but also idiomatic spoken language. The textually translated utterances
gave no information concerning dialogues (since they were translated one by one),
and clearly deviated from normal spoken Swedish. However, the translated corpus
contained a much richer variation in vocabulary than the WOZ data: the vocabulary
grew quicker. Thus, in addition to the observation that the growth rate of vocabular-
ies varies from domain to domain, made e.g. by Hetherington and Zue (1993), we note
that growth rates vary even among vocabularies collected within the same domain. This
difference is not surprising, and is mainly attributable to the difference in number of
speakers, and to a lesser extent task formulation and modality. There were other dif-
ferences too, both stylistic and syntactic, but the lexical variation was the most striking
phenomenon.

Achieving lexical completeness in data collection is of course decisive when it
comes to tuning a speech-understanding system to optimal performance within a given
domain. Missing words can lead to system behaviour that slows down, confuses or even
misleads a user. Hetherington and Zue also point out that vocabulary completeness
is not best achieved by tapping huge generic corpora: 100,000 words from the WSJ
corpus are needed to obtain the same coverage of ATIS as a vocabulary of 300 words
derived from 2,000 ATIS training sentences! Over-sized vocabularies are of course
also sources of performance degradation. Collecting utterances representative to the
domain is therefore of utmost importance to the lexical competence of the system.

Chapter 3

Speech Data Collection

Robert Eklund and Jaan Kaja

This section will deal with the collection of speech data. Some of the issues and fields
discussed in this chapter are also described in Chapter 4.

3.1 Rationale and Requirements

There are many different parts in the creation of a speech recognizer for a given lan-
guage, even when the actual recognizer as such already exists, as was the case within
the SLT-2 project. The tasks at hand are mainly the following:

First, one needs to collect a large amount of speech data, i.e., recordings of Swedish
speakers from different parts of Sweden. To that end, it is necessary to obtain large
amounts of texts in computer-readable format.

Second, there is the need to organise and administer recordings on various locations
in Sweden. It was immediately felt that the recordings should take place on location,
since people have a very marked tendency to adapt to the environment, and had the
speakers been brought to Stockholm, there is great likelihood that they would have al-
tered their idioms towards Stockholmian. Therefore, a problem that needs to be solved
is to find good enough recording facilities, e.g., rooms and the like, since there is a
huge lack of anechoic chambers in Sweden.

Third, one also needs to define what dialect areas need to be covered, and to find
recording facilities in the said areas.

Fourth, there is the need to find speakers adhering to the requirements set up within
the project (i.e., the speakers should be ‘locals’, aged between 15 and 65 and so on).
Finally, the recorded material must be verified prior to training, lest the recognizer be
trained on corrupt material.

Fifth, a lexicon must then be created, fulfilling the requirements of the speech rec-
ognizer and covering the texts used in the recording sessions.

Sixth, a further thing to decide on is the kind of hardware equipment one needs to
do all this.

25

26

All the above will be described in the following paragraphs.

3.2 Text Material

Within the SLT project, the required text material mainly fall into three major cate-
gories:

1. Phonologically and phonetically “balanced” material, read by all speakers.

2. Texts within the ATIS domain, i.e., Swedish ATIS sentences.

3. General newspaper/fiction texts, in large enough amount to be able to present
unique material to each and everyone of the speakers.

A prerequisite for doing data collection is to have computer-readable texts. One
alternative would be to create the text oneself, which may – and probably must – be
done concerning the phonologically balanced material, but is clearly out of reach when
it comes to the huge amounts of other texts necessary for extensive training like the
one carried out within the SLT project. Mainly, two kinds of text were needed. First,
Swedish ATIS material was required. Second, general texts – newspaper or general
fiction – was needed. The former of these two materials was needed for the domain-
specific training, the latter for general training and good coverage of Swedish phonetic
material.

3.2.1 ATIS Material: LDC CD-ROMs

In order to create Swedish ATIS material, it was decided to obtain the original Amer-
ican ATIS material (Hemphillet al., 1990) for translation. Translations were consid-
ered the fastest and cheapest way to obtain data, if lacking from qualitative drawbacks.
Consequently, CD-ROMs were purchased from the Linguistic Data Consortium (cf.
References).

3.2.2 Swedish Material: The Stockholm-Umeå Corpus

In order to obtain Swedish text, the Stockholm–Umeå Corpus, or SUC for short (Ejer-
hedet al., 1992; Källgren 1991; Källgren 1990), was consulted. The SUC corpus is
relatively small, covering 1,000,000 words. Instead, within the SUC project, emphasis
has been put on balance of material, and as a result thereof, several different literary
disciplines are covered. Since the main interest of the SLT project was not the analysed
corpus, but plain, raw text, unanalysed texts were obtained from the SUC material.

3.3 Text Material Used in Data Collection

The text material used in the SLT-2 project for the training of the Swedish speech
recognizer falls into the following parts. NB: some of these parts were not included
from the beginning of the project, but were included at later stages. However, it is
pointed out when this is the case.

27

3.3.1 Practice Sentences

Each recording session commenced with a set of twelve practice sentences. These were
recorded, but not used in the training. During the recording of these, the session leader
could make comments about the recordings, and the speaker could ask questions if
something was not clear.

3.3.2 Calibration Sentences

In order to get good acoustic coverage, all speakers recorded a set of fifty sentences
that were phonetically and phonologically balanced, i.e., contained as much phonetic
and phonological information about Swedish as possible. The average sentence length
was nine words. When creating the calibration sentences, care was taken to cover the
following:

1. Phonemic inventory.

2. Allophonic variation.

3. Formant transition coverage.

Concerning 1) above, traditional phonetic descriptions of Swedish standard phone-
mic inventory were consulted. The allophonic variation referred to in 2) mainly cov-
ers phonological processes like retroflexation of Swedish /n/, /t/, /d/, /l/ and /s/. The
formant transitions mentioned in 3) accounts for the fact that vowel formant patterns
vary according to the type of consonant that precedes or follows the vowel in ques-
tion, something which have acoustical consequencies, and therefore is of interest for
acoustic-phonetic training. Thus, a set of sentences were created where as many differ-
ent formant transition patterns as possible were accounted for. This was achieved by
creating a set of consonants with nine different places of articulation,viz.:

Bilabial (p b m)
Labio-dental (f v)
Dental plosive (t d)
Dental sonorant (n l)
Dental fricative (s)
Retroflex (rL P � � �)
Palatal (j)
Velar (g k�)
Uvular (h)

A set of of “extreme” vowels was also created, namely:

Closed front (i y)
Open back (a)
Closed back (o)

28

Since formant transitions occur both into and out of vowels, the sentences were
checked according to how many of the total number of possible formant transitions
were included. With nine consonant places of articulation and three vowels, this gives
9 � 3 � 9 = 243 possible formant transition combinations. Of these, only 54 were
lacking in the set of calibration sentences, i.e., 23 %. Moreover, the combinations not
covered are rather rare, like palatal–open back vowel–palatal (“jaj”), and so on. As
a matter of fact, it was found hard to find words with the missing patterns in the text
material available in computer-readable format.

3.3.3 Calibration Sentences – ATIS

This set of sentences was added to the recording session material at a later stage of the
project. The set contains fifty sentences with the hundred most common ATIS words,
the sixty most common city names and the ten most common carrier names.

3.3.4 Calibration Sentences – Newspaper Texts

This set of sentences was added to the recording session material at a later stage of the
project. This set contains forty sentences collected from the SUC corpus, slightly trans-
formed for greater phonetic and phonological coverage. Of the 243 possible formant
transitions patterns mentioned above, 53 are lacking, i.e., 22.6 %.

3.3.5 ATIS Sentences

This set of sentences contained the material described in the previous section. Thus,
the bulk of the material consisted of translated American ATIS sentences, mainly from
the Email Corpus (cf. LANGUAGE CHAPTER).

3.3.6 Expanded Phone Set

The American ATIS vocabulary contains certain words and names whose American
pronunciation includes phonemes very different from the Swedish phonemic inventory.
While English/American diphthongs (lacking in standard Swedish) might be approxi-
mated reasonably well by vowel+/j/ combinations, and some fricatives, like /M/ are very
similar to specific Swedish sounds, there are certain sounds that are too phonetically
remote to be approximated by the normal Swedish phonemic/phonetic “toolbox”. A
number of such phonemes are shown in Figure 3.1.

However, Sweden is a country where a lot of people speak quite good English,
and where it is to be expected that several speakers do possess the means to approxi-
mate English and/or American phones outside, and distinct from, the Swedish phone
set. This could confuse training, since one could expect greater variability on such
words. For example, the airline “Northwest”, could be rendered both as [noqPv�st],
[noq�Sw�st] and so on. In order to account for this variability, a set of twelve sentences
containing ten foreign – mainly English/American – names was added to the training
material. Three examples of these sentences are:

29

Phoneme Example Word

/S/ Jethro, thriller
/�/ the
/z/ Oz
/�/ leisure
/Q/ Thatcher, Charles
/	/ Gianna, James
/�/ Price, Roger
/w/ plywood, White
/aq/ Aachen, Gonzales
/V
/ tour

Figure 3.1: Non-Swedish phonemes without close approximations in Swedish.

Veckopressens favoriter är verkligen Diana och Charles
Många har Roger Moore som favorit i rollen som James Bond
Den mest säljande skivan någonsin är "Thriller" av Michael Jackson

Other American–Swedish differences were judged to be small enough to be ap-
proximated by Swedish phones or combinations of Swedish phones. Phonemes that
could be fairly well approximated by using standard Swedish phonemes are shown in
Figure 3.2.

Original Swedish Example

/x/ /x, �, L/ Aachen
/M/ /M, L/ Sharon
/�/ /�, l/ Elvis
/æ/ /æ, a/ Sharon, Jackson
/aV/ /aV/ aula, mouse
/eV/ /eV/ Europa
/e/ /ei, ej/ Baywatch
/a/ /ai, aj/ Michael
/�/ /oi, oj/ Lloyd

Figure 3.2: Non-Swedish phonemes with reasonable Swedish approximations.

For an analysis of this material and a fuller discussion of Swedes’ competence
of English/American pronunciation in Swedish sentences, cf. Eklund and Lindström
(1996).

This material has, so far, not been used for training.

30

3.4 Dialect Areas

In selecting the areas to cover when collecting dialect data, there are basically two
problems to consider, one linguistic and one practical.

The linguistic problem concerns the definitions of what can be considered a “di-
alect”. Swedish dialect research has a long tradition, represented by e.g. Meyer (1937;
1954), Gårding (1975), Bruce and Gårding (1978), Elert (1994), Fries (1994) and oth-
ers. These, and other, sources were consulted in order to establish the relevant linguistic
parameters to consider.

The practical reason concerns finding places where recordings actually could be
carried out. For this reason, only places where Telia branches are located were used.
This meant that rooms for the recordings could be found, as well as Telia employees
who were willing to help with the recruitment of local subjects, or even constitute part
of the group of subjects themselves, provided they were “local sons or daughters”.

Thus, in some kind of compromise between linguistic desiderata and practical con-
straints, some fifty recording sites were chosen, covering most of Sweden, rather more
following population density than geographical spread.

3.4.1 Subjects

A pre-requisite for successful, general speech recognition, is that the training material
is well balanced. Therefore, it is of vital importance that the people recorded be repre-
sentative as to age spread, gender, social strata and so forth. It was decided to record
people between 15 and 65 years of age, and to try to keep an equal number of men and
women. Consequently, for the Stockholm recordings, a careful balance was maintained
over sex and over ages from 15–65 (in five-year age groups). However, for the dialect
recordings, an equal number of male and female subjects were recorded, but due to
“recruiting” problems, the balance over ages was only maintained to the extent that it
was possible.

3.5 Recording Procedures

The recordings were done with parallel recording of the speech from two microphones,
one close-talking high-quality microphone attached to a headset, and one telephone
handset.

3.5.1 Computer

The recording machine was a Sun Sparc 5, and a standard 16-bit A/D-converter was
used. The speech data was stored on a 9 Gbyte disk. A DAT tape station was used for
nightly backups.

31

3.5.2 Headset

The subjects used a Sennheiser HMD 410-6 headset with a close-talking microphone.
This had the advantage that one of the ear-pads could be swiveled to the side, leaving
one ear free.

3.5.3 Telephones

Ten different types of telephones were used, listed in Table 3.3. The normal telephone
were fed with 50 Volts via a bridge, and the signal was picked up from the line output.
The cellular phones were essentially inactive, except that the microphone circuitry was
fed from a 4.5 Volt battery. The signal was picked up from the output of the microphone
preamplifier.

Doro Gamma
Doro Diplomat
Doro Rapport
Ericsson OH 198
Ericsson OH 337
Häger Athena
Target MX 801
Target HF-20
Telia Bizz 55
Telia Diavox 1
Telia Dialog
Telia Gazette
Telia Ouno
Telia Respons
Zodiac Sigma
Zodiac Sigma 300
Zodiac Sigma 500

Figure 3.3: List of telephones used in the speech data collection.

The rationale for doing this is that signals recorded in this way can be fed back into
a telephone line from a source with a 600 Ohm impedance, and essentially look as if
they came directly from the original device. The difference would be a pair of A/D
and D/A conversions, but the effect of these is hopefully negligible, compared to the
distortions in the telephone network.

The signal from the cellular phones can likewise be fed back into the phones at the
point where the preamplifier would have been connected. The signal from the cellular
phone can then be passed to test bed, where different carrier/interference ratios and and
fading conditions can be imposed.

Others (Brown and George 1995) have used artificial heads to reuse high-quality
recordings to generate telephone quality speech, but we hope that our procedure will
affect the signal much less than an artificial head.

32

3.5.4 The SRI Generic Recording Tool

The SRI Generic Recording Tool (GRT) was used to present the text to be spoken to
the subjects and to control the recording device.

The subjects controlled the recording themselves by using mouse buttons and a
graphical user interface. They could move forward and backward through the recording
scripts. They could also play-back their recordings to verify the results.

The recordings were divided into several sessions, listed in Section 3.3. For the
sessions which consisted of reading general (newspaper) texts, entire paragraphs were
presented, with the sentence to be read was in inverse video.

Each sentences was stored in a separate file by the GRT, together with a file con-
taining the prompt text.

3.5.5 Settings

Two adjacent rooms were used, one for the subject and the Sparc 5 terminal, the other
for the recording equipment and the recording supervisor. Some attempts were made
to control the acoustic damping of the subject’s room, but for the dialect recordings, it
was frequently necessary to simply use the locations that were available.

3.6 Checking

The correctness of the recordings was checked by listening to the speech files. This was
aided by a program which played a file, and then asked the verifier to either confirm the
correctness, change the text to correspond to the actual utterance, or to mark truncations
or strange words.

The following classifications were used:

OK A good recording.

FOREIGN_WORD Good, but contains some foreign word.

BAD_LEXEM Good, but contains some non-lexical word.

DISFLUENCY Some word is spoken in a disfluent manner, but most of the utterance
is good speech.

TRUNCATED Part of the utterance is truncated, but the rest is good speech.

REPETITION Contains a restart and repetition. This could be useful speech data, but
was considered not worth the effort to transcribe.

NOISE Bad, don’t use.

BAD Really bad. Complete silence, just noise, or no good speech left.

33

Disfluencies and foreign words were marked by surrounding them with asterisks.
Truncated parts of a prompt sentence was replaced by opening and closing square
brackets. When the speech recognizer is trained on this data, anything within aster-
isks or square brackets is replaced with rejection models.

Note that the tagNOISE marks noise within the speech. Noise before or after
the utterance has been ignored, assuming that some ‘silence’ model will handle heavy
aspiration and similar phenomena.

3.7 Lexicon

The recognizer works against a lexicon, and consequently a lexicon containing the
vocabulary to be recognized needed to be created.

An issue to consider is to what extent alternative pronunciations should be catered
for. The way people pronounce words do not only differ inter-individually, but also
intra-individually. The same person may use different degrees of reduction in his/her
speech, and these may vary from time to time. Moreover, some reductions are more
likely to occur than other, and some reductions have a tendency to co-occur. The main
issue here is to decide exactly how reduced the included forms should be, and how
much should be left to training proper. Within the SLT project, a method where most
things were left to the recognizer was opted for, which meant that heavy reductions
were not included. On the average, only some very common reduced forms were con-
sidered, notably grammatical endings, since these are almost invariably reduced in
speech.

In order to create such a lexicon, a base lexicon was first created in order to provide
‘standard’ pronunciation, i.e., clear standard Swedish. The lexicon was not phonologi-
cal, but rather represents clearly articulated pronunciation. An excerpt from the ‘base’
lexicon looks thus:

egentligen e j e n t l i g e n
ekipage e k i p a: rs
ekorrar e k aa r a r
eller e l e r
elvahundra e l v a h u n d r a
emotionell e m o t sj o n e l

The phonetic symbols used were inherited from previous systems. Each phone is
denoted by one or more characters and is separated by a space. A colon indicates a
long vowel, otherwise the vowels is short.

In order to cover alternative, more reduced pronunciations, a set of phonological
rules were written that automatically generated alternative surface forms. The rules
were conceived as phonological rewrite rules, of ‘standard’ format:

� �� � � � �

... which reads:� becomes� between� and�.

34

A couple of these rules are shown in Figure 3.4.

%==========
Rule block: /igt/-regler

Rule: ‘‘/g/ avtonas mellan kort /i/ och /t/. Ex: ’gruvligt’ -> ’gruvlikt’’’
syll:[-primary] phn:[‘‘g’’] --> phn:[-voice] / phn:[‘‘i2’’] _ phn:[’’t’’]

%==========
Rule block: /ikt/-regler

Rule: ‘‘/k/ stryks mellan kort /i/ och /t/. Ex: ’gruvlikt’ -> ’gruvlit’’’
syll:[-primary] phn:[‘‘k’’] --> phn:0 / phn:[‘‘i2’’] _ phn:[’’t’’][+wb]

Figure 3.4: Example of phonological rewrite rules

The new forms were added to the lexicon immediately after the base forms, thus:

egentligen e j e n t l i g e n
egentligen e j e n t l i j e n
egentligen e j e n k l i j e n
ekipage e k i p a: rs
ekipage e k i p a: sj
ekorrar e k aa r a r
eller e l e r
elvahundra e l v a h u n d r a
elvahundra e l v a h u n r a
emotionell e m o t sj o n e l
emotionell e m o sj o n e l

The lexicon thus created contains all words from the calibration and newspaper
texts.

For the ATIS material, several lexica were produced. There are three reasons for
this:

� It is important from a performance point of view, to have an accurate lexicon
for the task domain, and since the vocabulary is comparatively small, it is also
doable. Special lexica was created for the ATIS sentences, which are more
strictly pruned than the main lexicon. All lexical ambiguities have been removed,
so that only word senses and pronunciations that belong in the ATIS domain are
left.

� During training, it is necessary to allow all possible pronunciations of the words
in the vocabulary, but during recognition it is better to canonicalize the pronun-
ciation in a way that makes sense for the language component. In the ATIS
domain, the main differences are in the pronouns “de”, “dem”, “dom”, “dig” and
“sig”. These are on the other hand very common.

35

� Swedish is language with very productive compounding, which increases the
vocabulary size, compared to English. Also, natural numbers and monetary
amounts are compounds, and these are, for obvious reasons, impossible to list
in a lexicon (at least in the general case; in ATIS, there probably is an upper
limit to the cost of an air fare). In all ATIS lexica, natural numbers and monetary
amounts have been split into their components. For the other compounds, split
and unsplit versions of the lexicons have been produced to allow experimenting.
The term “split” means that all compounds have been split at word boundaries,
but affixes have been retained.

3.8 Concluding Remarks

Summing up the speech collection activities within SLT, there are many things to com-
ment upon.

First, a general thing to point out is that the work was in very many ways hampered
by practical considerations, and thus “constrained” in undesirable ways. Some of these
are listed below.

Recording Environments Much of the recordings were carried out under less-than-
perfect circumstances. However, although the rooms in which the recordings
took placecouldhave been dampened to obtain better acoustics, this would have
taken a lot of time and required a lot of effort which very much would have
delayed the data collection. One simply had to accept the trade-off between
recording quality and time allotted.

Morphological Information Since morphological features were not available for the
lexicon entries, some overgeneration of the reduction rules was the result, and
manual pruning was required.

WOZ data Data collected from read speech naturally is flawed, not only from a “lan-
guage” point of view (cf Chapter 2), but also from a speech point of view. People
often find it hard to read prompts from a computer screen in a fluent and natural
way, and at the same time handle the recording tool, executing mouse clicks and
so forth.

Dialect Handling in the Lexicon The present lexicon does not handle dialects where
retroflexing of dental consonants does not occur (see Chapter 4).

However, despite all those desiderata and wishes not fulfilled or realised during
this stage of the project, the results are overwhelmingly positive. Things like word
error rate – even after the first training session – speak for themselves!

Chapter 4

Speech Recognition

Harry Bratt, Vassilios Digalakis, Robert Eklund, Horacio Franco, Jaan Kaja, Leonardo
Neumeyer, Patti Price and Fuliang Weng

The major engineering and research accomplishments of the speech recognition part of
the SLT-2 project have been:

� Design, specification and collection of a Swedish speech corpus for training
speech recognition models, support dialect adaptation research, and over-the-
telephone speech recognition research (Section 4.1).

� Design and generation of a Swedish pronunciation dictionary for speech recog-
nition (Section 4.2).

� Investigation, and implementation of medium-size vocabulary, speaker-independent,
continuous, real-time, accurate, English and Swedish speech recognition systems
(Section 4.3).

� Investigation of acoustic dialect-adaptation techniques: solving the problem of
training Hidden Markov Models (HMMs) with limited amounts of acoustic data
(Section 4.4).

� Investigation of language-modeling techniques: solving the problem of training
backoff language models (LMs) with limited amounts of orthographic data (Sec-
tion 4.5).

� Development of a Swedish/English aligner for one-best and N-best applications.
Development of a phone backtrace for the N-best decoding algorithm (Section
4.6).

� Investigation and development of a multilingual speech recognition system (Sec-
tion 4.7).

36

37

4.1 The Swedish Speech Corpus

Leo and Jaan to write.

4.2 The Swedish Lexicon

4.2.1 Introduction

Our starting point for the Swedish lexicon was a lexicon originally designed for a
speech synthesis task. The synthesis lexicon contained a larger number of phones
than are useful in recognition system; phones which are very infrequent could still be
synthesized, but could not be modeled well for a recognition task since there would not
be enough data.

4.2.2 Phone Set

Selecting a phone set is a crucial first step in creating a new recognition lexicon. For
Swedish, that selection posed two main challenges – phones from loan words, and the
retroflex series of phones introduced by phonological rules.

The training corpora (see Section 4.1 above) contained a small number of loan
words for which the initial lexicon had pronunciations containing non-Swedish phones,
such as the voiceless velar fricative from German or the voiced palatal fricative of
French. For the purposes of the ATIS system, these words could be classified into two
groups: those within the ATIS corpus and those within other training corpora only.
For the phones which only occurred in non-ATIS words, we simply eliminated the
utterances containing those words from the training set – they comprised a very small
number. The phones which occurred in ATIS words, we mapped to native Swedish
phones. These were mainly English diphthongs which were mapped to a sequence of
two Swedish vowels.

The problem in dealing with the retroflex series was an instance of the general prob-
lem of what level of representation to use for any speech recognition lexicon, on the
spectrum of phonetic to phonological. The retroflex phones in Swedish are not sepa-
rate phonemes, but rather are allophones derivable from underlying coronal phonemes
when preceded by /r/. The domain of this rule is larger than the word level, so that
a word beginning in, e.g., an /n/ occurring after a word ending in an /r/ may become
retroflex. We considered three ways of representing this in the lexicon. First, we con-
sidered leaving the retroflexes out completely and representing only the underlying
forms of the words in the lexicon. Thus, we would essentially rely on triphones to
model sequences such as /r l/ as though there were really one phone "/rl/" there. The
other two possibilities involved representing the retroflex phones in the lexicon. When
dealing with a word with an underlying non-initial /r l/ sequence we would represent
that with the single phone /rl/. There is still a question, however, of how to deal with
words beginning with a coronal – since these coronals are susceptible to undergoing
the retroflex rule if they follow a word ending in /r/. Thus, the second representation
we considered involved making multiple pronunciations for all coronal-initial words

38

(one starting with the non-retroflex allophone, the other with the retroflex allophone),
whereas the third possible representation involved ignoring the word-initial variations,
and representing the retroflex process only as a lexical process (i.e. within words in
the lexicon, not across words). The first representation was impractical because we
could not easily recover the underlying forms from the lexicon we were starting with.
We decided on the second representation over the third in hopes of capturing some of
the cross-word changes that would occur. The possible disadvantages of this approach
are, first, that we overgenerate pronunciations, since we’re not constraining where the
retroflex pronunciation may occur (i.e. only after words ending in /r/), and second, that
the true rule would not only retroflex the initial coronal, but would delete the previous
/r/ as well, and we are not modeling that.

4.2.3 Morphology

In previous recognition systems for English we have not dealt with the issue of mor-
phology. That is, to build a vocabulary and language model, we simply took words
from a training corpus in the inflectional forms in which they appeared. Swedish,
however, has a richer system of inflectional morphology than English, so a word may
appear in many different forms. Some of those forms might not exist in a training set,
but could be predicted to occur in a test set. An example of this in English might be
where the word “flights” appears in a training set but not the singular form “flight.” It
could be reasonable to conclude that the singular form would occur in a test set.

We considered three different methods of handling morphology in the system. The
simplest method is to collect all words seen in the training corpora, and generate the
language model on exactly what was seen, in the same way we handled the English
system. This ignores the potential problem that other inflectional forms of words which
were seen in the training set may exist in the test set. If a language has a large number
of inflectional forms of any given word, we might expect that there would be significant
gaps in the training data which would be predictable from the morphology. Though this
is not a problem for English, we were concerned that it could be a problem for Swedish.
A second method would be to try to account for unseen forms in the lexicon based on
the observed forms in the training set. A large amount of linguistic knowledge would
be needed here, not only to account for all forms, both regular and irregular, but also to
attempt to account for the distribution of the unseen forms in the language model – that
is, how do you statistically predict the unseen form of the word given some context.
Finally, a third method would involve treating not a word, but each morpheme, as the
lexical item processed by the recognizer. For example, in English, “flights” would
be treated as two lexical items: “flight” and “s.” This method may be a good idea
for languages with a lot of concatenative morphology – though it is almost certainly
unwarranted for a language like English which has very little productive morphology
(at least, inflectional morphology, which is the most relevant type here).

The third approach, in fact, also seemed unwarranted for Swedish. We considered
trying the second approach, but decided it was too formidable for a baseline system,
since it would involve a significant amount of research and design to create all of a
word’s useful inflectional forms and to incorporate the unseen ones into the statistical
language model which we are using. Therefore, we took the straightforward approach

39

of modeling only those forms which were seen in the training data – the same approach
as we have taken for English.

4.2.4 Lexicon Statistics

The final Swedish ATIS lexicon contained 1265 words. The average number of pro-
nunciations per words was 1.68. In comparison, the previous English lexicon for ATIS
contained 1751 words, with an average of 1.41 pronunciations per word. If we had not
included the alternate retroflex pronunciation of all coronal-initial words (see Section
4.2.2), the number of pronunciations per word in the Swedish lexicon would have gone
down to 1.22.

4.3 The English/Swedish Speech Recognition System

Two of the major goals of the SLT-2 project were to improve the speed and accuracy
of the speech recognition engine in the English ATIS domain and for the first time
to build a Swedish ATIS recognizer. To achieve these goals we decided to use the
Nuance speech recognition engine, which is a productized version of the Decipher
engine. We extended the Nuance engine to support the statistical language models
required for the ATIS domain. The current Nuance engine only supports finite-state
grammars. The ATIS English and Swedish models were trained by SRI and optimized
to provide maximum accuracy at real-time performance on an UltraSparc computer
platform. The major difference between the SLT-1 and SLT-2 systems is that the latter
uses continuous density hidden Markov models (HMMs). We investigated the use
of two different approaches: phonetically-tied mixture systems (PTM) and genonic
systems (Digalakis, Monaco and Murveit, 1996).

� Phonetically-tied mixture system (PTM) (Paul, 1989; Leeet al., 1991; Aubertet
al., 1993). This is a phone-based tying continuous density HMM. Only HMM
states that belong to allophones of the same phone share the same mixture com-
ponents.

� Genonic systems (Digalakis, Monaco and Murveit, 1996). The SRI genonic
system is used to achieve a good trade-off between modeling resolution and ro-
bustness. It uses a general scheme for tying mixture components in continuous
mixture-density HMM-based speech recognizers. The sets of HMM states that
share the same mixture components are determined automatically using agglom-
erative clustering techniques.

4.3.1 Diagnostic Experiments

We first ran some baseline experiments to compare the various speech recognition sys-
tems without optimizing for speed. We compared the old vector quantization (VQ)
system used in the SLT-1 project with various genonic and PTM systems. We used the
same task as in the SLT-1 project, that is a ten-city ATIS grammar. Experiments were
carried out using SRI’s DECIPHERTM speech recognition system configured with a

40

HMM Num Num Total Ins Del Sub WER x cpuRT
Type gen Gauss num (%) (%) (%) (%) (Sparc20)

gen Gauss
GEN 600 32 19K 0.4 1.6 4.9 6.8 18.2
GEN 1100 32 35K 1.1 0.7 5.3 7.0 26.4
GEN 390 32 12K 1.5 0.7 5.3 7.4 14.3
PTM 38 100 4K 1.0 1.3 5.4 7.7 9.9
GEN 600 16 10K 1.9 0.9 5.4 8.3 12.9
VQ - - - 0.3 3.2 7.5 11.0 5.5

Table 4.1: VQ, PTM, and Genonic word error rates on a 10-city English ATIS task.

HMM Ins Del Sub WER
Type (%) (%) (%) (%)
ATIS 0.5 1.8 5.4 7.7
WSJ 1.5 1.2 8.0 10.6

Table 4.2: Word error rates on a 46-city English ATIS task. HMMs are trained using
ATIS or WSJ acoustic data.

six-feature front end that outputs 12 cepstral coefficients (c� � c��), cepstral energy
(c�), and their first- and second-order differences. The cepstral features are computed
from an FFT filterbank, and subsequent cepstral-mean normalization on a sentence ba-
sis is performed. To train the models we used 21,000 ATIS sentences. A summary of
these experiments is shown in Table4.1.

The results show a reduction of 40% in word error rate (from 11.0% to 6.8%) for the
best genonic system compared to the SLT-1 VQ system. We also observe a significant
increase in computational complexity (cpu real-time for VQ is 5.5 compared to 18.2 for
the best genonic system). Our goal for the SLT-2 project is to maintain the increased
accuracy provided by the continuous density HMM while increasing the speed so we
can achieve real-time performance. We also observe that a PTM system may be more
appropriate for this task, given that the increase in accuracy over the VQ system is still
significant while this system is much faster than the genonic ones.

Another diagnostic experiment is summarized Table 4.2. In this test we study the
relevance of using domain-specific acoustic data for training the HMMs. We trained
a “Wall Street Journal” (WSJ) system and an ATIS system using comparable amounts
of training data. For testing we used a 46-city ATIS test set and identical backoff
bigram language models. The results show that using ATIS-specific training data can
result in significant improvement compared to using only WSJ data. (WER 7.7%, as
compared to 10.6% for WSJ). This result had direct implications for the design of the
data collection specification.

41

4.3.2 Speed Optimization

To achieve real-time performance various speed optimization techniques were investi-
gated:

Viterbi Beam Search Pruning This technique is used in the standard Viterbi beam
search algorithm. The pruning is implemented at the phone level: all three HMM
states for a given allophone are either pruned or kept. The Viterbi pruning can
be modified from external configuration files or from the command line. The
parameter name is “Pruning” and typical values range from 800 for aggressive
pruning to 1200 for little pruning.

Model-Specific HMM Update Routines Code is highly optimized for specific HMM
topologies.

Skip Frames Exact (SkipE) HMM updates are computed only every two frames in-
stead of every frame.

Gaussian Pruning This technique aborts Gaussian computation if the probability, up
to a given dimension in the vector, is below a given threshold.

Skip Observation Frames (SkipObsFrames) Depending on the value of the SkipOb-
sFrame parameter, certain hypotheses in the search will be approximated by re-
peating Gaussian values from the previous frame. When the SkipObsFrames
parameter is zero, all hypotheses use the approximation. As the value increases
there is less approximation.

Shortlists (Digalakis, Monaco and Murveit, 1996). This technique significantly re-
duces the amount of Gaussian computation. Gaussian shortlists are lists that
specify the subset of the Gaussians distributions expected to have high likeli-
hood values in a given region of the acoustic space.

Phonetic Pruning (PPR) This technique is used to prune out hypotheses using phones
whose probabilities are below a certain threshold.

To optimize the system we varied the parameters sequentially to determine the opti-
mum set. A summary of the optimization runs for the English PTM system is shown in
Table 4.3. The PTM system is gender-independent, uses 56 classes and 100 Gaussians
per mixture. The test set consist of 200 waveforms and 2000 words. All tests were
run on a Sparc20-50Mhz machine. The table shows the results for four techniques:
Viterbi pruning (PRUNE), Gaussian pruning (GPRUNE), shortlists (SHORTL), and
SkipObsFrames (SOF). We see that aggressive Viterbi pruning can significantly reduce
computation but at the cost of high error rates. For example, reducing the cpu time from
11.3 to 5.8 times real time results in an increase in word-error rate from 7.8% to 9.6%.
This is due to the fact that we are pruning correct hypotheses during the search. In
general, the Viterbi pruning threshold can be set to 1000 without sacrificing accuracy.

Based on the first round of optimization, we select the values that result in maxi-
mum speed-up with little degradation in recognition accuracy. The next step consist in
optimizing the phonetic pruning parameters. This optimization further reduces the cpu

42

Baseline run (No optimization)
PRUNE GPRUNE SHORTL SOF INS DEL SUB WERR x cpuRT

1200 75K no 100K 1.6 1.7 4.6 7.8 11.3

Shortlists (values from 1.0 down to 0.7)
PRUNE GPRUNE SHORTL SOF INS DEL SUB WERR x cpuRT

1200 75K 1.0 100K 1.5 1.6 4.5 7.7 7.6
1200 75K 0.975 100K 1.5 1.7 4.5 7.6 6.9
1200 75K 0.950 100K 1.4 1.8 4.6 7.8 7.1
1200 75K 0.925 100K 1.4 1.9 4.4 7.6 7.5
1200 75K 0.90 100K 1.3 1.8 4.5 7.5 7.3
1200 75K 0.85 100K 1.4 1.6 4.3 7.3 7.0
1200 75K 0.80 100K 1.4 1.6 4.8 7.7 7.0
1200 75K 0.70 100K 1.5 1.5 4.9 7.9 5.9

Viterbi Pruning (values from 1000 down to 600)
PRUNE GPRUNE SHORTL SOF INS DEL SUB WERR x cpuRT

1000 75K no 100K 1.6 1.7 4.7 7.9 8.5
900 75K no 100K 2.0 1.7 5.0 8.6 6.9
800 75K no 100K 2.4 1.8 5.5 9.6 5.8
700 75K no 100K 3.0 1.8 7.1 11.9 4.8
600 75K no 100K 4.6 1.7 10.2 16.5 3.7

Gaussian Pruning (values from 50000 down to 4000)
PRUNE GPRUNE SHORTL SOF INS DEL SUB WERR x cpuRT

1200 50K no 100K 1.6 1.7 4.5 7.7 10.9
1200 30K no 100K 1.6 1.6 4.4 7.6 9.1
1200 20K no 100K 1.6 1.7 4.2 7.4 9.0
1200 10K no 100K 1.8 1.6 4.4 7.8 8.1
1200 8K no 100K 1.9 1.6 4.7 8.0 7.3
1200 6K no 100K 1.9 1.5 4.4 7.6 7.3

Skip Obs Frames (values from 1000 down to 0)
PRUNE GPRUNE SHORTL SOF INS DEL SUB WERR x cpuRT

1200 75K no 1000 1.6 1.7 4.6 7.8 11.5
1200 75K no 800 1.5 1.7 4.5 7.7 10.1
1200 75K no 600 1.6 1.8 4.5 7.8 10.0
1200 75K no 400 1.6 1.8 4.6 8.0 8.4
1200 75K no 200 1.6 1.8 4.4 7.7 7.5
1200 75K no 0 1.7 1.7 4.4 7.8 7.6

Table 4.3: Optimization of the English ATIS PTM system.

43

SWE ENG SWE ENG

a ah o aa
a: ah oe axr
aa aa oe2 axr
aa: aa oe2: axr
ae ae oe: axr
ae2 ae ow ow
ae2: ae p p
ae: ae r r
ay ay rd d
b b rl l
d d rn n
e eh rs sh
e: ey rt t
f f s s
g g sh sh
h hh sj sh
i ih t t
i: iy th th
j y tj ch
k k u uh
l l u: uw
m m v v
n n w w
ng ng y y
o: aa y: iy

Table 4.4: Mapping phonemes from English To Swedish for initialization.

requirements to 1.5 times real-time on the Sparc 20 host with an error rate of 8.8%.
The exact operating point can easily be adjusted based on the cpu cycles available.

4.3.3 Swedish Recognition

Our approach for building a Swedish recognizer was to boot the training process us-
ing English models. To do this, we created an approximate mapping from English to
Swedish phonemes (see Table 4.4).

We trained Swedish gender-independentPTM models using 23,000 utterances from
94 speakers. In Table 4.5 we show English and Swedish baseline recognition results
before any speed optimization is carried out on small 200-sentence test sets. We notice
that the main differences between the Swedish and English experiments are the number
of training speakers and out-of-vocabulary (OOV) rate. A larger number of training
speakers makes the recognizer more robust to variation in speaker voices. The larger

44

Language Swedish English

Training speakers 94 408
Training sentences 23K 21K

Test speakers 27 29
Test sentences 200 200

Test words 1749 2000

Perplexity 24 20

Out-of-vocab words 2.2 0.1

Insertion errors 1.8 1.6
Deletion errors 1.2 1.7

Substitution errors 6.0 4.6

Word error rate 9.2 7.8

Table 4.5: Comparison of English and Swedish baseline recognition experiments.

OOV rate in the Swedish test set is probably producing the difference in error rate
comapred to the English system. Using a conservative estimate of one OOV resulting
in one error, we could assume that the adjusted Swedish error rate is in the order of
(9.2% - 2.2% = 7.0%), that is, similar to the English word error rate.

4.3.4 Summary

We implemented real-time English and Swedish speech recognition systems for the
ATIS task. Based on the available test sets, it appears that the speech recognition
performance (after adjusting for errors caused by out-of-vocabulary words) is similar
for both languages. The operating point in the speed-accuracy curve can be adjusted
using various optimization techniques achieving real-time performance on the target
platform.

4.4 Dialect Adaptation

We are interested in developing speech recognizers that are robust to the large dialect
variability that exists in spoken Swedish. However, the recognition accuracy of large-
vocabulary speech recognition systems has proven to be highly related to the corre-
lation of the training and testing conditions. Performance degrades dramatically if a
mismatch exists between these conditions, such as different channel, speaker’s voice
characteristics, or, in our case, dialect.

In this work, we consider the dialect issue on a speaker-independent (SI) speech
recognition system. Based on the Swedish language corpus collected by Telia, we
investigate the development of a Swedish multi-dialect SI speech recognition system
which will require only a small amount of dialect-dependent data. We first investi-
gate the effect of mismatched conditions in training and testing, and we find that the

45

recognition performance of a speaker-independent system trained on a large amount of
training data from the Stockholm dialect decreases dramatically when tested on speak-
ers of another Swedish dialect, namely from the Scania region.

To improve the performance of the SI system for speakers of dialects for which min-
imal amounts of training data are available, we usedialect adaptationtechniques. We
apply both maximum likelihood (ML) transformation based approaches (Digalakiset
al., 1995; Neumeyeret al., 1995; Legetter and Woodland, 1995; Sankar and Lee, 1996),
as well as combined transformation-Bayesian approaches (Digalakis and Neumeyer,
1996), in an effort to minimize the effect of different dialects.

4.4.1 Dialect Adaptation Methods

The SI speech recognition system for a specific dialect is modeled with continuous
mixture-density hidden Markov models (HMMs) that use a large number of Gaussian
mixtures (Digalakiset al, 1996). The component mixtures of each Gaussian codebook
(genone) are shared across clusters of HMM states, and hence the observation densities
of the vector processyt have the form:

PSI �ytjst� �

N�X
i��

p��ijst�N�yt�mig� Sig��

whereg is the genone index used by the HMM statest.
These models need large amounts of training data for robust estimation of their pa-

rameters. Since the amount of available training data for some dialects of our database
is small, the development of dialect-specific SI models is not a robust solution. Alter-
natively, an initial SI recognition system trained on someseeddialects can be adapted
to match a specifictargetdialect, in which case the adapted system utilizes knowledge
obtained from the seed dialects. We choose to apply algorithms that we have previously
developed and applied to the problem of speaker adaptation, since in our problem there
are consistent differences in the pronunciation between the different dialects that we
examine. The adaptation process is performed by jointly transforming all the Gaus-
sians of each genone, and by combining transformation and Bayesian techniques.

The transformation part of the adaptation process can be simply described by writ-
ing the observation densities of the dialect-adapted (DA) models as:

PDA�ytjst� �

N�X
i��

p��ijst�N�yt�Agmig � bg� AgSigA
t
g�� (4.1)

To adapt the initial SI recognition system, the parametersAg � bg� g � �� � � � � Ng have to
be estimated.Ng denotes the number of transformations for the whole set of genones.
The parameter estimation process is performed using the EM algorithm (Dempsteret
al, 1977). In our experiments we consider two variations of the generic transformation
above. In the first variation (method I), we assume the matrixAg is diagonal (Digalakis
et al., 1995), and is applied to both the means and covariances of the models, as in
equation (4.1).

46

The second method (method II, in Leggetter and Woodland (1995) and Neumeyer
et al., 1995) assumes thatAg is a block diagonal matrix which transforms only the
means of the Gaussian distributions:

PDA�ytjst� �

N�X
i��

p��ijst�N�yt�Agmig � bg� Sig�� (4.2)

Each of the three blocks of this matrix performs a separate transformation to every
basic feature vector (cepstrum, and its first and second derivatives). For the speaker
adaptation problem, it was shown in Neumeyeret al., (1995) that method II with a
block diagonal matrix significantly outperform both method II with a full matrix and
method I with a diagonal matrix.

Bayesian techniques use prior knowledge together with the small amount of train-
ing data to adapt the system. These techniques have several useful properties, such as
asymptotic convergence and text independence. However, they suffer from slow adap-
tation rates. By combining the Bayesian with the transformation based approach, we
expect to achieve faster adaptation as well as better convergence to the dialect-specific
models as the number of training sentences increases. In order to implement the com-
bined approach, we first adapt the SI models to match the new dialect using a transfor-
mation method. Then, these dialect adapted models serve as prior knowledge for the
Bayesian adaptation step. For a more detailed description of how the combination is
performed, the reader is referred to Digalakis and Neumeyer (1996).

4.4.2 Experimental Results

The adaptation experiments were carried out using a multi-dialect Swedish speech
database collected by Telia. The core of the database was recorded in Stockholm us-
ing more than 100 speakers. Several other dialects are currently being recorded across
Sweden. The corpus consists of subjects reading various prompts organized in sec-
tions. The sections include a set of phonetically balanced common sentences for all the
speakers, a set of sentences translated from the English Air Travel Information System
(ATIS) domain, and a set of newspaper sentences.

For our dialect adaptation experiments we used data from the Stockholm and Sca-
nian dialects, that were, respectively, the seed and target dialects. The Scanian dialect
was chosen for the initial experiments because it is one of three that are clearly dif-
ferent from the Stockholm dialect. The main differences between the dialects is that
the long (tense) vowels become diphthongs in the Scanian dialect, and that the usual
supra-dental /r/-sound becomes uvular. In the Stockholm dialect, a combination of /r/
with one of the dental consonants /n/, /d/, /t/, /s/ or /l/, results in supradentalization of
these consonants and a deletion of the /r/. In the Scanian dialect, since the /r/-sound is
different, this does not happen. There are also prosodic differences.

In addition, the Scanian dialect can be divided into 4 distinct areas (subdialects),
namely Malmö, Helsingborg, Trelleborg and Kristianstad. In our experiments, the
training and test sets consist of sentences chosen equally from the above subdialects
in order to create a generic, subdialect-independent system. There is a total of 40
speakers of the Scanian dialect, both male and female, and each of them recorded more

47

than 40 sentences. We selected 8 of the speakers (half of them male) to serve as testing
data, and the rest composed the adaptation/training data with a total of 3814 sentences.
Experiments were carried out using SRI’sDECIPHERTM system (Digalakis and
Neumeyer, 1996).

The system’s front-end was configured to output 12 cepstral coefficients, cepstral
energy and their first and second derivatives. The cepstral features are computed with
a fast Fourier transform (FFT) filterbank and subsequent cepstral-mean normalization
on a sentence basis is performed. We used genonic HMM’s with arbitrary degree of
Gaussian sharing across different HMM states (Digalakiset al., 1996b).

The SI continuous HMM system, which served as seed models for our adaptation
scheme, was trained on approximately 21000 sentences of Stockholm dialect. The
recognizer is configured so that it runs in real time on a Sun Sparc Ultra-1 worksta-
tion. The system’s recognition performance on an air travel information task similar
to the English ATIS one was benchmarked at a 8.9% word-error rate using a bigram
language model when tested on Stockholm speakers. On the other hand, its perfor-
mance degraded significantly when tested on the Scanian-dialect testing set, reaching
a word-error rate of 25.08%. The degradation in performance was uniform across the
various speakers in the test set (see Table 4.6), suggesting that there may be consistent
differences across the two dialects. Hence, there is a great potential for improvement
through dialect adaptation.

In the first set of experiments, we adapted the Stockholm-dialect system using var-
ious amounts of adaptation data from the training speakers of the Scanian dialect, and
evaluated the performance of the adapted system to a separate set of testing speak-
ers. This gives us a measure of the dialect-adapted, speaker-independent performance,
since the adaptation and testing sets consist of different speakers. We also trained from
scratch a Scania-dialect system using standard ML training based on the same adapta-
tion data (ML-trained system), in order to estimate the adaptation benefits.

The results are summarized in Figure 4.1. We see that even with the first simplified
algorithm, which does not take full advantage of large amounts of training data, we
get a significant improvement in the performance. With as few as 198 sentences we
get a 38% reduction and the word-error rate drops to almost 15%. Method II produces
even better results, and the error rate for the same amount of training sentences falls
to approximately 13%. However, when compared with the ML-trained system, we
see that the transformation adaptation methods outperform the standard ML training
only when a very small amount of training data is used (i.e. less than 400). For larger
amounts of training data, the ML-trained system performs better, and this is due to the
bad asymptotic properties of the transformation adaptation, as well as the relatively
small vocabulary of the ATIS system.

In Figure 4.1, we also present the results of the combination of methods I and II
with Bayesian adaptation. The combined schemes are proven to be far more efficient
than the simple transformation methods I and II, and the adaptation takes better advan-
tage of the amount of the training sentences. The error rate is reduced by 63%, 69% and
75%, with 198, 500 and 2000 adaptation sentences, respectively. Although no direct
comparison can be made, using as few as 198 adaptation sentences, the error rate of
9.37% approaches the Stockholm dialect dependent performance. For more sentences
the error rate drops even more, to 6.40%. In addition, the combined approach signif-

48

4

6

8

10

12

14

16

18

20

22

24

26

0 500 1000 1500 2000

E
rr

o
r

(%
)

Number of Training Sentences

No Adaptation
Method I

Method II
Method I + Bayes

Method II + Bayes
Training with Scania Sentences

Figure 4.1: Dialect adaptation results for adaptation methods I, II, their combination
with Bayes and standard ML training.

icantly outperforms the ML trained system when less than 1000 sentences are used,
providing a solution that is more robust and easier to train.

In Table 4.6, we present the word-error rate of the Stockholm dialect trained system
for several Scanian-dialect test speakers. We can see that the improvement in terms of
performance when the combined method is used for 198 and 3814 adaptation sentences
is almost uniform across the speakers, which verifies the assumption that there is a
consistent mismatch across speakers of these two different dialects.

To compare the robustness and trainability of the standard ML training and adapta-
tion algorithms, we performed training and adaptation experiments using fewer speak-
ers in the training set, specifically 12 and 6 speakers. We use the term trainability above
to refer to the ease with which a dialect-specific system can be developed. Clearly, the
capability of developing a dialect-specific system with as few training speakers as pos-
sible is desirable, since it saves both time and money.

The smaller subsets of speakers were selected randomly out of the total number
of 31 speakers available in the initial training set, and were equally divided across the
two genders. We tried to select speakers from all 4 sub-dialects, so that the resulting
system remains subdialect-independent. The results are illustrated in Figure 4.2. We
see that for standard ML training, the error rate is very large when fewer than 1000
sentences from 31 speakers are used. Moreover, the ML training error rate is getting
even larger as the number of speakers in the training set decreases. For example, if we
use roughly 500 training sentences, the 31-speaker error rate increases by 9% and 29%
when sentences from 12 and 6 speakers are considered, respectively. On the other hand,

49

Word Error Rate %
Speaker Non Meth.II+Bayes Meth.II+Bayes

adapted 198 sent. 3814 sent.

d09 24.94 8.53 8.31
d0b 27.05 12.32 9.90
d0k 21.92 8.49 5.42
d0j 28.64 9.24 6.70
d0r 29.85 13.93 6.71
d0v 19.72 7.66 5.10
d12 26.29 10.07 6.39
d13 22.88 5.26 2.75

total 25.08 9.37 6.40

Table 4.6: Word recognition performance across Scanian-dialect test speakers using
non-adapted and combined-method adapted Stockholm dialect models

6

8

10

12

14

16

18

20

22

24

26

200 300 400 500 600 700 800 900 1000

E
rr

o
r

(%
)

Number of Training Sentences

No Adaptation
Training: 31 speakers
Training: 12 speakers
Training: 6 speakers

Adaptation: 31 speakers
Adaptation: 12 speakers
Adaptation: 6 speakers

Figure 4.2: Comparison of dialect training and adaptation results for different number
of speakers.

50

for the dialect-adapted system, the error rate using 12 and 6 speakers in the adaptation
data remains as small as when using the full set of 31 speakers. The small differences
are within the statistical error.

The reason for the significantly better performance of the adaptation schemes over
standard ML training for small number of speakers is that speaker variability in the
systems developed using adaptation techniques is captured from the prior knowledge,
which the systems trained using standard ML techniques lack. In general, when we
compare adaptation and training results we can conclude that adaptation significantly
outperforms training for small amounts of sentences, and small number of speakers.
For example, when we perform training with 31 speakers and 520 sentences the results
obtained are similar with the adaptation experiments with as few as 6 speakers and
only 200 training sentences. Similarly, the performance of a system trained with 31
speakers and 1000 sentences is similar to that of a system trained with only 6 speakers
and 500 sentences. Therefore, both the robustness and trainability of an adaptation-
based system are highly increased, when compared to standard ML training.

4.4.3 Summary

In this Section we have discussed the issue of dialect mismatch in an ASR system. We
found, for the pairs of dialects that we examined, that there is a consistent degradation
in performance across speakers when there is a dialect mismatch. Hence, we selected
to improve the performance of the system using adaptation methods. We tested trans-
formation and combined transformation and Bayesian adaptation algorithms to adapt
a Stockholm-trained system to the Scania dialect. The results showed that adaptation
is capable of improving the robustness of our system, and that the performance of the
adapted system improved dramatically over the mismatched condition with very small
amounts of adaptation data. Moreover, we showed that the recognition performance of
the adapted system does not degrade when we reduce the number of different speak-
ers from which the training data was collected, something not true for standard ML
training. Hence, in terms of robustness and trainability, adaptation is a much better
alternative for the development of dialect-specific systems than standard ML training.

4.5 Language Modeling

In language modeling for speech recognition systems, sparse training data has been one
of the main problems. In this project, we investigated three approaches to tackle this
problem, that is, interpolating in-domain data with out-of-domain data, using class-
based language models (LMs) mixed with word bigram models, and splitting com-
pounds for the Swedish System. For the last two approaches, we see some promising
improvements.

4.5.1 Interpolating In-domain LMs with Out-of-domain LMs

Successful statistical language modeling requires large amounts of domain-specific
data, which is not always available. One way to remedy this is to interpolate small

51

amounts of available domain-specific data with large amounts of domain-general data.
The interpolation is the weighted average of the two bigram probabilities from the two
corpora. We completed one quick experiment for the Swedish recognition system. Re-
sults show that a small improvement was obtained after interpolating with Swedish
News texts. The WER changed from 8.88% to 8.70%, which is not a significant reduc-
tion.

4.5.2 Class-Based Language Modeling

We have implemented a class-based bigram LM (Brownet al., 1992), and tested it
with our English and Swedish ATIS systems. The English classes were defined man-
ually, and they include city names, airlines, and airline codes. The Swedish classes
were basically translated from English with some minor modifications. Results show
that with large amounts of training data (20,000 sentences), pure class-based bigram
LMs perform as well as word bigram LMs, while with small amounts of training data
(5,000 to 10,000 sentences), pure class-based bigram LMs outperform word bigram
LMs significantly, and the interpolated word bigram and class bigram systems gave
even further improvement over pure class bigram systems (see Table 4.7). Results also
show that the interpolated systems perform as well as the word bigram systems that
are trained with twice the amount of data. Compared with existing recognizers that
have word bigram LMs trained with large amounts of data, the new English system
with class-based bigram LMs mixed with word bigram LMs reduced the WER from
7.02% to 6.37% (4660 words) (see Table 4.8), and the new Swedish system reduced
the WER from 7.90% to 7.66% (totally 3758 words) (see Table 4.10). For low-WER
systems, the improvement is quite impressive. We suspect that the relatively small
improvement for the Swedish system is partially due to the limited variability of our
testing set. A better test set for the Swedish system is under construction at Telia. For
both Swedish and English, we have significant perplexity (PPL) reductions by using
interpolated class-based LMs (see Tables 4.9 and 4.11).

We also experimented with a multiple-stage backoff scheme. This scheme uses
class bigrams where word bigrams are absent in training, and it backs off further to the
corresponding unigram word probabilities when class bigrams are absent in training.
The PPL for this new scheme shows a moderate improvement over the class-based
LMs, but its WER increases.

4.5.3 Compound Splitting in the Swedish System

In many languages, including German, Dutch, Swedish, Finnish and Greek, compound
nouns can be formed by concatenation of single nominals. Because of the nature of the
productivity in compounds, it is less favorable to simply list compounds in the lexicon.
For example, in an experiment on SQALE training texts (Lamelet al., 1995, page 186),
use of 20,000-word lexicons for both German and English resulted in a 7.5 % out-of-
vocabulary (OOV) rate for German and 2.5 % for English. The German lexicon had to
be extended to 64,000 words to obtain OOV rates similar to those of the 20,000-word
lexicon for English. We used a simple splitting method and compared it with its unsplit
counterpart. For the ‘split’ version, all compound words, including numbers, were

52

Results on English ATIS

Training Test 1 Test 2
sentences (2000 words) (4660 words)

WordBi 23K 8.95% 7.02%
ClassBi 23K 8.85% 6.91%
WordBi 15K 9.25% 7.38%
ClassBi 15K 9.15% 7.10%
WordBi 10K 9.40% 7.73%
ClassBi 10K 9.25% 7.40%
WordBi 5K 10.25% 8.26%
ClassBi 5K 9.50% 7.40%

WordBi+ClassBi 10K 8.75% 7.10% (not tuned)
WordBi+ClassBi 5K 9.35% 7.21% (not tuned)

WordBi: Word bigram LM system
ClassBi: Class bigram LM system
WordBi+ClassBi: Word bigram interpolated with Class bigram LM system

Table 4.7: Word error rates of word bigrams vs. class bigrams with respect to different
amounts of data.

Results on English ATIS

Test 1 Test 2 Ratio
(2000 words) (4660 words)

Baseline 8.95% 7.02% N/A
Class-gram 8.85% 6.91% N/A
Word+class 8.15% 6.52% 0.1
Word+class 8.20% 6.37% 0.2
Word+class 8.25% 6.42% 0.3
Word+class 8.30% 6.52% 0.5
Word+class 8.50% 6.57% 0.7
Word+class 8.45% 6.65% 0.9

ClassBO 9.80% 8.37%

Baseline: PTM system with PPR
Class-gram: Pure class bigram LM system
Word+class: interpolated word bigram and class bigram LM system
ClassBO: Multi-stage class backoff LM system

Table 4.8: Word error rates of word bigram model, class bigram model, and interpo-
lated models for English

53

Perplexity (PPL) results on English ATIS

PPL Ratio (OOV rate is 9/8884)
Word bigram 33.0 N/A
Class bigram 25.4 N/A
Word+class 24.6 0.4 (tuned, PPL range: 24.6-25.5)

ClassBO 23.3 0.1 (tuned, PPL range: 23.5-23.3)

Word+class: interpolated word bigram and class bigram LM system
ClassBO: Multi-stage class backoff LM system

Table 4.9: PPLs of word bigram model, class bigram model, and interpolated models
for English.

Results on Swedish ATIS

444 sentences Ratio
(3758 words)

Baseline 7.90% N/A
(split system)
Class-gram 8.01% N/A
Bi+Class 7.64% 0.3 (tuned on interpolating weights)

Table 4.10: Word error rates of word bigram model, class bigram model, and interpo-
lated models for Swedish

Perplexity (PPL) results on Swedish ATIS

PPL Ratio (OOV rate is 0/3758)
Baseline 40.260 N/A

(split system)
Class-gram 22.208
Bi+Class 20.715 0.3 (tuned on interpolating weights)

Table 4.11: PPLs of word bigram model, class bigram model, and interpolated models
for Swedish

54

Split Unsplit
WER with respect to
compound components 7.9% 8.2%
(method 1)
WER with respect to
full compounds 8.3% 8.7%
(method 2)

Table 4.12: Word error rates of split vs. unsplit compounds for Swedish

manually split into their components, while for the ‘unsplit’ counterpart, only numbers
were split. We conducted two experiments, and results show a promising improvement.

In one experiment, split training data and a split lexicon were used for language
modeling; in the other, unsplit training data and an unsplit lexicon were used. The
results are shown in Table 4.12.

Since the total number of words is different in the split and unsplit cases, the WER
with respect to compounds can be measured in two different ways. In the first one, cor-
responding to the first row of Table 4.12, a one-to-one splitting function, which (for the
purpose of the experiments) is used for mapping compounds to their components, was
applied to both the hypotheses from the recognizer and the references. This function
modifies only the unsplit data. We then compared the newly formed hypotheses and
references to get the WER. Thus, in this case the WER was calculated with respect to
the compound components.

In the second method, corresponding to the second row of the table, the same split-
ting function, but with mappings of numbers removed, was used in the reverse direction
to map all the compound components in both hypotheses and references back to their
compounds. The result was then used for computing the WER. Thus, in this case the
WER was calculated with respect to the full compounds.

According to both measures, the WERs are lower for the split system. For some
applications, such as dictation, what we care about is the direct output from the recog-
nizer. In this case, the WER for the unsplit system is 9.3 %, compared to 7.9 % for the
split system.

4.6 Development of a phone backtrace for the n-best
decoding algorithm

The different variations of the various N-best algorithms already implemented in the
Decipher speech recognition engine (sentence dependent and word dependent) only
allow to get the string of words for each sentence hypothesis. For some applications
(like segmental rescoring) it is necessary to have a decoded phone backtrace, i.e. the
phone sequence and its segmentation, associated to each sentence hypothesis.

To obtain the phone segmentation for each hypothesis it is always possible to
forced-align each sentence hypothesis to the actual speech utterance, and get the cor-

55

responding phone backtrace using the Viterbi algorithm state decoding. Nevertheless,
for N-best lists in the order of hundreds or thousands of hypotheses, this is very time
consuming. A more efficient solution is to augment the capabilities of our implemen-
tation of the word dependent N-best algorithm to include a phone backtrace for each
sentence hypothesis. In this way both the N-best hypotheses and the corresponding
phone segmentations are obtained in a single pass.

We achieve this goal by using a combination of the word-dependent and lattice N-
best algorithms (Schwartz and Austin, 1991) along with storing extra information in
the backtrace memories regarding the phone transitions within words.

The forward pass of the search is implemented according to the word-dependent
n-best algorithm (Schwartz and Austin, 1991), while the backtrace procedure is an ex-
tended version of the one defined in the lattice n-best algorithm (Schwartz and Austin,
1991).

The word-dependent n-best algorithm is based in the fact that the best starting time
for a word does depend on the previous word but most likely does not depend on the
words before that. Thus, histories are distinguished based on only the previous word
rather than the whole preceding sentence (as in the exact sentence dependent n-best
algorithm) (Chow and Schwartz, 1990). At each state within a word we preserve the
total probability (and pointers to the corresponding paths) for each of the n different
preceding words. (Note that n is in general much smaller than N, N being the number
of desired final hypotheses).

This method requires the grammar processor to propagate multiple hypotheses for
each state in each word model, one for each predecessor word. This uses extra memory
in the grammar processor for multiple active hypothesis structures. So the search space
in the grammar processor is increased due to multiple active hypotheses for each node,
according to the previous word.

At the end of a word we record in the backtrace memory the scores for the paths
coming through each of the previous word hypotheses, also we record the name of the
previous word. Then we proceed with a single history with the name of the word that
just ended.

Also, when we exit the final state of each phone within a word, we store in the
backtrace memory the names and the times of the ending phones. This information
will allow us to recover the phone segmentations for each hypothesis.

At the end of the sentence we perform a recursive backtrace to derive the list of
most likely sentences which is similar to the lattice n-best algorithm described in the
literature (Schwartz and Austin, 1991).

The steps of the extended n-best with phone backtrace algorithm may be describes
as follows:

1. Run the forward word dependent N-best. Each node may correspond to multiple
hypotheses in the active array. Fill the backtrace memories with word ending
times and probabilities. Add also phone ending times and corresponding proba-
bilities.

2. Create the initial answer list by placing all words that ended the sentence onto
the answer list. The backwards score for each of these partial answers is just the
word ending score.

56

3. For each answer, try to extend the answer by one more word towards the begin-
ning of the sentence. The extension words we try to connect to are all the words
that ended at the start time of the current answer, and have the same node as the
best predecessor word. The score for an extended answer is the original score,
plus the difference between the extension word and the best extension word. In
doing so we disallow connections whose forward plus backward scores fall be-
low a pruning beamwidth of the best final sentence score. This pruning keeps
the algorithm from blowing up by trying to add too many extensions.

4. While extending a path for a given word, backtrace also the corresponding phone
sequence in terms of phone labels and ending times for the phones.

5. Keep extending all answers on the N-best list until no more extensions are pos-
sible, i.e., all answers span the entire sentence.

6. Sort the answers, remove any duplicates, and return up to the requested number
of answers.

The experimental evaluation of the new extended algorithm showed almost the
same speed than the previous word-dependent n-best search algorithm, the only sig-
nificant change was the memory required to store the needed extra information in the
backtrace, still it was within a reasonable size for the ATIS type task.

4.7 The Bilingual Speech Recognition System

We developed a multilingual speech recognizer capable of decoding a word string in
any of a given set of languages. Language identification is achieved simultaneously, as
a result of observing the language identity of the majority of the hypothesized words.
Our approach is to treat all words as equal tokens regardless of the languages they be-
long to. The statistics of the acoustic and language models are estimated using a mul-
tilingual speech database with orthographic transcriptions. Language-specific knowl-
edge is incorporated into the system through the dictionary of pronunciations used by
the HMMs and by specifying phoneme classes that may contain phonemes for differ-
ent languages. In this initial system, the phoneme sets do not overlap across languages.
The proposed approach has some interesting characteristics:

� HMMs of allophones (of any language) that belong to the same classes and share
similar contexts, could potentially share the same Gaussian codebooks. This
work investigates the effect of Gaussian sharing on recognition performance.

� Multilingual language models can be used for improving language identifica-
tion performance. It allows us to incorporate a high-level knowledge source for
language identification at the lexical level.

� The system is capable of recognizing sentences spoken in more than one lan-
guage. Mixing words from different languages, or "code-switching", is common
within linguistic communities where there is general familiarity with more than
one language.

57

� In real-time multilingual applications, a single decoder can be used. Alternative
approaches usually do language identification followed by a language-specific
recognizer or require multiple recognizers to run in parallel.

4.7.1 Experimental Setup

We experimented using a bilingual (English/Swedish) recognizer for the "Air Travel
Information System" (ATIS) domain. For rapid experimentation we limited and bal-
anced the amount of training data to 4000 male utterances per language. We organized
our experiments based on the sharing of model parameters at the acoustic and lan-
guage levels. For acoustic modeling, we used phonetically tied mixture (PTM) and
Genonic models (Digalakiset al., 1996). The PTM phoneme classes were organized
based on place of articulation for vowels and manner of articulation for consonants.
The English and Swedish phonemes were grouped according to the following classes:
front vowels, central vowels, back vowels, dipthongs, semivowels and glides, nasals,
voiced fricatives, unvoiced fricatives, affricatives, aspirated, voiced plosives, and un-
voiced plosives. Swedish HMM allophones of a given class share the same Gaussian
codebook. In a Genonic system, the sets of HMM states that share the same mixture
components are determined automatically using agglomerative clustering techniques
(Digalakiset al., 1996). We trained mono- and multilingual systems. Monolingual
systems share no parameters across languages while multilingual systems may share
Gaussian codebooks. Statistical grammars were constructed in the form of backoff bi-
gram language models (Katz, 1987). Monolingual language models were trained using
text from a single language. Multilingual language models were trained using all the
English and Swedish data pooled together. The latter resulted in a bilingual LM with a
single backoff node. Using a single backoff node allows hypotheses to contain words
in both languages. We are also planning to evaluate the case in which hypotheses are
constrained to have all words in the same language.

4.7.2 Multilingual Recognition

The multilingual PTM system with shared acoustic parameters uses 12 phoneme classes.
In this case, phonemes in the same classes share the same Gaussian codebook. The non-
shared PTM system is trained using 24 classes. Each language-specific set of phonemes
has a separate codebook. The Genone system is booted from the corresponding PTM
system. The shared system has twice as many Gaussian components as the non-shared
system, to maintain a constant ratio of Gaussian components to training vectors. The
initial results are summarized in Table 4.13. In the table, shared acoustic model means
that Gaussian codebooks are shared across languages. Shared language model means
that the LM shares a backoff node and the search space covers both languages. The
genonic system significantly outperforms the PTM system in most cases because of
the greater number of parameters. The difference in accuracy between the PTM and
genonic systems is limited by the total amount of training data available (4000 utter-
ances per language). We also observe that sharing acoustic parameters does not seem
to affect the word-error rate. Sharing a backoff node in the language model results in
significant degradation in performance. This degradation is more significant for the

58

Test Shared Shared
Language Acoustic Language PTM Genones

Model Model

English No No 7.7 7.5
English Yes No 8.0 7.4
English No Yes 7.9 7.9
English Yes Yes 8.1 8.1

Swedish No No 7.5 6.5
Swedish Yes No 7.8 6.7
Swedish No Yes 8.4 7.6
Swedish Yes Yes 8.8 7.6

Table 4.13: English/Swedish word error rates for various speech recognition systems

Test Number of Vocab OOV Perplexity
Language Training Size (%) Non- Shared

Sentences Shared LM
LM

English 20K 1165 0.2 22.4 23.8
Swedish 11K 1266 0.3 14.9 17.7

Table 4.14: Comparison of English and Swedish language models

Swedish test set: 6.5% to 7.6% for the genonic system with no acoustic parameter
sharing. The same case in English results in an increase from 7.5% to 7.9%. This
result could be associated with the greater increase in perplexity in the Swedish test
set compared to the English test set (see Table 4.14). The increase in error rate could
also be explained by the imbalance in the amount of data used for training the language
models.

4.7.3 Language Identification

We also analyzed the language identification performance of the bilingual system. In
Table 4.15, we show the percentage of words and sentences that contain a word in the
other language. We observe that about 1% of the recognized words have the wrong
language identity. Therefore, sharing the LM backoff node provides the flexibility of
mixing languages in an utterance at the expense of an increase in error rate. Good
language ID performance can easily be obtained by taking a simple majority on the
words of a hypothesis (Table 4.16).

59

Test Non-Shared Acoustic Shared Acoustic
Language Models Models

Word Miss Sent Miss Word Miss Sent Miss
(%) (%) (%) (%)

English 0.3 2.5 0.9 5.0
Swedish 1.1 6.4 0.9 4.9

Table 4.15: Language identification errors for words and sentences

Test Non-Shared Shared
Language Acoustic Models Acoustic Models

Sent Miss (%) Sent Miss (%)
English 0.0 0.2
Swedish 0.7 0.4

Table 4.16: Language identification errors after taking simple majority of words in
hypothesis

4.7.4 Summary

We investigated the effect of sharing acoustic and language parameters for multilin-
gual speech recognition. To improve multilingual performance, we are planning to
constrain the language model to require that all the words in a hypothesis have the
same language identity. We are also working on the optimization of the unconstrained
bilingual language model, and on new approaches for sharing acoustic models across
languages.

Chapter 5

Overview of Language
Processing

David Carter, Manny Rayner and Mats Wirén

5.1 Introduction

When attempting to implement a language-processing architecture for any kind of prac-
tically useful speech understanding system, there is a tension between two fundamental
requirements. Other things being equal, we would like our language processing to be
based on declarative, linguistically motivated descriptions of language; this gives us the
advantages of increased portability across domains and (to a lesser extent) languages,
and makes it easier to incorporate insights from theoretical linguistics into the system.
However, important as these goals are, it is even more important that the system be at
least moderately fast and robust. A system which is too slow and brittle is not of great
practical interest, even if it has a theoretically impeccable pedigree.

There is at the moment wide-spread disenchantment with the idea of building sys-
tems based on large hand-coded grammars. Critics of the approach generally offer
some variant of an argument which can briefly be summarized as follows:

1. Grammars take too long to develop.

2. They always leak badly.

3. They need substantial manual tuning to give reasonable coverage in a new do-
main.

4. Even after doing that, processing is still very slow.

5. At the end of the day, performance is anyway no better than what you would get
from a surface processing method.

6. So why bother?

60

61

We do not think these objections are unreasonable; they are based on many people’s
painful experience, including our own. However, we do not believe either that the prob-
lems listed above are insurmountable. This section gives an overview of the methodol-
ogy we have developed for attacking them. In equally brief form, our response is:

1. We keep our grammars, lexica and other linguistic descriptions as general as
possible, so that the large development cost is a one-off investment.

2. We make sure that the grammar contains all, or nearly all, of the difficult core
constructions of the language; then most coverage holes are domain-specific, and
relatively easy to locate and fix. See Chapters 9, 10 and 11.

3. Non-trivial tuning is needed when adapting the grammar for use in a specific do-
main. However, a large portion of this tuning can be performed semi-automatically
with supervised training procedures usable by non-expert personnel (see Chapter
7). The remaining work can be organized efficiently using balanced corpora to
direct expert attention where it will be most productive; see Section 8.

4. Automatic corpus-based tuning of the language description by grammar spe-
cialization and pruning makes grammar-based language processing acceptably
efficient; see Chapter 6.

5. Bottom-up processing strategies can intelligently combine the results of “deep”
linguistic processing and fall-back processing using shallow surface methods;
see Section 5.2.

6. The results show a clear improvement over those produced by the surface meth-
ods alone.

In the remainder of this chapter, we will focus on the issues of portability, speed
and robustness in the context of the Spoken Language Translator’s hybrid language-
processing architecture which was described in Section 1.2. Section 5.2 discusses those
aspects of the system concerned with robust parsing with domain-specialized linguistic
descriptions. Section 5.3 describes the semi-automatic domain adaptation process, and
Section 5.4 concludes.

5.2 Linguistically Motivated Robust Parsing

Section 1.2 described how grammar-based parsing contributes to the general robust
translation scheme. We now consider in more detail the question of how a corpus can be
used to specialize a general grammar so that it delivers practically useful performance
in a given domain. Can such a grammar be concretely useful if we want to process input
from a specificdomain? In particular, how can a parser that uses a general grammar
achieve a level of efficiency that is practically acceptable?

The central problem is easy to state. By the very nature of its construction, a general
grammar allows a great many theoretically valid analyses of almost any non-trivial
sentence. However, in the context of a specific domain, most of these will be extremely
implausible, and can in practice be ignored.

62

One possible solution is of course to dispense with the idea of using a general
grammar, and simply code a new grammar for each domain. Many people do this,
but one cannot help feeling that something is being missed; intuitively, there are many
domain-independent grammatical constraints, which one would prefer only to need to
code once. In the last ten years, there have been a number of attempts to find ways
to automatically adapt a general grammar and/or parser to the sub-language defined
by a suitable training corpus. For example, Briscoe and Carroll (1993) train an LR
parser based on a general grammar to be able to distinguish between likely and unlikely
sequences of parsing actions; Andryet al. (1994) automatically infer sortal constraints,
that can be used to rule out otherwise grammatical constituents; and Grishamet al.
(1984) describes methods that reduce the size of a general grammar to include only
rules actually useful for parsing the training corpus.

Our work on parsing (see Chapter 6 for a fuller description) is a logical continua-
tion of two specific strands of research aimed in this same general direction of focusing
the search on only a small portion of the space of theoretically valid grammatical anal-
yses.

The first is the popular idea ofstatistical tagginge.g. DeRose (1988), Cuttinget
al. (1992) and Church (1988). Here, the basic idea is that a given small segmentS of
the input string may have several possible analyses; in particular, ifS is a single word,
it may potentially be any one of several parts of speech. However, if a substantial
training corpus is available to provide reasonable estimates of the relevant parameters,
the immediate context surroundingS will usually make most of the locally possible
analyses ofS extremely implausible. In the specific case of part-of-speech tagging,
it is well-known (DeMarcken, 1990) that a large proportion of the incorrect tags can
be eliminated “safely”, i.e. with very low risk of eliminating correct tags. We gener-
alize the statistical tagging idea to a method called “constituent pruning”; this acts on
local analyses (constituents) for phrases normally larger than single-word units. Con-
stituents are pruned out if, on the basis of supervised training data (see Section 5.3.2
below), they seem unlikely to contribute to subsequent parsing operations leading to
an optimal analysis of the full sentence. Pruning decisions are based both on charac-
teristics of the constituents themselves and on the tags of neighbouring constituents.
From each constituent and pair of neighbouring constituents, adiscriminant(abbrevi-
ated description of the constituent or pair) is extracted, and the number of times this
constituent or pair has led to a successful parse in training is compared to the num-
ber of times it was created (Dagan and Itai, 1994; Yarowsky, 1994). Constituents that
are never or very seldom successful on their own, or that only participate in similarly
unpromising pairs, are pruned out, unless this would destroy the connectivity of the
chart.

The second idea we use is that ofExplanation-Based Learning(EBL; Mitchell et
al., 1986; van Harmelen and Bundy, 1988). We extend and generalize the line of work
described in Rayner (1988), Rayner and Samuelsson (1990), Samuelsson and Rayner
(1991), Rayner and Samuelsson (1994) and Samuelsson (1994b). Here, the basic idea
is that grammar rules tend in any specific domain to combine much more frequently
in some ways than in others. Given a sufficiently large corpus parsed by the original,
general, grammar, it is possible to identify the common combinations of grammar rules
and “chunk” them into “macro-rules”. The result is a “specialized” grammar; this has a

63

larger number of rules, but a simpler structure, allowing it in practice to be parsed very
much more quickly using an LR-based method (Samuelsson, 1994a). The coverage
of the specialized grammar is a strict subset of that of the original grammar; thus any
analysis produced by the specialized grammar is guaranteed to be valid in the original
one as well. The practical utility of the specialized grammar is largely determined by
the loss of coverage incurred by the specialization process. We show in Rayner and
Carter (1996) that suitable “chunking” criteria and a training corpus of a few thousand
utterances in practice reduce the coverage loss to a level which does not affect the
performance of the system to a significant degree (Rayner and Carter, 1996).

The two methods, constituent pruning and grammar specialization, are combined
as follows. The rules in the original, general, grammar are divided into two sets, called
phrasalandnon-phrasalrespectively. Phrasal rules, the majority of which define fairly
simple noun phrase constructions, are used as they are; non-phrasal rules are combined
using EBL into chunks, forming a specialized grammar which is then compiled further
into a set of LR-tables. Each chunk applies at a particular level of parsing, depending
on the kind of constituent it can create. Parsing proceeds bottom-up by interleaving
constituent creation and deletion. First, the lexicon and morphology rules are used to
hypothesize word analyses. Constituent pruning then removes all sufficiently unlikely
edges. Next, the phrasal rules are applied bottom-up, to find all possible phrasal edges,
after which unlikely edges are again pruned. Finally, the specialized grammar is used
to search for constituents at successively higher levels; pruning may be carried out after
any of these levels has been completed, the decision depending on whether pruning at
a given level offers an overall speedup for the domain in question.

5.3 Semi-automatic domain adaptation of grammars

Section 5.2 described how a general grammar can be made to deliver useful perfor-
mance, measured in terms of speed and robustness, within a given domain. We now
discuss the related question of how to achieve acceptable coverage. Our experience is
that when an unmodified general grammar is used to process utterances from a given
domain, it fails badly in two respects. Firstly, there are virtually always a number
of serious coverage holes, reflecting constructions common in the domain which are
inadequately handled by the grammar. Secondly, there is the ubiquitous problem of
ambiguity; even when the coverage holes are fixed, most utterances receive multiple
analyses, of which only a small proportion are correct.

In the remainder of the section, we discuss these two problems. In Section 5.3.1, we
describe a simple methodology which allows us rapidly to identify and fix the impor-
tant coverage holes in the grammatical rule sets. Section 5.3.2 describes a supervised
training method which attacks the problem of ambiguity.

5.3.1 Rational Development of Rule Sets

An unmodified general grammar generally delivers poor coverage in a specific domain.
However, our experience is that most of the utterances which fail to parse do so because
of a relatively small number of isolated problems; these are typically missing lexical

64

entries, missing grammar rules for idiosyncratic types of phrase common in the do-
main, and minor faults in existing rules. Grammar bugs of this kind are easy to fix.
The real problem is identifying them quickly and efficiently, so that effort is focussed
on bugs which significantly affect coverage in the given domain.

Our methodology is based on the idea of constructing a “representative subcorpus”.
By this, we mean a small subset of the main corpus, intelligently selected so as to
exemplify the important domain constructions in descending frequency order. Our
recipe for constructing representative subcorpora is roughly as follows, and can be
used by non-experts who have some basic familiarity with linguistics.

1. Since the grammar will operate bottom-up, it is unnecessary to be able to an-
alyze all utterances as complete units. Thus start by dividing long utterances
into smaller pieces, which can reasonably be thought of as units to be translated
separately.

2. Assign part-of-speech tags to the “split” utterances using some kind of tagger.

3. Group utterances into equivalence classes under the relationship of having the
same tag-sequence.

4. Manually regroup the classes produced by the previous step where necessary. In
some cases, this involves reclassifying utterances which were incorrectly tagged;
in others, a group may be split into two or three smaller groups, if the relevant
utterances are intuitively dissimilar enough. This step can be performed by non-
experts at the rate of several thousand sentences a day, using a simple interactive
tool.

5. For each of the new classes, manually designate an element which intuitively is
“most typical” of the class. This step can also be performed quickly by non-
experts using the same interactive tool.

6. Construct the “representative subcorpus” by selecting the designated element
from each class. Order the results by the size of the classes represented.

Our experience is that by starting at the top of the representative subcorpus and working
downwards, it is possible to fix the important coverage problems in a new corpus with
an investment of only a few weeks of expert effort. The representative subcorpus is
also a valuable resource for performing subsequent routine system testing.

5.3.2 Training by Interactive Disambiguation

We have already indicated how discriminants are used at run-time to decide which
constituents should be pruned. Similar discriminants are also used to choose between
alternative analyses for a sentence. However, deriving discriminant statistics involves
selecting the correct analysis. This requires human intervention, and we would pre-
fer the human in question not to have to be a system expert; but even for an expert,
inspecting all the analyses for every sentence would be a tedious and time-consuming
task. There may be dozens of quite detailed analyses that are variations on a small

65

number of largely independent themes: choices of word sense, modifier attachment,
conjunction scope and so on.

It turns out that some kinds of discriminant can be presented to non-expert users in
a form they can easily understand. For training on an utterance to be effective, we need
to provide enough such “user-friendly” discriminants to allow the user to select the
correct analyses, and as many as possible “system-friendly” discriminants that, over
the corpus as a whole, distinguish reliably between correct and incorrect analyses and
can be used for this purpose at run time, either in constituent pruning or in preferring
one analysis from a competing set. Ideally, a discriminant will be both user-friendly
and system-friendly, but this is not essential.

We have developed an interactive program, the TreeBanker (described in full in
Section 7.3), which maintains a database of the discriminants that apply to the different
analyses of each sentence in a corpus. It presents discriminants to the user in a conve-
nient graphical form. Among the most useful discriminants are the major categories for
possible constituents of a parse; thus for the sentence “Show me the flights to Boston”
the string “the flights to Boston” as a noun phrase discriminates between the correct
reading (with “to Boston” attaching to “flights”) and the incorrect one (with it attach-
ing to “show”). Other discriminants describe semantic triples of head, modifier and
dependent (for example, “flight+to+Boston”, which is correct, and “show+to+Boston”,
which is incorrect), and other information about analyses such as the sentence type or
mood.

The user may click on any discriminant to select it as correct or incorrect. Typically
there will be far more discriminants presented than the number of distinct differences
between the analyses. The effect of this is that the user can give attention to whatever
discriminants he finds it easiest to judge; other, harder ones will typically be resolved
automatically by the TreeBanker as it reasons about what combinations of discrim-
inants apply to which analyses. For example, when the CLE analyses the sentence
“What is the earliest flight that has no stops from Washington to San Francisco on Fri-
day?”, it yields 154 analyses and 318 discriminants, yet the correct analysis may be
obtained with only two selections. Selecting “the earliest flight ... on Friday” as a noun
phrase eliminates all but twenty of the analyses produced, and approving “that has no
stops” as a relative clause eliminates eighteen of these, leaving analyses which are both
correct for the purposes of translation. 152 incorrect analyses may thus be dismissed
in less than fifteen seconds.

5.4 Summary

This chapter has presented an overview of a methodology which, in our opinion, demon-
strates that hybrid approaches based on general hand-coded grammars can be prac-
tically useful in the context of a realistic speech-understanding task like medium-
vocabulary spoken language translation. In particular, we have addressed what we
see as the key questions: achieving adequate speed, robustness and coverage within a
specific domain, and adapting the general grammar to the domain without excessive
effort.

In the following chapters we will return to all of these points in greater detail,

66

and present detailed performance figures to substantiate the claim that the methods
described can indeed be justified in practical terms.

Chapter 6

Customization of Linguistic
Knowledge

David Carter and Manny Rayner

In this chapter, we show how a general grammar may be automatically adapted for
fast parsing of utterances from a specific domain by means of the two methods al-
ready outlined in Section 5.2: constituent pruning, and grammar specialization based
on explanation-based learning. These methods together give an order of magnitude in-
crease in speed, and the coverage loss entailed by grammar specialization is reduced to
approximately half that reported in previous work. Experiments described here suggest
that the loss of coverage has been reduced to the point where it no longer causes sig-
nificant performance degradation in the context of a real application. We also discuss
another task that requires customization: that of choosing the correct analysis from
among the many possibilities resulting from parsing.

The chapter is structured as follows. First, we give an overview of the CLE’s lan-
guage analysis process, particularly the way it interfaces to speech recognition. Sec-
tion 6.2 then describes the constituent pruning method. Section 6.3 describes the gram-
mar specialization method, focusing on how the current work extends and improves on
previous results. Section 6.4 explains how customized data is used in analysis choice.
Section 6.5 describes experiments where the constituent pruning/grammar specializa-
tion method was used on sets of previously unseen speech data. Section 6.6 concludes
and sketches further directions for research, which we are in the process of investigat-
ing.

6.1 Linguistic Analysis in the Core Language Engine

The analysis component of the CLE takes as input from Decipher an N-best list (typi-
cally N=5; see Section 16.1) of utterance hypotheses, each with an associated acoustic
score. The CLE converts the list to a scored lattice of words, which it analyses mor-
phologically, creating a well-formed substring table of lexical constituents. This table

67

68

Cost Sentence hypothesis
0 list all flights leaving denver between eight p m and nine p m

176 list all flights leaving in denver between eight p m and nine p m
268 list all flights leaving denver between eight a p m and nine p m
368 list all flights leaving denver between eight p m and nine a p m
395 list all flights leaving denver and between eight p m and nine p m

0 list all flights leaving denver between eight p ...
176 in denver ...
268 a p ...
368 ...
395 and between ...

Figure 6.1: N-best list and part of word lattice for example sentence

is parsed in several stages. At each stage, a different set of rules is applied to create
further constituents. Before some of the stages (the choice depending on the effect on
overall system efficiency), the table is pruned of constituents that, on the evidence of
training, seem unlikely to contribute to a complete, correct interpretation. After the last
stage of parsing, such interpretations are, when possible, extracted from the table. If
there is more than one interpretation, one of them is selected, also on the basis of judg-
ments made during training, for transfer to the target language and thence generation
and synthesis. If no full interpretations are created (and, indeed, before any attempt
is made to create them), partial analyses are also sent for transfer and generation, as
explained in Section 1.2; however, for the sake of simplicity we concentrate here on
the creation of full analyses.

For example, if the user says “List all flights leaving Denver between eight p m and
nine p m”, the N-best list may be as shown in the top half of Figure 6.1. Each sentence
hypothesis is shown with its associated acoustic cost (shortfall from the score of the
top hypothesis). The figure also shows part of the word lattice to which the N-best list
is converted.

After a lexical edge is created for every word analysis, the first stage of pruning is
carried out. In this particular case, the data collated from training leads all the edges
with non-zero acoustic costs to be pruned out. Some zero-cost edges with inappropriate
syntactic categories are also pruned, e.g. “list” as a noun (rather than a verb) and “p m”
as a sequence of letters (rather than a time marker).

The first stage of parsing then applies relatively low-level rules, such as those that
create simple NPs from determiners and head nouns (“the flights”), and time phrases
from numbers and time suffixes (“eight p m”, “nine p m”). In the next stage of prun-
ing, the edges for component words of these particular phrases are deemed unlikely to
make any furtherdirectcontribution to correct analyses – i.e. to serve as the immediate
daughters in correct rule applications that have yet to be made – so they are pruned,
along with a number of other edges, both lexical and parser-created.

After further parsing stages, between three and five complete analyses are produced

69

(the exact number depending on how the system is configured). One of these is selected
as correct by applying preference data derived from training to successively eliminate
its competitors; this process is described in more detail in section 6.4 below.

The analyses output by the CLE are quasi-logical forms (QLF; Alshawi (ed), 1992,
Alshawi and Crouch, 1992). QLF is a version of first-order predicate logic augmented
with constructs for unresolved referential, function word-sense, and quantifier-scope
ambiguities. Differences between the QLFs for a sentence reflect different choices of
content word senses and syntactic constructs. QLFs are constructed by semantic rules
which are in a many-to-one correspondence with the syntax rules used in parsing; thus
syntactic decisions such as PP attachments are reflected quite directly in QLFs.

6.2 Constituent Pruning

Before each of the CLE’s parsing stages, the constituent table (henceforth, the chart)
may be examined to locate edges that are relatively unlikely to make any further con-
tribution to correct analyses – i.e., edges that are very likely either to be wrong, or only
to be correct as daughters of other existing edges, and not to be directly useful as input
to further parsing stages. When such edges are located, we remove them, or at some
stages of parsing (because the creation of QLFs once parsing is complete relies on their
continued existence) retain them but hide them from further parsing stages.

Currently, we prune before the phrasal and full parsing stages. When the stratified
EBL grammar [REF] is used, pruning may take place between its stages too, although
in the current implementation we do not do this because the resulting savings in parsing
time are small enough to be outweighed by the time taken to prune.

For example, after the string “Show flight D L three one two” is lexically analysed,
edges for “D” and “L” as individual characters are pruned because another edge, de-
rived from a lexical entry for “D L” as an airline code, is deemed far more plausible.
Similarly, edges for “one” as a determiner and as a noun are pruned because, when
flanked by two other numbers, “one” is far more likely to function as a number.

Phrasal parsing then creates a number of new edges, including one for “flight D L
three one two” as a noun phrase. This edge is deemed far more likely to serve as the
basis for a correct full parse than any of the edges spanning substrings of this phrase;
those edges, too, are therefore pruned. As a result, full parsing is very quick, and only
one analysis (the correct one) is produced for the sentence. In the absence of pruning,
processing takes over five times as long and produces 37 analyses in total.

6.2.1 Discriminants for Pruning

Our algorithm estimates the probability of correctness of each edge: that is, the proba-
bility that the edge will contribute directly (as an immediate daughter of a correct edge
to be built later in parsing) to a correct full analysis of the sentence, given certain lexical
and/or syntactic information about it. Each piece of information used as a criterion for
a pruning decision can be viewed as adiscriminant(Dagan and Itai, 1994; Yarowsky,
1994) because it potentially discriminates between correct and incorrect analyses. As

70

Section 6.4 will explain, discriminants (of a different kind) are also the basis of the
preference component of the CLE which chooses between competing QLF analyses.

In both the pruning and preference phases, we would like to estimate the probabil-
ity that when a discriminant occurs, it characterizes (what will eventually become) the
correct analysis of the input. As a shorthand, we call such occurrencesgoodones, and
estimate their probabilities using counts of good and bad occurrences encountered dur-
ing training (see Chapter 7). For a pruning discriminantd, a good occurrence is when
d is true of (i.e. describes a part of) the syntactic parse tree eventually used to create
the correct analysis of the input, and a bad occurrence is whend occurs in the chart
but does not contribute to the correct analysis. Ifd is a preference discriminant, a good
occurrence is when it is true of the correct analysis but not of every analysis, and a bad
occurrence is when it is true of some analyses but not of the correct one. In both cases,
the probability estimate is a smoothed version of the maximum likelihood estimate,1

i.e. of the number of good occurrences divided by the total number of occurrences,
both good and bad.

We describe in Section 6.2.3 below the way in which the probability estimates
for different discriminants are calculated, taking into account data sparseness and the
influence of acoustic scores. For the moment, we will take these estimates as given.

The current discriminants used in pruning, each associated with an edge in the
chart, are as follows:

� its right bigram(s). A right bigram is a sequence consisting of the current edge
followed by an edge immediately to its right, considering only the following data
about each of the two edges:

– its class. For a lexical edge, the class is thesemantic word classpre-defined
for the word in question: words with similar distributions, such as city
names, are grouped into classes to overcome data sparseness. If no explicit
class is defined for the word, the word itself is used. For for a non-lexical
edge, the name of the final (topmost)grammar rulethat was used to create
it is used as the class.

– its tag: usually its major category symbol, although a few categories corre-
spond to several tags to allow additional distinctions derived from feature
values to be represented.

� the left bigram(s)for the edge: as above, but considering the current edge and
one of its left neighbours.

� The “tree-gram” for the tree of grammar rules, with words at the leaves, that
gave rise to the edge in question. The tree-gram for a tree is a tuple consisting
of the class and tag (see above) of the leftmost terminal node, the mother (root)
node of the tree, and the rightmost terminal node. For example, the tree-gram
for a noun-phrase analysis of the phrase “the first Delta flight” would be

(the/detn, np_det_nbar/np, flight/nbar)

1The maximum likelihood value of a parameter is that value which maximizes the likelihood of observing
the data that have in fact been observed. This isnot the same thing as the most likely value of the parameter.

71

Here, the leftmost and rightmost daughters “the” and “flight” are their own
classes; the tags are the major category symbols, except that the tagdetn stands
for adet (determiner) which cannot function on its own as a noun phrase (con-
trast “which”).

Other discriminants, such as trigrams, finer-grained tags and alternative definitions
of tree-grams, are obviously possible, and could be applied straightforwardly within
the framework described here. The system in fact allows trigrams to be applied, but on
ATIS data, their use seems unnecessary. When a test was run on 100 unseen test English
N-best lists, and trigram-based pruning was applied after tree-gram and bigram-based,
only 5% more constituents were pruned out. However, there were nearly three times
as many trigram-based pruning rules (i.e. trigram discriminants with sufficiently low
probability estimates) as tree-gram and bigram ones put together, and using trigrams
more than doubled the time required for the first pruning stage.

The score (probability estimate) for an edge is defined as the minimum of its tree-
gram score, its maximum left-bigram score over all the possible choices of left neigh-
bour, and its maximum right-bigram score over all the possible choices of right neigh-
bour. This is justified as follows.

Firstly, we take the maximum over possible neighbours because a correct edge par-
ticipates in only one left bigram and one right bigram (at a given level) in the winning
parse tree. Thus, for example, “to” can function either as preposition (“p”) or as an
infinitive marker (encoded as a verb, “v”, in the CLE grammar of English). In the sen-
tence “Show me flights to that airport”, the bigram(to/v,that/detn) scores very
badly, but this should not lead to the determiner edge for “that” being penalized, be-
cause the bigram(to/p,that/detn) has a much better score, and it is in fact this
bigram that characterizes the correct parse. If we did penalize the determiner edge for
“that” because of the first bigram, we would run the risk of reducing its scores to near
those of the other (noun phrase and complementizer) edges for “that” and therefore
failing to prune those two edges.

Secondly, taking the overall minimum involves making an assumption of maximal
statistical dependence (Yarowsky, 1994), rather than the more common assumption of
full independence. If eventsE�� E�� ���� En are fully independent, then the joint prob-
ability P �E� � ��� � En� is the product ofP �E�����P �En�, but if they are maximally
dependent, it is the minimum of these values. Of course, in this and most other situa-
tions, neither assumption is any more than an approximation to the truth. But assuming
dependence makes sense because there is likely to be a fair amount of dependence
between discriminants that all reflect local syntactic information. Also, on the basis
of local information alone, such as that reflected in the pruning discriminants, it is not
usually possibly to predict with confidence that a particular edge is highlylikely to con-
tribute to the correct analysis (since global factors will also be important) but it often
is possible to spot highlyunlikelyedges using one (or more) of the discriminants avail-
able. Extracting a discriminant from an edge involves taking a particular view of that
edge by abstracting out a small (but, we hope, relevant) part of the information about
it that is present in the chart. The resulting probability estimate reflects the number of
times that edges which, on the view represented by the discriminant, are identical to
the current one, have been judged right or wrong in training. If we can find a view of

72

(i.e. a discriminant for) an edge that identifies it with a set of training edges that are
virtually always wrong, then we are justified in pruning it, regardless of the views of
the edge represented by other discriminants. Also, taking minima means there is no
need to include in the run-time system any discriminant scores that are not sufficiently
low to trigger pruning; this much reduces the amount of data required at run-time.

A further advantage of taking minima is that if we do so, the estimate of the joint
probability depends much less strongly on the number of events compared, and so
estimates for alternative joint events can be directly compared, without any possibly
tricky normalization, even if they are composed of different numbers of atomic events.
This property is desirable: it means that further discriminants could be introduced that
are only defined for some kinds of edge.

6.2.2 Deciding which Edges to Prune

At each pruning stage (before phrasal parsing, before full parsing, etc), discriminants,
with their accompanying probability estimates, are calculated for each edge in the chart.
An estimate of 1/200 or lower is taken as sufficient grounds for pruning an edge. Prun-
ing is carried out on edges with successively higher estimates until either this threshold
is reached, or (more rarely) pruning the next edge out would destroy the connectivity of
the chart, i.e. would remove all the remaining complete paths through it and therewith
the hope of a full parse.

For efficiency reasons, the implemented system in fact involves a small change to
the algorithm so far described. We first calculate tree-gram scores, then prune out any
edges judged sufficiently unlikely on tree-gram grounds alone (bearing in mind that
because the overall probability estimate is defined as the minimum of the tree-gram
and bigram scores, if the tree-gram estimate is below the threshold then the overall
estimate will also be). For non-initial pruning stages, this often results in quite a lot
of edges being pruned, which greatly reduces the number of bigrams to be examined,
speeding up pruning considerably.

Left and right bigram scores are then calculated together, and thosebigramswhose
scores fall below the threshold are marked with their scores. Alledgeswhose left bi-
grams are all marked, and/or whose right bigrams are all marked, are also then marked,
as are any still-unmarked bigrams in which they participate. Scores are propagated in
this way until no further change occurs, and then marked edges are pruned in order of
increasing score.

6.2.3 Probability Estimates for Pruning

As already stated, the probability estimate for an edge (or N-gram of edges) according
to a certain criterion (discriminant) is based on the numbers of occasions in training
that edges with the same description according to that discriminant did and did not,
at the parsing level in question, contribute directly to correct parses. Suppose, for
example, that a given bigram discriminant was correct (“good”) onG occasions and
incorrect (“bad”) onB. Then we would want an estimate for that discriminant of
aroundG��G�B�.

73

However, this fairly simple picture is complicated in three ways. Firstly, as always
with tasks of this kind, smoothing is needed for low values ofG and/orB. Secondly,
and relatedly, for pruning to be as effective as possible we need to look at generalized
discriminants: the specific bigram�C��T�� C��T�� may haveG � 	 andB �
, which
on its own hardly inspires enough confidence to justify a pruning decision, but it may
be that the more general set of bigrams satisfying�C��T�� ��T��, where� is any value
of C�, hasG � 	 andB � �		, which presents a rather different picture. Thirdly,
account must somehow be taken of the acoustic scores for different word candidates
contributed by the recognizer – and, by implication, for edges constructed from them
during parsing. We discuss each of these complications in turn.

Complication 1: Smoothing

GivenG good (correct) occurrences of a datum such as a tree-gram or bigram, andB
bad ones, the maximum likelihood estimate of a subsequent occurrence being good is
G��G � B�. However, such an estimate is not a good basis for pruning; in particular,
if G � 	, it evaluates to zero for any positiveB, however small or large. To smooth the
estimate, we need to assume some prior underlying distribution for the events (“prior”
in the sense of it being our best guess prior to seeing any occurrences), and take as
our estimate the expected value of the posterior distribution given that prior and our
observations ofG andB.

Suppose we assume that the probabilitypd that a given occurrence of a datum
d will be good is itself distributed uniformly at random asd varies. That is, if we
take a particular datum for which we have not yet seen any occurrences at all, then
any probability between 0 and 1 that a given occurrence ofd will be good is equally
likely (but all occurrences of the samed are governed by thesamevaluepd). In other
words,d is as likely to be a reliably good discriminant (pd=0.99, say) as to be a fairly
uninformative one (e.g.pd=0.48) or a reliably bad one (saypd=0.02). This (we assume)
is the prior distribution forpd: its density function isfd�p� � � for all p from 0 to 1.
The expected value ofpd (in other words, our estimate of the probability that a new
occurrence ofd will be good) is �

� .
Now suppose we observeG good occurrences ofd andB bad ones. The density

functiongd�p� for the posterior distribution forpd is given by the following standard
formula, which is related to Bayes’ rule:

gd�p� �
fd�p�P �G�Bjp�R �

� fd�x�P �G�Bjx�dx
(6.1)

The expected value ofgd�p� is given by the formula

E�gd� �

Z �

�

xgd�x�dx (6.2)

�

R �
�
xG����� x�BdxR �
� x

G��� x�Bdx
(6.3)

sinceP �G�Bjx�, the probability of gettingG good outcomes andB bad ones from
a binary distribution with probabilityx of a good outcome, isxG�� � x�B times a

74

combinatorial constant which can be ignored here as it is the same for numerator and
denominator of equation 6.1.

A standard result is thatZ �

�

xMyNdx �
M �N �

�M �N � ���
� (6.4)

The formula forE�gd� therefore reduces to

E�gd� �
�G� ���B���G�B �
��

G�B���G�B � ���
(6.5)

�
G� �

G�B �

(6.6)

which is our posterior estimate for the probability that a new occurrence ofd will be
good, given a uniform prior,G good observations andB bad ones.

It can be seen that for non-negativeG andB, equation 6.6 gives	 � E�gd� � �,
andE�gd� strictly increasing inG and strictly decreasing inB. These are desirable
properties: no matter how many bad occurrences we observe, the possibility of the
next one being good is never quite ruled out, but it is viewed as increasingly unlikely.
In terms of pruning, this means that a datum with no good occurrences and 100 bad
ones scores worse than one with no good occurrences and 10 bad ones, and is therefore
viewed as a better candidate for pruning.

However, our initial conservative assumption of a uniform prior distribution turns
out not to fit our population of data very well. Examination of training data suggests
that there are relatively few datad such thatpd is near the middle of the range; values
close to	 and� (especially to) are much more common. The effect of this can be
seen by comparing two hypothetical data, sayd� with �G�B� � �	� � andd� with
�G�B� � ��� ��. These both giveE�gd� � 	�� according to equation 6.6, but in
practiced� would be rather more likely to yield a good outcome on the next observation
(after all, it has already done so nine times) thand�, whose true underlying probability
is likely to be closer to zero.

Equation 6.6 can be interpreted as saying that to estimate the probability that the
next occurrence ofd will be good, we should use the maximum likelihood estimate
not for the events that we have actually observed (G good andB bad) but for a set of
G� � G � � good andB � � B � � bad: i.e. the set we observed plus one more good
event and one more bad (the symmetry reflecting the uniform prior). If we apply this
strategy but take as our prior distribution what until now has been our posterior one,
we get

G� � G� �
G� �

G�B �

B� � B � �
B � �

G�B �

where� is the number of extra events assumed. Setting� arbitrarily to one and substi-
tuting into the maximum likelihood formula G�

G��B�
we get an estimate of

G�G�B � �� � �

�G�B��G�B � �� �

(6.7)

75

for the expected value of the (new) posterior distribution, i.e. for the probability that
the next observed occurrence ofd will be good. This formula has the desirable prop-
erties noted above (never zero, strictly increasing inG and decreasing inB) but seems
to do better with cases liked� andd� above: ifd� has�G�B� � �	� � then ad� with
�G�B� � ��� ��, rather than��� ��, will be given a similar estimate. This looks intu-
itively better: training data with counts like these tend in practice to be about equally
likely to yield a good outcome on the next trial. Furthermore, to fall below the thresh-
old of �

��� required for pruning to occur, ifG � 	 we needB � ��; for non-zeroG,
B �
		 � G is approximately sufficient, and these values also seem to work well in
practice.

Of course, the justification for formula 6.7 is only informal and it is possible that
other formulae might give better results. However, our past experience with this kind
of problem suggests that what is important is to find a formula whichqualitatively
reflects the nature of the data being processed; once this has been achieved, quantitative
optimizations tend to be relatively unproductive. In fact, we have observed no failures
in pruning (or preference calculations, where this formula is also used – see Section
6.4.1) caused by the formula yielding intuitively wrong values given the�G�B� values
it is provided with. This was not the case for the earlier formula 6.6 based on the
uniform prior.

Complication 2: Generalized Discriminants

Suppose the pruner comes across an edge for “you” as an NP followed by one for “M”
as a character. In the ATIS domain, this seems fairly unlikely to be good (and may
well result from a recognizer error). This particular bigram is in fact always bad when
it occurs in the ATIS training data used for English; the problem is that it only occurs
there twice, anda priori, counts ofG � 	� B �
 (giving a probability estimate of
�
�� from equation 6.7) do not justify pruning. However, bigrams in which “you” as
an NP is followed byanycharacter occur a total of 22 times in training, with all the
occurrences being bad ones; and bigrams for any NP followed by “M” as a character
occur 471 times, again all bad. Either of these counts does justify pruning.

On the other hand, there are also cases where a maximally specific bigram (with all
four fields specified) has counts that do (correctly) trigger pruning, but its more general
counterpart does not, because the behaviour of other lexemes with the same tag is rather
different (some of them giving rise to good occurrences, which makeG non-zero and
push the estimate above the threshold). How, therefore, should we decide how general
a set of bigrams to consider when returningG andB counts for a datum encountered
at run time?

We solve this problem by effectively considering the possible “views” of a datum
implied by each of a range of different abstractions. For bigrams�C�� T�� C�� T��,
we generalize over the left-hand and/or right hand classes, to give the three patterns
��� T�� C�� T��, �C�� T�� �� T�� and��� T�� �� T��. We do not generalize over tags, be-
cause there is no particular reason why edges for the same word but different syntactic
categories should behave similarly (as would be implied by a pattern like�C�� �� C�� T��),
and because generalizing over both class and tag in the same position (e.g.��� �� C�� T��)
would be equivalent to reducing to tree-grams, which are a detailed kind of unigram.

76

For tree-grams themselves, which have six places, we generalize in 13 of the 63 (i.e.

� � �) conceivable different ways, those again being the ones which seem likely to
yield useful patterns.

At run time, instead of calculating an edge probability by minimizing over only
three types of discriminant, we effectively minimize over the original, specific, types,
and all those created by generalization as well. In fact, it is possible to precompile
most of this minimization by only storing event counts that can contribute minimum
values for some data that may occur at run time. Thus for the “you M” example above,
the bigram��� np�M� character�, for any NP, not just “you”, followed by the char-
acter “M”, is the one with the most informative score, and this is the only matching
one whose score is retained. We also include “inhibitory” records in the data used for
pruning, for cases where the counts for more specific data include enough good oc-
currences, and few enough bad ones, to override the pruning decision that would be
implied by more general types.

The data used for pruning at run-time in the English ATIS system consists of about
4,000 records at each of the first two levels, which with suitable indexing allows rea-
sonably efficient pruning. At each level, about three quarters of the records are general-
ized, and around 10% are inhibitory. This relatively small set of records is derived from
around 40,000 different tree-grams and bigrams extracted during trainingbeforegen-
eralization. The reduction in numbers is due partly to the fact that many of these items
have counts that in fact do not justify pruning, and so there is no reason to keep them;
and partly to the fact that when a generalization is found that has counts that would
trigger pruning, this usually allows most or all of the specific records contributing to it
to be discarded.

Complication 3: Acoustic Scores

When recognizer output in the form of N-best lists is being processed, it is desirable to
allow the pruning decision to be swayed by the acoustic score of the edge(s) involved.
In order to do this, when we calculate probability estimates using formula 6.7, we
pretend that the sample ofG good occurrences on which the estimate is based came
not from an overall sample ofG � B occurrences but of�G � B���, where� is an
estimate, derived from training on N-best lists, of the probability that a datum covering
the given number of adjacent words with a given (maximal) acoustic score shortfall is
in fact part of the correct word sequence (as defined by the reference version provided
with all ATIS utterances).2 When the word(s) involved are part of the top hypothesis
in the N-best list, with a shortfall of zero,� will be close to 1, reflecting the fact that
words in the top hypothesis are usually correct; for larger shortfalls, and to a lesser
extent for larger numbers of words forming a sequence,� will be smaller.

Penalizing acoustically poor edges by multiplying linguistic (tree-gram and N-gram
based) and acoustic scores together, rather than taking their minimum, corresponds, as
pointed out in Section 6.2.1 above, to assuming statistical independence between these
sources of information. This seems reasonable, because there is no obvious reason
why particularsyntacticpatterns should be more characteristic of some positions in the

2We do not take the more obvious step of multiplyingG by � instead of dividingG� B by it, because
G may be zero.

77

N-best list than others. It is also practically appropriate: if we take minima, we run the
risk of finding ourselves in a situation where two edges of the same class and tag (say,
two city names) but different acoustic quality both get a linguistic score that is worse
than either of their acoustic scores and justifies pruning, and hence get the same overall
minimum score. However, we suppose, both edges cannot be pruned, because to do
so would destroy the connectivity of the chart. Clearly, in this case, we want to prune
the acoustically poorer edge; but that can only happen if we multiply, rather than take
minima.

A similar adjustment should in principle be made during training; if a given datum
only ever occurs in acoustically poor hypotheses, it may fail ever to be correct simply
because it involves words that were not uttered, rather than because it is linguistically
implausible. We do not make any such adjustment, partly because it would complicate
the generalization procedure and other parts of the training process, but also because
if, as already argued, syntactic and acoustic scores are likely to be largely independent,
then the required adjustment would not in any case make very much difference. One
might even argue that if a datum involves a word sequence that is always found to be
wrong in training, itshouldbe penalized at run-time in exactly the way that we do by
notadjusting in the way described.

6.2.4 Relation to other pruning methods

As the example presented at the beginning of Section 6.2 and the experiments to be
described below in Section 6.5 suggest, judicious pruning of the chart at appropriate
points can greatly restrict the search space and speed up processing. Our method has
points of similarity with some recent work in Constraint Grammar3 and is an alternative
to several other, related schemes.

Firstly, a remarked earlier, it generalizestagging: it not only adjudicates between
possible labels for the same word, but can also use the existence of a constituent over
one span of the chart as justification for pruning another constituent over another span,
normally a subsumed one, as in the “D L” example. This is especially true in the
second stage of pruning, when many constituents of different lengths have been created.
Furthermore, it applies equally well to lattices, rather than strings, of words, and can
take account of acoustic plausibility as well as syntactic considerations.

Secondly, our method is related tobeam search(Woods, 1985). In beam search,
incomplete parses of an utterance are pruned or discarded when, on some criterion,
they are significantly less plausible than other, competing parses. This pruning is fully
interleaved with the parsing process. In contrast, our pruning takes place only at cer-
tain points: currently before parsing begins, and between the phrasal and full parsing
stages. Potentially, as with any generate-and-test algorithm, this can mean efficiency is
reduced: some paths will be explored that could in principle be pruned earlier. How-
ever, as the results in section 6.5 below will show, this is not in practice a serious
problem, because the second pruning phase greatly reduces the search space in prepa-
ration for the potentially inefficient full parsing phase. Our method has the advantage,

3Christer Samuelsson, personal communication, 8th April 1996; see Karlssonet al (1995) for back-
ground.

78

compared to beam search, that there is no need for any particular search order to be
followed; when pruning takes place, all constituents that could have been found at the
stage in question are guaranteed already to exist.

Thirdly, our method is a generalization of the strategy employed by McCord (1993).
McCord interleaved parsing with pruning in the same way as us, but only compared
constituents over the same span and with the same major category. Our comparisons
are more global and therefore can result in more effective pruning.

6.3 Grammar specialization

As described in Section 5.2 above, the non-phrasal grammar rules are subjected to two
phases of processing. In the first, “EBL learning” phase, a parsed training corpus is
used to identify “chunks” of rules, which are combined by the EBL algorithm into sin-
gle macro-rules. In the second phase, the resulting set of “chunked” rules is converted
into LR table form, using the method of Samuelsson (1994a).

There are two main parameters that can be adjusted in the EBL learning phase.
Most simply, there is the size of the training corpus; a larger training corpus means a
smaller loss of coverage due to grammar specialization. (Recall that grammar special-
ization in general trades coverage for speed). Secondly, there is the question of how
to select the rule-chunks that will be turned into macro-rules. At one limit, the whole
parse-tree for each training example is turned into a single rule, resulting in a special-
ized grammar all of whose derivations are completely “flat”. These grammars can be
parsed extremely quickly, but the coverage loss is in practice unacceptably high, even
with very large training corpora. At the opposite extreme, each rule-chunk consists
of a single rule-application; this yields a specialized grammar identical to the original
one. The challenge is to find an intermediate solution, which specializes the grammar
non-trivially without losing too much coverage.

Several attempts to find good “chunking criteria” are described in the papers by
Rayner and Samuelsson quoted above. In Rayner and Samuelsson (1994), a simple
scheme is given, which creates rules corresponding to four possible units: full utter-
ances, recursive NPs, PPs, and non-recursive NPs. A more elaborate scheme is given
in Samuelsson (1994b), where the “chunking criteria” are learned automatically by an
entropy-minimization method; the results, however, do not appear to improve on the
earlier ones. In both cases, the coverage loss due to grammar specialization was about
10 to 12% using training corpora with about 5,000 examples. In practice, this is still
unacceptably high for most applications.

Our current scheme is an extension of the one from Rayner and Samuelsson (1994),
where the rule-chunks are trees of non-phrasal rules whose roots and leaves are cate-
gories of the following possible types: full utterances, utterance units, imperative VPs,
NPs, relative clauses, VP modifiers and PPs. The resulting specialized grammars are
forced to be non-recursive, with derivations being a maximum of six levels deep. This
is enforced by imposing the following dominance hierarchy between the possible cate-
gories:

utterance 	 utterance_unit 	 imperative_VP

79

	 NP 	 {rel, VP_modifier} 	 PP

The precise definition of the rule-chunking criteria is quite simple, and is reproduced
in the appendix.

Note that only the non-phrasal rules are used as input to the chunks from which
the specialized grammar rules are constructed. This has two important advantages.
Firstly, since all the phrasal rules are excluded from the specialization process, the
coverage loss associated with missing combinations of phrasal rules is eliminated. As
the experiments in the next section show, the resulting improvement is quite substan-
tial. Secondly, and possibly even more importantly, the number of specialized rules
produced by a given training corpus is approximately halved. The most immediate
consequence is that much larger training corpora can be used before the specialized
grammars produced become too large to be handled by the LR table compiler. If both
phrasal and non-phrasal rules are used, we have been unable to compile tables for rules
derived from training sets of over 6,000 examples (the process was killed after running
for about six hours on a Sun Sparc 20/HS21, SpecINT92=131.2). Using only non-
phrasal rules, compilation of the tables for a 15,000 example training set required less
than two CPU-hours on the same machine.

6.4 Discriminant-Based QLF Preferences

The supervised training process results in a database of discriminant occurrences. For
each discriminant we have a count of its “good” and “bad” occurrences. We have
already seen how these counts are used to provide probability estimates to drive the
pruning process. But how can they be reliably used to choose between full analyses
once analysis is complete?

We follow the general approach of Yarowsky (1994) and, in both pruning and QLF
preference application, consider discriminants in order of their strength, ruling out op-
tions until we have exactly one analysis left.

6.4.1 Discriminant Scoring for Analysis Choice

How should the information available for the different QLFs be used to choose a single
correct QLF? While many schemes are possible (several are discussed by Alshawi
and Carter, 1994), we motivate ours in the following way. At any stage in applying
discriminants to prefer one analysis over the others, we have a number of analyses
remaining, each of which corresponds to a different set of discriminants that have yet to
be applied. Our next step will be to choose one of these discriminants and throw away
the analyses it doesn”t apply to (or, if in training it reliably characterized incorrect
analyses, throw away the ones itdoesapply to). We want this step to be as safe as
possible: that is, to select the discriminant that minimizes the chance that we will
throw out the correct analysis.

Therefore, for each discriminant occurring in training, we count the number of
sentences for which it is a “good” discriminant (applies to the correct analyses and,
because it is a discriminant rather than just any property, not toall of the incorrect

80

ones) and the number for which it is “bad” (applying to some or all incorrect ones
but not the correct one). Its run-time value is then a smoothed estimate (using the
formula 6.7 derived in Section 6.2.3) of the probability that a new occurrence of it as
a discriminant will be good; the closer this value is to zero or one, the stronger the
discriminant is deemed to be.

In our example, “List all flights leaving Denver between eight p m and nine p
m”, a triple-based discriminant for the pattern “(list/show) -between ... and ...” was
judged bad on 50 occasions during training and never judged good (G � 	� B �
�	, giving an estimate of 1/2652). This makes it the strongest discriminant (the one
whose probability estimate is closest to zero or one; in this case, it is close to zero),
so it is applied first, and we discard the two analyses it applies to. A further strongly
negative discriminant, corresponding to the construction “(list/show) whileVP-ing”,
which applies to interpretations that can be paraphrased “List all flights while you’re
leaving Denver ...”, was the next strongest, havingG � 	� B �
�, and an estimate
of 1/600. One further analysis was removed when this was applied. Next, a triple for
“flight(s) -between (time) and (time)”, where, as indicated by the “-”, the “between” PP
attaches non-low, hasG � 	� B � �
, and an estimate of 1/182. Applying this rules
out one more analysis, leaving the correct one as the only survivor. In this example, all
the discriminants used were negative ones, i.e. they had probabilities close to zero; this
is fairly typical.

6.4.2 Advantages of a Discriminant Scheme

Although this way of applying training data at run time is not necessarily more accu-
rate than other schemes for a given corpus and set of judgments, it has some important
practical advantages over more complex schemes such as that of of the SLT-1 system
(Agnäsal, 1994; Alshawi and Carter (1994)). One advantage is that no optimization is
required here; the most sophisticated mathematics involved is in calculating the prob-
ability estimates from the “good” and “bad” counts, and the results are not even very
sensitive to the form of the formula used for that purpose. Furthermore, some of the
individual functions required rather a lot of computing time, and a discriminant-based
scheme allows most of them to be dispensed with.

More importantly, however, using discriminants directly makes it easy to detect
and repair training errors. When the weighted sum making up the score of an incorrect
analysis exceeds that for the correct one in the Alshawi and Carter scheme, it is hard to
tell what specific thing, if any, has gone wrong in training; usually the error can at best
be tracked to one particular preference function, and then one can only observe that if
the weights had been different, another choice would have been made. In our scheme,
however, the discriminants applying to the selected and the correct analyses can be
compared. There will be a particular point at which the correct analysis is discarded
and the incorrect one kept, and here we can diagnose the problem as follows.

Occasionally, an error is due to the necessarily discriminants not having been ex-
tracted from the analyses during training; when this occurs, we extend the code that
extracts discriminants and redo the automatic part of the training (using the TreeBanker
to merge the old discriminant values with the new sets of discriminants, as indicated
earlier). An example of this is that initially, we did not distinguish triples resulting from

81

PPs attaching low from other attachments; when we began to do so, the discriminants
for such triples became much more reliable.

More frequently, though, all the required discriminants are present, but one or more
of those involved in the choice have unlikely-looking scores. In that case it is straight-
forward to find which training sentences have contributed to these scores, and to deter-
mine whether there is a problem in the code that extracts the scores from the judged
data, or whether the user has misjudged some of the training sentences. In the latter
case, the TreeBanker can be used to extract all sentences involving the problematic
discriminant(s), present them for re-judging, and integrate them back into the database.

Thus, over time, this iterative process results in increasingly high-quality discrim-
inants, judgments and extraction code; the errors the system makes direct developers”
attention to problem areas much more easily specifically than more mathematically
sophisticated schemes do, and the TreeBanker supports the rejudging that is required.

6.4.3 Numerical Metrics

Although the functionality of most of the preference functions from the SLT-1 system
has been taken over by the wider range of discriminants applied directly in SLT-2, some
are retained. In the English SLT system, we use four functions. Three of them penalize
particular linguistic phenomena; these are, respectively, bare singular noun phrases,
subject-predicate disagreements with copular “be”, and high attachments of modifiers
to VPs. The fourth returns the acoustic cost of the analysis, defined as the maximum
acoustic cost (i.e. shortfall from the score of the acoustically top sentence hypothesis
provided by Decipher) of any word in the lattice used to make it up.

One is then faced with the problem of integrating their results into the overall
scheme: how can a score returned by a function be compared with the probability
estimate provided by a single discriminant?

Our basic technique is to treat the return of a particular value by a particular func-
tion as a discriminant like any other. Thus, for example, if the copula-disagreement
function returns a count of one on 30 occasions, and this acts as a good discriminant
once and a bad one 29 times, then that function returning that value will receive a dis-
criminant score (i.e. a correctness probability estimate, quite distinct from the value
of the function) close to 1/30, just as a triple-based discriminant would for the same
counts.

Two modifications are applied to this basic idea to increase the power of function-
based discriminants. Both are based on the fact that for all the functions we use, larger
counts should score worse, since the objects counted are signs that the QLF concerned
should be dispreferred.

Sparseness

One problem is that of sparseness: a copula disagreement count of three or more is
very rare, leading to a fairly weak probability estimate, simply because there unlikely
to be as many as three copular verbs in any one sentence. For a given functionF and
valueN , then, instead of using the counts for exactly the eventF �q� � N to estimate
the likelihood of a QLFq with this count being correct, we use the sums of the counts

82

N G B
0 110 1
1 1 106
2 0 3
3 0 1

Table 6.1: Discriminant counts for a numerical preference function

for F �qlf� � M�N� 	M 	 N� 	 N , whereN� andN� are chosen to minimize the
value of the estimate. Thus if we had the good and bad counts shown in Table 6.1, then
for N � �, settingN� to 1 andN� to 3 would give a revisedG � �� 	 � 	 � �� B �
�	����� � ��	, which minimizes the value of formula 6.7 over the allowedN� and
N� values.

Minimality

Sometimes, especially for longer sentences, all QLFs exhibit at least one of the phe-
nomena which a given function is intended to penalize. Intuitively, a QLFq for which
F �q� �
, say, is much more likely to be correct if there is no QLFq � for which
F �q�� �
. If we mix together the “good” and “bad” counts for occurrences of
F �q� �
 from sentences where 2 is the minimal value ofF with those from sen-
tences where it is not, we are likely to lose important information. This is important
for all the linguistic numerical metrics; it does not so much affect the acoustic score
metric, for which there is always a word sequence (and usually one or more QLFs)
with zero score.

We therefore separate minimal from non-minimal scores, so that the event of func-
tion F returning valueN , whereN is the minimal value ofF over QLFs for the sen-
tence in question, is treated as a completely different discriminant fromF returning
N whereN is not minimal. When this is done, the minimal/non-minimal distinc-
tion often contributes more information than any numerical differences themselves; for
example, the discriminant score for the copula-disagreement metric returning a non-
minimal value of 1 is far closer to the score for it returning a non-minimal value of 2
than to that for it returning a minimal value of 1.

6.5 Experiments

This section describes a number of experiments carried out to test the utility of the theo-
retical ideas on pruning and grammar specialization presented above. The basic corpus
used was a set of 16,000 utterances from the Air Travel Planning (ATIS; Hemphillet
al., 1990) domain. All of these utterances were available in text form; 15,000 of them
were used for training, with 1,000 held out for test purposes. Care was taken to ensure
not just that the utterances themselves, but also thespeakersof the utterances were dis-
joint between test and training data; as pointed out in Rayneret al. (1994a), failure to

83

Examples Old scheme New scheme
Rules Loss Rules Loss

100 100 47.8% 69 35.5%
250 181 37.6% 126 21.8%
500 281 27.6% 180 14.7%

1000 432 22.7% 249 10.8%
3000 839 14.9% 455 7.8%
5000 1101 11.2% 585 6.6%
7000 1292 10.4% 668 6.0%

11000 1550 9.8% 808 5.8%
15000 1819 8.7% 937 5.0%

Table 6.2: EBL rules and EBL coverage loss against number of training examples

observe these precautions can result in substantial spurious improvements in test data
results.

The 16,000 sentence corpus was analysed by the SRI Core Language Engine (Al-
shawi, 1992), using a lexicon extended to cover the ATIS domain (Rayner, 1994). All
possible grammatical analyses of each utterance were recorded, and an interactive tool
was used to allow a human judge to identify the correct and incorrect readings of each
utterance. The judge was a first-year undergraduate student with a good knowledge
of linguistics but no prior experience with the system; the process of judging the cor-
pus took about two and a half person-months. The input to the EBL-based grammar-
specialization process was limited to readings of corpus utterances that had been judged
correct. When utterances had more than one correct reading, a preference heuristic was
used to select the most plausible one.

Two sets of experiments were performed. In the first, increasingly large portions
of the training set were used to train specialized grammars. The coverage loss due to
grammar specialization was then measured on the 1,000 utterance test set. The exper-
iment was carried out using both the chunking criteria from Rayner and Samuelsson
(1994) (the “Old” scheme), and the chunking criteria described in Section 6.3 above
(the “New” scheme). The results are presented in Table 6.5.

The second set of experiments tested more directly the effect of constituent prun-
ing4 and grammar specialization on the Spoken Language Translator’s speed and cov-
erage; in particular, coverage was measured on the real task of translating English into
Swedish, rather than the artificial one of producing a correct QLF analysis. To this end,
the first 500 test-set utterances were presented in the form of speech hypothesis lattices
derived by aligning and conflating the top five sentence strings produced by a version
of the DECIPHER (TM) recognizer (Murvietet al., 1993). The lattices were analysed
by four different versions of the parser, exploring the different combinations of turn-
ing constituent pruning on or off, and specialized versus unspecialized grammars. The

4We report results for the slightly earlier version of the pruner reported by Rayner and Carter, 1996, rather
than the one described in this chapter. However, our experience of using the system suggests that the newer
pruner gives equally good results.

84

E– E+ E– E+
P– P– P+ P+

Morph/lex lookup 0.53 0.54 0.54 0.49
Phrasal parsing 0.27 0.28 0.14 0.14

Pruning – – 0.57 0.56
Full parsing 12.42 2.61 3.04 0.26
Preferences 3.63 1.57 1.27 0.41

TOTAL 16.85 5.00 5.57 1.86

Table 6.3: Breakdown of average time spent on each processing phase for each type of
processing (seconds per utterance)

specialized grammar used the “New” scheme, and had been trained on the full training
set. Utterances which took more than 90 CPU seconds to process were timed out and
counted as failures.

The four sets of outputs from the parser were then translated into Swedish by the
SLT transfer and generation mechanism (Agnäset al., 1994). Finally, the four sets of
candidate translations were pairwise compared in the cases where differing translations
had been produced. We have found this to be an effective way of evaluating system
performance. Although people differ widely in their judgements of whether a given
translation can be regarded as “acceptable”, it is in most cases surprisingly easy to say
which of two possible translations is preferable. The last two tables summarize the
results. Table 2 gives the average processing times per input lattice for each type of
processing (times measured running SICStus Prolog 3#3 on a SUN Sparc 20/HS21),
showing how the time is divided between the various processing phases. Table 3 shows
the relative scores of the four parsing variants, measured according to the “preferable
translation” criterion.

6.6 Conclusions and further directions

Table 2 indicates that EBL and pruning each make processing about three times faster;
the combination of both gives a factor of about nine. In fact, as the detailed break-
down shows, even this underestimates the effect on the main parsing phase: when both
pruning and EBL are operating, processing times for other components (morphology,
pruning and preferences) become the dominant ones. As we have so far expended little
effort on optimizing these phases of processing, it is reasonable to expect substantial
further gains to be possible.

Even more interestingly, Table 3 shows that real system performance, in terms of
producing a good translation, is significantlyimprovedby pruning, and is not degraded
by grammar specialization. (The slight improvement in coverage with EBL on is not
statistically significant). Our interpretation of these results is that the technical loss
of grammar coverage due to the specialization and pruning processes is more than
counterbalanced by two positive effects. Firstly, fewer utterances time out due to slow

85

E– E+ E– E+
P– P– P+ P+

E–/P– 12–24 25–63 24–65
E+/P– 24–12 31–50 26–47
E–/P+ 63–25 50–31 5–8
E+/P+ 65–24 47–26 8–5

Table 6.4: Comparison between translation results on the four different analysis alter-
natives, measured on the 500-utterance test set. The entry for a given row and column
holds two figures, showing respectively the number of examples where the “row” vari-
ant produced a better translation than the “column” variant and the number where it
produced a worse one. Thus for example “EBL+/pruning+” was better than “EBL–
/pruning–” on 65 examples, and worse on 24.

processing; secondly, the reduced space of possible analyses means that the problem
of selecting between different possible analyses of a given utterance becomes easier.

To sum up, the methods presented here demonstrate that it is possible to use the
combined pruning and grammar specialization method to speed up the whole analysis
phase by nearly an order of magnitude, without incurring any real penalty in the form
of reduced coverage. We find this an exciting and significant result, and are further
continuing our research in this area during the coming year. In the last two paragraphs
we sketch some ongoing work.

All the results presented above pertain to English only. The first topic we have
been investigating is the application of the methods described here to processing of
other languages. Preliminary experiments we have carried out on the Swedish ver-
sion of the CLE (Gambäck and Rayner, 1992) have been encouraging; using exactly
the same pruning methods and EBL chunking criteria as for English, we obtain com-
parable speed-ups. The loss of coverage due to grammar specialization also appears
comparable, though we have not yet had time to do the work needed to verify this
properly. We intend to do so soon, and also to repeat the experiments on the French
version of the CLE (Rayneret al., 1996).

The second topic is a more radical departure, and can be viewed as an attempt
to make interleaving of parsing and pruning the basic principle underlying the CLE’s
linguistic analysis process. Exploiting the “stratified” nature of the EBL-specialized
grammar, we group the chunked rules by level, and apply them one level at a time,
starting at the bottom. After each level, constituent pruning is used to eliminate un-
likely constituents. The intent is to achieve a trainable robust parsing model, which
can return a useful partial analysis when no single global analysis is found. An initial
implementation exists, and is currently being tested; preliminary results here are also
very positive. We expect to be able to report on this work more fully in the near future.

86

Appendix: definition of the “New” chunking rules

This appendix defines the “New” chunking rules referred to in Sections 6.3 and 6.5.
There are seven types of non-phrasal constituent in the specialised grammar. We start
by describing each type of constituent through examples.

Utterance: The top category.

Utterance_unit: Utterance_ units are minimal syntactic units capable of stand-
ing on their own: for example, declarative clauses, questions, NPs and PPs. Ut-
terances may consist of more than oneutterance_unit. The following is
anutterance containing twoutterance_units: “[Flights to Boston on
Monday] [please show me the cheapest ones.]”

Imperative_VP: Since imperative verb phrases are very common in the corpus, we
make them a category of their own in the specialised grammar. To generalise over
possible addition of adverbials (in particular, “please” and “now”), we define
theimperative_vp category so as to leave the adverbials outside. Thus the
bracketed portion of the following utterance is animperative_vp: “That’s
fine now [give me the fares for those flights]”

Non_phrasal_NP: All NPs which are not produced entirely by phrasal rules. The fol-
lowing are allnon_phrasal_NPs: “Boston and Denver”, “Flights on Sunday
morning”, “Cheapest fare from Boston to Denver”, “The meal I’d get on that
flight”

Rel: Relative clauses.

VP_modifier: VPs appearing as NP postmodifiers. The bracketed portions of the fol-
lowing areVP_modifiers: “Delta flights [arriving after seven p m]” “All
flights tomorrow [ordered by arrival time]”

PP: The CLE grammar treats nominal temporal adverbials, sequences of PPs, and “A
to B” constructions as PPs (cf Rayner, 1994). The following are examples of
PPs: “Tomorrow afternoon”, “From Boston to Dallas on Friday”, “Denver to
San Francisco Sunday”

We can now present the precise criteria which determine the chunks of rules composed
to form each type of constituent. For each type of constituent in the specialised gram-
mar, the chunk is a subtree extracted from the derivation tree of a training example
(cf Rayner and Samuelsson, 1994); we specify the roots and leaves of the relevant
subtrees. The term “phrasal tree” will be used to mean a derivation tree all of whose
rule-applications are phrasal rules.

Utterance: The root of the chunk is the root of the original tree. The leaves are
the nodes resulting from cutting at maximal subtrees forutterance_units,
non_phrasal_npspps, and maximal phrasal subtrees.

Utterance_unit: The root is the root of a maximal subtree for a constituent of type
utterance_unit. The leaves are the nodes resulting from cutting at maximal
subtrees forimperative_vps,nps, andpps, and maximal phrasal subtrees.

87

Imperative_VP: The root is the root of a maximal subtree under an application of
theS � VP rule whose root is not an application of an adverbial modification
rule. The leaves are the nodes resulting from cutting at maximal subtrees for
non_phrasal_np, andpp, and maximal phrasal subtrees.

Non_phrasal_NP: The root is the root of a maximal non-phrasal subtree for a con-
stituent of typenp. The leaves are the nodes resulting from cutting at maximal
subtrees forrel, vp_modifier, andpp, and maximal phrasal subtrees.

Rel: The root is the root of a maximal subtree for a constituent of typerel. The leaves
are the nodes resulting from cutting at maximal subtrees forpp, and maximal
phrasal subtrees.

VP_modifier: The root is the root of avp subtree immediately dominated by an ap-
plication of theNP � NP VP rule. The leaves are the nodes resulting from
cutting at maximal subtrees forpp, and maximal phrasal subtrees.

PP: The root is the root of a maximal non-phrasal subtree for a constituent of typepp.
The leaves are the nodes resulting from cutting at maximal phrasal subtrees.

Chapter 7

Acquisition of Linguistic
Knowledge

David Carter, Robert Eklund and Ian Lewin

In this chapter we describe the support provided to make the acquisition of various
kinds of linguistic knowledge semi-automatic and therefore requiring less, and/or less
expert, human intervention than would otherwise be the case. First, in Section 7.1, we
examine thelexmake tool which is used to acquire lexical entries by showing users
examples of word usages from a corpus. Then in Section 7.3 we look at the TreeBanker,
a graphical tool for the efficient interactive disambiguation of parsed sentences. Two
other training interfaces currently exist in rudimentary form, and are described briefly
in the parts of this report dealing with the run-time use of the data they help to create.
These are a tool for deriving preferences for the fragments created in robust parsing
(Section 12.3.3), and one for training the choices involved in non-deterministic transfer
(Section 12.2.3).

7.1 The Acquisition of Lexical Entries

Lexical acquisition involves determining which words need to be added to the exist-
ing lexicon and then providing, in a machine-understandable format, descriptions of
their surface forms, morphology, syntax and semantics. Unaided, this can be a highly
time-consuming and error-prone task. It can be time-consuming because of the sheer
volume of work. It can be especially error-prone partly because of the linguistic and
system-specific expertise required of a user (the task involves examining the corpus
occurrences of many words, and then coding complex machine-understandable lexical
entries to represent them) and partly because this expertise is often exercised only infre-
quently – most new words to be added to a lexicon are just new instances of commonly
occurring old ones.

88

89

7.1.1 lexmake Tool Description

The new lexical acquisition tool is strongly corpus-based (although interactive parts can
be used without a corpus). First, the corpus of new data is searched for occurrences of
words not currently known by the lexicon. The search uses a simple string matching
procedure without attempting morphological analysis. Unknown words, ordered by
frequency of occurrence, are automatically extracted and a file of “fill-in-the-blanks”
lexical entries in CLE-readable format is generated. Each entry in the file is associ-
ated with the sentences in the corpus in which it occurs, up to some predefined limit
of sentences. Secondly, the user runs the interactive tool,lexmake which presents
a simple “point-and-click” interface for filling in the blank lexical entries. For each
word, the user sees the word he is currently defining, its occurrences in the corpus and
a structured menu of the different choices that he is required to make. The choices
themselves are presented in a linguistically motivated format and abstract away from
the details of any underlying machine-readable coding. All tool-outputs are also tool-
readable so that the lexica generated by the tool can also be easily modified by it. The
user can spread his lexicon development over several sessions and review and modify
any earlier decisions in later sessions. The tool is not intended to be used for all lexical
entries, only those describable in terms of “paradigms” which are commonly occurring
patterns of categories, features and values (see Carter, 1989, for details). Such words
form the vast majority of cases in adaptation to a new corpus.

The tool itself is designed to be easily reconfigurable both for new languages and
for different users defining lexical entries in one language. Since different users may
have different levels of linguistic expertise, it is useful to be able to tailor the tool to
their particular knowledge. In the simplest case, it actually proves highly useful simply
to be able to modify the prompt messages for particular users so that they can easily
remind themselves, in terms they understand, what a particular choice means or what
distinction they are being asked to make. Reconfigurability is achieved by following
our general policy of declaratively stating linguistic descriptions separately from the
required computational processing. The very same processing is used both in English
and Swedish lexical development – all that differs is the language description which
is processed. The lexicon tool reads both a lexicon file and a language description
in order to configure itself for use. Definition of the language description itself is an
expert task since it requires knowledge of the CLE encoding of the lexicon. The lan-
guage description includes a hierarchy of lexical category names (and associated help
strings describing them), a list of associated category features and their possible values
(plus descriptive help strings) including a default value, a list of language-specific spe-
cial characters allowed in lexical entries, and a list of commonly-occurring language-
specific patterns of irregularity.1 Each irregularity declaration states the morphological
rule name and affixes that would be used if the derivation were regular, a help string
describing the derivation, a substitution operation for generating a CLE internal for-

1Of course, strictly speaking irregularities by definition do not follow a pattern. By “irregularities” here,
we mean forms that do not conform to the spelling rules (see Appendix A) for the current language descrip-
tion. In this sense, nouns such as “bok” have irregular plural forms (“böcker”), and verbs such as “springa”
have an irregular supine form (“sprungit”), although in both cases there are other words in the language that
follow similar patterns.

90

mat for a root from a string which the user is prompted for, and a further help string
which prompts the user for the string. The substitution operation is used to hide CLE
internal formats used in morphological derivation from the user. The user is prompted
for a word in a form he can readily understand and the internal format is derived by
the substitution operation. For example, in Swedish one entry declares the existence
of irregular adjectives which do not add an umlaut when forming the comparative and
superlative forms. The declarations include the help string “Enter the new comparative
string (lägre)” prompting the user to type something familiar, namely the comparative
form of the adjective. The substitution operation (which in this case deletes the termi-
nal “re”) is then used to derive the SLT internal form. The internal form can be used
to derive both comparatives and superlatives. Finally, a set of language specific help
messages associated with pop-up help windows can also be declared.

7.1.2 Example

Figure 7.1:lexmake display for “hotellet” before any user modifications are made.

91

Figure 7.1 illustrates what the user sees during the definition of the lexical entry
for “hotell”. At the very top of the screen are generic process and file manipulation
commands, giving the ability to quit, save a file, step forwards and backwards through
a file, delete an entry and so on. Below that are data associated with “hotellet”. First,
five examples from the corpus in which “hotellet” appears are shown in a scrollable
window. Secondly, the middle of the screen shows the word’s main properties: its
stem is currently shown as “hotellet”, its category is shown as unknown and its sense is
“XXX”. Since the category is unknown, no category features (declension, conjugation
etc) are defined. The user’s task is to fill in the information required. First the user
must define the correct word stem which in this case is “hotell” (the stems of nouns are
their singular indefinite form - this information is available under “help”). By clicking
on the current category “unknown”, a tree-structured menu of alternative choices such
as “count noun” and “reflexive transitive verb” is posted and can be selected from. On
selecting “count noun”, default modifiable values for the features declension, gender
and infix are enabled. These features are the only ones valid for the count noun cat-
egory. In this instance, the user needs to alter the default declension value (which is
“-or(blomma)”) to “-ø(hus)” and the default gender (“common”) to “neuter”. Finally
the user needs to add in a sense for “hotell”. He may either add a new one himself, such
as “Härbärge”, or select from a predetermined list of common semantic class names
(the very same ones used for preference functions and pruning; see Section 6.2.1). The
user may also add a note, i.e. some arbitrary comment, by clicking on the note flag or
enter a dialogue for adding irregular entries by clicking on the irregular flag. Once the
user is happy with his entry, he may move onto the next word in the lexicon file by
selectingNext from the top of the screen.

7.2 Swedish Usage

The current Swedish version of the lexicon tool, developed jointly by SRI and Telia,
includes features deemed appropriate for people with good knowledge of Swedish but
without any familiarity with the CLE or deeper linguistic knowledge. As is pointed out
above,lexmake can easily be changed to make use of other categories that are judged
more suitable for specific users. The current Swedish version includes 52 categories
organised into a hierarchy. They range from the simplest possible category ‘name’ to
more complex cases such as ‘reflexive intransitive verb incorporating a particle and
special prepositional phrase’, as in ‘klä UT sig till (ngn/ngt)’. At the simplest level,
not much grammatical knowledge is required in order to understand the categorization.
The more complex the level, the more knowledge is required. All the categories are
provided with Swedish examples to avoid reliance on sometimes complex grammatical
terms. In the following sections, we describe the configuration oflexmake for the
three principle categories of noun, verb and adjective.

7.2.1 Nouns

Swedish nouns are categorised according to gender, declension and compounding be-
haviour.

92

In lexmake, the user is presented the option of choosing ‘common’ or ‘neuter’
gender. The alternative names “n-genus” (“n-gender”) and “t-genus” (“t-gender”) are
sometimes used in Swedish grammars, and one could easily display-n or -t instead,
but the gender names themselves are simple enough to learn, even for naïve users.

Swedish nouns are traditionally divided into six declensions, five regular and one
irregular. Irregular forms can also be divided into different paradigms that exhibit more
or less regular patterns. The paradigms differ in the way plurals are formed. Instead of
making the user choose between declension names or numbers – which would require
that the user know the number of the declension and could pair it with the correct
plural form – the plural ending of each declension is displayed, with an accompanying
example word:

-or (blomma)
-ar (bil)
-er (färg)
-n (äpple)
-Ø (hus)
oregelb (stad, son)

This way of presenting grammatical information enables even naïve users to put
the nouns into the right declension paradigm.

Compounds in Swedish are formed with or without a ‘glue morph(eme)’ (‘foge-
morfem’), here called ‘infixes’, for historical reasons. From a strict linguistic point of
view, the glue morph(eme)s in Swedish compound formation are not true infixes, defi-
nitionally, since they do not carry meaning and occurbetween, not inside, morphemes.
The by far most common ways to form noun–noun compounds are either without a
glue morpheme or with an-s- glue morpheme (‘foge-s’). There are also four glue
vowels (‘foge-vokaler’), and although their productivity is low, they do occur in con-
nection with certain lemmae, such as “gata” and “kvinna”. The following list of the six
compounding alternatives is presented to the user:

-Ø (bil)
-s (fotboll)
-u (gatukök)
-a (barnatro)
-o (kvinnosak
-e (lekstugetak)

7.2.2 Adjectives

There are basically three adjective declensions, differing in the way they form compar-
ative and superlative forms. Once again, the comparative, superlative and superlative
attributive endings themselves with example words are presented to the user rather than
using grammatical terminology.

93

Figure 7.2:lexmake display for “hotellet” as a noun. “Hotellet” (“the hotel”) has
been found in the corpus under scrutiny, and the user has classified it as a count noun.
Default information is then automatically shown in the declension, gender and infix
fields. By clicking in the said fields, menus are opened from which the user can choose
the right values.

-are, -ast, -ast(e) (bred)
-re, -st, -sta (stor)
mer(a), mest (kul)

7.2.3 Verbs

Verbs in Swedish are normally described as belonging to a number of conjugations.
These differ mainly according to ablaut paradigms, and could easily be categorized by
naïve users through their vowel gradation, like:

94

Figure 7.3:lexmake display for adjective. The word “rökfritt” (“non smoking”) has
been found in the corpus under scrutiny, and the user has classified it as a prenominal
or predicative adjective. Default information is then automatically shown in the com-
pound, nullmorph and adjective declension fields. By clicking in the said fields, menus
are opened from which the user can choose the correct values.

Example verbs Vowel gradation

springa - sprang - sprungit i – a –u
skriva - skrev - skrivit i – a – i
bjuda - bjöd - bjudit u/y – ö – u

... and so forth.

The present Swedish grammar, however, is not based on this traditional description,
and consequently, this intuitive method is presently out of reach. This means that
verbs require CLE knowledge to a larger extent than do the other word classes. This,

95

however, has nothing to do with the potential or functionality oflexmake, which
easily can be adapted to suit the features of any grammar. One of the immediate goals
in the development of the grammar is to alter the description of Swedish verbs towards
a representation more akin to the more traditional description alluded to above. The
need for doing so has very much been brought to our attention bylexmake, which
highlighted the need for more intuitive categorical descriptions.

7.2.4 Evaluation and Conclusion

Thelexmake tool enables a user quickly to add new lexical entries to the system
through a friendly graphical interface. The interface is also designed for corpus-based
development by showing corpus examples for each word to be added and naturally or-
dering the words to be added by their frequency of occurrence in the corpus. The tool
reflects the general SLT philosophy of separating linguistic descriptions from compu-
tational processing. After an initial English version had been constructed and tested at
SRI, a Swedish version was quickly and easily generated by SRI and Telia staff and
successfully used for lexicon development at Telia.

96

Use of the graphical tool has also led us to reconsider some of our existing linguistic
descriptions (e.g. verbs, described above). The previous use of a purely text-based
feature-value declaration style had enabled some less linguistically natural descriptions
to be developed. Representation in a graphical tool immediately highlighted the less
intuitive features of the description.

7.3 The TreeBanker

This section describes the TreeBanker, a graphical tool and database management sys-
tem for the supervised training involved in domain customization of the disambiguation
component of the CLE. The TreeBanker presents a user, who need not be a system ex-
pert, with a range of properties (discriminants) that distinguish competing analyses for
an utterance. These properties are relatively easy for a user to judge. Thus training
on a corpus can be completed in far less time, and with far less expertise, than would
be needed if analyses were inspected directly. We also describe how discriminants
are used in choosing between QLFs at run time, and how the TreeBanker supports the
detection and correction of any wrong judgments that may have led to run-time errors.

7.3.1 Motivation

In a pipelined speech understanding system such as SLT, where full, linguistically-
motivated analyses of the speaker’s utterances are desired, the linguistic analyser needs
to generate possible semantic representations and then choose the one most likely to
be correct. Even when the recognizer that provides the analyser with its input is able
to deliver a unique string with reasonable confidence, the analyser faces the problems
of disambiguation that are familiar from text-processing. However, the recognizer usu-
ally has to produce multiple possible word sequences because the relatively simple
language models (typically N-gram based) that are efficient enough to be included
in its search process are not rich enough to encode the syntactic, semantic and, per-
haps, pragmatic constraints needed for full word sequence identification (Rayneret al.,
1994).

Therefore, if an utterance is to be correctly interpreted, the analyser needs to create
the correct analysis of the correct word string, and to pick that analysis out from any
others that are created along with it. Because the word-identity problem means the
search space will in general be larger than for the text processing case, it is especially
important that, where possible, incorrect search paths should be pruned out early on.

In practice, we can only come near to satisfying these requirements if the anal-
yser is trained on a corpus of utterances from the same source (domain and task) as
those it is intended to process. Since this needs to be done afresh for each new source,
economic considerations mean it is highly desirable to do it as automatically as possi-
ble. Furthermore, those aspects that cannot be automated should as far as possible not
depend on the attention of experts in the system and the representations it uses.

The TreeBanker facilitates supervised training by interacting with a non-expert user
and that organizes the results of this training to provide the CLE with data in an appro-
priate format. The CLE uses this data to analyse speech recognizer output efficiently

97

and to choose accurately among the interpretations it creates. We assume here that the
coverage problem has been solved to the extent that the system’s grammar and lexicon
license the correct analyses of utterances often enough for practical usefulness (Rayner,
Bouillon and Carter, 1995).

The QLFs output by the CLE are designed to be appropriate for the inference or
other processing that follows utterance analysis in whatever application the CLE is
being used for. However, they are not easy for humans to work with directly in super-
vised training; and some way is needed to characterize the salient differences between
plausible and implausible analyses because, of course, we cannot expect to encounter
exactly the same QLFs at run time as during training. Both the TreeBanker and the
CLE’s preference mechanism therefore treat a QLF as completely characterized by its
properties: smaller pieces of information, extracted from the QLF or the syntax tree
associated with it, that are easy for humans to work with and/or are likely to be re-
peatedly encountered at run time. These properties are described in detail in Section
7.3.3.

7.3.2 Overview of the TreeBanker

The TreeBanker is a program for the kind of supervised training that is required to allow
the CLE to distinguish correct from incorrect analyses and, as far as possible, to prune
out paths likely to be incorrect. The examples we give here are all for English, but the
TreeBanker has also successfully been used for Swedish and French customizations
of the CLE (Gambäck and Rayner, 1992; Rayner, Carter and Bouillon, 1996). The
TreeBanker takes as input the following information for each of the (typically) several
thousand utterances in a corpus:

� thereferenceversion of the utterance: the word string transcribed from the input
speech by a human listener.

� the recognizer outputfor the utterance: the lattice or (in our case) N-best utter-
ance list produced by the recognizer.

� thepropertiesapplying to the sets of QLFs produced by the analyser both for the
reference version of the utterance and for the recognizer output.

The TreeBanker carries out three functions. Firstly, as detailed in section 7.3.3
below, it interacts with a user to determine the correct analysis (if any) of each sentence.
The user should be familiar with the domain to which the system is being adapted
and with simple linguistic concepts, but need not be a system expert. Secondly, the
TreeBanker derives from the user’s judgments information about the characteristics of
correct and incorrect analyses, and packages it in a form which the analyser can use to
select correct analyses and, when possible, prune out paths leading to incorrect ones;
this process was described in Section 6.4. Thirdly, as described by Rayner and Carter
(1996), it creates a library of verified analyses which are used to train the specialized
grammar need for fast parsing. We conclude with a discussion of the TreeBanker’s
use in a particular system and application and the degree to which our goals have been
achieved.

98

7.3.3 The Supervised Training Process

Even for an expert, inspecting all the analyses produced for a sentence is a tedious and
time-consuming task. There may be dozens of analyses that are variations on a small
number of largely independent themes: choices of word sense, modifier attachment,
conjunction scope and so on. Further, if the representation language is designed with
semantic and computational considerations in mind, there is no reason why it should be
easy to read even for someone who fully understands it. And in fact, as already argued,
it is preferable that selection of the correct analysis not require the involvement of an
expert at all. (In practice, at the current state of development, some decisions needed
by the TreeBanker are tricky enough that they have to be left for an expert to make
them, but these occur in only a very small minority of sentences).

Properties and Discriminants

We have therefore taken the approach of defining a number of different types ofprop-
erty: facts about analyses that, in most cases, can be presented to non-expert users in
a form they can easily understand. Those properties that hold for some analyses of a
particular utterance but not for others we referred to in Section 6.2.1 asdiscriminants.
Discriminants that fairly consistently hold for correct but not (some) incorrect analyses,
or vice versa, are likely to be useful in distinguishing correct from incorrect analyses at
run time. Thus for training on an utterance to be effective, we need to provide enough
“user-friendly” discriminants to allow the user to select the correct analyses, and as
many as possible “system-friendly” discriminants that, over the corpus as a whole, dis-
tinguish reliably between correct and incorrect analyses. Ideally, a discriminant will be
both user-friendly and system-friendly, but this is not essential.

The TreeBanker derives properties directly from the QLFs produced by the CLE
and from their associated parse trees. The database of analysed sentences that it main-
tains contains only these properties and not the analyses themselves. The TreeBanker
presents properties to the user in a convenient graphical form, exemplified in Figure
7.4 for the sentence “Show me the flights to Boston serving a meal”. The user may
click on any discriminant with the left mouse button to select it as correct, or with the
right button to select it as incorrect. The types of property currently extracted, ordered
approximately from most to least user-friendly, are as follows; examples are taken from
the six QLFs for the sentence used in figure 7.4.

� Constituents: ADVP for “serving a meal” (a discriminant, holding only for read-
ings that could be paraphrased “show me the flights to Boston while you’re serv-
ing a meal”); VP for “serving a meal” (holds for all readings, so not a discrimi-
nant).

� Semantic triples: relations between word senses mediated usually by an argu-
ment position, preposition or conjunction (Alshawi and Carter, 1994). Examples
here (abstracting from senses to root word forms, which is how they are pre-
sented to the user) are “flight to Boston” and “show -to Boston” (the “-” indi-
cates that the attachment is not a low one; this significantly affects the likelihood

99

Figure 7.4: Initial TreeBanker display for “Show me the flights to Boston serving a
meal”

of such discriminants being correct). Argument-position relations are less user-
friendly and so are not displayed.

� Word senses: “serve” in the sense of “fly to” (“does United serve Dallas?”) or
“provide” (“does that flight serve meals?”).

� Sentence type: imperative sentence in this case (other moods are possible; frag-
mentary sentences are displayed as “elliptical NP”, etc).

� Grammar rules used: the rule name is given. This is occasionally useful for
experts in the minority of cases where their intervention is required.

� Numerical metric values: values of certain metrics applied to the code, e.g.
to quantify imbalances between conjuncts. These, and following discriminant
types, are not user-friendly at all, and are not displayed, but are often reliable
enough for run-time use.

Two additional types of discriminant are not shown to the user but are used at run-
time, for pruning rather than for QLF preferences; they are bigrams and tree-grams, as
described earlier in see Section 6.2.1.

In all, 27 discriminants are created for this sentence, of which 15 are user-friendly
enough to display, and a further 28 non-discriminant properties may be inspected if
desired. This is far more than the three distinct differences between the analyses
(“serve” as “fly to” or “provide”; “to Boston” attaching to “show” or “flights”; and,

100

Figure 7.5: TreeBanker display after approving topmost “np” discriminant

if “to Boston” does attach to “flights”, a choice between “serving a meal” as relative
or adverbial). The effect of this is that the user can give attention to whatever dis-
criminants he2 finds it easiest to judge; other, harder ones will typically be resolved
automatically by the TreeBanker as it reasons about what combinations of discrimi-
nants apply to which analyses. Thus if the user selects “the flights to Boston serving
a meal” as an NP, the TreeBanker can resolveall the other discriminants except the
two for the sense of “serve”; and only those two remain highlighted in the display, as
shown in Figure 7.5. So, for example, there is no need for the user to make the trickier
decision about whether or not “serving a meal” is an adverbial phrase.

The TreeBanker’s interface often acts like this to simplify inspection of sentences
whose discriminants combine to produce an otherwise unmanageably large number of
QLFs. As a further example, the sentence “What is the earliest flight that has no stops
from Washington to San Francisco on Friday?” yields 154 QLFs and 318 discrimi-
nants, yet the correct analysis may be obtained with only two selections. Selecting
“the earliest flight ... on Friday” as an NP eliminates all but twenty of the analyses
produced, and approving “that has no stops” as a relative clause eliminates eighteen
of these, leaving analyses which are both correct for the purposes of translation. 152
incorrect analyses may thus be dismissed in less than fifteen seconds.

The utterance “Show me the flights serving meals on Wednesday” demonstrates the
TreeBanker’s facility for presenting the user with multiple alternatives for determining
correct analyses. The following decisions must be made:

2We offer the customary apologies for this use of pronouns, and offer the excuse that most use of the
TreeBanker to date has been by men.

101

� Does “serving” mean “flying to” or “providing”?

� Does “on Wednesday” modify “show”, “flights”, “serving” or “meals”?

� Does “serving” modify “show” or “flights”?

but this can be done by approving and rejecting various constituents such as “the flights
serving meals” and “meals on Wednesday”, or through the selection of triples such as
“flight -on Wednesday”. Whichever method is utilised, the user can resolve the 14
QLFs produced for this sentence within twenty seconds.

Additional Functionality

The interactive part of the TreeBanker also supports diagnosing and categorizing cov-
erage failures. The user may suspect thatnoneof the provided analyses is correct.
This situation often becomes apparent when the TreeBanker insists on automatically
assigning incorrect values to some discriminants when the user makes decisions on
others; the coverage failure may be confirmed, if the user is relatively accomplished,
by inspecting the non-constituent properties as well and verifying that the correct parse
tree is not among those offered. Then the user may mark the sentence as “Not OK”
and classify it under one of a number of failure types, optionally typing a comment
as well. At a later stage, a system expert may ask the TreeBanker to print out all the
coverage failures of a given type as an aid to organizing work on grammar and lexicon
development.

For some long sentences with many different readings, more discriminants may be
displayed than will fit onto the screen at one time. In this case, the user may judge some
discriminants (scrolling if necessary to find them), and ask the TreeBanker thereafter to
display onlyundecideddiscriminants; these will rapidly reduce in number as decisions
are made, and can quite soon all be viewed at once.

If the user changes his mind about a discriminant, he can click on it again, and
the TreeBanker will take later judgments as superceding earlier ones, inferring other
changes on that basis. Alternatively, the “Reset” button may be pressed to undo all
judgments for the current sentence.

Once part of the corpus has been judged and the information extracted for run-time
use (see next section), the TreeBanker may be told to resolve discriminants automati-
cally when their values can safely be inferred. In the ATIS domain, “show -to (city)”
is a triple that is practically never correct; the user can then be presented with an initial
screen in which that choice, and others resulting from it, are already made. This speeds
up his work, and may in fact mean that some sentences do not need to be presented at
all.

In practice, coverage development tends to overlap somewhat with the judging of
a corpus. In view of this, the TreeBanker includes a “merge” option which allows
existing judgments applying to an old set of analyses of a sentence to be transferred
to a new set that reflects a coverage change. Properties tend to be preserved much
better than analyses as coverage changes; only properties, and not analyses, are kept
in the corpus database, and so the vast bulk of the judgments made by the user can be
preserved.

102

7.3.4 Evaluation and Conclusions

Using the TreeBanker it is possible for a linguistically aware non-expert to judge
around 40 sentences per hour after a few days practice. When the user becomes more
practised, as will be the case if he judges a corpus of thousands of sentences, this figure
rises to around 170 sentences per hour in the case of our most experienced user. Thus
it is reasonable to expect a corpus of 20,000 sentences to be judged in around three
person weeks. A much smaller amount of time needs to be spent by experts in making
judgments he felt unable to make (perhaps for one per cent of sentences once the user
has got used to the system) and in checking the user’s work (the TreeBanker includes
a facility for picking out sentences where errors are mostly likely to have been made,
by searching for discriminants with unusual values). From these figures it would seem
that the TreeBanker provides a much quicker and less skill-intensive way to arrive at a
disambiguated set of analyses for a corpus than the manual annotation scheme involved
in creating the University of Pennsylvania Treebank; however, the TreeBanker method
depends on the prior existence of a grammar for the domain in question, which is of
course a non-trivial requirement.

We also plan to implement schemes such as that of Engelson and Dagan (1996)
to select corpus sentences whose judging is likely to provide useful new information,
rather than those that merely repeat old patterns. We expect the number of sentences
needing to be judged, and hence the time required, to approximately halve when this is
done.

Chapter 8

Rational development
methodology

Manny Rayner

8.1 Introduction

This chapter will describe in detail the methodology we have used to develop the cov-
erage of the rule-based parts of the system: the lexica, morphological descriptions, sets
of grammar and transfer rules, and so on. To a lesser extent, the same methodology
also drives the development of the other system components, in particular the engines
(parsers, generators, etc.) which carry out the actual processing.

The basic idea is the usual one: take a set of example utterances (thedevelopment
set), run the system on it, evaluate the results, and carry on iterating the edit-debug-test
cycle until performance is high enough. The question we will focus on here is that of
how to construct the development set. There are a number of reasonable requirements
on the design of a such a set, some of which represent tradeoffs or tensions. We be-
gin by assuming that we have a large sample of realistic domain utterances (themain
domain corpus). In the final analysis, we are interested on improving coverage on this
set.

1. The development set should be small enough that it it practically feasible to run
tests on it frequently, and interpret the results easily. For this reason, it is not in
general possible to use the main domain corpus as the development set.

2. The development set should be large enough that it contains examples of all the
important (i.e. frequent) problems in the full corpus.

3. The relative importance of two given sentences from the development set should
be clear. Thus if sentence 1 contains only instances of common words and con-
structions, while sentence 2 contains at least some unusual elements, then failure
on sentence 1 should be more serious than failure on sentence 2.

103

104

4. It should be as easy as possible to extract the development set from the main
domain corpus.

In summary, we want some fairly easy way to derive a smallish set of utterances
from the main domain corpus, and be confident that if we do well on the small set then
we will do at least reasonably on the original one. We will call a set of this kind a
representative corpus.

An early methodology for building representative corpora was described in the SLT-
1 report. In essence, the grammar was used to categorize the different types of utterance
and extract the common patterns. This was useful for systematically improving perfor-
mance of the transfer component, but presupposed that grammatical coverage of the
source language was already adequate. In fact, by its very construction, the representa-
tive corpus only contained utterances which were assigned an analysis by the grammar,
and was thus unsuitable for grammar development.

In the SLT-2 project, we started work on the Swedish system at a lower point. The
existing Swedish grammar failed to deliver good coverage of the Swedish corpora, and
our first goal was to achieve this. These constraints dictated a simpler, less elegant, but
more robust approach to constructing representative corpora, which works in a bottom-
up mode. The rest of this chapter will provide a full description of the method. We will
illustrate with examples taken from the Swedish “Wizard of Oz” (SWoZ) corpus (see
Chapter 2).

8.2 Constructing representative corpora

Since translation works bottom-up (see Section 1.2), it is unnecessary to attempt to
extend the grammar and other rule-sets to the point where all utterances can be parsed
as complete units. Thus the first step in the process of constructing the representative
corpus is manually to split up the utterances in the main domain corpus into suitable
segments, each of which can feasibly be translated as an independent unit. We refer
to the result as thesplit corpus. The vertical bars in the following example utterances
from the SWoZ corpus show how they are segmented in the split corpus:

resa stockholm berlin j okej j den andra i sjätte
(trip stockholm berlin j okay j june second)

ehh j vad kostar den biljetten j är det den billigaste
biljetten
(uh j what does that ticket cost j is it the cheapest
ticket)

sexton och femtio den andra juni j hur dags är jag
framme i berlin
(sixteen fifty on june second j when do I arrive in
berlin)

ja j sexton noll noll j vilken flygplats landar det

105

på i paris
(yes j sixteen hundred j at which airport do I land
in paris)

jaha j då bokar jag tolv noll fem j går den direkt
(okay j then I’ll take twelve oh five j is it direct)

ehh j nej j det är för tidigt j något senare
(uh j no j that’s too early j something later)

The next step is to extend the lexicon to achieve reasonable basic coverage of the
domain at the lexical level. We do this using thelexmake lexicon acquisition tool
(see Section 7.1). We then extend the grammar to achieve some level of non-trivial
grammatical coverage on the split corpus. Coverage doesn’t need to be terribly good
for the subsequent steps to work; our experience suggests that being able to get analyses
for about half the utterances is enough. Once the initial lexicon and grammar are in
place, we create and tag a treebank (see Section 7.3), and derive a first set of pruning
data (Section 6.2).

We can now use the initial phases of linguistic analysis as a part-of-speech tagger,
by analyzing up to and including the lexical pruning phase and then extracting the
best sequence of lexical edges. Tags consist of the major category symbol only, e.g.
“noun” and “verb”; more fine-grained distinctions are discarded. We perform this type
of tagging on the split corpus, and call the result thetaggedcorpus. We then group
utterances from the tagged corpus into equivalence classes under the relationship of
having the same tag-sequence.

The next step is manually to regroup the classes produced by the previous step
where necessary. In some cases, this involves reclassifying utterances which were in-
correctly tagged; in others, a group may be split into two or three smaller groups, if the
relevant utterances are intuitively dissimilar enough. For instance, the following two
utterances receive the same tag-sequence, sinceflyger (“fly”) and finns (“there
are”) are both tagged asv. However, the difference between an intransitive and an
existential verb is great enough that it seems reasonable to assign the utterances to
different groups.

vilka bolag flyger från dallas till denver
(which companies fly from dallas to denver)

vilka turer finns från boston till oakland
(which flights are there from boston to oakland)

The “regrouping” step can be performed by non-experts at the rate of several thousand
sentences a day, using a text editor, once the corpus has been formatted to facilitate this.
For each of the new classes, we also manually designate an element which intuitively
is “most typical” of the class. This step can also be performed quickly by non-experts
using an editor.

Finally, we construct the representative corpus by selecting the designated element
from each class, and order the results by the size of the classes represented. In view of

106

the bottom-up nature of processing, we have found it most meaningful to define the size
of a class as the total number of words represented, as opposed to counting utterances.

We conclude the example by presenting an initial segment of the representative cor-
pus derived from the SWoZ corpus. The actual corpus file lists for each representative
utterance the full set of utterances which it represents; here, we have suppressed this
extra information in the interests of brevity. The format of each record in the file is

rep_sent(<N>,<Utterance>).

where<Utterance> is the representative sentence, and<N> is the total number of
words in the group of similar utterances which it represents.

rep_sent(423,’tack så mycket’).
(thank you very much)

rep_sent(284,’urban kalle trea femma’).
(u k three five)

rep_sent(279,tack).
(thank you)

rep_sent(209,ja).
(yes)

rep_sent(177,’den sjätte maj’).
(may seventh)

rep_sent(161,och).
(and)

rep_sent(157,’jag vill boka en resa från washington till
chicago den sextonde maj’).
(i want to book a flight from washington to chicago on may
sixteenth)

rep_sent(151,’går planet direkt till new york’).
(does the plane fly direct to new york)

rep_sent(130,’jag skulle vilja boka en resa från washington
till chicago den sextonde maj’).
(i would like to book a flight from washington to chicago
on may sixteenth)

rep_sent(126,’då bokar jag den resan’).
(then i’ll book that flight)

rep_sent(125,’jag skulle vilja boka en resa från chicago

107

till stockholm’).
(i would like to book a flight from chicago to stockholm)

rep_sent(120,’när är jag framme i stockholm’).
(when do i arrive in stockholm)

rep_sent(109,’jag vill boka en flygresa från nice till
stockholm’).
(i want to book a flight from nice to stockholm)

rep_sent(105,okej).
(okay)

rep_sent(104,’då tar vi den’).
(i’ll take it then)

rep_sent(102,’det låter bra’).
(that sounds fine)

rep_sent(102,’jag vill åka från new york till boston den
tionde maj’).
(i want to fly from new york to boston on may tenth)

rep_sent(100,’jag skulle vilja åka från nice till
stockholm den fjortonde juni’).
(i would like to fly from nice to stockholm on june
fourteenth)

rep_sent(92,’hej då’).
(goodbye)

rep_sent(91,’då vill jag boka den resan’).
(i’ll book that flight then)

rep_sent(89,’vilken flygplanstyp är det’).
(what type of aircraft is it)

rep_sent(80,’tack ska du ha’).
(thank you very much)

rep_sent(78,ehh).
(uh)

rep_sent(77,’vad heter flygplatsen i paris’).
(what is the airport in paris called)

108

rep_sent(75,’tack så mycket för hjälpen’).
(that you very much for your assistance)

rep_sent(73,’hur tar jag mig till hotellet från
flygplatsen’).
(how do i get from the airport to the hotel)

rep_sent(72,’är det några stopp på vägen till boston’).
(are there any stops on the way to boston)

rep_sent(72,’jag vill beställa en flygresa från washington
den sextonde maj till chicago’).
(i want to book a flight from washington on may sixteenth
to chicago)

rep_sent(70,’vilket flygbolag reser jag med’).
(which airline am i travelling with)

rep_sent(64,’jag vill åka till washington från boston’).
(i want to fly from washington to boston)

rep_sent(63,’jag vill resa så billigt som möjligt’).
(i want to travel as cheaply as possible)

rep_sent(63,’är det en d c tia’).
(is it a d c ten)

rep_sent(63,’en resa från münchen till paris’).
(a trip from munich to paris)

rep_sent(60,’tack för det’).
(thank you)

rep_sent(60,’jag skulle vilja ha en resa till boston’).
(i would like a trip to boston)

rep_sent(58,’jag skulle vilja flyga från frankfurt till
new york’).
(i would like to fly from frankfurt to new york)

rep_sent(57,’det blir bra’).
(that’s fine)

Chapter 9

English Coverage

Manny Rayner

The following is the SLT-1 report chapter on English coverage. It will be updated in
the final version of this report.

9.1 Overview of English linguistic coverage

This chapter describes the coverage of the grammar and lexicon on the domain corpus.
Much of the material will be presented at a level of detail which the average reader
is likely to find tedious: we thus begin by explaining our reasons for going to these
lengths. Basically, we want to establish two things about the principled linguistic ap-
proach we have adopted. The first issufficiency: we want to show that it is capable of
achieving good coverage of a real spoken-language corpus. The second isnecessity:
we also want to show that the corpus in fact displays a wide enough range of surface
variation that it would pose serious problems for a grammar formalism much less elab-
orate than ours. This is particularly the case with regard to the structure of verb phrases,
as discussed in Section 9.7.

Our presentation in this chapter will divide up analyses of types of construction
into pre-theoretically meaningful “chunks”: lexical items, noun phrases, verb phrases,
preposition phrases, numbers, clauses and whole utterances. We will consider the con-
structions of each type that are observed to occur, and describe how the grammar deals
with those which are currently within coverage. The main point at issue here is the
extent to which special rules, specific either to the domain in particular or to spoken
language in general, are required. In the final section, we consider sentences currently
outside coverage, examining them to discover the extent to which they represent prob-
lems for the present framework. Here, we will mainly be interested in estimating the
practical coverage limit inherent in our approach.

The bottom-line results are encouraging. The present level of coverage, on “A”
and “D” class ATIS sentences of length up to 15 words, is about 91%. This has been
achieved by taking the general CLE grammar and adding to it only a small number of

109

110

domain-specific and spoken-language specific grammatical rules and a set of domain-
specific lexical entries, nearly all of which are regular open-class words. The arguments
in the final section suggest that coverage could be increased to about 97% without
major changes to the current grammar, by adding about 25 new rules and modifying
about 10 to 20 existing ones in fairly well-specified ways. We estimate that these
improvements could almost certainly be carried out with less than six person-months
of work.

9.1.1 Non-standard aspects of the CLE grammar

Most of the CLE grammar is uncontroversial. We list here the small number of non-
standard features it possesses, together with some justifications for the approaches
taken.

“Ordinal determiners”

Superlative adjectives and ordinals are treated in an unusual way. Unlike other adjec-
tives, superlatives are classed as a type of ordinal expression likefirst or next; then NPs
containing an ordinal are given a constituent structure which makes the ordinal part of
the DET. So for example the top-level constituent structure of“the cheapest flight”is

�NP �DET the cheapest� �NBAR flight��

The main advantages resulting from adoption of this analysis are semantic, and are
relevant to processing stages not used in the SLT project. It is however worth noting
some linguistic data which is at least not inconsistent with the “ordinal determiner”
analysis. Determiner+superlative adjective combinations can occur free (e.g.,“Show
me [the largest]”) and can combine withof (e.g.,“the cheapest of the flights”), pat-
terns which are not possible with other adjectives, but which are automatically licensed
by the “ordinal determiner” treatment. Also, superlative adjectives cannot pre-modify
bare plurals, e.g., *“Cheapest flights”while others can, which also falls out of our
treatment. On the negative side, extra rules are needed for constructions likeyour
cheapest flight(combination of possessive determiner and ordinal); these are not cur-
rently within coverage. We are far from certain that the “ordinal determiner” idea is
fully correct, but taking everything into consideration it seems at any rate no worse
than the normal account.

Post-modification of NPs

The analysis of post-modified NPs is also non-standard: for example, the top-level
constituent structure of“All flights to Boston” would in most grammars be

�NP �DET all� �NBAR flights to Boston���

The CLE grammar, however, assigns this phrase the structure

�NP �NP all flights� �PP to Boston��

111

The PPto Bostonis in other words modifying an “inner” NP, rather than an NBAR:
similar analyses obtain for NPs with VP, REL or ADJP post-modification.

We feel that our treatment of NP post-modification can be backed up by a fair
amount of linguistic evidence. Firstly, there are cases of post-modification in NPs
which lack a clear NBAR, e.g.,“those leaving before one p m”, “something after
lunch” or “are there [any on Tuesday]”. On a standard account, NPs like these will
need several extra rules. Secondly, there are cases where extraction of the inner NP
appears to take place, e.g.,“What flights do you have with first class”: the simplest
way of dealing with these must be to havewith first classmodify the NP gap associated
with what flights. These constructions are currently not covered by the grammar (see
also Section 9.9), but our treatment makes the necessary changes fairly simple to carry
out.

“Big PPs”

The third important place where the grammar deviates from standard practise arises in
connection with sequences of PPs. For example, the constituent structure assigned by
most grammars to a VP like“travel from Atlanta to Boston”would be

�V P �V P �V P travel� �PP from Atlanta�� �PP to Boston��

The CLE grammar, in contrast, gives it the “flatter” structure

�V P �V P travel� �PP from Atlanta to Boston��

In general, sequences of PPs become constituents.
We are somewhat uncertain about the theoretical merits of the idea, but can at least

point to the following reasons for preferring the “big PP” analysis:

1. Multiple PPs can be fronted, e.g.,“on flight eleven forty five on Delta Airlines
how much is first class”. This supports the view that they are constituents.

2. Multiple PPs can also occur on their own as elliptical utterances, e.g.,“in the
morning on American Airlines”or “from Denver to Washington D C on Monday
November eleventh nineteen ninety one”.

3. The adjectiveavailableoften appears to subcategorize for a list of one or more
PPs. For example, in the sentence“show me the flights available from Dallas to
Baltimore August third”it is plausible thatavailable from Dallas to Baltimore
August thirdis a constituent: this is easiest to achieve in the grammar if one
sense ofavailabletakes a PP which may be multiple.

Passive gaps

The approach used to deal with passive constructions is also non-standard. For exam-
ple, a sentence with a passive VP like“What plane is used on the Continental flight”
will be analyzed as having a gap afterusedarising from the passivized object ofuse,
corresponding semantically to the implicit agent. The merits of the idea are argued at
length in Pulman (1987).

112

Apart from the four cases just discussed, the CLE grammar is standard in its treat-
ment of most linguistic phenomena that have received attention in the literature. In
the following sections, we will examine in detail its performance on various types of
construction in the ATIS corpus.

9.2 Lexical items

Before looking at the grammar proper, we briefly review the lexical entries; the main
point we will focus on is the extent to which the lexicon is domain-dependent. First,
however, we summarize some overall frequency statistics, to provide a background for
the following results. The portion of the development corpus that is currently within
coverage (about 91% of a set of 4615 A and D class sentences of 15 words or less)
included examples of 732 distinct lexical entries, counting different inflections of the
same entry as distinct. Of these, 305 occurred more than 10 times; 122 occurred be-
tween five and 10 times inclusively; 146 occurred two to four times; and 159 occurred
only once.

Deciding which entries are “domain-dependent” is unfortunately not clear-cut. Many
entries are for words and phrases that are particularly common within the ATIS domain.
If, however, it seems clear that they occur with reasonable frequency, used in the same
way, in other contexts, then we will count them as domain-independent on the grounds
that a sufficiently large general lexicon for English would include them. The decision
is particularly hard to make in the case of proper nouns: somewhat arbitrarily, we have
counted names of states and large cities as domain-independent, but names of airports
and airlines as domain-dependent. Thus for example the following are all counted as
domain-independent:Atlanta, Washington D C, Pittsburgh Pennsylvania, connecting
(e.g.,“flights connecting through Denver to Oakland”), service(e.g.,“what other air-
lines service that route”), first class(e.g.,“how much is first class”), time zoneandone
way(e.g.,“what are the lowest one way flights from Denver to Atlanta”).

On this criterion there turn out to be 51 domain-specific entries, which break down
as follows. 29 entries are for proper nouns, of which 17 are names of airlines (e.g.,
Delta Airlines, U A), 10 names of airports (e.g.,Baltimore Washington, D F W), and the
last two are the wordsairport andcoachused as proper nouns. Nine more entries are
common nouns referring to types of aircraft (e.g.,D C ten, Boeing seven thirty seven).
The remaining 13 entries are singular and plural forms of the following common noun
phrases (in most cases only one form occurs):class of service, seating capacity, round
trip, rental car, car rental, a m flight, p m flight, coach economy classandinternational
airport. All of these could in theory have been derived compositionally from their
components, but there was in each case some reason which suggested that they would
be better treated as lexicalized constituents. For example, the phraseclass of service
codeoccurs frequently in the corpus, and it is not in general desirable to allow an NP
as complex asclass of service(read compositionally) to act as an NBAR pre-modifier.
The argument is that the phrase is permissible precisely becauseclass of serviceis
lexicalized in the context of the ATIS domain. This raises interesting questions, though
they will have to wait for another occasion to be discussed further.

113

9.3 Non-recursive NPs

We will now begin our walk through the grammar proper by looking at the non-
recursive NPs, partly because these are by a considerable margin the most common
type of phrase. Due to the way in which NP post-modification is handled by the gram-
mar (see Section 9.1.1), it makes sense to split the treatment of NPs into “recursive
NPs” and “non-recursive NPs”. We define an NP to be recursive if at least one of its
constituents is a non-lexical NP phrase; the remaining NPs are either lexical or non-
recursive. We give examples and approximate frequencies for the different types of
non-recursive NPs, and then describe how each type of phrase is defined by the gram-
mar. About 1.5% of all non-recursive NPs occurring in the corpus are not currently
within coverage. The majority of these are bare singular NPs typical of colloquial
spoken English, which are discussed at greater length in Section 9.9.

“Basic” NPs We will refer to NPs built up from recursive application of a core set
of rules for NPs, NBARs, ADJPs, DETs and ORDINALs as “basic” NPs: these
account for about 74% of the non-recursive NPs in the corpus. Examples are
“fares” , “all flights” , “breakfast”, “Sunday night”, “the fare codes”, “the
cheapest one way flights”, “the San Francisco limousine service”

Time and date NPs Non-recursive NPs formed using constructions specifically asso-
ciated with dates and times account for about 10% of the non-recursive NPs. Ex-
amples:“eight o’clock” , “September fifteenth”, “seven fifty five a m”, “three” ,
“five forty” , “next Wednesday”, “Tuesday October first”.

“Code” NPs Non-recursive NP constructions using “code” expressions, and often one
or more of the “core” non-recursive NP rules as well, account for about 10% of
the non-recursive NPs. Examples:“American flight four eight seven”, “D L
seven four six”, “flight U A one thirty” , “flight four seven six”, “fare code F N”,
“flight number seventeen sixty five”, “Delta flight number seven oh nine”.

Bare determiner NPs NPs consisting of a bare determiner constitute about 2% of the
non-recursive NPs. Examples:“any” , “which” , “one” , “the same”, “some”,
“how many”, “the latest”, “the least expensive”.

“kind of” NPs NPs using the “kind/sort/type of” construction account for about 2% of
the non-recursive NPs. Examples:“what type of plane”, “what kind of aircraft” ,
“what types of ground transportation”, “what sort of ground transportation”,
“types of planes”.

Special NPs NPs built using rules possibly invalid for a general English grammar, or
added specially for the ATIS domain account for about 2% of all non-recursive
NPs. Examples:“cost” , “latest flight” , “last flight” , “downtown Pittsburgh”.

9.3.1 “Basic” non-recursive NPs

Approximately 74% of the non-recursive NPs in the corpus are built up by recursive
application of a core set of 16 rules: three for NPs; six for NBARs; five for DETs; and

114

one each for ADJPs and ORDINALs. We now describe these rules. Since the features
used are by the nature of things somewhat arbitrary, we will not specify them in detail.
Instead, we describe what the intended effect of the feature settings is supposed to be,
in terms of licensing some desired derivations while blocking other undesired ones. We
consequently present the rules in a highly schematic form.

At the top level, we have the three core NP rules,

NP -> DET NBAR

NP -> NBAR:[num=plur]

NP -> NBAR:[mass=y]

The first and second of these are unproblematic. The first makes an NP out of a de-
terminer+NBAR combination (“[the] [flight]” , “[all] [morning flights]” , “[just the]
[one way flights]”); the second makes an NP out of a bare plural NBAR, (“Wednes-
days”, “travel arrangements”, “Delta flights”). The third rule makes an NP out of a
bare NBAR whosemass feature has valuey; thus the grammar and lexicon have to
be arranged so that singular NBARS which may legitimately appear bare as NPs are
mass=y. This is satisfactory for NBARs like“information” , or “breakfast” which
are indeed intuitively mass nouns; it is rather less pleasing that compound NBARs like
“Sunday night”or “Pittsburgh airport” are also deemed to bemass=y to make them
eligible for application of the rule. In a later version of the grammar it might be de-
sirable to revise the feature system to make analysis of this type of phrase correspond
more closely to pre-theoretic intuitions.

We now turn to the six basic NBAR rules,

NBAR -> ADJP NBAR

NBAR -> NBAR NBAR

NBAR -> NP:[name=y] NBAR

NBAR -> NBAR CONJ NBAR

NBAR -> NBAR NBAR NBAR

NBAR -> NP NBAR NBAR

The first rule licenses prenominal modification of an NBAR by a non-superlative
adjective, e.g.,“[direct] [flights]” , “[early] [weekday flights]” , and is unproblematic.
The second and third rules, for compound nominals, both contain some infelicities.

The second rule, which allows combination of two NBARS to form a compound
NBAR, is the one used to analyze NBARS like“[afternoon] [flights]” or “[limousine]
[service]” . For efficiency reasons, the first daughter NBAR is restricted by feature
settings to be lexical; thus the readings of e.g.,“ground transportation information”
and “early morning flight” as “[ground transportation] [information]” and “[early

115

morning] [flights]” are not licensed by the rule. The first of these is a sufficiently
serious problem that a special rule has been added to cover the left-branching reading of
a combination of three NBARS (see below), while the other so far appears unimportant.

The third basic NBAR rule permits compound nominals formed by combining an
NP and an NBAR. There are two problems involved with the feature settings in this
rule. Firstly, themass feature in the mother is uninstantiated, to allow NP+NBAR
combinations to count asmass=y and appear as NPs, as explained above. Secondly,
the daughter NP is constrained to bename=y. It is indeed the case that in most in-
stances of application of the rule in the corpus the NP is a name, e.g.,“[Monday]
[flights]” , “[Boston] [ground transportation]. However, there are also a fairly large
number of cases like“the [[five forty five] [flight]]” or “the [[A P fifty seven] [restric-
tion]]” which the rule is also intended to cover; for this to be possible, time of day
NPs like “five forty five” and code NPs like“A P fifty seven” consequently need to
bename=y. This is arguably correct, but sufficiently unintuitive that one feels it may
eventually cause problems elsewhere in the grammar.

The fourth rule, which constructs conjoined NBARs (e.g.,“all [flights and fares]” ,
is much less frequent than the others and is unproblematic. The fifth and sixth rules deal
with left-branching compounds of three elements, and are best regarded as temporary
grammar hacks.

The remaining rules all have to do with DETs, which in the CLE grammar include
ordinals and superlative adjectives. First, there is a rule for forming superlative adjec-
tive phrases, and another for making a superlative ADJ into an ORDINAL: neither of
these is problematic.

ADJP -> most/least ADJ

ORDINAL -> ADJP:[form=superlative]

Finally, we look at the five rules for complex DET expressions:

DET -> the ORDINAL

DET -> PREDET DET

DET -> NUMBER

DET -> less/more than NUMBER

DET -> POSSESSIVE

The first rule, which is by far the most common of the five, combines an occurrence
of thewith an ORDINAL to form an “ordinal DET”, e.g.,“the first” , “the longest”,
“the least expensive”; the phrase-structure for e.g.,“the cheapest Delta flight”will
consequently be

�DET the cheapest� �NBAR Delta flight�

This non-standard analysis is discussed at greater length in Section 9.1.1. The second
rule combines a PREDET (e.g.,all, onlyor just) with a DET to form a DET; the daugh-
ter DET is in practice alwaysthe. The third, fourth and fifth rules are straightforward.

116

9.3.2 Time and date NPs

Time and date expressions are common in the corpus, accounting for about 10% of
all non-recursive NPs. The rules are fairly simple, and give nearly complete coverage.
By adding a feature to the NUMBER category to distinguish between different types
of number expression, it was possible to code the rules (in particular, those for time
expressions) fairly compactly: one slightly unobvious trick which we found useful was
to allow expressions like“oh five” to count as a special type of number.

Before the start of the project, the coverage for date expressions was fairly com-
plete, though a few rules for less frequent date constructions needed to be added. The
rules for time of day expressions were written during the course of the project, but are
domain-independent, and have already been used in other applications (Lewinet al.,
1993).

Examples of the types of time and date expression covered, listed in descending
order of frequency of occurrence, are shown below. The rules actually permit more
types of expression, though several were not observed to occur in the corpus:

“eight o’clock”

“September fifteenth”

“seven fifty five a m”

“three”

“five forty”

“next Wednesday”

“Tuesday October first”

“July eighteen”

“July twenty fifth nineteen ninety one”

“Monday November eleventh nineteen ninety one”

“July the fourth”

“the tenth of November”

“sixteen hundred hours”

“fifteen July”

“Wednesday the twenty first”

9.3.3 “Code” NPs

NPs involving spelt-out alphanumerical codes are also common in the corpus, and
make up about another 10% of the non-recursive NPs. The grammar deals with code
NPs as follows. There are two domain-independent rules for code NPs, and one
domain-independent rule for CODE,

NP -> CODE

117

NP -> NBAR CODE

CODE -> NUMBER

These are supplemented by a set of seven domain-specific rules for CODE, which
define the sequences of letters, numbers and names commonly occurring as codes in
the corpus. The rules permit codes to be any of the following: sequences of one, two
or three spelt-out letters; sequences of one or two spelt-out letters or a name, followed
by a number; or any of the above preceded by the wordnumber. For the purposes of
these rules, the wordslashis treated as a letter. Examples of types of phrase covered
by these rules, bracketed to show phrase-structure, follow.

�NP �NBAR American flight� �CODE four eight seven��

�NP �CODE D L seven four six��

�NP �NBAR flight� �CODE �NAME Delta� one thirty��

�NP �NBAR flight� �CODE four seven six��

�NP �CODE E A��

�NP �NBAR fare code� �CODE F N ��

�NP �NBAR restriction� �CODE A P slash five five��

�NP �NBAR flight� �CODE number seventeen sixty five��

�NP �NBAR airline� �CODE U S��

�NP �NBAR Delta flight� �CODE number seven oh nine��

�NP �CODE two oh four five��

9.3.4 Bare determiner NPs

About 2% of all non-recursive NPs are bare determiners, formed using the rule

NP -> DET

A feature limits the range of DETs that can appear on the right-hand side. The
DET is most commonly lexical, e.g.,“any” , “which” , “one” , “both” , “either” , “the
same”, “some”, “how many” or “all” . It can also be an “ordinal determiner”, e.g.,
“the cheapest”, “the latest” or “the least expensive”.

9.3.5 “Kind of” NPs

NPs formed using the “kind/sort/type of” construction are also common, and account
for another 2% of the non-recursive NPs; typical examples are“what kind of plane”,
“what sort of ground transportation”or “the type of aircraft”.

The words in question all have lexical entries subcategorizing forof and an NBAR,
and the construction can thus be analyzed using the general rule

118

NBAR:[subcat=[]] -> NBAR:[subcat=[COMP]]
COMP

which combines an NBAR with its complements to form a larger NBAR with an empty
subcat list.

9.3.6 Special non-recursive NP constructions

About 2% of the non-recursive NPs are analyzed using idiosyncratic rules which should
arguably not be part of the general grammar. Only three such rules are used:

NP:[baresing=y] -> NBAR:[num=sing]

DET -> ORDINAL

NP -> ADJP NP:[name=y]

The first constructs an NP out of a bare singular NBAR, e.g.,“fare” or “cost” ; NPs of
this type are often acceptable in colloquial spoken English. To limit the number of extra
analyses created by the rule, the NP it produces is marked with a special feature, which
is only accepted by a small number of other rules (see Section 9.8.2). In particular,
bare singular NPs can occur alone as elliptical NP phrases.

The second rule, whose motivation is similar, constructs a DET out of a bare ORDI-
NAL, thus permitting NPs like“latest flight” or “greatest fare”. These expressions are
again dubious as standard English, but occur with reasonable frequency in the corpus.

The third rule permits pre-modification of a name by an ADJP to form an NP; it
is only used for phrases of the form“downtown X”, where X is a city-name. For the
purposes of this rule,downtownis consequently given an entry as an ADJP.

9.4 Recursive NPs

The structure of the recursive NPs in the domain is on the whole fairly simple. As with
the non-recursive NPs, we begin by breaking them down into types, giving examples
of each type together with its approximate frequency of occurrence. About 1% of the
recursive NP constructions occurring in the corpus are not covered by the grammar.

Basic recursive NPs About 87% of the recursive NPs consist of a non-recursive NP
which has been post-modified by a PP, a VP, a relative clause, an ADJP, or some
combination of these. Examples:“the flights from Dallas to Boston”, “United
flights between Boston and Denver departing at nine a m”, “a flight that leaves
Atlanta before noon”, “the fares available for Eastern flight two oh five”.

Conjoined NPs About 10% of the recursive NPs are formed using a conjunction rule.
The majority arise in connection with the “between A and B” construction.

Sentential NPs About 2% of the recursive NPs are sentential NPs, in practice either
embedded questions orto-infinitive VPs. Examples:“to fly from Boston to Bal-
timore on a Saturday”, “to get from Denver to Oakland”, “what city they stop
in” , “if Delta flight two ninety six serves breakfast”.

119

“Quote apposition” NPs About 1% of the recursive NPs are constructions of the type
we dub, for want of a standard term, “quote appositions”: a typical example
would be“the designation Y N”or “the fare code F”. The relatively common
occurrence of the construction is clearly due to the frequent occurrence of code
expressions in the domain.

9.4.1 Basic recursive NPs

About 87% of the recursive NPs in the corpus are constructed from a non-recursive NP
postmodified by a PP, a relative clause, a VP, an ADJP, or some combination of these.
The following six rules and one schema are used to capture these constructions:

NP -> NP PP

NP -> NP REL

NP -> NP VP:[vform=(ing\/passive)]

NP -> NP ADJP

REL -> S:[type=rel,gapsin=[],gapsout=[]]

REL -> S:[type=normal,gapsin=[np:_],gapsout=[]]

ADJP -> ADJ:[subcat=COMPS]
COMPS

The first two rules are unproblematic. Features are used on the third rule to re-
strict the VP to ones whose main verb is either a progressive or a passive; the second
case covers reduced relatives like“[a meal] [served on a plane]” or “[the type of
aircraft] [used]” . The fourth rule uses a feature to restrict the ADJP to those which
are marked as not headfinal. This works well for expressions like“[the fares] [avail-
able for Eastern flight two oh five]”, whereavailable for Eastern flight two oh five
can very reasonably be regarded as a non-headfinal ADJP. It is somewhat less clear
that it correctly treats expressions like“[all flights between Boston and San Francisco]
[nonstop]”, since this involves treatingnonstopas potentially non-headfinal. In order
to accommodate examples like this one,nonstopand a few other similar ADJPs (first
class, one wayandround trip) have the headfinal feature unset.

The fifth and sixth rules cover relative clauses. The fifth is for relatives introduced
by a relative pronoun, e.g.,“flights [that serve breakfast]”, “flights [where the round
trip fare is under one thousand dollars]”. Setting the featuretype to rel ensures
that the S is introduced by an element that can serve as a relative pronoun (see Sec-
tion 9.8.1). The sixth rule is for relatives without a relative pronoun, e.g.,“the cheapest
fare [I can get] from Dallas to Denver”. The final rule schema is for adjectives which
take a complement: the only common case in the corpus isavailable, which is treated
as subcategorizing for a PP.

120

9.4.2 Conjoined NPs

About 10% of all recursive NPs use a conjunction construction. The following rules
are used, of which only the first is at all common:

NP -> NP CONJ NP

NP -> NP NP

The first rule handles normal conjunction of two NPs, e.g.,Boston and Atlanta. The
second rule is used in combination with the first to analyze constructions likeBoston
Atlanta and Denver. It creates a conjoined NP, marked with a feature which only allows
it to be used to appear as the leftmost daughter in an application of the first rule.

9.4.3 Sentential NPs

About 2% of all recursive NPs are sentential; the grammar allowsto-infinitive VPs like
“to get from Atlanta airport into the city of Atlanta”, and embedded questions like
“what city they stop in”and“if these flights serve meals”. Three rules are used,

S:[type=norm] -> VP:[vform=inf]

NP -> S:[type=q,inv=n,whmoved=_]

NP -> COMPLEMENTISER S:[type=norm]

The first rule makes ato-infinitive VPs into an S, so that it can then be used by the
other rules. The second rule covers sentential NPs which are eitherto-infinitive VPs or
embedded WH-questions; the third rule is for embedded Y-N questions. The features
used are explained in Section 9.8.1.

9.4.4 “Quote apposition” NPs

About 1% of all recursive NPs are “quote appositions”, NPs consisting of a non-
recursive definite NP followed by a code expression. Examples are“the fare code
Q W” or “the abbreviation U S”. These expressions differ both syntactically and se-
mantically from the “code expressions” described earlier. For example,“flight U A one
oh four” means “the flight whose code is U A one oh four”, while“the code U A one
oh four” means “the code which is equal to U A one oh four”. There is a simple rule
to deal with these, of the form

NP -> NP CODE

9.5 Preposition phrases

The structure of preposition phrases in the corpus is also fairly simple. It is difficult
to estimate the degree of coverage of PP constructions, because of the substantial grey

121

area where an NP appears to be functioning as a preposition-less PP; depending on the
degree to which one regards these as acceptable, coverage is between about 98% and
99.7%. “Preposition ellipsis” is discussed further below, in Section 9.9.

As explained in Section 9.1.1, PP modification of NPs and VPs makes use of the
“big PP” rule

PP -> PP PP

This rule can be applied recursively, to make any sequence of PPs into a “big PP”.
There are five types of PP, all of which can either occur on their own or in big PPs:

Normal PPs Normal PPs, consisting of a preposition followed by an NP, make up
93% of all single PPs. For example:“from Dallas” , “to downtown Pittsburgh”,
“on a flight from Boston to Denver”.

Temporal NPs “Temporal” NPs (i.e., NPs whosetemporal feature has the valuey)
can also act as PPs, and make up about 5% of all PPs. Examples:“what time” ,
“that afternoon”, “Thursday”, “July twenty third”.

“A to B” PPs Expressions of the form “A to B”, with A and B names, account for
a further 1.5% of all PPs, e.g.,“Baltimore to Philadelphia”, “Atlanta to Pitts-
burgh”.

Stranded prepositions About 0.5% of all PPs are stranded prepositions, i.e., PPs from
which the NP has been removed by a movement rule, leaving a lone preposition.

Conjoined PPs There are a small number of examples of conjoined PPs, e.g.,“in
Boston and in Baltimore”, “after five p m and before eight a m”.

The above constructions are handled by the following rules, none of which are prob-
lematic:

PP -> P NP

PP -> NP:[temporal=y]

PP -> NP:[name=y] to NP:[name=y]

PP -> PP CONJ PP

9.6 Numbers

Numbers occur frequently in the corpus: they can be cardinals (“[one thousand one
hundred] dollars”), ordinals (“September [twenty first]”) or codes (“D L [seven six
four]”). The rules for numbers are simple but fairly numerous; they seem to give a
coverage of the domain which is virtually complete, the only apparent holes being a
few dubious expressions for codes (see Section 9.9).

Examples of some types of numbers covered appear below:

122

“five eight nine”

“four fifty nine”

“twenty first”

“fifty five”

“ten twenty eight”

“one seven nine three”

“eight thirteen”

“four hundred”

“one thousand”

“three three”

“fourteen nineteen”

“thirty seven forty nine”

“three hundred and thirty six”

9.7 Verb phrases

The rules for verb-phrases are certainly the most complex part of the grammar, mirror-
ing the wide range of variety found in verb-phrase constructions; the proportion of VPs
in the corpus which are outside grammatical coverage, at about 1%, is not, however,
higher than for most constituents.

We will divide up the material along three dimensions: firstly by the type of main
verb (transitive, intransitive, modal, etc.); secondly by the types of modification and
transformation of the verb phrase (WH-moved, passivized, PP modified, etc.); and
finally by context of occurrence of the verb phrase (predicate in clause, imperative,
post-nominal modifier, etc).

Perhaps the main justification for adopting a principled linguistic approach to gram-
mar coverage is that different possibilities along each of these three dimensions can
combine freely, giving rise to the large observed range of surface constructions.

9.7.1 Types of verb

Classifying first by main verb, 13 types of verb occur with reasonable frequency:

“Be” as main verb This is the most common type of verb in the corpus, accounting
for about 23% of all verb occurrences. The forms’s, am, are, beandis all occur.

Transitives Transitive verbs are about equally common and make up another 23% of
all verb occurrences. Common examples arehave, like andleave.

Ditransitives About 15% of all verb occurrences; the only commonly occurring ones
areshow, tell, giveandfind.

123

Intransitives About 14% of all verb occurrences: common examples arefly, arrive,
leaveandgo.

Modal auxiliaries About 8% of all verb occurrences. The commonly occurring modals
in the corpus arewould, could, can, mayandwill .

Auxiliary “do” and “does” About 7% of all verb occurrences.

Verbs taking to-infinitives About 5% of all verb occurrences. The commonly occur-
ring examples arelike, needandwant.

Auxiliary “be” About 1.9% of all verb occurrences. The formsam, are, be and is
occur, with both passive and-ing VP complements.

Particle verbs About 0.5% of all verb occurrences. The most common arestand for,
get off andstop over.

Verbs taking extraposed sentential complements About 0.5% of all verb occurrences.
The only examples arecostandtake, e.g.,“How much does it cost to fly on Amer-
ican from Dallas to Baltimore”.

Ditransitive verb with embedded question About 0.25% of all verb occurrences are
examples ofshowor tell, used as in“Can you tell me what city they stop in?”or
“Can you show me what’s available?”.

Ditransitive verb taking PP complement About 0.2% of all verb occurrences are ex-
amples oftell about, as in“tell me about limousine services”.

Transitive verb with embedded question There are a small number of occurrences
of knowused as a question-embedding verb, as in“I need to know what flights
leave Atlanta on Sunday evening and arrive in Baltimore”.

The “basic” verb phrase consists of the main verb together with its complements
(if any) and is formed, irrespective of verb-type, using the central rule-schema also
discussed in Section 9.3 of Agnäsal (1991):

VP -> V:[subcat=COMPS]
COMPS

The only type of verb appearing in the corpus whose complement requires special
grammar rules isbeas a main verb, for which five rules exist;besubcategorizes for a
constituent called a COMP, which has dubious intuitive validity and is probably best
regarded as a grammar-writer’s fiction.

The COMP rules, which follow, use a feature which has access to the subject of the
clause in whichbe is the main verb, and can be used to distinguishbewith a dummy
theresubject (existentialbe) from bewith a normal subject (predicativebe).

The rules are

124

COMP:[subjform=normal] -> NP

COMP:[subjform=normal] -> ADJP

COMP:[subjform=normal] -> PP

COMP:[subjform=there] -> NP

COMP:[subjform=there,gapsin=[np:_],gapsout=[]] -> PP

The first three rules allow predicativebe to take a complement which can be an NP,
(“what are [the fares for flight four fifty nine]”), an ADJP (“which of these flights are
[nonstop]”), or a PP (“is one of the flights [on a seven four seven]”). The fourth rule
is the most common case for existentialbe, in which the complement is a simple NP,
e.g., “is there [any ground transport]”. The fifth rule is a hack which handles the
fairly common construction exemplified in“what flights are there from Atlanta to Bal-
timore”. Here, it seems reasonably clear thatfrom Atlanta to Baltimoreshould attach
semantically towhat flights: the rule achieves this end by pulling the gap associated
with what flightsoff the gaps list, and combining it with the PP. A more principled
solution, which may be introduced in the future, would be to allow the daughter NP in
the PP post-modification rule to be a gap.

9.7.2 Transformations and modifications of verb phrases

We next consider the different ways in which the basic verb phrase can be transformed
or modified.

PP post-modifier About 15% of all VPs have a PP modifier following the basic verb
phase, e.g.,“go from Denver to Atlanta”, “is used on U A five five one”, “leaving
Atlanta in the afternoon”.

Movement About 12% of all VPs have their word-order changed by some kind of
movement phenomenon, normally occurring in the context of a question or rel-
ative clause. Typical examples are the VPs (bracketed) in“what cities [does
Continental service]”, “the earliest flight you [have on Wednesday September
fourth]” .

Modal or higher verb About 8% of all VPs contain a modal or higher verb, e.g.,
“would like to go at ten a m”, “want to see the cheapest flight from Denver
to Pittsburgh”, “will be served on U A ninety one”.

ADVP pre-modifier About 5% of all VPs have an ADVP preceding the basic VP. This
is most commonlypleaseor also, e.g.,“please repeat your answer”, “also give
me a list of flights between Oakland and Boston”.

Passivization About 2.5% of all VPs are passivized, e.g.,“is served on flight one six
nine”, “offered in this flight”, “is being used on flight number ninety eight”.

125

Conjoined VP About 1% of all VPs involve a conjunction, e.g.,“departing San Fran-
cisco and arriving in Oakland”, “want to leave Philadelphia and arrive in At-
lanta on a Thursday”.

ADVP post-modifier About 1% of all VPs have an ADVP modifier following the ba-
sic VP, e.g.,“would like to see the flights from Baltimore to Philadelphia again”,
“want to fly from Baltimore to Dallas round trip”.

-ing VP post-modifier About 0.5% of all VPs have an-ingVP used as a modifier after
the basic VP, e.g.,“go from Denver to Dallas leaving after three p m”, “depart
from San Francisco heading towards Boston after noon”.

to VP post-modifier A small number of VPs have ato VP used as an adverbial post-
modifier, e.g.,“leaving on Tuesdays from Denver [to go to Boston]”.

Negation A small number of VPs are negated, e.g.,“do not go through Oakland”.

The structured nature of the grammar allows all these possibilities to be captured
with the following small set of rules:

VP -> VP PP

VP -> VP ADVP

VP -> ADVP VP

ADVP -> VP:[vform=ing]

ADVP -> VP:[vform=to]

VP -> VP CONJ VP

VP -> not VP

NP:[gapsin=[np:_|Rest],gapsout=Rest] -> []

PP:[gapsin=[pp:_|Rest],gapsout=Rest] -> []

ADJP:[gapsin=[adjp:_|Rest],gapsout=Rest] -> []

ADVP:[gapsin=[advp:_|Rest],gapsout=Rest] -> []

The first seven rules are all straightforward. The first three permit VPs to be post-
modified by PPs and ADVPs and pre-modified by ADVPs; the fourth and fifth make
-ing andto VPs into ADVPs, thus allowing them to act as VP modifiers via the second
and third ones. The sixth and seventh allow VP conjunction and VP negation. The
last four rules handlebothWH-movement of NPs, PPs, ADJPs and ADVPs,andpas-
sivization of VPs (see the last sub-section of Section 9.1.1). Note also that modal verbs

126

require no special rules: they are viewed as subcategorizing for VP complements, and
are analyzed by the basic VP rule which constructs a VP from a verb and its comple-
ments.

9.7.3 Verb phrase contexts

Finally, we consider the possible contexts in which a VP can occur. Apart from com-
bining with an NP to form a clause (the most common case), the following possibilities
exist:

Imperatives About 30% of all VPs occur free as imperatives, e.g.,“Show me the
flights from Dallas to Boston”.

-ing VP modifiers About 6% of all VPs are-ing VP modifiers to NPs, e.g.,“flights
going to San Francisco”.

Reduced relatives About 0.6% of all VPs are reduced relatives, e.g.,“a meal served
on a plane”.

to-VP as NP About 0.4% of all VPs areto-infinitive VPs functioning as NPs, e.g.,to
travel from Oakland airport to downtown.

The rules needed to realize these possibilities are described in other sections.

9.8 Clauses and top-level utterances

Having discussed the other constituents, we finally consider the structure of clauses
and top-level utterances. (We will use the terms “utterance” and “top-level utterance”
interchangeably to designate the start-symbol of the grammar). The following types of
utterance exist:

Unmoved WH-questions WH-questions not exhibiting movement are the most com-
mon type of utterance in the corpus, accounting for about 29% of the examples.
E.g. “what is the cheapest flight from Boston to San Francisco”, “what flights
go from Pittsburgh to Baltimore after eight o’clock next Wednesday”, “what type
of aircraft is used on the five forty flight from Philadelphia to Dallas”.

Imperatives Imperatives are about equally common, accounting for 28% of the utter-
ances. For example,“list all flights on United from San Francisco to Boston”,
“show me ground transportation in Dallas please”, “now show me the flights
from Denver to Philadelphia on a Saturday”.

Y-N questions About 12% of the utterances are Y-N questions, e.g.,“is U S Air flight
four seventy six a nonstop flight”, “all right do you have a flight from Atlanta
to Boston”, “okay can you tell me the flight cost between Denver and Atlanta”,
“could you repeat that please”.

127

Declarative sentences About 9% of the utterances are declarative sentences, though
naturally most of these have the force of requests, commands or questions. Typ-
ical examples are“I need to know what flights leave Atlanta on Sunday evening
and arrive in Baltimore”, “I need information on a flight from Boston to Den-
ver” , “yes I want to go to San Francisco late that afternoon”.

Moved WH-questions WH-questions with movement are much less frequent than
ones without, accounting for only about 7% of the utterances. Despite this,
moved WH-questions exhibit considerably more variety than unmoved ones,
e.g., “what cities does Continental service”, “what ground transportation is
there from Denver”, “how much does it cost to fly on American from Dallas
to Baltimore”, “how do I get from Pittsburgh airport to downtown Pittsburgh”,
“how long is the flight from Oakland to Washington D C”, “what time are the
flights leaving from Denver to Pittsburgh on July seventh”.

Elliptical NPs Elliptical utterances are common: more than half of them are NPs,
possibly introduced by an interjection or a phrase likehow aboutor what about,
or followed byplease. These account for another 7% of the corpus. Typical
examples are“the most expensive flight between Boston and Philadelphia”, “six
fifty three a m”, “flights from Atlanta please”, “how about twelve thirty p m”,
“what about a flight from Boston to San Francisco stopping in Denver”.

Elliptical PPs and ADVPs A further 6% of the corpus consists of elliptical PPs and
ADVPs, with PPs accounting for abut two-thirds of these. As with elliptical
NPs, they can be accompanied by a interjections and phrases likepleaseor how
about. Examples:“from Pittsburgh”, “how about on Sunday night”, “and for
Lufthansa”, “one way”, “round trip please”.

Compound utterances The final 2% of the corpus consists of utterances which at
least arguably can be regarded as sequences of two or more sub-utterances,
linked by relations which are defined pragmatically by the context. The gram-
mar has as yet only a fairly rudimentary coverage of these constructions. Typical
examples follow, with brackets indicating the proposed boundaries between the
sub-utterances: NPs, PPs, declarative clauses, WH-questions, Y-N questions,
and imperatives.

�PP fromDenver to P ittsburgh onApril twenty first� �dcl I need the cheapest flight�

�NP flight E A two ten� �imp give me information on the price�

�PP of those flights� �imp show me the flights serving breakfast�

�dcl I wish to fly fromBoston toWashington� �imp please find an airline for me�

�dcl I am planning a trip to P ittsburgh and I live inDenver� �whq can you helpme�

�dcl some of these flights have stops� �ynq can you tell me what city they stop in�

128

9.8.1 Clauses

It is clear from the percentage-figures shown in the text above that clauses (which
include WH-questions, Y-N questions, imperatives and declarative sentences) are the
most common type of utterance, and we will consequently consider first the rules used
for forming them. We begin with the five rules which do not have to do with WH-
movement or subject-verb inversion:

S:[type=T] -> NP:[type=T] VP

S:[type=imp] -> VP:[vform=inf]

S -> ADVP:[advtype=sentential] S

S -> S ADVP:[advtype=sentential]

S -> S CONJ S

Thetype feature on S can have valuesq (question),r (relative) ornorm (normal, the
default).q orr values are passed up from the subject, when the clause does not exhibit
movement, and otherwise from the fronted element as explained below.

The first of the rules just presented is the basic one which combines subject NP and
VP to form a clause; the second forms an imperative clause from a VP with infinitive
main verb. The third and fourth allow pre- and post-modification of clauses by senten-
tial adverbs, and the fifth forms conjoined clauses. All of these are straightforward. We
now consider the six rules used for dealing with inversion and WH-movement, which
are more complex in structure:

S:[inv=y] -> V:[subcat=List] NP VP:[sai=movedv:[subcat=List])]

V:[subcat=[vp:VP],sai=movedv:[subcat=[vp:VP]]] -> []

V:[subcat=[comp:COMP],sai=movedv:[subcat=[comp:COMP]]] -> []

S:[whmoved=y,type=T,inv=I] ->
NP:[type=T] S:[inv=I,gapsin=[np:_],gapsout=[]]

S:[whmoved=y,type=T,inv=I] ->
PP:[type=T] S:[inv=I,gapsin=[pp:_],gapsout=[]]

S:[whmoved=y,type=q,inv=I] ->
ADJP:[wh=y] S:[inv=I,gapsin=[adjp:_],gapsout=[]]

The first three rules cover subject-auxiliary inversion; two new features play important
roles. Theinv feature distinguishes clauses with inverted word-order from normal
ones; thesai (subject-auxiliary inversion) feature is used to pass information about
the fronted verb to the place in the VP where it would have occurred in an uninverted
clause.

129

The first rule defines the basic structure of a clause with subject-auxiliary inversion,
as a sequence of auxiliary verb, subject, and inverted verb phrase. Thesai feature
propagates the fronted verb down through the verb phrase to reach the main verb:
there, it can be picked up by either the second or third rule.

The second covers all the verbs which can be fronted except copula or predicate
be; all other such verbs subcategorize for a VP. The third rule handlesbe(see also the
discussion of COMP rules in Section 9.7.1).

The fourth, fifth, and sixth rules cover movement and make essential use of the
whmoved feature. The fourth and fifth are for fronted NPs and PPs. These rules
can be used for WH-questions occurring as main clauses, embedded WH-questions,
or relatives, the type of clause being determined by theinv, type andwhmoved
features. Thus for example embedded WH-questions arewhmoved=y, inv=n and
type=q, while relative clauses arewhmoved=y, inv=y andtype=r. Thetype
feature is passed up from the fronted constituent; so for examplethat has an NP entry
with type=r, allowing it to introduce relative clauses but not inverted WH-questions.
In contrast, the NP entry forwhathastype=q, giving it the opposite distribution.

The sixth rule is for fronted ADJPs: these can only introduce questions, e.g.,“How
expensive is the San Francisco limousine service”.

9.8.2 Utterances

A top-level utterance can either be some type of clause or elliptical phrase, or a se-
quences of two or more such items. We consequently distinguish three types of con-
stituent: elliptical phrases, utterance units (a term we will use to subsume both single
clauses and single elliptical phrases), and utterances.

We consider the rules for each type of constituent in turn, starting with those for
elliptical phrases:

PHRASE -> PP

PHRASE -> ADVP

PHRASE -> NP:[baresing=_]

PHRASE -> NP:[baresing=y] NP:[name=y]

The first three rules allow PPs, ADVPs and NPs to stand alone as elliptical phrases.
The first two rules are straightforward; the third has thebaresing feature (see Sec-
tion 9.3.6) uninstantiated, to allow bare singular NPs to be elliptical NP phrases.

The fourth rule covers the spoken-language construction, common in the ATIS cor-
pus, typified by utterances like“cost D L eight five two”or “ground transportation
Atlanta”. In expressions like these, the intended semantics places an elided vague
preposition between the two NPs: thus the interpretation of the example utterances
will be approximately“cost D L for eight five two”and“ground transportationfor
Atlanta”.

130

The next group of rules cover “units”, which represent the smallest possible free-
standing utterance. Most utterances in fact consist of just one unit. The first three rules
are for phrasal units:

UNIT -> PHRASE

UNIT -> CONJ PHRASE

UNIT -> how/what about PHRASE

The first rule allows a UNIT to be a single phrase; the second is for phrases introduced
by a conjunction (e.g.,“and from Dallas to Atlanta”, “and United”); and the third for
phrases introduced bywhat aboutorhow about, e.g.,“how about for Eastern Airlines”,
“what about a seven three four”.

The five remaining rules are for clausal units:

UNIT -> S:[type=imp]

UNIT -> S:[type=q,inv=y,whmoved=y]

UNIT -> S:[type=q,inv=n,whmoved=n]

UNIT -> S:[type=norm,inv=y,whmoved=n]

UNIT -> S:[type=norm,inv=n,whmoved=n]

These cover, in order, imperative clauses, WH-word questions with WH-movement,
WH-questions without WH-movement, Y-N questions, and simple declarative clauses.
The features used are explained in Section 9.8.1.

The last group of rules are for utterances:

UTTERANCE -> UNIT

UTTERANCE -> INTERJECTION UNIT

UTTERANCE -> PP UNIT

UTTERANCE -> UNIT INTERJECTION

UTTERANCE -> CONJ UNIT

UTTERANCE -> NP UNIT

UTTERANCE -> S UNIT

The first rule is for utterances consisting of a single unit; the others cover the most
commonly occurring cases in which an utterance is built up from a unit and some other
constituent. These rules have anad hoccharacter, and are the only ones in the grammar
that cannot reasonably be claimed to be linguistically motivated.

131

9.9 Coverage failures

In the previous sections, we have described the constructions currently covered by the
grammar. We will now consider the corpus utterances which are still outside coverage.
Our main goal will be to show that the majority of these could be covered by fairly
simple and systematic extensions to the present framework; this includes many exam-
ples of “telegraphic” and other constructions which, though typical of spoken English,
would not be considered strictly grammatical by most native speakers.

Confining ourselves to the development corpus, which consists of the 4615 A or
D class ATIS sentences of 15 words or less available at the start of the project (minus
600 reserved for testing), the grammar currently covers all but 426 (9.2%). Of these,
93 (2.0%) are currently classed as malformed; the other 333 (7.2%) are arguably such
that they should be covered by the grammar. The boundary between malformed and
well-formed sentences is a vague one, and disputable borderline cases exist. We will
start by examining the putatively “grammatical” coverage failures, and then look at the
“ungrammatical” ones. Note that some sentences display more than one problem.

9.9.1 “Grammatical” coverage failures

We begin by giving a top-level classification of common coverage failures, with exam-
ples; we then discuss each class individually.

Spoken language constructions The most common single type of construction re-
sponsible for coverage failure is “telegraphic” spoken language, characterized
by omitted articles and/or prepositions, compound utterances formed of a se-
quence of two or more sentences or elliptical fragments, or some combination.
These account for 112 sentences (2.4%); the regularity and ubiquity of these con-
structions makes it difficult to dismiss them as “ungrammatical”, and many are
already covered by rules in the existing grammar. Typical examples are“Show
me flights with round trip fare less than one thousand dollars”(omitted article
beforefare), “arriving the earliest flight” (omitted preposition beforethe), or
“all right the nine thirty flight does that have a meal”(sequence of interjection,
NP and question).

Missing lexical entries Missing lexical entries account for 67 sentences (1.5%). Many
of these are multi-word phrases, e.g.,by way of(“I would like to fly from Denver
to Atlanta by way of Pittsburgh”or one hundred(as an aircraft type), e.g.,how
many seats in a one hundred.

“Normal” non-recursive NPs Missing grammatical coverage for “normal” non-recur-
sive NP constructions (i.e., constructions not specific to spoken language) ac-
counts for 30 sentences (0.65%). Most of these are “code” expressions, e.g.,
“what restrictions apply to [the Eastern flight eight twenty five]”, or complex
determiners“Which airline has [the most arrivals in Atlanta]”.

Conjoined phrases Missing rules for types of conjoined phrase account for 29 sen-
tences (0.65%), e.g.,“List the [arrival and departure] times for these flights”,
“Show me flights [two oh two and two oh eight]”.

132

Modifier expressions Missing rules for modifier expressions (PPs, ADVPs, and-ing
VPs) account for 26 sentences (0.55%), e.g.,“Are there any flights that arrive
[just after five p m]”, “Philadelphia to Dallas arriving before one in the after-
noon”.

Word-order problems 24 sentences (0.5%) fail due to lack of coverage of various
word-order problems. Typical examples are“What evening flights do you have
available from Baltimore to Philadelphia”, “List all flights please from Wash-
ington to San Francisco”.

Other problems 52 sentences (1.1%) fail for other reasons.

We now consider each class in more detail.

Quasi-grammatical spoken language constructions

Later on, we will consider examples of spoken-language constructions which overtly
break the accepted rules of English grammar (e.g., agreement between subject and
verb). Utterances of this type, however, are considerably less frequent than those
containing constructions of unclear grammatical status. In particular, two types of
construction stand out. Firstly, it is in spoken English quite common to omit de-
terminers and prepositions when they are clear from context. This results in what
is sometimes referred to as “telegraphese”, though we will prefer the more descrip-
tive terms “determiner ellipsis” and “preposition ellipsis”. The other common type of
quasi-grammatical spoken language construction is the multiple utterance, in which
several sentences and/or elliptical fragments are juxtaposed in a single utterance, the
connections being again clear from context.

The grammar has a limited ability to deal with both types of construction, rules hav-
ing been added for the simplest and most common cases (see Section 9.8.2). Regarding
“telegraphese”, an elliptical NP fragment may be a bare singular NP (determiner ellip-
sis), e.g.,“Cost of a round trip ticket on flight D L one zero five nine”; an utterance
may also consist of a bare singular NP followed by an NP (determiner and preposition
ellipsis) e.g.,“Fare D L three one one”, meaning“ The fare for D L three one one”.
There are also a number of rules for common types of multiple utterances, e.g., NP+S
(“U S seven seven one Pittsburgh to Philadelphia what is the fare”) and PP+S (“On
the flights that have stops can you tell me where they stop”.

Fuller coverage of determiner and preposition ellipsis, which make up over 90% of
the sentences intuitively classified as “telegraphese”, could be achieved in a principled
way by simply adding general “bare singular NP” and “prepositionless PP” rules. The
resulting increase in the number of analyses produced would naturally be appreciable,
and would as usual result in two problems: first an increase in processing time, and
secondly an increased load on the preference component. Inspection of typical sen-
tences suggests however that neither problem is critical. The increase in the number
of analyses produced is unlikely to exceed a factor of two or three on most sentences;
also, it is noticeable that only a small number of contextually salient words (cost, fare,
stop, etc.) tend to occur as head-words in “telegraphic” constructions, which makes
it reasonable to hope that collocation-based preference metrics would be able to reject

133

most spurious extra readings. Our impression is that it would probably be feasible to
cover nearly all examples of simple determiner and preposition ellipsis by some variant
of this method.

Better coverage of multiple utterances could be achieved by some simple improve-
ments to the existing grammar rules. About 70% of the multiple utterance failures
observed in the training corpus fall into one of the following categories:

� Multiple utterance of a type already covered, but with the addition of an inter-
jection or conjunction, e.g.,“[All right] [the nine thirty flight] [does that have
a meal]” (would be covered without interjectionall right); “[Thanks] [and]
[what’s the last flight back from Washington]”(would be covered with either
thanksor anddeleted).

Modification of the multiple-utterance rules to allow freer insertion of conjunc-
tions and interjections is not difficult.

� Common multiple-utterance patterns currently not covered. There are four spe-
cific cases: PP followed by NP, e.g.,“[On July twenty third] [an early flight on
American from Philadelphia to San Francisco]”; S followed by NP, e.g.,“[Is
that a nonstop flight] [United Airlines three five five]”; S followed by S, e.g.,
“[I want to fly from Boston to Atlanta] [I would like the cheapest fare please]”;
and two PPs separated by an interjection, e.g.,“[Pittsburgh to Atlanta] [please]
[with a stopover in Fort Worth]”.

Addition of rules to cover all of these cases would again be completely straight-
forward.

Missing lexical entries

Lexical entries exist for all items which occur at least three times in the development
corpus, and also for most items occurring once or twice. There are two main points
of interest regarding the missing lexical entries; firstly, the extent to which they are
domain-specific, and secondly, the degree of difficulty involved in adding an appro-
priate entry. Of the 67 sentences which fail due to missing lexical entries, 47 (70%)
fail due to entries which could fairly be described as domain-independent (see Sec-
tion 9.2). The remaining 20 entries are closely linked to the ATIS domain; of these, 9
are code phrases referring to aircraft types, e.g.,D nine Sor seven three four. The other
10 missing domain-specific entries area mas a noun,boeing(proper noun),booking
class(common noun),cheapest costas an adjective,coachas an adverb,economyas a
proper noun,economicas a synonym foreconomy, p mas an adjective,round trip as
a noun andthrifty as a synonym forthrift. None of these would have been difficult to
add.

Of the missing domain-independent entries, 11 are function words, 12 are words
which would be added to the lexicon as idiosyncratic items with an individual en-
try, and the remaining 24 are open-category words conforming to implemented lexical
paradigms. We consider each class in turn. The missing function words are:and
then(conjunction),as possible(comparative phrase),aside from(preposition),besides
(preposition),by way of(preposition),non(negating adjectival modifier, e.g.,“non first

134

class flights”), once(subordinating conjunction approximately equivalent towhen), re-
gardless of(preposition) andsay(interjection, e.g.,“What flights arrive after say six
o’clock”). All of these could be added easily, with the exception ofnonandsay.

The missing idiosyncratic entries are:at night(PP),currently(adverb),downtown
(adverb, e.g.,“How much does it cost to get downtown from the Atlanta airport by
limousine”), fine (interjection),instead(adverb),kind (noun subcategorizing for NP,
e.g.,“What kind of an aircraft is that”), kindly (adverb),possible(postmodifying ad-
jective used in conjunction with superlative, e.g.,the earliest flight possible) andproper
(postmodifying adjective, e.g.,the city proper). Of these, the only difficult one ispos-
sible, which appears to require a special grammar rule.

We finally look at the missing open-class entries, all of which could have been
added unproblematically:add (ditransitive verb),far from (adjective),L (name of let-
ter, e.g.,“What does the L stand for under meals”), list (intransitive verb, e.g.,“List
from Boston to Atlanta”, or verb taking embedded question, e.g.,“Please list where
these planes stop”), look like (particle verb),make(ditransitive verb, e.g.,“Make the
date of the flight July second”), mention(transitive verb),Philadelphia Pennsylvania
(proper noun),pricing (common noun),qualify (intransitive verb),quote(transitive
verb), restricted (adjective),San Francisco California(proper noun),seating(com-
mon noun),set(verb subcategorizing for direct object andto-PP, e.g.,“Set the date of
the flight to July second”), show(verb subcategorizing for direct object andabout-PP,
e.g.,“Show me about the ground transportation in Boston”), andsummer(common
noun).

In summary, about 70% of the missing entries were domain-independent, and about
90% could have been added without difficulty.

“Normal” non-recursive NPs

32 sentences failed due to problems with “normal” (i.e., not spoken-language specific)
non-recursive NPs. Of these, 14 were due to a number of missing rules for complex
determiners of the following forms:the most/least, e.g.,“Which airline has the most
arrivals in Atlanta”; possessive followed by a superlative, e.g.,“Show me your earliest
flight” ; the followed by a number, e.g.,“the four fare classes”; the followed by a
number and a superlative, e.g.,“the three earliest flights”andat most/leastfollowed
by a number, e.g.,“at least three stops”. Another 11 sentences failed due to problems
with code expressions. It is not clear how many of these are actually well-formed (for
example, the sentence“Is flight number two one seven one four nine first class”appears
to be a restart). The remainder appear to be unusual ways of expressing number codes,
e.g.,“flight number one fifteen twenty”. Finally, two sentences failed due to a simple
feature bug in the conjoined NBAR rule, and five sentences failed for assorted other
reasons.

Conjoined phrases

29 sentences failed due to missing coverage of conjunction constructions. Of these, 26
could have been solved by addition of simple rules to cover the following types of con-
stituent conjunction: codes, e.g.,“flights [two hundred two and two hundred eight]”;

135

PPs, e.g.,“both after twelve p m and before twelve p m”; complex nominals, e.g.,“the
[arrival and departure] times”; prepositions, e.g.,“into and out of”; adverbs, e.g.,
“one way and round trip”; and superlative adjectives, e.g.,“the [latest and earliest]
flights”.

There were three genuinely difficult cases in which constituents of different classes
were conjoined, e.g.,“Find me a flight [arriving near five p m and nonstop]”. These
could not have been solved without addition of a very large number of low-frequency
rules, or major modification of the grammatical framework.

Modifier expressions

26 sentences failed due to missing coverage of modifier expressions. Of these, nine
were examples of utterances consisting of a lone-ingVP, e.g.,“Arriving in Washington
D C” ; five were due to adverbial modification of PPs, e.g.,“just after five p m”; four
were due to due to modifier phrases consisting of a combination of a PP and and an-ing
VP, e.g.,“From Boston going to Atlanta”; four were superlative ADVPs of the form
most/leastor the most/least, e.g.,“Which airline flies out of Boston (the) most”; three
were superlative ADVPs of the formthe ADVP, e.g.,“Show me the flight that arrives
the earliest”; and two failed for other reasons. Rules for all the named examples would
be easy to add.

Word-order problems

24 sentences fail due to inadequate coverage of word-order phenomena. Seven fail due
to problems with movement, typified by sentences like“What do you have tomorrow
morning from Pittsburgh to Atlanta”or “What evening flights do you have available
from Baltimore to Philadelphia”. These sentences are interesting, in that they appear
to point to a flaw in the current treatment of movement. It would be possible to cover
them by allowing the daughter NP in the rules which build an NP from an NP and a
post-modifier to be a gap; this involves making a number of alterations in the features
present in these rules, so as to limit the number of new readings produced. It is not
a trivial change, but one which appears well-motivated, and feasible without drastic
reorganization of the grammar.

The remaining 17 sentences exhibiting word-order problems fail due to cases where
modifiers occur in positions currently not handled by the grammar. In eight of these,
a PP or ADVP occurs immediately after the main verb, e.g.,“Please list for me the
flights on United Airlines between Boston and Denver”(PP) or“I’m only interested in
nonstop flights”(ADVP). Three more are caused by a bug which currently blocks post-
VP modification of WH-questions by sentential adverbs. The modifications needed to
cover these cases are easy; of the remaining six sentences, five fail due to presence
of an ADVP or PP inside an NP or PP, e.g.,“Please show me the flights again from
Pittsburgh to Atlanta”. This type of construction is, in contrast, not at all simple to
accommodate in the grammar.

136

Other problems

52 sentences fail for other reasons. Of these, ten are caused by lack of rules for nom-
inalizations and conditionals; nominalizations were primarily omitted in the interests
of efficiency, and conditionals for no very good reason. Most of the remaining 42
sentences represent problems that could in principle be solved by addition of suitable
grammar rules or slight modification of existing ones, but have not been dealt with due
to their low frequency of occurrence. Of these 42 sentences, 9 represent problems that
occur three times; 16, problems that occur twice; and the remaining 17, problems that
occur only once.

9.9.2 “Ungrammatical” coverage failures

92 of the sentences currently outside coverage are fairly clearly ungrammatical in the
strong sense of actively breaking established grammatical rules, rather than merely
representing constructions not in the grammar.

58 of these sentences are “repairs” not currently handled by the special mechanism
used to process this type of disfluency (see Section 4.1 of Agnäset al, 1994). 13 more
sentences break subject-verb agreement rules, e.g.,“What are the meal”); it is possible
that the requirement on subject-verb agreement could be relaxed to cover them, but this
is a step we have so far been reluctant to take. 10 sentences display forms of ellipsis
sufficiently irregular and uncommon that they are difficult to include in a grammar, e.g.,
“Me the flights from American”(ellipsis of main verb) or“Interested in a flight from
Washington to Fort Worth”(ellipsis of both subject and main verb). Finally, 11 sen-
tences display irregular patterns hard to classify. For example, in the sentence“What
does the origination of flight D L eight four two”, is has presumably been substituted
by does, but this cannot sensibly be captured in a grammar.

9.9.3 Summary of coverage failures

The main motivation for the detailed presentation given here has been to support our
contention that most of the present coverage holes could be filled in a reasonably
principled way without large changes to the grammar. The two most frequent single
problems, repairs and spoken-language specific constructions, actually appear quite
tractable; these between them account for 170 of the 426 coverage failures. Many sen-
tences which currently fail due to missing grammar or lexicon coverage are also fairly
regular, in the sense of displaying well-defined patterns that occur several times in the
corpus, and could be solved by simple additions or modifications to the grammar. The
remaining sentences can be difficult for one of three reasons. They can be sufficiently
irregular that they are stamped as “malformed” and ignored; they can contain prob-
lems apparently insoluble without major restructuring of the grammatical framework;
or they can belong to the “tail” of low-frequency rules, many of which would remain
uncovered even if a substantial effort were spent on improving the grammar.

The first and second groups are small. Not counting repairs (which are not re-
ally a grammatical problem), only 24 sentences (0.6%) are still classed as malformed.
The second group is even smaller: the only clear cases of serious problems with the

137

grammatical framework are those involving conjunction of dissimilar constituents (3
sentences), and word-order problems where an ADVP or PP modifier to a VP appears
inside an NP (5 sentences). The most difficult grammar modification required seems to
be the one relating to extraction from NPs described in Section 9.9.1, which is almost
certainly a question of a few days of work at most. Combining the counts for the first
two groups, the grammatical framework appears strong enough in principle to account
for all but about 32 sentences (0.7%) of the development corpus.

The third group of difficult sentences is larger. We will estimate its size by count-
ing all problems that occur less than three times in the development corpus: any known
problem that presents no intrinsic difficulties in solution and occurs as frequently as
once in every 1500 sentences will surely be fixed eventually given a substantial de-
velopment effort. Counting the low-frequency examples from the various groups, we
have 11 cases of low-frequency multiple utterance patterns; 67 missing lexical entries;
16 problems with non-recursive NP rules; 2 problems with modifier constructions; 1
word-order problem; and 33 “other” problems, making a total of 130 sentences, or
2.8%. In summary, it seems justifiable to claim that the practical coverage limit in-
herent in the grammar framework used is not worse than 97%, and that coverage at
this level could be achieved with only a moderate investment of effort: we are fairly
confident that an additional six person-months of labour would be sufficient.

Chapter 10

Swedish Coverage

Manny Rayner, Mats Wirén and Robert Eklund

Note: This chapter is a preliminary draft and will expanded in greater detail for the
final version of the report.

10.1 Introduction

Historically, the Swedish grammar and lexicon were adapted from their English coun-
terparts (Alshawiet al., 1991) and they have largely continued to grow in parallel,
allowing the large overlap between the structures of the two languages to be exploited.
Because of the common origin, and since the English grammar has been described in
fair detail elsewhere, we shall concentrate here on the systematic differences between
the two grammars rather than attempting to describe the Swedish grammar as an inde-
pendent entity.

As for the English grammar, the presentation is organized with respect to chunks
or levels corresponding to morphology, verbal constructions, clausal constructions, NP
constructions, modifier constructions and phrasal constructions.

10.2 Morphology

10.2.1 Declensions/conjugations

In contrast to English, Swedish nouns have more than one declension; Swedish verbs
have more than one conjugation.

Unlike English, adjectives inflect by number, gender and definiteness.
Swedish rules:
v_v_affix Combine a verb and an affix for the right conjugation
nbar_nbar_pluralCombine a noun and a plural for the right conjugation
adj_adj_plural Make plural form of adjective
adj_adj_neuter Make neuter form of adjective

138

139

Swedish features:
synmorphn Noun declensionsynmorpha Adjective declensionsynmorphv

Verb conjugation

10.2.2 Null derivation

In English, the only null derivation needed is that one that derives the imperative/infinitive
form from the notional base form. In Swedish, the possibilities are much more numer-
ous and need to be controlled by features.

English rule:
v_v Imperative/infinitive from base
Swedish rules:
v_v_nullGeneral null derivation of verbnbar_nbar_nullpluralNull plu-

ral for 5th declension and some other nouns
Swedish features:
nullmorphn Noun has a null plural if set
nullmorpha Adjective does not inflect by number and gender if set
nullmorphv Verb forms formally identical with base (depends on conjugation)

10.2.3 Umlaut

Swedish has productive vowel mutation with strong verbs and adjectives. (Also on
nouns, but here doesn’t need to be treated as productive: can be thought of as a straight
irregular plural).

Swedish rules:
adj_adj_omljud "Comparative stem" for strong adjective. Used for compara-

tive and superlative forms.
v_v_supine_stem "Supine stem" for strong verb. Used for supine and past

participles.

10.2.4 Adverb from Adjp

Swedish forms adverbs from the singular indefinite neuter form of an adjective
Swedish rule:
advp_adj_neuter Adverb from adjective

10.2.5 Verbal Constructions

10.2.6 Lexical passive and deponent verbs

Swedish has lexical passive. Two variants:
- Some verbs are deponent, i.e. formally passive but semantically active.
- Some verbs allow the "impersonal passive" construction using the dummy subject

"det".
Swedish rules:
v_v_passivize Normal lexical passive

140

v_v_Deponent Formal passive for deponent verb
v_v_passivize_impersonal Impersonal passive form of verb (requires dummy

subj)
Swedish features:
deponent Verb is deponent if set
impersonal_passive Verb allows impersonal passive

10.2.7 Separable verbs

Swedish transitive particle verbs form a past participle by attaching the particle before
the verb.

Swedish rule:
v_p_v Past participle for Swedish transitive particle verb

10.2.8 Lexically reflexive verbs

Swedish, unlike English, has lexically reflexive verbs (verbs which subcategorize for a
semantically null reflexive pronoun)

Swedish feature (np):
reflexive Marks dummy reflexive pronoun

10.3 Clausal Constructions

10.3.1 Inversion

Swedish, unlike English, allows inversion of any verb.
Swedish requires inversion when a clause is introduced by a sentential adverbial.
Swedish rule:
s_advp_s_ConjAdvpSwedish clause introduced by adverb requiring inversion
English rule:
s_advp_s_SAdvp English clause introduced by adverb (no inversion)
English features (on v):
inverts V can invert
mainv V appears as main verb in clause

10.3.2 Mobile adverbs and negation

Swedish "mobile" adverbs (which formally include negation markers) occur after the
verb in a main clause, but before the verb in a subordinate clause. "Special" adverbs
always appear before the verb. "Conjunctive" adverbs always appear after. If the verb
is transitive, it occurs in a main clause, and its direct object is a pronoun, then any
mobile adverb occurs after the object.

In view of the above observations, it is natural to consider the verb and adverb
(negation) as together forming a constituent. In contrast, it is in English more natural

141

to consider that the negation marker combines with a VP. This explains the following
divergences.

English rule:
vp_not_vp Negative verb phrase
Swedish rules:
v_v_advp_ConjAdvp Postverbal conjunctive adverb
v_v_advp_Mobile Postverbal mobile adverb (main clause)
v_v_pro_advp_MobilePostverbal mobile adverb (main clause) with pronom-

inal object
v_advp_v_Special Preverbal special adverb
v_advp_v_Mobile Preverbal mobile adverb (subordinate clause)
Swedish features:
mobile Adverb feature distinguishing mobile/non-mobile advps
subordinate VP/clausal feature distinguishing subordinate clauses
biff V feature marking Vs pre-modified by mobile advps

10.3.3 Vad ... för

Swedish allows the vad ... för construction.
Swedish rule:
np_för_np "för" PP including gap left by "vad"

10.3.4 Swedish embedded Q with "som"

Swedish requires embedded subject questions to take an extra "som" between the sub-
ject and the VP.

Swedish rule:
s_np_som_vp_EmbeddedQ Special clause of this type.
Swedish feature (on s):
somclause Marks these clauses and only allows them to be used as embedded

Qs

10.4 NP Constructions

10.4.1 Definiteness

Swedish, unlike English marks nouns and adjectives for definiteness.
rule_counterpart_declared([np,nbar],np_nbar_Def/swe,?).
Swedish rules:
nbar_nbar_def Definite form of noun
adj_adj_def_NormalDefinite form of adjective
adj_adj_def_SupDefinite superlative form of adjective
Swedish feature (on np, nbar, adjp):
def Definite form if set

142

10.4.2 Bare adjp

Swedish allows adjectives to be used productively as nouns
Swedish rule:
nbar_adjp_NbarEllipsis Adjective used as noun
Swedish feature (on nbar):
adjnbar Adjectival noun if set

10.4.3 Possessive constructions

English forms the possessive by affixation of a possessive element (’s) to the NP.
Swedish forms the possessive by putting the head N of the NP into the genitive.
English rule:
possdet_np_possNP + ’s is a possessive
Swedish rules:
nbar_nbar_genitiveGenitive form of common noun
name_name_genitiveGenitive form of proper noun
det_np_GenitiveNP with ‘genitive’ feature set is a possessive
np_det_nbar_code Special rule for genitive/code combination, e.g. "Deltas

flygning tvåhundrafem"
Swedish feature (on nbar and np):
genitive Head feature specifying genitive

10.4.4 Compound nominals

English forms nominal compounds with intervening spaces. Hence the compounding
rules are grammar rules.

Swedish normally forms nominal compounds without intervening spaces, though
in compounds of the form proper noun + common noun the space is optional. Hence
compounding rules, with this one exception, are morphology rules.

If the first element of the compound is a noun, then it may appear in a modified
form. Possibilities include affixation of "s" (tidszon), hyphen (tur och retur-flygning),
and also irregular formations (resetid).

Some Swedish adjectives form Adj/N compounds with nouns.
If an English word A is ambiguous between an adjective and a noun, and N is a

noun, then A + N could potentially be either an adjective-modified noun or a nominal
compound. We disallow the second reading to limit spurious ambiguity.

Swedish compounds are non-trivial and our treatment is still not very satisfactory.
English rules:
nbar_np_nbar_ComplexNCompound nominal: proper noun + common noun
nbar_nbar_nbar_ComplexNCompound nominal: common noun + common

noun
Swedish rules:
nbar_nbar_CompoundingFormCompounding form of common noun is base

form

143

nbar_nbar_infix1Compounding form of common noun by adding affix (ini-
tial element of compound)

nbar_nbar_infix2Compounding form of common noun by adding affix (non-
initial element of compound

name_name_infixCompounding form of proper noun by adding affix
nbar_adjp_infix_nbar_ComplexNAdjective + common noun compound
nbar_nbar_infix_nbar_ComplexN Common noun + common noun com-

pound
nbar_name_infix_nbar_ComplexNProper noun + common noun compound
nbar_name_nbar_ComplexN Proper noun + common noun compound with

space
English feature (nbar and np):
couldbeadjp Noun is ambiguous between noun and adjective
Swedish features (np and nbar):
compoundingformCompounding form of word
nn_infix Initial/non-initial element of compound
Swedish feature (adjp):
compoundingadj Adjective that can form Adjective + common noun com-

pounds

10.4.5 Modifier Constructions

10.4.6 -ing VP modifier

English allows use of an -ing VP as a VP or NP modifier
English rule:
advp_vp_Ing -ing VP as VP modifier
(Different feature settings on np_np_pp rule)

10.4.7 Extraction from of-PP

English has more restrictive rules governing extraction from NPs. Thus e.g. "Who_i is
he the brother of e_i?" only works with "of". Swedish doesn’t need a special rule here.

English rule:
np_np_pp_OfPPGapNP with dangling "of"

10.4.8 Phrasal Constructions

10.4.9 Time of day

Differences in types of expression handled:
English: three o’clock fourteen hundred hours
Swedish: klockan tre tre och tjugo tre femtiofem tre-tiden

144

10.4.10 Date expressions

Differences in types of expression handled:

English:
the twenty seventh of September
September twenty seventh
the twenty seventh
September twenty seven
twenty seven September
September the twenty seventh
September the twenty seventh nineteen ninety seven
Monday September the twenty seventh

Swedish:
tjugosjunde september
den tjugosjunde
tjugosjunde i nionde
den tjugosjunde september
den tjugosjunde i nionde

Chapter 11

French Coverage

Manny Rayner and Pierrette Bouillon

This chapter will describe the French version of the CLE, which, like the Swedish one,
was created by intelligent manual adaptation of the original English version. The gen-
eral style of exposition will also be similar to that adopted in the chapter on Swedish
coverage; rather than recapitulate the many similarities between the French grammar
and the English one from which it was derived, we will concentrate on the differences.
In a final section, we briefly sketch an experimental Spanish grammar, which was de-
veloped by adaptation of the French system.

Throughout the chapter, we attempt to highlight the general nature of the adaptation
process, and argue that it constitutes a general recipe that could be applied to other
unification-based systems.

11.1 Introduction

We begin by summarizing the main capabilities of the French version of the system.
The syntactic rule-set covers nearly all the basic constructions of the language, includ-
ing the following: declarative, interrogative and imperative clauses; formation of YN
and WH-questions using inversion, complex inversion and “est-ce que”; clitic pro-
nouns; adverbial modification; negation; nominal and verbal PPs; complements to
“être” and “il y a”; relative clauses, including those with “dont”; partitives, includ-
ing use of “en”; passives; pre- and post-nominal adjectival modification, including
comparative and superlative; code expressions; sentential complements and embedded
questions; complex determiners; numerical expressions; date and time expressions;
conjunction of most major constituents; and a wide variety of verb types, including
modals and reflexives. There is a good treatment of inflectional morphology which
includes all major paradigms. The coverage of the Spanish grammar is comparable in
scope, though slightly less extensive. The French and Spanish versions of the CLE are
both “reversible”, and can be used for either analysis or generation.

We will describe the adaptation process in detail, and argue that it provides a fairly

145

146

general recipe for converting a grammar-based system for English into a corresponding
one for a Romance language. The only components which required manual alteration
were “rule” modules: hand-coded, unification-based descriptions of the grammar, lex-
icon, morphology etc. As noted in Alshawi (1992) Section 14.2.2 the effort involved
in adapting a set of rule modules to a new language depends on how directly they re-
fer to surface form; unsurprisingly, modules defining surface phenomena are the ones
which require most work. When adapting the system to French and Spanish, the prob-
lems arose almost exclusively in connection with morphology and syntax rules. Other
parts of the English system were adapted with little effort. In particular, the semantic
rule-sets for English could be used for the new languages with only minimal changes.

The rest of the chapter is organized as follows. Section 11.2 describes the French
morphology rules. Sections 11.3 and 11.4 describe the French and Spanish grammars.
Section 11.5 concludes.

11.2 Morphology and spelling

In order to handle the more complex inflectional morphology of Romance and other
European languages, a morphological processor based on feature-augmented two-level
morphology was developed (Carter, 1995). This allows the complex spelling changes
occurring in these languages to be handled quickly in both analysis and generation.
Compilation of the full sets of two-level rules describing spelling changes and of pro-
duction rules describing legal affix combinations takes of the order of a minute, al-
lowing changes to the rules to be debugged relatively easily. Further flexibility is
gained by not requiring the lexicon to be present at compile time (contrast Kaplan and
Kay (1994)); thus the lexicon can be incremented and tested without any recompila-
tion being required. Two-level spelling rules were also used to describe the inter-word
effects that are particularly common in French.

The total number of rules required to describe inflectional morphology was around
75 for French and 50 for Spanish (inter-word rules being responsible for much of the
difference). We concentrate here on the French phenomena, which are more complex.

11.2.1 Intra-word spelling changes

Intra-word spelling changes for French present several problems not encountered in
English inflectional morphology. Some of these are technical in nature, and easily dealt
with. In particular, French exhibits many multiple letter changes, e.g. “chameau+e”�
chamelle, “peign+rai”� peindrai. For reasons explained in Carter (1995), these must
be handled by a separate rule for each letter that changes, rather than one for the whole
changed substring. Also, some changes can be optional. For example, the “y” in verbs
such as “payer” can remain the same or change to “i” before silent “e”: “pay+e”�
eitherpayeor paie. This phenomenon is rare or absent in English, but is handled easily
by making the relevant spelling rule optional.

Less trivial problems, however, arise from the fact that spelling changes in French
generally cannot be predicted from the surface form of the word alone. This means the
application of the rules must be controlled; we do this by specifying feature constraints,

147

which must match between the rule and all morphemes it applies to. The following
extended example describes our treatment of one of the most challenging cases.

Nouns, adjectives and verbs ending in “-et” or “-el” can either double the “t” or
“l” before a silent “e” or change the prefinal “e” to “è”: “cadet+e”� cadette, but
“complet+e”� complète. The application of the spelling rules is therefore controlled
by means of a featurespelling_type, with valuedouble in the first case and
change_e_è in the second.

This situation is further complicated by two facts. Firstly, the surface “èl” or “èt”
of the verbs is ambiguous between a deep “el” or “et”, and “él” or “ét”. For example,
we haveachète
 “achet+e”, butaffrète
 “affrét+e”. For this reason, we introduce
a third value forspelling_type: change_é_è. “Affrét” has thus the feature
spelling_type=change_é_è, “achet”spelling_type=change_e_è and
“appel”spelling_type=double.

Secondly, the “e” that begins future and conditional endings sometimes affects pre-
ceding letters as if it were silent, and sometimes as if it were not. For example, “ap-
pel+erai”� appellerai, doubling the “l” just as in “appel+e”� appelle, where the final
“e” actually is silent. However, “céd+erai”� céderai, not *cèderaias would be ex-
pected from the silent-e behaviour “céd+e”� cède. To make this distinction, we use a
featuremuet (“silent”) for specifying if the “e” in the suffix is silent, as “e” (muet=y),
not silent, as “ez” (muet=n) or the “e” of the future or conditional tenses, for example
“erai/erais” (muet=fut_cond_e). Then, we restrict the rule for doubling the conso-
nant with the featuresspelling_type=double, muet=y�fut_cond_e, and
the one for “é”� “è” with the featuresspelling_type=change_é_è,muet=y.

11.2.2 Inter-word spelling changes

In English, inter-word spelling changes occur only in the alternation between “a” and
“an” before consonant and vowel sounds respectively. In French, such changes are far
more widespread and can be complex. However, they can be handled by judiciously
specifying contexts in two-level rules and, in a few cases, by postulating non-obvious
underlying lexical items. Some important cases are:

� The “e” in the function words “de”, “je”, “le”, “me”, “ne”, “que”, “se” and “te” is
elided before (most) words starting in a vowel sound, except when the function
word follows a hyphen: “le homme”� l’homme, “je ai” � j’ai , but “puis-je
avoir” does not elide, so the elision rule specifies that the hyphen be absent from
the context. “Ce” also elides when used as a pronoun (“ce est”� c’est, but
when used as a determiner it takes the form “cet” before a vowel:cet homme.
We therefore take the underlying form of the determiner to be “cet”, whichloses
its “t” when followed by a consonant-initial word (“cet soir”� ce soir).

Numerals do not allow elision either: “le onze” does not become *l’onze. We
therefore treat the lexical form as being “#onze”, where “#” acts as an underlying
consonant but is realised as a null. (Syntax plays a role here too: “le un”� l’un
when is a determiner, but not when it is a numeral. Thus lexically we have “un”
as determiner and “#un” as numeral).

148

� The very common preposition/article combinations “de”/“à” and “le”/“les”: “de
le” � du, “à les”� aux, etc. These contractions span constituent boundaries
(we viewdu volas being syntactically [PP de [NP le vol]]) so need to be treated
as spelling effects. Also, vowel elision takes precedence: “de le homme”� de
l’homme, not *du homme.

� Hyphens between verbs and clitic pronouns are treated as lexical items in our
grammar. They are realised as-t- when preceded by “a” or “e” and followed by
“e”, “i” or “o”: “va - il” � va-t-il, but “vont - ils”� vont-ils. Hyphens joining
nouns or names are treated as different lexical items not subject to this change:
“les vols Atlanta - Indianapolis” does not involve introduction of “t”.

11.3 French syntax

When comparing the French and English grammars, there are two types of objects of
immediate interest:syntax rulesand features. Looking first at the rules themselves,
about 80% of the French syntax rules are either identical with or very similar to the
English counterparts from which they have been adapted. Of the remainder, some
rules (e.g those for date, time and number expressions) are different, but essentially too
trivial to be worth describing in detail. Similar considerations apply to features.

We will concentrate our exposition on the rules and features which are both signifi-
cantly different, and possess non-trivial internal structure. Examining the grammar, we
find that there are three large interesting groups of rules and features, describing three
separate complexes of linguistic phenomena: question-formation, clitic pronouns and
agreement. As we have argued previously (Rayner and Bouillon, 1995) all of these are
rigid and well-defined types of construction which occur in all genres of written and
spoken French. It is thus both desirable and reasonable to attempt to encode them in
terms of feature-based rules, rather than (for instance) expecting to derive them as sta-
tistical regularities in large corpora. In Sections 11.3.2, 11.3.1 and 11.3.3, we describe
how we handle these key problems.

11.3.1 Question-formation

We start this section by briefly reviewing the way in which question-formation is han-
dled in the English CLE grammar. There are two main dimensions of classification:
questions can be either WH- or Y-N; and they can use either the inverted or the un-
inverted word-order. Y-N questions must use the inverted word-order, but both word-
orders are permissible for WH-questions. The phrase-structure rules analyse an in-
verted WH-question as constituting a fronted WH+ element followed by an inverted
clause containing a gap element. The featureinv distinguishes inverted from unin-
verted clauses. The following examples illustrate the top-level structure of Y-N, un-
moved WH- and moved WH-questions respectively.

[Does he love Mary]S��inv�y	

[Who loves Mary]S��inv�n	

149

[[Whom]NP [does he love []NP]S��inv�y]

The French rules for question formation are structurally fairly similar to the English
ones. However, there are several crucial differences which mean that the constructions
in the two languages often differ widely at the level of surface form. Two phenomena
in particular stand out. Firstly, English only permits subject-verb inversion when the
verb is an auxiliary, or a form of “have” or “be”; in contrast, French potentially allows
subject-verb inversion with any verb. For this reason, English question-formation using
auxiliary “do” lacks a corresponding construction in French.

Secondly, French permits two other common question-formation constructions in
addition to subject-verb inversion: prefacing the declarative version of the clause with
the question particle “est-ce que”, and “complex inversion”, i.e. fronting the subject
and inserting a dummy pronoun after the inverted verb. In certain circumstances, pri-
marily if the subject is the pronoun “ça”, it is also possible to form a non-subject WH-
question out of a fronted WH+ phrase followed by an uninverted clause containing an
appropriate gap. We refer to this last possibility as “pseudo-inversion”.

If the subject is a pronoun, only inversion and the “est-ce que” construction are
allowed; if it isnota pronoun, only the “est-ce que” construction and complex inversion
are valid. In addition, a subject pronoun following an inverted verb needs to be linked
to it by a hyphen, which can be realised as a “-t-” (see Section 11.2). Figure 11.1
presents examples illustrating the main French question constructions.

Modification of the English syntax rules to capture the basic requirements so far
is quite simple. In our grammar, we added three extra rules to cover the “est-ce que”,
complex-inversion and pseudo-inversion constructions: the second of these rules com-
bines the complex-inverted verb with the following dummy pronoun to form a verb, in
essence treating the dummy pronoun as a kind of verbal affix. A further rule deals with
the hyphen linking an inverted verb with a following subject.

With regard to the feature-set, the critical change involves theinv feature. In
English, as we saw, this feature had two possible values,y andn. In French, the
corresponding feature has five values:inverted, uninverted, est_ce_que,
complex andpseudo, distinguishing clauses formed using the different question-
formation constructions. (It is important to note, though, that the semantic represen-
tation of the clause is the same irrespective of its inversion-type). To enforce the re-
strictions concerning combinations of inversion-type and subject form, we also added
a new clausal feature which distinguished clauses in which the subject is a pronoun.

The attractive aspect of this treatment is that the remaining English rules used for
question-formation can be retained more or less unchanged. In particular, the English
semantic rules can still be used, and produce QLF representations with similar form.

It would almost be true to claim that the above constituted our entire treatment of
French question-formation. In practice, we have found it desirable to add a few more
features to the grammar in order to block infelicitous combinations of the inversion
rules with certain commonly occurring lexical items. It is possible that the effect of
these features could be achieved equally well by statistical modelling or other means,
but we describe them here for completeness:

Restrictions on use of “est-ce que”: Question-formationwith “est-ce que” is strongly

150

Y-N, inversion:
Aime-t-il Marie?

Y-N, “est-ce que”:
Est-ce que Jean aime Marie?

Y-N, complex inversion:
Jean aime-t-il Marie?

WH, subject question, no inversion:
Quel homme aime Marie?

WH, inversion:
Quelle femme aime-t-il?

WH, “est-ce que”:
Quelle femme est-ce que Jean aime?

WH, complex inversion:
Quelle femme Jean aime-t-il?

WH, pseudo-inversion:
Combien ça coûte?

Figure 11.1: Main French question constructions

151

dispreferred when the main verb is a clause-final occurrence of “être”, or exis-
tential “avoir” (as in “il y a”). For example:

?Quand est-ce que le prochain vol est?
?Combien de vols est-ce qu’il y a?

We enforce this by adding a suitable feature to the verb category.

Fronting of “heavy” NPs: Most languages prefer not to front “heavy” NPs, and this
dispreference is particularly strong in French. We have consequently added an
NP feature calledheavy, which has the valuey on NPs containing PP and VP
post-modifiers. Thus for example generation of

Quels vols en partance de Dallas y a-t-il?

is blocked, but the preferable

Quels vols y a-t-il en partance de Dallas?

is permitted.

Inverted subject NPs: Occurrence of some pronouns (in particular “cela”, and “ça”)
is strongly dispreferred in inverted subject position. A binary feature enforces
this as a rule, for example blocking

Combien coûte ça pour aller à Boston?

but instead permitting

Combien ça coûte pour aller à Boston?

11.3.2 Clitics

The most difficult technical problems in adapting an English grammar to a Romance
language are undoubtedly caused by clitic pronouns. In contrast to English, certain
proform complements of verbs do not appear in their normal positions; instead, they
occur adjacent to the main verb, and possibly joined to it by a hyphen. The position
of the clitics in relation to the verb (pre- or post-verbal) is determined by the mood of
the verb, and whether or not the verb is negated. If two or more clitics are affixed to
the verb, their internal order is determined by their surface forms. Several attempts to
account for the above and other data have previously been described in the literature
e.g. (Grimshaw, 1982; Bès and Gardent, 1989; Estival, 1990; Miller and Sag, 1995);
we have in particular been influenced by the last of these.

Although the underlying framework is very different from the HPSG formalism
used by Miller and Sag, our basic idea is the same: to treat “clitic movement” by a
mechanism similar to the one used to handle WH movement. More specifically, we
introduce two sets of new rules. The first set handles the “surface” clitics. They define
the structure of the verb/clitic complex, which we, like Estival, regard as a constituent
of category V composed of a main verb and a “clitic-list”. A second set of “gap”
rules defines empty constituents of category NP or PP, occurring at the notional “deep”

152

positions occupied by the clitics. Thus, for example, on our account the constituent
structure of “Est-ce que vous le voulez?” will be

[Est-ce que [vousNP [le voulez]V []NP]S]S

where the “gap” NP category represents the notional direct object of “voulez”, realised
at surface level by the pre-verbal clitic “le”.

To make this work, we add an extra feature,clitics, to all categories which can
participate in clitic movement: in our grammar, these are V, VP, S, NP and PP. The
clitics feature is used to link the cliticised V constituent and its associated clitic
gap or gaps. We have found it convenient to define the value of theclitics feature
to be a bundle of five separate sub-features, one for each of the five possible clitic-
positions in French. Thus for instance the second-position clitics “le”, “la” and “les”
are related to object-position clitic gaps through the second sub-feature ofclitics;
the fourth-position “y” clitic is related to its matching PP gap through the fourth sub-
feature; and so on. The linking relation between a clitic-gap and its associated clitic
is formally exactly the same as that obtaining between a WH-gap and its associated
antecedent, and can if desired be conceptualized as a type of coindexing.

Theclitics feature-bundle is threaded through the grammar rule which defines
the structure of the list of clitics associated with a cliticised verb, and enforces the
constraints on ordering of surface clitics. These constraints are encoded in the lexical
entry for each clitic.

This basic framework is fairly straight-forward, though a number of additional fea-
tures need to be added in order to capture the syntactic facts. We summarize the main
points:

Position of surface clitics: Clitics occur post-verbally in positive imperative clauses,
otherwise pre-verbally. The clitic-list constituent consequently needs to share
suitable features with the verb it combines with.

Surface form of clitics: The first- and second-person singular clitics are realised dif-
ferently depending on whether they occur pre- or post-verbally: for example
“Vous me réservez un vol” versus “Réservez-moi un vol”. Moreover, “me” and
“te” are first-position clitics (e.g. “Vous me les donnez”), while “moi” and “toi”
are third-position (“Donnez-les-moi”). This alternation is achieved simply by
having separate lexical entries for each form. The entries have different syntac-
tic features, but a common semantic representation.

Special problems with the “en” clitic: The most abstruse problems occur in connec-
tion with the “en” clitic, and are motivated by sentences like

Combien en avez-vous?

Here, our framework seems to dictate a constituent structure including three
gaps, viz:

[Combien [[en avez]V [vousNP [[] V [[]NP []PP]NP]]S]S]S

153

in which the V gap links to “avez”, the NP gap to “combien”, and the PP gap
to “en”. The specific difficulty here is that the “en” PP gap ends up as an NP
modifier (it modifies the NP gap). Normally, however, PP modifiers of NPs
cannot be gaps, and the above type of construction is the only exception we have
found.

Rather than relax the very commonNP � NP PP rule to permit a gap PP
daughter, we introduce a second rule of this type which specifically combines
certain NPs, including suitable gaps resulting from WH-movement, and an “en”
clitic gap. A feature,takespartitive, picks out the NPs which can partici-
pate as left daughters in this rule.

11.3.3 Agreement

Although grammatical agreement is a linguistic phenomenon that plays a considerably
larger role in French than in English, the adjustments needed to the lexicon and syntax
rules are usually obvious. For instance, a feature has to be added to the both daughters
of the rule for pre-nominal adjectival modification, to enforce agreement in number and
gender. In nearly all cases, this same procedure is used. A feature calledagr is added
to the relevant categories, whose value is a bundle representing the category’s person,
number and gender, and theagr feature is shared between the categories which are
required to agree.

There are however some instances where agreement is less trivial. For example,
the subject and nominal predicate complement of “être” may occasionally fail to agree
in gender, e.g.

La gare est le plus grand bâtiment de la ville.

However, if the predicate complement is a pronoun (“lequel”, “celui-ci”, “quel”1...)
agreement in both gender and number is obligatory: thus for instance

Quel/*quelle/*quels est le premier vol.

It would be most unpleasant to duplicate the syntax rules, with separate versions for
the pronominal and non-pronominal cases. Instead, we add a second agreement feature
(compagr) to the NP category, which is constrained to have the same value asagr
on pronominal NPs; subject/predicate agreement can then use thecompagr feature
on the predicate, getting the desired behaviour.

Similar considerations apply to the rule allowing modification of a NP by a “de”
PP. In general, there is no requirement on agreement between the head NP and the NP
daughter of the PP. However, for certain pronominal NP (“lequel”, “l’un”, “chacun”)
gender agreement is obligatory, e.g.

lequel/*laquelle de ces vols
laquelle/*lequel de ces dates

1Most French grammars regard “quel” as an adjective, but for semantic reasons we have found it more
convenient to treat it as a pronoun in this type of construction and as a determiner in expression like “quel
vol”.

154

This is dealt with correspondingly, by addition of a new agreement feature specific to
theNP � NP PP rule.

11.4 Spanish syntax

This section briefly describes the interesting features of the Spanish syntactic rule-set.
In general, the Spanish rules were distinctly simpler than the French ones. With a
few exceptions noted below (in particular, prodrop), the current Spanish syntax rules
are essentially a slightly modified subset of the French ones. Despite this, they give
very adequate coverage of the ATIS domain, the only in which they have so far been
seriously tested. In a little more detail:

Question-formation: The Spanish rules for question-formation are similar to, but less
elaborate than the French ones. Subject-verb inversion is allowed with any sub-
ject; there is no restriction that it be pronominal. There are no constructions
corresponding to “est-ce que” or complex inversion. When the inverted subject
is a pronoun, it does not require a preceding hyphen linking it to the verb.

Clitics: The Spanish clitic system is also considerably simpler than the French one.
There are fewer clitics; in particular, there are no clitics corresponding to the
French “y” and “en”, which as we saw in Section 11.3.2 above gave rise to many
of the difficult problems in French.

Postverbal clitics are affixed directly to the verb, rather than being joined by
hyphens. Since CLE morphosyntactic rules have a uniform format (Alshawi,
1992, Section 3.9), this only involved moving the relevant syntax rules to the
morphology rule file.

Phrasal rules: The rules for Spanish numbers, dates and times are substantially differ-
ent from the French ones, and those for dates in particular needed to be rewritten
more or less from scratch. The issues involved are however straight-forward.

Also, the form of the Spanish superlative adjective is slightly different: the post-
nominal superlative adjective has no extra article, e.g. “le vol le [plus cher] versus
“la plaza [menos cara]”. The necessary adjustments are again simple.

Relative clauses: A less trivial difference involves relative clauses. In Spanish, the
main verb of the relative clause must be in the subjunctive mood if it modifies an
argument of a verb in the imperative mood. Thus for example

Which is the first flight that serves a meal?
� Cuál es el primer vuelo que sirve una comida?

(“sirve” = present indicative), but

Show me flights that serve a meal!
� Enséñeme los vuelos que sirva una comida

155

(“sirva” = present subjunctive). Handling this alternation correctly involves trail-
ing an extra feature through many grammar rules, so as to link the main verb in
the relative clause to the main verb in the clause immediately above it.

Prodrop: The second substantial change required when adapting the French grammar
to Spanish was necessitated by the prodrop rule: Spanish, unlike French, permits
and indeed encourages omission of the subject when it is a pronoun. Perhaps sur-
prisingly, prodrop in fact only resulted in a few divergences between the Spanish
and French grammars. A new syntax rule of the formS � VP was added (it
is in fact a slightly modified version of the French imperative-formation rule).
The associated semantic rule fills in a representation of the omitted clausal sub-
ject from the main verb; to make this possible, the semantic entries for inflected
verbs are all modified to contain an extra feature encoding the possible prodrop
subject. The details are straight-forward.

11.5 Conclusions

The preceding sections describe in essence all the changes we needed to make in order
to adapt a substantial English language processing system to French and Spanish. We
have perhaps presented some of the details in a more compressed form than we would
ideally have wished, but nothing important has been omitted. Creation of a good ini-
tial French version required about five person-months of effort; after this, the Spanish
version took only about two person-months. We do not believe that we were greatly
aided by any special features of the Core Language Engine, other than the fact that it is
a well-engineered piece of software based on sound linguistic ideas. Our overall con-
clusion is that an English-language system conforming to these basic design principles
should in general be fairly easy to port to Romance languages.

Chapter 12

Transfer and Robust
Translation

Manny Rayner, Pierrette Bouillon, Ivan Bretan and Mats Wirén

12.1 Introduction

When comparing speech translation and text translation, there are several obvious dif-
ferences in the requirements posed by the task. As usual, some of the requirements
conflict, resulting in implementation tensions. We will begin the chapter on transfer by
noting what we regard as the most important requirements and tensions.

One important difference between speech translation and text translation is that
speech translation poses stronger demands on quality of output. If output is not good
enough, people frequently have difficulty understanding what has been said. There
is no possibility of the pre- or post-editing which nearly all text translation systems
rely on. Quite apart from the problem of generating natural-sounding speech, it is also
necessary to ensure that the translated text sent to the speech synthesizer is itself of
sufficient quality. A high-quality translation must fulfill several criteria: in particular,
it should preserve the meaning of the original utterance, be grammatical, and contain
correct word-choices.

However, the demand for high output quality conflicts with a second requirement:
robustness is more important too, since spoken language is inherently noisier (in several
senses) than written language. So a successful spoken language architecture needs to
address the question of processing input which may be malformed in any one of a
number of ways, and producing as sensible a result as possible rather than simply
giving up.

Finally, we have a third important requirement. Speech translation is normally
carried out in an interactive context, rather than being performed off-line like most text
translation. Thus processing speed is also more important for speech than for text.

Clearly, it is not possible to focus on all these issues at once without introducing
some kind of compromise. Trying for greater robustness inevitably degrades output

156

157

quality, and increased speed must adversely affect all other aspects of processing. The
important thing is to attempt to find a good trade-off between the various competing
factors.

Our basic recipe has been to combine two different types of transfer. When possi-
ble, we translate using a sophisticated method, which in accordance with most of the
rest of the system combines unification-based rules and numerical preferences. The
sophisticated method performs transfer at the level of Quasi Logical Form, and is de-
scribed in Section 12.2. We will refer to this method as “QLF transfer”.

As with most rule-based methods, there are cases where QLF transfer fails to pro-
duce a result, due to noise in the input utterance, holes in the rule-sets, or both. In
this case, we fall back on a simpler and more robust transfer method, which operates
at the level of rules mapping lists of surface lexical items into lists of surface lexical
items. We refer to this method as “word-to-word transfer”, or “WW transfer”. The two
methods, QLF transfer and WW transfer, are applied in parallel in a bottom-up mode,
and the results are combined to attempt to produce as good a translation as possible of
the full utterance. How this is done is explained in Section 12.3.

12.2 QLF-based transfer

This section will describe the QLF-based transfer component in detail. We begin in
Section 12.2.1 with some introductory remarks motivating the basic design. In partic-
ular, we describe our reasons for structuring the QLF transfer component as a hybrid
architecture, which combines rules and numerical preferences. We also describe the ba-
sic structure of the transfer component, and give examples of transfer rules and transfer
preferences. Section 12.2.2 then explains, with the help of a number of examples, how
rules and preferences combine to solve several types of non-trivial transfer problems.
In the current version of the system, the numerical transfer preferences are coded by
hand. Section 12.2.3 briefly describes some experiments in which we have attempted
to derive them (semi-)automatically via supervised training.

The last three sections deal with some more peripheral topics. Section 12.2.4 de-
scribes a “packing” technique used to increase the efficiency of the transfer process.
Section 12.2.5 describes the pre- and post-transfer phases. Finally, Section 12.2.6 looks
at the problem of correctly handling logical variables in QLF transfer.

12.2.1 Introduction

The basic design philosophy of the SLT project has been to build a framework which
is theoretically clean, on the usual grounds that this makes for a system that is portable
and easy to scale up. We have attempted to subsume as much as possible of the trans-
fer component under two standard paradigms:unification-based language processing
and thenoisy-channel statistical model. The unification-based part of the system en-
codes domain-independent contrastive grammatical rules; for each source-language
word or grammatical construction covered by the system, it describes the possible
target-language translations. When the rules permit more than one potentially valid

158

translation, the preference component is used to rank them in order of relative plau-
sibility. The next two paragraphs give some examples to motivate this division of
knowledge sources.

The simplest examples of transfer rules are those used to translate individual words;
here it is immediately clear that many words can be translated in several ways, and thus
that more than one rule will often apply. For instance1, the English preposition“on”
can be translated as any of the French prepositions“avec” (fly to Boston on Delta
� aller à Boston avec Delta); “sur” (information on ground transportation� des
renseignements sur les transports publics); “à bord de” (a meal on that flight� un
repas à bord de ce vol); “pour” (the aircraft which is used on this flight� l’avion
qu’on utilise pour ce vol); or omitted and replaced by an implicit temporal adverbial
marker (leave on Monday� partir le lundi). In each of these cases, the correct choice
of translation is determined by the context.

To take a slightly more complex case, which involves some grammar, there are
a number of transfer rules that list possible ways of realizing the English compound
nominal construction in French. Among these are adjective + noun (economy flight�
vol économique); noun + PP (arrival time� heure d’arrivée; Boston ground trans-
portation� transports publics à Boston); or in special cases simply a compound noun
(Monday morning� lundi matin). Again, the individual lexical items and the context
determine the correct rule to use.

Experience has shown that it is relatively simple to write the context-independent
rules which list sets of choices like the ones above. It is however much more difficult
to use rules to specify the context in which each particular choice is appropriate. More-
over, the correct choice is frequently domain-dependent; thus the rules will need to be
rewritten if the system is ported to a new application. For these reasons, statistically
trained machine translation architectures have recently been receiving a great deal of
attention. Some researchers (notably those in the IBM CANDIDE project, (Brownet
al., 1990) have even gone so far as to claim that statistical techniques are sufficient on
their own. Our view is that this is at best unnecessary. Since many aspects of language
(for instance, agreement and question-formation in French) appear to be regular and
readily describable by rules, it seems more logical to use a mixture of rules and statis-
tics; it is in this sense that we have ahybrid transfer model (see Brown it et al. 1992,
Carbonell 1992, Grishman and Kosaka 1992). In the remainder of this section, we will
describe the basic functionality of the rule-based and preference aspects of the QLF
transfer component.

Transfer rules are written in a minimal unification-based formalism, which allows
rules of two kinds:simpleand recursive. Simple rules map source-language QLF
fragments onto their target-language counterparts. For example, rules (1)–(3) below
are of this type.

(1) trule([eng, fre],
flight1 >= vol1).

(2) trule([eng, fre],

1We will take most of our examples in this chapter from the English/French transfer pair, on the grounds
that it is linguistically rather more interesting than English/Swedish.

159

on1 >= sur1)

(3) trule([eng, fre],
on1 >= avec1)

(1) states that the English QLF constantflight1maps into the French QLF constant
vol1; (2) and (3) that the English QLF constanton1 can map into either of the French
QLF constantssur1 or avec1. Note that the choice between the two different ways
of translatingon1 is not expressed in rules (2) and (3) themselves, but is left to the
transfer preferences. Simple transfer rules compile into unit clauses: thus (1) compiles
into the unit clause (1a)

(1a) transfer([eng,fre], flight1, vol1).

Recursive transfer rules usetransfer variablesto express transfer of a QLF expres-
sion in terms of transfer of one or more of its sub-expressions. For example, (4) is
a simplified version of the rule which can be used to translate an English compound
nominal (e.g. “arrival time”) into a French noun/PP combination (“heure d’arrivée”).
The QLF constantnn on the left-hand side represents the compound nominal relation-
ship obtaining betweennoun1 andnoun2, and is translated into an expression on the
right-hand side representing a French preposition-sense.

(4) trule([eng, fre],
form(tr(relation,nn),

tr(noun1),
tr(noun2))

>=
[and, tr(noun2),

form(prep(tr(relation)),
tr(noun1))]).

Transfer variables are terms of the formtr(Id) or tr(Id,Pat), whereId is an
identifier andPat is an optional pattern. The expression matching the transfer variable
taggedId on the left-hand side of the rule is transferred into the expression matching
the variable with the same identifier on the right-hand side; if a pattern is supplied on
either side, the matching expression on that side is unified with the pattern. So (4)
compiles to the Horn-clause (4a):2

(4a) transfer([eng,fre],
form(nn, Y, Z),
[and, Z1,

form(prep(X1), Y1)])
<-
transfer([eng,fre], nn, X1),
transfer([eng,fre], Y, Y1),
transfer([eng,fre], Z, Z1).

2We will find it convenient to write Horn-clauses in a “Prolog-style” notation, with implicit wide-scope
universal quantification over free variables.

160

Moving on to the numerical prefences, the basic idea is inspired by the noisy-channel
statistical model of translation described in (Brownet al. 1990). The plausibility of a
new candidate transfer is defined to be a real number, calculated as a weighted sum of
two contributions: thetransfer rule score, and thetarget language model score. The
first of these represents the relative plausibility of the rules used to make the transfer,
and the second the plausibility of the target QLF produced.

The transfer rule score and the target language model score are computed using
the same method; for clarity, we first describe this method with reference to transfer
rules. The transfer rule score for the bag of transfer rules used to produce a given
target QLF is a sum of thediscriminant scoresfor the individual transfer rules. The
discriminant score for a ruleR summarizes the reliability ofR as an indicator that the
transfer is correct or incorrect. The intent is that transfer rules which tend to occur
more frequently in correct transfers than incorrect ones will get positive scores; those
which occur more frequently in incorrect transfers than correct ones will get negative
scores.

The target language model score is defined similarly. The first step is to extract a
bag of “semantic triples” (see Section 7.3.3) from each possible transferred QLF in the
training corpus, following which each individual triple is assigned a discriminant score.
Semantic triples encode grammatical relationships between head-words; we have gen-
eralized the original definition used in the SLT-1 prototype (Alshawi and Carter, 1994)
to include relationships involving determiners, since these are important for transfer.
Thus for example the normal reading of the English sentence

Show flights with a stop.

would include the triples

(show,obj,flight) (show,obj,bare_plur)
(bare_plur,det,flight) (flight,with,stop)
(flight,with,a) (a,det,stop)

Ideally, transfer discriminant scores should be derived according to the kinds of method
described in Section 6.4, using a statistical computation based on a training corpus of
judged candidate translations. We have experimented with this idea (see Section 12.2.3),
and in the long run it must clearly be the correct approach. However, due to techni-
cal problems explained below, these experiments so far produce results no better than
those we get using hand-coded transfer preferences. The current version of the system
consequently still includes hand-coded transfer preferences.

12.2.2 Combining transfer rules and transfer preferences

This section will describe examples of non-trivial translation problems from the ATIS
domain, and describe how the QLF transfer component deals with them. We were
interested to discover that even a domain as simple as ATIS actually contains many
quite difficult transfer problems. We will begin by giving examples where it is fairly
clear that the problem is essentially grammatical in nature, and thus primarily involves
the rule-based part of the system; later, we give examples where the problem mainly

161

involves the preference component, and examples where both types of knowledge are
needed.

An obvious case of a grammatical phenomenon is agreement, which is considerably
more important in French than in English; the rules for agreement are rigid and well-
defined, and easy to code in a feature-based formalism. Quite frequently, however,
they relate words which are widely separated in the surface structure, which makes
them hard to learn for surface-oriented statistical models. For example, there are many
instances in ATIS of nouns which in French are postmodified both by a PP and by a
relative clause, e.g.

Flights from Boston to Atlanta leaving before twelve a m
� Les vols de Boston à Atlanta qui partent avant midi

Here, the verbpartenthas to agree in number and person with the head nounvols,
despite the gap of five surface words in between.

Many problems related to word-order also fall under the same heading, in particular
those relating to question-formation and the position of clitic pronouns. For example,
French YN-questions can be formed in three ways: by inversion of subject and main
verb, by prefacing the declarative version of the clause with the question particleest-ce
que, or by “complex inversion”, fronting the subject and inserting a dummy pronoun
after the inverted verb. If the subject is a pronoun, only the first and second alternatives
are allowed; if it isnota pronoun, only the second and third are valid. Thus for example

Does it leave after five p m?
� Part-il après dix-sept heures?
� Est-ce qu’il part après dix-sept heures?
� *Il part-il après dix-sept heures?

Does that flight serve meals?
� *Sert ce vol des repas?
� Est-ce que ce vol sert des repas?
� Ce vol sert-il des repas?

Embedded questions constitute another good example of a mainly grammatical prob-
lem. Just as in English, French embedded questions normally have the uninverted
word-order, e.g.

Tell mewhen these flights arrive in Boston
� Dites-moiquand ces vols arrivent à Boston

However, if the main verb isêtrewith an NP complement, the inverted word-order is
obligatory, e.g.

Tell mewhat the cheapest fares are
� Dites-moiquels sont les tarifs les moins chers
� *Dites-moiquels les tarifs les moins chers sont

In ATIS, embedded questions occur in about 1% of all corpus sentences; this makes
them too frequent to ignore, but rare enough that a pure statistical model will probably

162

have difficulties finding enough training examples to acquire the appropriate regulari-
ties. The relevant facts are however quite easy to state as grammatical rules. Moreover,
they are domain-independent, and can thus be reused in different applications.

In contrast, there are many phenomena, especially involving word-choice, which
are hard to code as rules and largely domain- and application-dependent. As men-
tioned earlier in Section 12.1, the translation of prepositions and determiners is most
frequently determined on collocational grounds; in our framework, this means that the
information used to decide on an appropriate translation is primarily supplied by the
transfer preferences. We will now describe in more detail how the idea works in prac-
tice.

Recall that the preference score for a given transfer candidate is a weighted sum of a
channel contribution (discriminants on transfer rules) and a target language model score
(discriminants from target language semantic triples). The transfer rule discriminants
make transfer rules act more or less strongly as defaults. If a transfer ruleR is correct
more often than not when a choice arises, it will have a positive discriminant, and will
thus be preferred if there is no reason to avoid it. If use ofR produces a strong negative
target-language discriminant, however, the default will be overridden.

Let us look at some simple examples. The English indefinite singular article“a”
can be translated in several ways in French, but most often it is correct to realise it as
an indefinite singular (“un” or “une”). The discriminant associated with the transfer
rule that takes indefinite singular to indefinite singular is thus fairly strongly positive.
There are however several French prepositions which have a strong preference for a
bare singular argument; for instance,“flights without a stop” is almost always better
translated as“les vols sans escale”than“les vols sans une escale”. In cases like these,
thea-to-unrule will be wrong, and the less common rule that takes indefinite singular to
bare singular will be right. This can be enforced if the negative discriminant associated
with the semantic triple

(vol, sans, indef_sing)

has a higher absolute value than the positive discriminant associated witha-to-un, and
is able to overrule it.

Similar considerations apply to prepositions. In the ATIS domain, most prepo-
sitions have several possible translations, none of which are strongly preferred. For
example, the channel score discriminants associated with the transfer ruleson-to-sur
andon-to-avecboth have low absolute values; the first is slightly negative, and the
second slightly positive. Target language triples associated with these prepositions are
however in general more definite: the triples

(aller avec <airline>)
(renseignement sur transports)

are both strongly positive, while

(aller sur <airline>)
(renseignement avec transports)

are strongly negative. The net result is that the target language contribution makes the
decision, and as desired we get“fly on Delta” and“information on flights” going to

163

“aller avec Delta” and “des renseignements sur les vols”rather than“aller sur ...”
and“des renseignements avec ...”.

In general, a combination of rules and collocational information is needed to trans-
late a construction. A good example is the English implicit singular mass determiner,
which is common in ATIS. Grammatical rules are used to decide that there is a singular
mass determiner present, following which the correct translation is selected on collo-
cational grounds. An elementary French grammar will probably say that the normal
translation should either be the French partitive singular determiner, e.g.

I drink milk
� Je boisdu lait

or else the definite singular, e.g.

I like cheese
� J’aimele fromage

In the ATIS domain, it happens that the nouns which most frequently occur with mass
singular determiner are“transportation” and“information” , both of which are con-
ventionally singular in English but plural in French. Because of this, neither of the
standard rules for translating mass singular gets a strong positive discriminant score,
and once again the target language model tends to make the decision. For instance, if
the head noun is“transportation” , it is most often correct to translate the mass singular
determiner as a definite plural, e.g.

Show metransportation for Boston
� Indiquez-moiles transports pour Boston

This is captured in a strong positive discriminant score associated with the target lan-
guage triple

(def_plur, det, transport)

Note that the translation“transportation” to “les transports” is only a preference, not
a hard rule; it can be overridden by an even stronger preference, such as the preference
against having a definite plural subject of an existential construction. So we have e.g.

Is theretransportation in Boston?
� Y a-t-il des transports à Boston?
� *Y a-t-il les transports à Boston?

12.2.3 Training transfer preferences

This section describes preliminary experiments designed to test the possibility of de-
riving transfer preferences using a supervised training process. A set of 2000 ATIS
utterances was used, randomly selected from the subset of the ATIS corpus consisting
of A or D class3 utterances of length up to 15 words, which had not previously been

3This means roughly that the sentence represented a valid inquiry to the database, either alone or in the
context in which it was uttered.

164

examined during the development of the English/French version of SLT. Utterances
were supplied in text form, i.e. the speech recognition part of the system was not tested
here.

Each utterance was analysed using the English language version of the CLE, and
for the 1847 sentences where at least one QLF was produced the most plausible QLF
was selected using the normal preference methods. This was then submitted to the QLF
transfer component, and a set of transfer candidates produced. A simple set of hand-
coded transfer preferences was applied, and one French surface string was generated for
each of the five highest-scoring transfer candidates. A native French speaker fluent in
English judged each generated string as being either an acceptable or an unacceptable
translation of the source utterance. Translations were only regarded as acceptable if
they were fully grammatical, preserved the meaning of the source utterance, and used
a stylistically natural choice of words. The judging process took approximately eight
hours, averaging three seconds per source/target pair.

The annotated N-best transfer corpus was then used to train a new set of preferences
using a variant of the method described in (Alshawi and Carter 1994); the corpus was
divided into five equal pieces, each fifth being held out in turn as test data with the
remaining four-fifths used as training. Finally, the derived preferences were tested for
accuracy. Of the 1847 transfer sets, there were 1374 for which at least one acceptable
transfer was in the top five candidates4. The trained transfer preferences selected an
acceptable candidate in 1248 of these 1374 cases (91%); in contrast, random choice
among the top five gave a baseline score of 826 acceptable transfers, or 60%.

Although these figures are encouraging, they are in fact not substantially better
than those we have obtained from the hand-coded preferences; the current prototype
consequently still uses the hand-coded preferences. We have attempted to analyse the
reasons for this comparative failure, and are currently experimenting with a method-
ology which is intended to combine the good points of hand-coding and supervised
training. The rest of the section briefly summarizes our experiences to date.

As explained above, it is clearlypossibleto train translation preferences from a
corpora of good and bad examples of translation pairs. However, the task of producing
such corpora was found to be unnecessarily labour intensive. If a sentence is judged
bad because, for example, a certain adjective could never go with a particular noun, the
judge wants to be able to state this, and not be presented with the same phenomenon
in fifty other sentences. The new judging procedure therefore allows judges to alter the
discriminant scores directly, and provides immediate feedback on the results of such
changes.

The basic judging loop has the following stages:

1. The system picks the top source QLF from a relevant corpus file. (e.g. if trans-
lating from English to French this would be the first QLF from a file containing
English QLFs formed after pre-transfer).

2. The system calculates its preferred translation. If this has already been judged

4There were a further 246 sets in which at least one candidate translation was produced; in most of
these cases, the best translation was comprehensible and grammatically correct, but was rejected on stylistic
grounds.

165

to be good, the system returns to (1). Otherwise, the user is presented with the
original English sentence and the French translation.

3. The user judges the translation as good or bad. If good, the system’s current
preferences are giving the right results, so we go to the next QLF (i.e. return to
step 1).

4. If the translation is judged bad, the system provides 4 more translations. The
user is then asked which of these are the best translations. The system then
presents the discriminants which occurred in the good translations versus those
that appeared in the bad. This usually allows the user to quickly spot the relevant
discriminant which needs changing.

5. The user changes one or more discriminants

6. The system recalculates its preferred translation, and presents it to the user. If
this is OK the user goes to (1), otherwise back to (4).

After finishing a loop, it is good practice to go back into the loop to ensure that deci-
sions later on have not affected the results for earlier translations. The system always
checks existing judgement files (and adds to these during the judging procedure), so
the user is never asked to make an unnecessary judgement.

12.2.4 Transfer packing

As already indicated, the basic philosophy of the transfer component is to make the
transfer rules context-independent, and let the results be filtered through the numerical
transfer preferences. The positive side of this is that the transfer rules are robust and
simple to understand and maintain. The negative side is that non-deterministic trans-
fer choices multiply out, giving a combinatoric explosion in the number of possible
transferred QLFs.

To alleviate this problem, transferred QLFs arepacked, in the sense of Tomita
(1986); lexical transfer ambiguity is left “unexpanded”, as a locally ambiguous struc-
ture in the target QLF. It is possible to compute preference scores efficiently on the
packed QLFs, and only unpack the highest-scoring candidates; this keeps the transfer
phase acceptably efficient even when several thousand transferred QLFs are produced.

The following example illustrates how transfer packing works. The source utter-
ance is

flights on Monday

and the packed transferred QLF (in slightly simplified form) is:

elliptical_np(
term(/|\(1,[def_plur,

indef_plural,
bare_plur]),

C^[and,
[vol1,C],

166

form(prep(/|\(2,[a_bord_de,
temporal_np,
sur,
pour,
avec])),

term(/|\(3,[def_sing,
bare_sing])

E^[lundi1,E]))]))

This contains three lexical transfer ambiguities, reflecting the different ways of trans-
lating the bare singular and bare plural determiners, and the preposition“on” . In this
case, the transfer preferences determine that the best choices are to realise English bare
plural as French definite plural, English bare singular as French definite singular, and
“on” as an implicit temporal NP marker. Substituting these in, the preferred unpacked
QLF is

elliptical_np(
term(def_plur,

C^[and,
[vol1,C],
form(temporal_np,

term(def_sing,
E^[lundi1,E]))]))

producing the French surface output

les vols le lundi

12.2.5 Pre- and post-transfer

Ideally, we would like to say that unification-based rules and trainable transfer pref-
erences constituted the whole transfer mechanism. In fact, we have found it neces-
sary to bracket the unification-based transfer component between pre- and post-transfer
phases. Each phase consists of a small set of rewriting rules, which are applied recur-
sively to the QLF structure. It would in principle have been possible to express these
as normal unification-based transfer rules, but efficiency considerations and lack of
implementation time persuaded us to adopt the current solution.

The pre-transfer phase implements a simple treatment of reference resolution or
coercion, which at present only deals with a few cases important in the ATIS domain.
Most importantly, QLF constructs representing bare code expressions used as NPs are
annotated with the type of object the code refers to. Code expression are frequent in
ATIS, and the type of referent is always apparent from the code’s syntactic structure.
The extra information is necessary to obtain a good French translation: flight codes
must be prefaced withle vol (e.g.C O one three three� le vol C O cent trente-trois)
while other codes are translated literally.

The post-transfer phase reduces the transferred QLF to a canonical form; the only
non-trivial aspect of this process concerns the treatment of nominal and verbal PP mod-
ifiers. In French, PP modifier sequences are subject to a strong ordering constraint:

167

locative PPs should normally be first and temporal PPs last, with other PPs in between.
In the limited context of the ATIS domain, this requirement can be implemented fairly
robustly with a half-dozen simple rules, and leads to a marked improvement in the
quality of the translation.

It is worth noting that the structure of the pre- and post-transfer rule sets currently
implemented is determined more by the idiosyncrasies of QLF formalism than by prop-
erties of particular transfer pairs. The greater part of the rules are used to handle the
post-transfer canonicalization phase, and are language-pair independent.

12.2.6 Logical variables in QLF transfer

A minor point, but one which has caused us suprisingly many difficulties, is the ques-
tion of how to handle logical form variables in QLF translation. In common with many
systems built on top of Prolog, the CLE adopts the convention of representing logical
form variables as Prolog variables. This can however lead to problems in QLF transfer;
a piece of structure in the source side of a QLF transfer rule can unexpectedly unify
with a logical variable, leading to an unwanted application of the rule. Problems of this
kind become particularly acute when performing composition of QLF transfer rules
(see Chapter 14).

The simplest solution to the problem is to replace all variables with unique con-
stants during the pre-transfer phase of QLF transfer, restoring them again during post-
transfer. Experimentation with the idea showed however that the resulting loss of ex-
pressiveness is a considerable hindrance to the transfer-rule writer. It is quite frequently
desirable in complex transfer rules to map two distinct source-language variables into
a single target-language variable; this is most easily accomplished if the three variables
in question can all be unified.

Further examination of the practical requirements posed by transfer-rule writing
revealed that a useful compromise was possible. Although it was sometimes neces-
sary to unify two distinct source-side variables with each other, we found no instances
where a good case could could be made for unifying a source-side variable with a non-
variable. We have thus adopted the solution of “weak grounding” of logical variables
during pre-transfer; each variableV is replaced with a term of the form’VAR’(V1),
where’VAR’ is a constant not appearing elsewhere in transfer rules, andV1 is a new
variable. The effect is that QLF variables, as required, can be unified freely with each
other, but not with anything else.

12.3 Robust transfer

12.3.1 Introduction

This section describes the robust translation architecture; as previously explained, its
purpose is to provide a back-up mechanism to recover from situations where QLF-
based processing has failed. The basic idea is to employ a second and much simpler
transfer mechanism (word-to-word or WW transfer), which operates in parallel with
QLF transfer. Word-to-word transfer is described in Section 12.3.2.

168

Both QLF transfer and WW transfer can in general be used on partial analysis
results. This permits a bottom-up flow of control in the translation process. At various
points in the source-side analysis process, the current best sequence of partial analyses
is extracted, and the resulting package of information is sent over to the target-side
transfer and generation process. The package of partial analyses is entered into a chart
structure maintained by the taget-side process, and an attempt is made to translate each
new item, using both the simple (WW) and sophisticated (QLF) translation methods.

The flow of control on the target side is similar to that on the source side; the
process of translating edges in the translation chart can also be interrupted at an arbi-
trary point, and the current best spanning sequence of translated edges extracted. The
intent is to achieve a translation architecture with the so-called “anytime” property.
Processing can be halted at any time and an answer produced, the quality of the an-
swer normally improving if additional processing time is allowed. The details of the
chart-based translation architecture are the subject of Section 12.3.3.

12.3.2 Word-to-Word Transfer

This section describes the “word-to-word” (WW) transfer mechanism used to supple-
ment the main QLF-based transfer component. The original intention was that WW-
transfer would, as the name suggests, simply map each word in the source-language
vocabulary into a target-language counterpart. A little experimentation convinced us
that WW-transfer could be made slightly more expressive without abandoning the cen-
tral goals of extreme simplicity and robustness. In fact, a more appropriate name would
be “tagged-phrase-to-phrase transfer”, but the original label has stuck.

A word-to-word transfer rule is a Prolog term of form

trule_ww([FromLang, ToLang], (FromPattern >= ToPattern]).

where

� FromLang, ToLang are language identifiers

� FromPattern is a list of one or more “word-to-word elements”

� ToPattern a list of zero or more “word-to-word elements”

A “word-to-word element” is either an atom representing a surface word, or a term of
the formWord/Category, whereWord is a surface word andCategory is a major
category symbol.

For example, the following are all valid word-to-word rules for the English�
French language pair:

trule_ww([eng, fre], [to/p] >= [à]).

("translate ‘to’ to ‘à’ if it is a preposition")

trule_ww([eng, fre], from/p >= [’en partance de’]).

("translate ‘from’ to ‘en partance de’ if it is a preposition")

169

trule_ww([eng, fre], [is/v, there] >= [y, ’a-t-il’]).

("translate ‘is there’ to ‘y a-t-il’ if ‘is’ is a verb")

trule_ww([eng, fre], [how, about] >= [’q”en est il
de’]).

("translate ‘how about’ to ‘q’en est il de’")
A WW rule essentially declares that a tagged word-sequence matching the left-

hand side may be translated into the word-sequence on the right-hand side. There are
some slight complications deriving from the fact that we wish to be able to use the WW
rules twice: first on raw output from the recognizer, and then later when lexical analysis
has succeeded in giving input words plausible part-of-speech tags. In this way, we can
conform more closely to the ideal of structuring translation as an “anytime” algorithm,
which can be stopped at any instant and asked to deliver its best current guess at the
answer.

Taking the two processing phases (raw recognizer output and lexical processing) in
reverse order, we give the following definitions of what it means for a word-sequence
to “match” the left-hand side of a WW rule:

The lexical transfer level operates on the result of linguistic analysis after lexical
look-up and the first pruning phase. When this amount of processing has been per-
formed, every word is associated with one or more lexical edges in the analysis chart
(see Section 6.1), corresponding to the different possibilities offered by lexical and
morphological processing.

A sequence of words

[W1,W2,...]

is defined to match the source side pattern

[X1/C1, X2/C2...]

at the lexical transfer level iff

1. The words themselves match, i.e.X1 = W1, X2 = W2...

2. The tags match, i.e.W1 has anunprunedlexical entry with major categoryC1,
W2 has an unpruned lexical entry with major categoryC2...

The surfacetransfer level operates, as previously noted, on raw output from the
speech recognizer. This motivates the following definition. A sequence of words

[W1,W2,...]

matches the source side pattern

[X1/C1, X2/C2...]

at the surface transfer level iff[W1,W2,...] is the word-sequence resulting from
performing the following operations on[X1,X2,...]:

170

1. Lower-case each element of[X1,X2,...] if necessary.

2. If any element contains spaces, divide it up into its components.

3. Concatenate the results.

For example, at surface transfer level the list

[how, about, san, francisco]

matches

[’how about’, ’San Francisco’/np]

Note that at surface transfer level, the category information in the left-hand-side (source)
pattern is irrelevant.

As can be seen, the WW transfer rule formalism has been designed to be very
simple, so that rules can be written by relatively unqualified personnel. In practice, it
turns out that the process of coding WW rules can be systematized to a high degree
and turned into a mechanical form-filling task. The approach taken is closely related to
that used in thelexmake tool (Section 7.1), and much of the code used is common to
the two packages. The initial steps are the same: a suitable domain corpus is tagged by
analysis up to the lexical level, and a set of contexts collected for each word/tag pair.

The results are written out as a file containing a “blank” set of WW rules, one for
each word: the “blank” rule has the left-hand side pattern filled in with the word in
question and the right-hand side pattern empty. A preceding comment lists the set of
example contexts for the word. The transfer rule writer only needs to examine the
contexts, decide on a translation of the current word appropriate in the given contexts,
and fill in the right-hand side. If more than one translation is feasible, multiple copies
of the rule may be created, or distinguishing context added to the left-hand side. Our
experiences show that people with minimal knowledge of linguistics and no previous
experience with the system are capable of writing WW rules at the rate of many hun-
dred rules a day; for system experts, the figure can be in excess of 1500 rules/day.

12.3.3 Chart-based transfer

This section describes in more detail the “chart-based” architecture used by the robust
transfer component. The overall purpose of this piece of the system is to coordinate
and combine the two alternate transfer methods, QLF transfer and WW transfer, inside
a single framework. The chart-based transfer mechanism is divided into two pieces,
working within the source- and target-side processes respectively. We will start by
examining the source-side half. As we will see, the basic functionality of its target-side
counterpart is fairly similar.

Source side processing

On the source side, analysis of the input utterance progresses in a bottom-up fashion.
As described in Section 1.2, prodessing goes through a number of stages, alternately
adding edges to a chart structure and pruning them out. At various points, the current

171

most preferred sequence of edges is extracted and sent over to the target-side process.
In the current version of the system, the source-side extraction operation is performed
four times. We list the levels in turn:

Surface: Raw recognizer output. The top recognizer hypothesis is sent over unaltered
to the target-side process, to be processed using “surface-level” WW rules (see
Section 12.3.2).

Lexical: Called after the stages of tokenization, morphological and lexical processing,
and lexical pruning (Section 6.2). The best sequence of chart edges is extracted
and sent to the target-side process, to be translated by “lexical-level” WW rules
(Section 12.3.2).

Phrasal: Called after the additional stages of phrasal parsing and phrasal pruning
(Section 6.2). The best sequence of chart edges is extracted and sent to the
target-side process, to be translated using QLF transfer and generation.

Full: Called when source-side processing has terminated, either normally or due to a
time-out. The current best sequence of chart edges is extracted and sent to the
target-side process, to be translated using QLF transfer and generation.

In view of the bottom-up nature of the parsing algorithm used for source-side analysis
(Section 1.2), it would be easy to add further calls. An obvious candidate is an addi-
tional level intermediate between “Phrasal” and “Full”, which would force extraction
immediately after bottom-up analysis of NP phrases, but before full clausal parsing.
We intend to investigate this idea during the next phase of the project.

The non-trivial part of the source-side robust processing method is the algorithm
used to perform extraction of the best sequence of spanning edges from the chart. We
have implemented two such algorithms, which we refer to as the “minimal” and the
“stack-decoder” methods. We describe these in turn.

The “minimal” extraction method was implemented first. A formula assigns a score
to each chart edge, and a simple dynamic programming algorithm is used to find the
spanning sets of edges minimal with respect to the total score summed over all edges.
If there are several such sets of edges, they are all returned, and the normal preference
mechanism (Section 6.4.1) decides which is best. The formula currently used to score
an edge is extremely simple. The edge receives a score of 1 if it represents a full
(utterance-level) constituent in the grammar; otherwise it scores 2.

Somewhat to our surprise, performance of the minimal extraction method turns out
to be reasonably good, reflecting the strong natural preference in favour of single co-
herent top-level analyses. There are in particular two common types of utterance on
which it tends to score well: otherwise well-formed and correctly recognizer utter-
ances to which the recognizer has incorrectly affixed one or two spurious extra words,
and compound (“run-on”) utterances consisting of two or more well-formed top-level
utterances presented in rapid succession as a single utterance. None the less, the mini-
mal extraction method suffers from obvious drawbacks, which lead us to believe that a
more sophisticated approach is required in the long run:

� The preference ordering induced by the minimal extraction methods is entirely
based on scores assigned to single edges. There is no way to take account of

172

interactions between edges: in particular, that an edge of type A is likely/unlikely
to follow an edge of type B.

� The minimal extraction method makes no direct reference to the acoustic score
delivered by the recognizer. This only comes into play as part of the normal
preference method (applied at the end to adjudicate between co-minimal paths
of edges), and cannot be used to justify choosing a longer path in favour of a
shorter one, irrespective of their relative acoustic plausibility.

A preliminary version of a new and more sophisticated extraction method has been
implemented, which is intended to address these issues. We summarize the method,
which combines elements of the “stack decoder” architecture (Paul 1992) and the
discriminant-based preference ideas of Section 6.4.

The basic design is modelled on the “stack-decoder”. Processing begins at the
start-node of the chart, and throughout the process a stack of at mostN partial theories
(for some suitableN) is maintained. A partial theory consists of a connected incom-
plete path of edges beginning at the start-node of the chart. The algorithm proceeds
iteratively, each iteration consisting of the following steps:

1. Each partial theory (incomplete path) currently in the stack is extended with all
possible next edges.

2. The partial theories are ranked using a discriminant-based preference method of
the type described in Section 6.4.

3. The new stack consists of theN most preferred theories. The rest are discarded.

In order that partial theories should be mutually comparable, the transition between
the extension and ranking steps is in fact a little more complex than stated above. All
the theories included in the ranking step are chosen to be the same distance from the
end-node of the chart, in terms of minimal separation by lexical edges. Theories closer
to the end-point than this distance are saved, to be re-included in the stack at a later
point.

The discriminants used to rank the partial theories in the stack are trained in the
following way. First, a human judge simulates the stack-decoder process on a set of
pre-processed chart data. A simple tool has been implemented which reduces the train-
ing process to menu-based selection of the best partial theory after each extension op-
eration. The default choice, which is correct in at least 80% of all cases, is the longest
partial theory of the set available. The result of the judging process is a set of sets of
partial theories; each set contains at most one correct theory, the rest being incorrect.
Sets not all of whose elements are incorrect are used to train discriminants in the way
described in Section 6.4.

The heart of the process is the code which extracts “constraints” from partial the-
ories; recall that discriminants summarize the reliability of constraints as indicators
that a theory is respectively correct or incorrect. At present, we extract the following
constraints from a partial theoryTi which is being compared with a set of alternate
partial theoriesT :

173

1. Acoustic score constraint: the acoustic score for the acoustically worst edge in
Ti.

2. Length constraint: the number of edges inTi minus the number of edges in the
shortest theory fromT .

3. Syntactic N-gram constraints: 1- 2- and 3-grams of edge-categories. An edge-
category is the major category symbol (utterance, np, v etc) of the syntactic
constituent spanned by the edge.

4. Semantic N-gram constraints: 1- 2- and 3-grams of semantic edge-types. A se-
mantic edge-type is a summary of the information in the QLF associated with
the edge. We distinguish between different types of clause (imperative, Y-N
question, WH-questions and declarative), elliptical phrasal utterances, and unin-
terpreted utterances.

We have so far only had time to carry out a few very sketchy experiments on the perfor-
mance of the stack-decoder method, and it is not yet possible to say with any degree of
confidence whether, as one would hope, it really does outperform the minimal method.
Continuing this line of investigation is one of our top priorities in the next phase of the
project.

Target side processing

The basic organization of robust processing on the target side is the same as that of the
source-side processing described in Section 12.3.3. Recall that source-side processing
at several points collects a current best sequence of analysis edges and passes them
over to the target-side process. Each edge in the sequence is tagged with the indices of
its start- and end-vertices in the source-side analysis chart. As the edges are received,
they are entered into a target-side chart structure (the “target-side analysis chart” or
“TSA chart”), whose vertices mirror those of the source-side analysis chart.

The target-side process then attempts to translate each edge from the TSA chart,
entering the results in a second target-side chart structure (the “transfer chart”), whose
vertices once again mirror those of both the original (source-side) analysis chart and
the TSA chart. Translation of each edge is performed using a method appropriate to
the package in which it was received, as described at the beginning of Section 12.3.3.
“Surface” and “lexical” edges are translated using WW transfer; “phrasal” and “full”
edges by QLF transfer. A lexical edge which cannot be translated by WW transfer is
given a default translation as itself (“identity transfer”), to ensure that some spanning
set of translated edges is always produced.

Just as on the source side, it is possible to interrupt target-side processing at an arbi-
trary point and extract the current best sequence of translation edges from the transfer
chart; once again, the non-trivial problem is how to do this. We have implemented
target-side versions of both the “minimal” and “stack-decoder” algorithms described
in the previous section.

The “minimal” extraction method, as on the source side, assigns a score to each
transfer edge and uses dynamic programming to find a spanning set of edges minimal

174

with respect to the total score. The scoring system is again very simple, and only takes
account of the method used to perform translation, as follows:

� QLF transfer: score = 1.

� Lexical WW transfer: score = 2.

� Surface WW transfer: score = 3.

� Identity transfer: score = 4.

The basic effect is the same as in the source side version, namely to induce a strong
preference towards finding the shortest sequence of edges translatable by the high-
quality (QLF) translation method.

We have carried out some preliminary experiments using the stack decoder extrac-
tion method on the target side. A partial translation theoryTi, competing within a set
of alternate theoriesT , receives the following constraints:

1. Length constraint: the number of edges inTi minus the number of edges in the
shortest theory fromT .

2. Surface N-gram constraints: 1- 2- and 3-grams of translated surface words inTi.

3. Translation method counts: number of edges inTi translated by each possible
method (QLF transfer, lexical WW transfer, surface WW transfer, identity trans-
fer).

The use of the stack decoder method on the target side is again very much “work in
progress”, and solid experimental results are as yet unavailable.

Chapter 13

Transfer Coverage

Ivan Bretan, Manny Rayner, Mats Wirén, Robert Eklund

The following is unchanged from the SLT-1 report chapter on Swedish transfer cov-
erage. Itstill needs updating to reflect the coverage achievedunder SLT-2. It also
duplicates some material from other chapters in the current report.

In this chapter we describe the transfer component of the SLT system, starting out
by describing the transfer formalism used. Section 13.2 then discusses the formalism’s
adequacy for the task with respect to its ability to deal with complex transfer phenom-
ena, and its compositionality, simplicity and monotonicity properties. Section 13.3
how preference metrics can be used to solve transfer ambiguity problems, while the
final sections of the chapter go into more detail on the different types of transfer rules
used in SLT for translating ATIS-domain utterances.

13.1 The transfer formalism

The QLF transfer framework has basically been adopted unchanged from the Bilin-
gual Conversation Interpreter (BCI) project (Alshawiet al., 1991c), and will thus only
be described briefly here. Unification-based QLF transfer is based on the notion of
compositionally translating a QLF of the source language to a QLF of the target lan-
guage, through matching QLF fragments against QLF pair patterns. By means of these
patterns, transfer rules are specified declaratively using the following format:

trule(<Comment>,
<QLF pattern 1>
<Operator>
<QLF pattern 2>).

The left hand side of this rule (QLF pattern 1) matches a fragment of the source
language QLF and the right hand side the corresponding target QLF. The patterns can
contain (possibly constrained) variables that match QLF fragments of arbitrary size,
but no additional conditions can be associated with the rules. The resulting formalism

175

176

is therefore very simple, both from a semantic and syntactic point of view. The main
idea behind keeping the formalism so simple is that only cross-linguistic data should
be specified in QLF transfer. The particulars of how to form a QLF which corresponds
to a grammatical sentence in a language is monolingual knowledge, and best left to
the grammars, statistical preferences and lexica. The simplicity and compositionality
of QLF transfer hinges on the fact that we can rely on the target grammar to filter out
(refuse to generate from) certain QLFs.

The transfer algorithm can be seen as working with pairs consisting of a QLF frag-
ment generated by the source language grammar in analysis mode, and a variable cor-
responding to the target QLF. The variable is (partially) instantiated to a target QLF
fragment through unification of the pair with a transfer rule pattern. Besides instan-
tiation, this matching produces a set of new pairs of source QLF sub-fragments and
target QLF variables, which in their turn are matched against the rule set. When a
QLF fragment does not match any pattern, it is decomposed into its functor and argu-
ments, which are recursively translated. The QLFs output from transfer are to some
extent ranked by the target language preference component (see Section 13.3), and fi-
nally submitted to semantic head-driven generation, using the target language grammar
(Chapter 10).

The rest of this chapter will concentrate on reporting experiences from applying
QLF-based transfer to the ATIS sentences. Since the BCI project demonstrated the
strength and potential of this approach, we will here pay some attention to areas where
the work with realistically collected dialogues has indicated that the framework needs
to be extended.

13.2 Adequacy of the formalism

This fairly simple transfer rule formalism allows for succinct formulation of rules that
deal with mappings between phrases that vary significantly in surface syntactic real-
ization. The reason for this is the high level of abstraction in the QLF representation
with respect to features essential for translation such as predicate-argument structure,
mood, tense, aspect and modality, while keeping enough structural information to en-
able generation of a surface syntactic structure faithful to the original formulation.

In a true interlingua, all the work of determining what grammatical structures cor-
respond to the interlingual representations is performed by monolingual knowledge
sources. Besides the problems of interpreting natural language to a level as deep as the
one required by an interlingua, there is the need for preservation of the syntactic and
stylistic traits of the source expression. QLF as used as pivotal transfer representation in
SLT is a “surfacial” semantic representation, in that it is not contextually resolved and
quantifier scope has not been determined. On the other hand, it contains grammatical
information that can be made use of in the translation process. Also, certain ambi-
guities that carry over from the source to the target language can be left unresolved.
This “compromise” representation is less language-independent than a true interlin-
gua.1 Primarily, QLF is designed around the grammatical characteristics of a particular

1Note that QLFs are inherently language-dependent since all lexical semantic constants in the represen-
tations are entirely language-specific. That fact notwithstanding, there is still leeway enough in the actual

177

language, or group of languages. For instance, for the language pair English-Swedish
we do not mark QLFs forablative (source) orallative (goal), since these cases are
not signaled by special grammatical features in either language, as opposed to Finnish
where they are marked by affixing.

How does one then measure the quality of this compromise? The dimension of ab-
straction can basically be measured through the percentage of non-atomic transfer rules
that are needed to accommodate differences in grammatical structures between English
and Swedish (see Section 13.4.1 for statistics). The dimension of informational preser-
vation is hard to measure in any other way than by manual evaluation of translations
(see Section 10.4 of Agnäset al., 1994). On both these accounts, QLF-based transfer
as implemented in SLT seems to score well. In addition, though, we would like the
number of ambiguous mappings in the transfer rule set to be as low as possible, since
extensive ambiguity would indicate the need for a deeper level of interpretation. This
problem occurs in SLT mainly in connection with the translation of prepositions, and
possible solutions will be detailed in Section 13.3.

13.2.1 Lexically triggered complex transfer

Given the fact that we have decided on a particular intermediate representation which
will abstract over certain grammatical features it is important to assess what differ-
ences between source and target language expressions the formalism requires non-
trivial (non-atomic) transfer rules to handle. We should expect a need for such rules
where the grammatical structures of the two expressions are fundamentally different,
and where this difference is localized to specific words or phrases. A typical example
of such a difference is variation in argument structure. Such types of discrepancies
between source and target language are well-known in the machine translation field,
and besides difference due to purely idiomatic expressions, include the phenomena
exemplified in Table 13.1.

Table 13.1: Examples of complex transfer phenomena

Complex transfer type Example English-Swedish/German

Argument switching Johnlikes Mary Mary gefällt John
Head-switching Johnlikes swimming Johnschwimmt gern
Object raising Johnwants Mary to go Johnvill att Mary skall åka
Passive to active Insuranceis included Försäkringingår
Verb to adjective Johnowes Mary $20 Johnär skyldig Mary $20

For at least two of these phenomena, the current transfer rule formalism does not yet
provide enough expressive power. Problems with handling object raising were noted
already in the BCI report in association with rules such as the one translating between
“want someone to do something”and“vilja att någon ska göra någonting”:2

use of the QLF format in a specific grammar to make it more or less language-independent.
2All QLFs and transfer rules exemplified in this chapter are simplified. Unresolved arguments and some-

times also the list of corresponding surface strings have been removed to improve readability.

178

trule(semi_lex(obj_raising,want_smn_to_do_sth-
’vilja_att_ngn_ska_göra_ngt’),

[want_DesireTo,A,tr(subj),
[apply,tr(obj)^form(verb(to,no,no,to,y),

E,tr(body)),tr(obj)]]
==
[vill_att,A,tr(subj),
[dcl,form(verb(pres,no,no,ska1,y),E,tr(body))]]).

This rule works fine in the English-to-Swedish direction, but not the opposite. This
means that it is possible to unify“John” (obj above) with the subject of“fly” in
“Mary wants John to fly”when translating that sentence into“Mary vill att John ska
flyga” (lit. Mary wants that John should fly). However, translating from the Swedish
sentence into English would require that the variable substitution be reversed. The
solution suggested at that point was to provide a mechanism for non-deterministic gen-
eration of function applications through finding a QLF subexpression and replacing it
with a�-bound variable, such asobj above.

In addition, it seems as though the transfer framework also needs an extension to
be able to cope with head switching. Head switching accounts for a particular type
of discrepancy between source and target language syntax which can be observed in
sentence pairs such as the ones in Table 13.2.

Table 13.2: Examples of head-switching

Head Example English-Swedish/German/French

like-schwimmen Johnlikes to swim Johnschwimmt gern
want-simma Johnwants to swim John villsimma
come-être John will probablycome Il est probable que John viendra

In these translations, the head word of the target sentence is not the translation of
the head of the source. Thus, the arguments of the source verb need to be “moved” to
the proper, arbitrarily embedded position in the source QLF. Consider the QLF pair:

[dcl,
form(l([John,likes,to,swim]),

verb(pres,no,no,no,y),A,B^[B,
[like_LoveTo,A,
term(l([John]),

proper_name(tpc),C,
D^[name_of,D,John]),

form(l([to,swim]),
verb(to,no,no,to,y),G,
H^[H,[swim,G,v(C)]])]])]

[dcl,
form(l([John,schwimmt,gern]),

179

verb(pres,no,no,no,y),A,B^[B,
[gern,v(A)],
[schwimmen,A,
term(l([John]),

proper_name(tpc),C,
D^[name_of,D,John])]])]

Now, with the current transfer rule formalism there is no general way of specifying that
the subject of“like” should correspond to the subject of“schwimmen”, without mak-
ing the rule very specific to this example. In principle, there are two possible solutions
to this problem. Either the transfer rule formalism is extended so that structural changes
such as this can be expressed through a dedicated mechanism, or the QLFs produced
by the grammar for this type of sentence are changed so that the current transfer rule
formalism is sufficient to specify head-switching. The former solution seems to be the
most promising to pursue, and would require a way to manipulate different significant
parts of a QLF verbform without spelling out its structure in detail. In this case we
would be interested in specifying that, in order to generate the German“schwimmen”
VP, we need to translate the English verb predication for“swim” under the premise
that the Johnterm actually fills its subject slot, in practive “moving” the subject from
“like” to “swim” (and this change of course needs to be reversible). Similar mech-
anisms have been used within comparable machine translation frameworks (e.g., in
Kinoshitaet al., 1992).

13.2.2 Compositionality and simplicity

We can obtain a high degree ofcompositionalityin transfer through relying on the
principle of grammar filtering. In order not to compromise compositionality, transfer
rule variable constraints were found to be useful, separating checking and changing of
QLF elements. If we for instance would like to translate“The flight arrives by five
p m” into “Flygningen anländer innan sjutton noll noll”, transfer needs to take two
significant differences into account. Firstly, the specification of the time expression
is different. In Swedish, 24-hour time is used rather than thea m/p mdistinction.
Secondly, when the NP argument of the preposition“by” is a time expression, we
would like to restrict the Swedish translation to be the temporal preposition“innan”
(although in general selection of target lexical item is a complex problem that needs
special attention, see Section 13.3). Tentatively, we then end up with two rules. The
first deals with time expressions:

trule(struct(’a.m/p.m.’-’24hrs’),
term(time(timeofday),B,

A^[and,[hour_num,A,H],
[and,[minute_num,A,M],

[day_part,A,TimeOfDay]]])
==
term(time(timeofday),B,

A^[and,[hour_num,A,

180

@’24-hour-time’(TimeOfDay,H)],
[minute_num,A,M]])).

The second one translates“by” into “innan” in the context oftime terms:

trule(struct(by_time-innan_tid),
form(prep(by),A,

C^
[C,B,
term(l(_),time(tr(time)),D,tr(restr))])

==
form(prep(innan),A,

C^
[C,B,
term(l(_),time(tr(time)),D,tr(restr))])).

Note however that these two rules partly refers to the same piece of QLF structure,
namely the term with the“time” category. The consequence of this is that these two
rules can never be used in the same translation of“The flight arrives by five p m”.
In fact, since complex rules incapacitates compositional transfer, only the second rule
above will trigger. In order to achieve the desired effect, we would have to specify a
number of complex rules which combines the task of the two above ones, which of
course violates the entire idea of compositional transfer.

An alternative solution would be to allow for“by” to translate into“innan” regard-
less of context. This may not seem so far-fetched if one recalls the design intentions
behind QLF transfer, which is to minimize the duplication of source language knowl-
edge. Transfer should be as compositional as possible and leave to the target grammar
to decide on what constitutes a grammatical and preferred QLF. Still, there are reasons
why such a solution is suboptimal. Even though maximizing compositionality through
relying on grammar filtering is desirable, we also need to take efficiency into account.
In certain circumstances, we know that a certain preposition translates in a specific
way, and it is suboptimal to generate a set of possible translations which require totally
different contexts to be valid. The more QLFs generated, the more work for the target
grammar — ranking QLFs and attempting to generate from them (although packing
the QLFs generated by transfer could alleviate this problem to a large extent).

Notwithstanding the compositionality argument against context-sensitive rules, the
practical need for them seems to come up time and again. Thus, a natural extension to
the transfer rule formalism has been to introduce a constrained variable specification,
such as annotating transfer variables with a QLF pattern. Transfer rule variables can
therefore be written either astr(<Id>) or tr(<Id>;<Pattern>).

In the second case, the rule will only be allowed to apply if the subexpression
corresponding to the transfer variable matches<Pattern>, where “matching” would
correspond to either unification or subsumption. The<Pattern> would constitute
the variable constraint, the checking, whereas the<Id> variable enables compositional
translation of the subexpression. The transfer rule handling the temporal use of“by”
could then be reformulated as:

trule(struct(by_time-innan_tid),

181

form(l(_),prep(by),A,
C^
[C,B,tr(term;term(time(_),_,_))])

==
form(l(_),prep(innan),A,

C^
[C,B,tr(term;term(time(_),_,_))])).

Another issue needs to be considered in order to maximize compositionality of transfer,
namely the need for grammars to generate QLFs compositionally. This is normally
not a problem, but sometimes special design considerations give rise to QLFs that are
not optimal from a compositional point of view. Most notably, the SLT grammars
make use of the “big PP” construction (see Section 9.1.1), which is a normalized QLF
representation of PPs that function as joint modifiers of a phrase. There are several
reasons why this type of analysis seems to be motivated, but it does cause problems for
transfer. For example,“nonstop flights” is naturally translated into“flygningar utan
mellanlandningar”(flights without stopovers). However, a transfer rule achieving this
mapping would not produce a QLF that the grammar could generate from if the source
head noun were modified by a PP, as in“nonstop flights to Boston”, but would instead
yield:

term(l([flygningar,utan,mellanlandningar,till,Boston]),
q(_,bare,plur),_,
B^[and,

[and,[flygning_Flygresa,B],
form(l([utan,mellanlandningar]),

prep(utan),_,
<"mellanlandningar">)],

form(l([till,Boston]),
prep(till),_,<"Boston">)])

Whereas the grammar would assume a QLF of the following, less compositional, for-
mat:

term(l([flygningar,utan,mellanlandningar,till,Boston]),
q(_,bare,plur),B,
C^[and,

[flygning_Flygresa,C],
form(l([utan,mellanlandningar,till,Boston]),

conj(pp,implicit_and),_,
X^[<"till boston">,

<"utan mellanlandningar">])])

A solution suggested to this problem is to allow the transfer component to generate
PPs compositionally, and having them restructured into “big PPs” in a post-processing
phase. Another solution would be to include the compositional PP attachment rules in
the grammar, but only allow them to function as generator rules.

182

Besides the problems noted here, the framework is highly compositional. In the
BCI report, a number of combinations of complex transfer types and transfer con-
texts were tried out, revealing fourteen unwanted interactions where special rules were
needed to handle the combination of phenomena, thus reducing compositionality. The
transfer phenomena that were handled compositionally in the BCI are still handled
compositionally in SLT, and in addition at least thirteen of the fourteen unwanted cases
have been rendered spurious by the new QLF format, especially by the verbform
“record” (see Section 9.4 of Agnäset al., 1994) which does away with operators for
tense and aspect, which were one of the main sources of the unwanted transfer rules.

Simplicity follows the separation of monolingual and contrasting knowledge, as
well as through the level of abstraction in the QLF format. For a language pair such
as English-Swedish, the small amount of contrasting knowledge needed to cover the
ATIS domain is very encouraging. And, as is indicated by the data presented in Sec-
tion 13.4.1, the vast majority of transfer rules are atomic, and thus extremely simple to
specify.

13.2.3 Monotonicity

The issue of monotonicity was discussed in some detail in the BCI report. In one re-
spect, monotonicity was violated in the BCI since compositional transfer of a QLF
expression would not be attempted if a complex transfer rule matched the expression.
The main reason for enforcing this restriction is a concern for efficiency. And in prac-
tice, it does not seem to be major set-back. In certain cases in SLT, there are situations
when both compositional and non-compositional transfer are possible, such as when
translating sentences such as“What are theNPs?” , for which the following complex
transfer rule was written:

trule(struct(what_are_x-’vad_finns_det_för_x’),
[be,A,term(q(tpc,wh,_),B,E^[impersonal,E]),
C^[eq,C,term(ref(def,the,plur,_),F,tr(restr))]]
==
@det_finns(A,term(q(J,’vad_för’,plur),

F,tr(restr)))).

It deals (non-compositionally) with for example the translation of“What are the flights
to Boston?” into “Vad finns det för flygningar till Boston?”. But the compositional
translation is still desirable, for instance in cases such as“What are the arrival times in
Washington D C?”which preferably translates into“Vilka är ankomsttiderna i Wash-
ington D C?”, more or less a verbatim translation, which would be generated from the
compositional transfer. However, it is not difficult to get around the restriction above
in cases where it is necessary, such as this. It is simply a matter of specifying a second
complex transfer rule which covers the same QLF fragment but instead maps to the
corresponding QLF fragment that compositional transfer would generate. The above
rule is therefore complemented with the following rule:

trule(struct(what_is_x-’vad/vilken_är_x’),
[be,A,WhatTerm,

183

B^[eq,B,tr(term)]]
==
[vara,A,@wh_ell(WhatTerm),
B^[eq,B,tr(term)]]).

13.3 Dealing with transfer ambiguity

The major advantages of this framework, compositionality and simplicity, are as men-
tioned very dependent on the fact that the generate-and-filter approach works as in-
tended. This is not only a question of blocking ungrammatical structures, but also of
giving low priority to unlikelyQLFs. For example, in ATIS the preposition“in” can
translate to one of at least three Swedish prepositions depending on the context:

“arriving in Boston” � till
“arriving in the morning” � på
“ground transportationin Denver” � i

Rule-based approaches to transfer ambiguity would involve choice of the Swedish tar-
get word by inspecting the context of the source word in the English QLF. This is some-
times feasible, as in the above mentioned case of translating“by” when used with a
time expression, although this approach would more generally require typed variables
to be useful (in which case a rule could refer to all geographical places in order to
translate“arrive in” + Place to “anlända till” + Place’). Besides requiring more
rules, and thereby decreasing compositionality and simplicity, this approach duplicates
a monolingual knowledge source, namely the semantic collocation preference triples
(see Section 7.3.3). Let us therefore turn to preference-based approaches to transfer
ambiguity, which make use of these triples to solve the transfer ambiguity problem.
Preferences could potentially be applied at either the English or Swedish QLF stage to
solve the problem. The relative merits of the two approaches are discussed below.

13.3.1 Preferences on English QLFs

Some cases of transfer ambiguity are due to a source language word having a num-
ber of genuinely different word senses, each with a different target language transla-
tion. For example in the ATIS domain the English verbservehas two distinct senses:
serve_Provide (as in“to serve a meal”) andserve_FlyTo (as in“flights serv-
ing Boston”). In these cases it seems appropriate to have different word senses as
separate entries in the source language lexicon, leading to QLFs for each word sense
which preference metrics can then choose between. A separate transfer rule is thus
written for each of the source language word senses:

trule(lex(simple),serve_Provide == servera_Något).
trule(lex(simple),serve_FlyTo == trafikera_Ställe).

This method could be extended to cases where there are no obviously distinct source
language word senses, but transfer ambiguity occurs. Essentially a word would be split
into word senses corresponding to each possible target word. Again, preferences at the

184

English side could be used to choose between these senses (in particular triple-based
preferences would encode the necessary contextual information for this choice), and a
separate transfer rule would be written for each “sense” of the preposition. However,
this approach violates the principle that the SLT system is built out of stand-alone,
modular components — English analysis has been fundamentally influenced by the
translation task, and the target language in particular. Because of this, preferences
at the source language side should only be used to solve transfer ambiguity problems
when there are genuinely distinct word senses in the source language, as in the example
for “serve” given above. This allows the English CLE to be developed purely through
considerations of the source language. Problems similar to the preposition transfer
ambiguity should be treated using preferences on the target language QLFs.

13.3.2 Preferences on Swedish QLFs

A promising approach to the transfer ambiguity problem allows the transfer stage to
generate several alternative Swedish QLFs through non-deterministic transfer rules,
and then applies preference metrics (in particular triples) to choose between these
QLFs. For example the phrase“arrive in Boston” would result in three possible trans-
lations with corresponding triples:

“arrive in Boston” � “anlända till Boston”� tr(anlända,till,Boston)
“arrive in Boston” � “anlända i Boston” � tr(anlända,i,Boston)
“arrive in Boston” � “anlända på Boston”� tr(anlända,på,Boston)

In this case a high triple-score fortr(anlända,till,Boston) would result in
the correct Swedish preposition being chosen.

The question is then how suitable scores for target-language (Swedish) triples can
be derived. There are two obvious possibilities:

1. From a Swedish corpus.

In a symmetrical system which gives Swedish-English as well as English-Swedish
translation, triple scores derived from a corpus for disambiguation of Swedish analysis
will be required. These triple-scores could also be used for choice between Swedish
QLFs generated during English-Swedish translation. In this way the transfer ambiguity
problem is solved “for free”.

It is anticipated that some care would be needed when applying this approach. The
Swedish QLFs created by transfer from English QLFs may well be quite different in
nature from those derived from analysis of Swedish text. For example it is unlikely that
the tripletr(anlända,på,Boston)will be seen in a Swedish corpus, whereas the
example above shows that it is likely to occur as the result of transfer from an English
QLF. Preference metrics derived from a Swedish corpus would therefore give no score
for triples such as this, so a suitable method of giving them a score would have to be
found.

A training corpus could also be produced by allowing the SLT system to gener-
ate all translations for an English sentence non-deterministically, then to use human
judgement to choose the best Swedish translation and with it the best Swedish QLF. In

185

this way a set of Swedish QLFs would be created for each sentence, with the best one
tagged as such.

2. By hand-coding.

In the absence of a Swedish corpus for training triple-scores, they can be hand-coded.
The process then involves: (1) identification of English words which have more than
one possible Swedish translation; (2) identification of the context for which each Swedish
target should be chosen; (3) encoding this choice by allocating scores to Swedish
triples. This is the approach which was used in this work, and is described in the
rest of this section. It is demonstrated that triples provide a useful form of abstraction
which allows lexical choice through contextual considerations to be elegantly encoded.

13.3.3 Implementation of hand-coded triple-scores for transfer am-
biguity

To demonstrate the use of hand-coded triple-scores, the method was implemented to
solve the problems of translation of the prepositions“in” and “on” into Swedish.
Having identified these words as sources of transfer ambiguity, solving the problem
involved the following two stages:

1. Identification of the alternative Swedish translations and their context.

For this purpose a corpus of aligned English-Swedish sentences from ATIS, and help
from a native Swedish speaker, were used. The following conclusions were made:

“In”: In general this translates to“i” in Swedish, with the following exceptions:
“in the morning/afternoon/evening”� “på”
“arriving in Boston” � “till”

“On”: In general this translates to“på” . The exceptions to this are
“information on � � �” � “om”
“ � � � on Delta/{etc.} Airlines” � med
(except for cases such as“information on Delta Airlines”, etc.)

2. Encoding of these rules by allocating triple-scores.

The scores below were chosen, the format beingts(L,M,R,Score) whereL, M,
andR are the left, middle and right elements of a triple,Score is the score for that
triple. cc_PartOfDay denotes a collocation class, and will effectively unify with
“morning” , “afternoon” or “evening”. Similarly city_BigTown will unify with
any city name, andairline_LineOfAircraftwill unify with any airline). Note
that uninstantiated elements in thets predicate (denoted by “_”), which will unify
with any word sense, are used to capture generalisations.

Triple-scores for the translation of“in” :

186

ts(_,på,cc_PartOfDay,10)
ts(anlända_2p,till,city_BigTown,20)
ts(_,i,_,5)

For translation of“on” :

ts(_,på,_,2.5)
ts(_,med,airline_LineOfAircraft,10)
ts(information1,om,_,20)

13.3.4 Problems with hand-coded triples

There is a fundamental problem with the method outlined above. Encoding the triples
by hand is laborious, and is only made possible by leaving triple elements uninstan-
tiated in order to capture useful generalisations (without this technique every possible
triple would have to be scored, a vast amount of work). However these uninstanti-
ated triples can lead to conflicts. For example suppose that both“in” and“on” could
translate to the targets“på” and“i” , but with different defaults:

“in” � “i” (default)
� “på” (in some exceptional cases)

“on” � “på” (default)
� “i” (in some exceptional cases)

Then writing default scores for the prepositions in the formts(_,prep,_,Score)
becomes impossible as the two defaults will conflict. Fortunately in reality“on” does
not translate to“i” in the Swedish corpus, so the problem does not arise in this case.
Problems such as this could be solved by effectively having a different set of triple-
preferences for each of the English source words. However this again violates the
principle of modularity, as Swedish preferences will have been fundamentally influ-
enced by considerations of the English language. This problem suggests that use of a
Swedish corpus to derive scores forspecifictriples, combined with the use of similar-
ity measures to deduce scores for “missing” triples, would be a far more satisfactory
approach. By avoiding making generalisations using uninstantiated triple elements the
problem of “clashes” as described above should be avoided.

The SLT framework also uses structural preferences that penalize unlikely QLF
structure, but currently only in analysis. It is quite possible to apply these preferences
also on the QLFs generated by transfer, although it is not clear what the gain would be.
So far, efficiency considerations have prevented the general application of preferences
in transfer. Since QLFs are unpacked, we would have to generate each QLF before we
could rank them. Another, more efficient, possibility is to use the preference triples
locally during transfer, so that for instance the selected target prepositions are ranked
without having to rank all possible target QLFs.

187

13.4 Rule types

Transfer rules can be divided into different classes. In the BCI report, this division was
done on the basis on howlexicala particular rule is, which is a notion that will be used
here as well. Thus, rules will be divided into the following groups:

� Identity: Rules whose left- and right-hand sides are identical atomic expressions.

� Atomic lexical: Rules whose left- and right-hand sides are distinct atomic ex-
pressions, normally corresponding to specific lexical items.

� Non-atomic lexical: Rules related to specific lexical items whose left- or right-
hand sides are distinct non-atomic expressions.

� Structural: Rules whose left- and right-hand sides are distinct non-atomic ex-
pressions, neither of which is related to one distinct lexical item.

This division will be used in the overview of the transfer rules below. Note that the
definitions of non-atomic lexical and structural rules may be slightly different from the
BCI classification, where structural rules that translate a particular lexical constant in
a particular way depending on the surrounding context were counted as lexical. Here,
however, we will refer to such rules as structural. In fact, a large part of the structural
rules can said to be “lexically triggered” in some sense. The structural rules constitute a
small portion of the entire rule set, as can be seen in Tables 13.3 and 13.4), which show
the type distribution of the transfer rules with and without macro-expansion (macros
are described in Section 9.4.3 of Agnäsal, 1994).

Identity rules indicate that certain QLF atoms are language independent (or possi-
bly specific to both languages), whereas lexical rules constitute the bulk of contrasting
knowledge for a language pair such as English-Swedish. Non-atomic lexical rules
translate a specific lexical item (possibly including complements), where the trans-
lation is not straight-forward for some reason (grammatical features or complement
pattern could be different, a word can translate into a phrase, a phrase into a phrase,
etc.). Structural rules are “interesting”, in the sense that they indicate fundamental dif-
ferences between equivalent expressions in the two languages which are not local to a
lexical item.

Table 13.3: Distribution of unexpanded transfer rules over rule types

Rule type Unexpanded

Atomic lexical 614 71.5%
Identity 161 18.8%
Non-atomic lexical 52 6%
Structural (non-lexical) 26 3%
Other 6 0.7%

Total 859 100%

188

Table 13.4: Distribution of expanded transfer rules over rule types

Rule type Expanded

Atomic lexical 614 63%
Identity 161 16.5%
Non-atomic lexical 87 9%
Structural (non-lexical) 106 11%
Other 6 0.5%

Total 974 100%

13.4.1 Statistics on rule types

As can be seen from the Table 13.5, the transfer rules that can be used bidirection-
ally, i.e., both for English-to-Swedish and Swedish-to-English translation comprise the
vast majority of the rules. Bidirectional rules are indicated by the== operator. The
fact that there are half as many Swedish-to-English (=<) rules as there are English-to-
Swedish (>=) is mainly a consequence of SLT being concerned with the latter direction
only. When Swedish-to-English translation will be addressed for this domain, it is very
likely that a significant number of new rules will have to be added when scaling up
the Swedish grammar and lexicon in order to provide sufficient coverage for a realistic
corpus.

Table 13.5: Reversibility of unexpanded transfer rules

Rule type == >= =<

Atomic lexical 527 56 31
Identity 161 0 0
Non-atomic lexical 43 9 0
Structural (non-lexical) 14 12 0
Other 2 4 0

Total 747 81 31

Percentage 87% 9.5% 3.5%

13.5 Overview of the rules

In what follows, rules will be presented according to linguistic categories associated
with them. For each category, one or more examples will be given illustrating the types
of transfer rule that have been called for within the ATIS domain.

189

13.5.1 Identities

There are 161 identity rules, all of the formatatom == atom. An example rule is

trule(lex(identity),temporal_np == temporal_np).

This rule expresses the fact that thetemporal_np constant means the same thing in
English QLFs as in Swedish. Identity rules are not expected to vary from domain to
domain.

13.5.2 Proper names

There are 94 atomic rules for the translation of proper names, including names of cities,
airports, and airlines, e.g:

trule(lex(simple), california_State ==
kalifornien_Delstat).

It is was necessary to have separate semantic constants for proper names and their ab-
breviations, otherwise odd translations could be the result within the context of the use
of mean. For instance, if“AA” is an abbreviation of“American Airlines”, and these
two names map to the same QLF constant in either the source or the target language,
then there is the risk of generating“Vad betyder American Airlines?”(“What does
American Airlines mean?”) from“What does AA stand for?”.

There are 38 additional atomic rules representing names of days of week, months,
etc.

13.5.3 Nouns

There are 160 atomic rules for the translation of atomic noun constants. Most of these
seem to be relatively domain-dependent, and domain dependence has been exploited
by eliminating alternative lexical mappings for some constants which are not relevant
for the domain, or through ordering the lexical rules (properly trained collocation met-
rics would make this unnecessary). Take for example“connection”, as used in“Which
airlines have connections between Pittsburgh and Baltimore?”, which in this domain
normally translates into“anknytning”, “anslutning” or “förbindelse”. However, in
the more general sense, as in a connection between two events, the proper translation
is “samband”. And when used to indicate a personal relationship,“kontakt” (contact)
is probably the most suitable word. Lexical transfer could be made trivial if the source
analysis made a distinction which is fine-grained enough to produce different semantic
constants for each different type of target word. This is obviously impossible without
making the source grammar sensitive to the needs of the target grammar, which nul-
lifies the idea of separating monolingual and contrasting knowledge, as discussed in
Section 13.3.

Thus, we will have to be content with the granularity of lexical semantic analysis
that has been judged to be appropriate for source language analysis purposes. In the
case of“connection” and most other nouns in ATIS, this did not cause any problems,
since we could rely on the restrictedness of the domain. Generally, however, when there

190

is a difference in semantic fields the same problem as when translating prepositions will
arise, and the same solution applies (use of preference triples).

There are 10 unexpanded non-atomic rules which deals with the translation of
specific nominals. Five of these deal with translating between compounds and non-
compounds or vice versa, as in the following rule which translates“round trip” (which
is a non-compound in the English ATIS lexicon) into“tur och retur-resa” (lit. there-
and-back trip):

trule(semi_lex(complex,round_trip-’tur_och_retur-resa’),
[’round_trip_TripWithReturn’,B]
==
[and,[tur_och_retur1,B],[resa1,B]]).

Some of these rules could be rendered unnecessary if the morphological component
were more sophisticated. For instance,“travel arrangement” is translated into the
“non-compound”“researrangemang”, which in reality is a compound as well, con-
sisting of“resa” (travel) +“arrangemang” (arrangement). If it were treated as a com-
pound in Swedish, translation would be compositional. Of the five remaining rules,
only two are “interesting”, since the other three are just there to overcome inconsis-
tencies in the coding of the Swedish and English lexica. One of these rules maps the
mass noun“money” into the (historically and morphologically) plural Swedish noun
“pengar” . The other translates“noon” into “(klockan) tolv” (twelve o’clock).

13.5.4 Adjectives

There are 44 atomic rules dealing with adjective constants. Several of these are rel-
atively general, such as“great” , “different” , or “full” . These words being general
means that their translation is normally context-dependent. Again, we can rely on
our ATIS corpus data, so that we with some confidence can claim that“great” means
“stor” (big) rather than“utmärkt” (excellent). When these tricks no longer suffice,
target QLF preference metrics will help out.

Translating the adjective“interested” used with a PP complement as in“I am in-
terested in a flight”needs to take into account that the corresponding Swedish sentence
“Jag är intresserad av en flygning”contains a passivized verb (“interested by”). The
transfer rule needed to accommodate this structural gap would be relatively compli-
cated, but was rendered unnecessary since“intresserad” was eventually classified as
an adjective with a PP complement, just like in English, since this type of passive was
not yet assigned proper QLFs by the Swedish grammar.

There is only one non-atomic lexical rule dealing with adjectives. The non-atomic
lexical adjective rule maps“least expensive”into the non-periphrastic“billigaste”
(which sounds more natural in Swedish). See also Section 13.5.14 below where struc-
tural changes related to adjectives are described.

13.5.5 Prepositions

There are 80 atomic lexical rules for prepositions, although many possible lexical map-
pings of prepositions have been left out in order to avoid combinatorial explosions of

191

target QLFs. In addition, we need preference triples for target language preposition
collocations in order to select among the generated QLFs, and currently we only have
such triples for the prepositions“in” and“on” (see Section 13.3). As an example of
the ubiquity of prepositions, consider the following possible translations of“for” , of
which only the first is used in the ATIS domain:

trule(lex(simple),for == för). % a dinner for two
trule(lex(simple),for == mot). % sail for England
trule(lex(simple),for == till). % a meeting for next Monday
trule(lex(simple),for == åt). % a ticket for John
trule(lex(simple),for == i). % travel for a day
trule(lex(simple),for == på). % the price for the ticket
trule(lex(simple),for == om). % ask for help
trule(lex(simple),for == under). % it rained for months
trule(lex(simple),for == sedan). % waiting for several days past

One can of course question the value of such general rules, but the generality reflects
the broad use of prepositions, and can only be resolved through information on what
kind of collocations a preposition is normally used in or through resolution into seman-
tic primitives so as to achieve transfer on a deeper level of interpretation.

13.5.6 Pronouns

There are seven atomic lexical rules for pronouns, and ten non-atomic lexical rules.
Among the non-atomic, two deal with the translation of“you” , which depending on
number can be translated into either“du” or “ni” :

trule(semi_lex(complex,you-du),
ref(tr(a),you,sing,tr(b))
==
ref(tr(a),du,sing,tr(b))).

trule(semi_lex(complex,you-ni),
ref(tr(a),you,plur,tr(b))
==
ref(tr(a),ni,plur,tr(b))).

Six of the non-atomic rules translate demonstratives, which are normally translated
in one of two ways, either “literally” or “colloquially”. The literal translation is a
single-word definite pronoun, whereas the colloquial uses a composite demonstrative
consisting of the determiner and a locative adverbial,“här” (here) or“där” (there):

trule(semi_lex(complex,those-de),
ref(tr(pro),those,plur,_)
==
ref(tr(pro),den,plur,_)).

trule(semi_lex(complex,those-’de_där’),
ref(tr(pro),those,plur,_)
==
ref(tr(pro),’den_där’,plur,_)).

192

13.5.7 Adverbs

There are 14 lexical atomic rules for adverbial constants, including sentential, temporal
and interrogative adverbs. Note however that some adjective constants also double as
adverbs (e.g.,“one way”, “round trip” and“nonstop”).

There are six lexical non-atomic rules for adverbial constants. Two of these are
interesting since they map between English PP forms originating fromprep + NP
and Swedish PP forms derived from a single adverbial, as in:

trule(semi_lex(complex,from_where-’varifrån’),
form(prep(from),B,

C^[C,D,term(q(tpc,wh,_),G,
H^[place,H])])

==
form(prep(’varifrån’),B,

C^[C,D,term(q(tpc,wh,_),G,
H^[place,H])])).

As can be seen from this rule, the two QLF fragments are very similar, and the only
constant that differs is actually the preposition itself. In theory, a single lexical rule
translating“from” into “varifrån” would suffice. However,varifrån is not a sur-
face preposition, and only exists as a preposition in the QLF format. It is simply one
part of the non-atomic analysis of the adverbial“varifrån” , and should only be gen-
erated in this specific context. A possibility would of course be to allow overgenera-
tion, and let the target grammar fail on ungrammatical QLFs generated by afrom ==
varifrån rule.

13.5.8 Determiners

There are 13 atomic lexical rules for determiners and eight non-atomic lexical rules,
of which only two or three signal significant differences between the source and target
language, for example the rules which translates the complex determiners“all the”
and“only the” into simplex determiners, which corresponds to dropping the definite
article.

13.5.9 Verbs

There are 144 atomic lexical transfer rules for verb constants, including constants rep-
resenting multi-word phrases, such as verbs taking complex complements involving
partitives or reflexives. An example is the mapping between“ta om” (lit. take over)
and“repeat” :

trule(lex(simple),repeat_SayAgain =< ’ta_Om_Något’).

The verbs“be” and“have” are also translated as lexical constants. As semantically
vague verbs, these two words can of course translate into a multitude of target words.
In order to avoid combinatorial explosions, these contextually sensitive translations are
deferred to structural rules, which decreases compositionality, but increases efficiency.

193

An example of this is the translation of“be” into “finnas” (to exist), which is governed
by a number of structural rules (see Section 13.5.11 below which discusses copula
rules). There are only two non-atomic lexical rules for verbs, namely“arrive” and
“depart” , which when used with a direct object, as in“arrive Boston”, need to be
translated into a VP with post-modifying PP,“anlända till Boston”:

trule(semi_lex(complex,arrive_TurnUpAt_place-
anlända_till_ställe),

[[arrive_TurnUpAt,D,tr(subj),tr(place)]] >=
[form(prep(till),_,F^[F,v(D),tr(place)]),
[anlända_2p,D,tr(subj)]]).

13.5.10 Mood, tense, aspect, and modality

There are two atomic rules translating logical constants used to signal mood feature
values:

trule(lex(simple),sai_do >= no).
trule(lex(simple),emphatically_do >= no).

The first eliminates subject-aux inversion, which is not used in Swedish. The fact that
a QLF represents a yes/no-question will be sufficient to generate the corresponding
Swedish sentence through inversion of subject and verb. The rule should be bidirec-
tional, but sinceno is used to signal several different feature values, the rule is currently
restricted this way. Emphatic“do” , as in“Do fly to Boston!” does not have a corre-
sponding auxiliary in Swedish, and needs to be expressed through prosodic features,
which are currently not supported by the QLF format. A structural rule deals with
transferring ato-infinitive into a bare infinitive, which is needed when translating a
non-modal into a modal verb.

Another structural rule suppresses the progressive marker for finite verb phrases in
order to provide for translating e.g,“I am flying to Boston”into “Jag flyger till Boston”
(I fly to Boston). A more complex structural rule maps betweenNP + progressive-VP
andNP + relative clause as in“flights going to Boston”Rightarrow “fly-
gningar som går till Boston”(flights that go to Boston). The rule is necessary since
the Swedish lacks the possibility to mark the progressive aspect through the present
participle in the same way as in English.

trule(struct(np_progressive_vp-np_relative_clause),
[and,tr(head),form(verb(no,A,yes,M,D),

V,tr(restr))]
>=
[and,tr(head),

[island,form(verb(pres,A,no,M,D),
V,tr(restr))]]).

Note that this rule interferes with the rules for modal verbs mentioned below, which
also operate on theverb “records”. This means that in for instance“passengers want-
ing to go to Boston”the verbwantwill not be translated into the modal verbvill . This

194

type of conflict could be eliminated through the constrained variable specifications dis-
cussed in Section 13.2.2.

There are 11 non-atomic rules to deal with specific modal verbs. Eight of them deal
with uninteresting design differences between the treatment of modal verbs in Swedish
and English. One handles the translation of the non-modal“want” , as in“I want a
ticket”, into “vill ha” , which is a modal followed by“have” as main verb.

trule(semi_lex(modal_intro,
want_WishFor-’vill_ha_Något’),

form(l(_),
verb(X,Y,Z,no,W),
A,B^[B,[want_WishFor,

A,tr(term1),tr(term2)]],_)
== form(l(_),

verb(X,Y,@noprog(Z),vill1,W),
A,B^[B,[’ha_Något’,

A,tr(term1),tr(term2)]],_)).

Another translates“I would like a ticket” (modal+main) into“Jag skulle vilja ha en
biljett” (modal+modal+main). The last of these specific rules deals with translating“I
want to” + VP into “Jag vill” + VP’, which would not be a difficult translation were it
not for the fact that“want” is classified as non-modal and“vill” as modal. This means
that the subject of“want” needs to be “moved” to“flyga” (fly), i.e., a head-switching
operation as described in Section 13.2.1. Since this type of complex transfer cannot
be specified generally, a number of specific rules were coded to cover the cases that
occurred in ATIS.

No special rules were needed to account for tense or diathesis (the active/passive
distinction). However, it should be noted that future as expressed using“will” , as in“I
will fly tomorrow”, should preferably be translated through the temporal verb“komma
att” , as in“Jag kommer att flyga imorgon”, rather than using the direct translation of
“will” , “skola” , which implies commitment.

13.5.11 Structural rules for copula

The largest group of structural rules, i.e., rules that act upon syntactic structures be-
yond a single lexical item, are the seven rules involving copula translations. Already
in the BCI project, complex transfer rules accounted for four different translations of
the copula from English to Swedish, accounting for the fact that“be” can translate
into “vara” (literal translation),“finnas” (to exist),“ligga” (to be located),“kosta”
(cost) or“bli” (to become) depending on the context. In addition to these alternative
lexical mappings, there are many instances of idiomatic use of“be” , as in“be in a
hurry” , which need to be translated by specific complex rules, and the same holds
true in the opposite direction. In combination with a predicative adjective,“be” of-
ten needs to be translated specifically depending on the adjective. For instance,“be
right” Rightarrow “ha rätt” , “be different” Rightarrow “skilja sig” , “be ashamed”
Rightarrow “skämmas”, “be possible”Rightarrow “gå” (and again this occurs in
the direction Swedish-to-English as well). Finally, a number of high-level syntactic

195

structural mappings are needed in order to translate constructions such as“Your seat is
22A” into “Ni har sittplats 22A” (You have seat 22A), where arguments are switched.

Of course, seven rules cannot possibly cover all of these uses of“be” , and as be-
fore the ATIS data have determined what rules actually needed to be included in SLT.
These rules are classified as structural, since they take into account context in order to
translate“be” properly. Theoretically, we could remove all rules which did not involve
truly syntactic restructurings (such as the“be” Rightarrow “have” transformation
just mentioned) and replace them with lexical mappings. This would however lead
to massive overgeneration of QLFs, an unduly inefficient solution which was not at-
tempted. The following rule illustrates the context-sensitive translation of“be” into
“kosta” (cost):

trule(struct(how_much_is_sth_Move-
hur_mycket_kostar_ngt_Flytt),

[be,A,tr(term),
C^[eq,C,term(q(tpc,measure,mass),_,

J^form(how_much,D,E^[E,J]))]]
>=
[kosta_skjortan,A,
tr(term),
term(q(tpc,measure,mass),_,

J^form(hur_mycket,D,E^[E,J]))]).

This rule will translate“How much is a ticket to Boston?”into “Hur mycket kostar
en biljett till Boston?” (How much does a ticket to Boston cost?), and the contextual
restriction is simply the QLF term representing the NP“how much”.

13.5.12 Structural rules for possessives

There are two structural rules dealing with possessive constructions. The first translates
NP1 “of” NP2 into genitive-NP2’ NP1’, e.g.,“the number of the flight”into
“flygningens nummer”(the flight’s number), and the second produces anNP1’ prep
NP2’ QLF. In many cases, this restructuring is unnecessary since the compositional
translation would yield an acceptable result. However, the dedicated QLF possessive
marker is not used in the Swedish grammar, since many different prepositions can
act as possessive. It is therefore currently the task of transfer to map the genitive
marker into the appropriate preposition. In the ATIS domain, it is feasible to restrict
the target prepositions to“på” (on) and“för” (for), but in a more general framework
more prepositions and extended preference metrics for ranking collocations would be
needed.

trule(struct(the_x_of_y-’xet_prep_y’),
term(tr(cat),

C,D^[and,tr(pred),
form(genit(Poss),E,

F^[and,tr(pred),
[F,D,tr(term)]])])

196

>=
term(tr(cat),

C,D^[and,tr(pred),
form(@poss_prep(Poss),E,

F^[F,D,tr(term)])])).

13.5.13 Structural rules for temporal expressions

There are four structural rules dealing with temporal expressions. Three of them
are related to the use of prepositions with temporal NPs. In one case a preposi-
tion needs to be added to the temporal NP,NP Weekday Rightarrow NP “på”
Weekday’. In another case it needs to be dropped,NP “on” Date Rightarrow
NP’ definite-Date’. One rule translates times of day specified using thea m/p
m distinction into 24-hour time, as mentioned in Section 13.2.2.

13.5.14 Structural rules for adjectives

There are three structural rules triggered by adjectives. Two of them translate nouns
modified by adjectives into adjective-noun compounds, which in Swedish differ from
the ordinary NP with an adjective both with respect to orthography, prosody and se-
mantics. For instance,“one way flight” translates into“enkel-flygning” rather than
“enkel flygning” (simple flight). The reason why two rules are needed is to accommo-
date other nominal modifiers which need to be conjoined with the noun QLF on a level
higher than the adjective:

trule(struct(adj_n-’adj-n’),
[and,tr(np),Adj]
==
[and,@one_way_adj(Adj),tr(np)]).

trule(struct(n_pp_adj-’adj-n_pp’),
[and,[and,tr(np),tr(pp)],Adj]
==
[and,[and,@one_way_adj(Adj),tr(np)],tr(pp)]).

These rules are currently restricted to a small class of adjectives which trigger this
compound formation.

13.5.15 Other rules

There are 19 lexical atomic rules for interjections, of which“please” and its translation
“tack” also can act as a sentential adverbial.

Four non-atomic rules translate conjunctions of the formconj(tr(cat),and).
Six structural rules are needed just to discard annotations of QLF structures that

are not needed for the translation, such as thel/1 term containing the list of surface
strings:

197

trule(struct(l),l(_) == l(_)).

In addition to the above mentioned rules, seven structural rules of varying types remain.

Chapter 14

Transfer Composition

Manny Rayner, Ivan Bretan, Mats Wirén

This chapter describes a software reusability technique which we have successfully
used to reduce the effort needed to construct sets of transfer rules for new language-
pairs. Exploiting the clean declarative semantics of our transfer rule formalism, we
show how simple methods borrowed from logic programming can be used to compose
two sets of transfer rules for the language-pairsL� � L� andL� � L
 into a new set
for the pairL� � L
.

Automatically composed sets of rules are generally of lower quality than hand-
coded sets, but can rapidly be improved by hand to an adequate level. We sketch the
basic debug-and-test cycle used, and report initial results of experiments in which the
existing Swedish� English and English� French transfer rule sets were composed
into a set for Swedish� French. The resulting transfer rules have been used to con-
struct a Swedish-to-French version of the main SLT system.

14.1 Introduction

There is a well-known argument in the machine-translation literature which goes some-
thing like this. Suppose that we want to build a multi-lingual MT system, i.e. a system
which covers several languages, and which can translate from any one of them into any
other. If our MT framework is transfer-based, and we haveN languages, we will need
to implementN�N � �� sets of unidirectional transfer rules. Considering how much
work is involved in implementing even one set of transfer rules,N need not be very
large for a serious problem to arise. EvenN � � will be enough to make one look for
a way to simplify the task.

At this point in the story, the idea of an interlingua is often introduced. If we can
translate from each language into the interlingua, and from the interlingua into each
language, then we will only need to implement
N sets of rules. As soon asN exceeds
3, we are winning. Unfortunately, and despite various claims to the contrary, we are
still a long way from knowing how to build robust interlingua-based systems; indeed,

198

199

there are reasonable philosophical arguments for believing that such things may be
impossible in principle. Right now, at any rate, transfer is our main alternative if we
want to build even moderately large systems that perform useful tasks. So we are back
where we started.

Rather than describe yet another angle on the interlingua approach, we will in this
chapter explore a less common attempt to get around the obstacle. Suppose we have
three languages,L�,L� andL
, and that we have implemented sets of transfer rules for
the pairsL� � L� andL� � L
. Then we already have a possible way of translating
from L� to L
: we translate intoL� using the first set of rules, and then apply the
second set to the result to get an output inL
. Of course, this has also been tried
before. The problem is that today’s MT systems are so far from perfect that even one
translation step gives output of dubious quality; the result of two or more successive
steps is generally too poor to be useful.

It is here that we think we have something new to offer. In contrast to most of the
non-trivial MT systems reported in the literature, the SLT transfer component has been
designed to consist almost exclusively of declaratively specified information. More
specifically, a version of the system for a given transfer pair and domain contains two
types of knowledge: unification-based transfer rules, and numerical preference infor-
mation. As explained in detail in Chapter 12, transfer proceeds in two phases. The
rules define a set of possible transfer candidates, and the preferences then select the
most plausible of them as the output translation.

Since the information in our system’s transfer components consists of declaratively
expressed rules, it is possible to compose off-line the sets of transfer rules for theL��
L� andL� � L
 language-pairs, and produce a set of rules for theL�� L
 pair. This
automatically composed set of rules will in practice be of considerably lower quality
than either of the two original sets. However, our experiments to date indicate that it
is possible to use the automatically composed rule-set as the initial point in a standard
test-and-debug cycle, which can quickly improve it to a useful level of performance; the
effort involved is very much less than that which would have been required to construct
a goodL� � L
 rule-set from scratch. Transfer rule composition can thus be viewed
as a kind of software reusability technique.

The rest of the paper is structured as follows. Section 14.2 describes the transfer-
rule composition operation. Section 14.3 describes the methodology used to improve
the initial set of composed rules, and Section 14.4 the results of practical experiments
carried out using the Swedish� English� French language-triple. Section 14.5 con-
cludes.

14.2 Automatic transfer rule composition

14.2.1 Transfer composition as a program transformation

This section explains the theoretical basis of the transfer composition idea. Since our
transfer rule formalism has a clean declarative semantics, it is possible, using tech-
niques borrowed from logic programming, automatically to compose rules from the
setsL� � L� andL� � L
 to produce a set of rules forL� � L
. We will be-

200

gin with a series of increasingly less trivial examples, showing in abstract terms how
transfer rules can be composed. These provide the background needed to motivate the
algorithm currently used to perform transfer rule composition; the algorithm itself is
described a little later. In the remainder of this section, we will usel1, l2, l3 to
denote the source, intermediate and target languages in our prototypical instances of
transfer rule composition.

As described in Section 12.2, transfer rules compile into Horn clauses. We will use
the notation defined there, writing

trule([l1,l2], LHS >= RHS).

for the transfer rule in thel1-to-l2 language pair, whose left-hand (source) side is
LHS and whose right-hand (target) side isRHS. We write a compiled transfer rule in
the form

transfer([l1,l2], LHS1, RHS1) <- Body.

This is interpreted as meaning that the QLFLHS1 in languagel1 can be transferred
to the QLFLHS2 in languagel2 if Body holds.

Our first example is chosen to be as simple as possible. We are given the transfer
rules (1) and (2), compiling to (1a) and (2a):

(1) trule([l1,l2], a >= b).
(1a) transfer([l1,l2], a, b).

(2) trule([l2,l3], b >= c).
(2a) transfer([l2,l3], b, c).

We also have the basic composition principle, (C):

(C) transfer([L1,L3],Q1,Q3) <-
transfer([L1,L2],Q1,Q2),
transfer([L2,L3],Q2,Q3).

which says thatQ1 in l1 can be transferred toQ3 in l3 if it can be transferred through
the intermediate expressionQ2 in l2. For technical reasons, we will also find it con-
venient to assume the converse composition principle C�:

(C’) transfer([L1,L3],Q1,Q3) ->
transfer([L1,L2],Q1,Q2),
transfer([L2,L3],Q2,Q3).

which says that transfer froml1 to l3 canonly be accomplished in this way.1 Now
successively resolving (1a) and (2a) with (C), we get (3a)

(3a) transfer([l1,l3], a, c).

a compiled form of (3):

1We are of course aware that the converse composition principle is at best an approximation to linguistic
truth.

201

(3) trule([l1,l3], a >= c).

Thus we have formally proved that if it is possible to transfer the QLF expressiona in
languagel1 to b in languagel2 andb in languagel2 to c in languagel3, it is also
possible to transfera in languagel1 to c in languagel3.

Our second example is slightly more complex, and illustrates composition of recur-
sive transfer rules. We start with transfer rules (4) compiling to (4a) and (5) compiling
to (5a):

(4) trule([l1,l2],
p(tr(v1)) >= q(tr(v1)))

(4a) transfer([l1,l2],p(X),q(X1)) <-
transfer([l1,l2],X,X1).

(5) trule([l2,l3],
q(tr(v1)) >= r(tr(v1)).

(5a) transfer([l2,l3],q(Y),r(Y1)) <-
transfer([l2,l3],Y,Y1).

Resolving C with (4a), we obtain

transfer([l1,L3],p(X),Q3) <-
transfer([l1,l2],X,X1),
transfer([l2,L3],q(X1),Q3).

and then resolving again with (5a) we get

transfer([l1,l3],p(X),r(Y1)) <-
transfer([l1,l2],X,X1),
transfer([l2,l3],X1,Y1).

We can now use C� to replace the body of this last expression, obtaining

transfer([l1,l3],p(X),r(Y1)) <-
transfer([l1,l3],X,Y1).

which as can be seen is a compiled form of

trule([l1,l3], p(tr(v1)) >= r(tr(v1))).

The two examples so far were both of the same form: schematically, we composed an
l1-to-l2 rule and anl2-to-l3 rule, such that the right-hand side of the first rule was
identical to the left-hand side of the second rule. It is unsurprising that such rules can
be combined. What is less obvious is that rules can sometimes also be composed when
the match in the intermediate (l2) language is not exact. The following is a minimal
example.

We start with thel1-to-l2 rule (6) compiling to (6a) and thel2-to-l3 rule (7)
compiling to (7a): for reasons that will shortly become apparent, we also need a second
l1-to-l2 rule, (8), with compiled version (8a):

202

(6) trule([l1,l2],
p(tr(v1)) >= q(tr(v1))).

(6a) transfer([l1,l2], p(X), q(Y)) <-
transfer([l1,l2], X, Y).

(7) trule([l2,l3], q(b) >= r).
(7a) transfer([l2,l3], q(b), r).

(8) trule([l1,l2], a >= b)
(8a) transfer([l1,l2], a, b).

We start by resolving the composition rule, C, with (6a), to get

transfer([l1,l3], p(X), Q3) <-
transfer([l1,l2], X, Y),
transfer([L2,L3], q(Y), Q3).

The resolving again with (7a), the result is

transfer([l1,l3], p(X), r) <-
transfer([l1,l2], X, b).

Intuitively, what we have done so far is to translate the right-hand side of (6), i.e.
q(tr(v1)), using (7), to getr. The condition left in the body shows that this is only
possible iftr(v1) translates into the constantb.

The current result is not a well-formedl1-to-l3 transfer rule, since it makes ref-
erence to transfer betweenl1 andl2. The condition can however be removed by a
further resolution with (11a), producing the final result

transfer([l1,l3], p(a), r).

which is the compiled form of thel1-to-l3 rule

trule([l1,l3], p(a) >= r).

In effect, the final resolution step uses (8) to perform a backward (l2-to-l1) transla-
tion of b. Viewed in terms of transfer rules, we previously had the condition on the
composed rule thattr(v1) translated into thel2 constantb. The backward transla-
tion step showed that one way to satisfy this condition was to restrict the left-hand side
(l1) occurrence oftr(v1) by forcing it to be specificallya.

14.2.2 Procedural realisation of transfer-rule composition

We will now describe our concrete algorithm for composition of transfer rules. We
stress that this algorithm is not complete; there are many (in general, an infinite num-
ber) of validl1-to-l3 transfer rules which it will not discover. This appears to be
inevitable, however, since the problem of generating a complete set of composed trans-
fer rules is in the worst case highly intractable. (In fact, we strongly suspect that it
is undecidable). Our experimental findings, described in more detail in the next sec-
tion, suggest though that the algorithm has considerable practical utility. By creating

203

a manageably small set of composed rules which contains all the intuitively straight-
forward compositions, it greatly diminishes the effort involved in creating a new set of
l1-to-l3 rules.

As usual, we refer to our three languages asl1, l2 andl3, and compose in the or-
derl1� l2� l3. The basic idea is to follow the procedure sketched in the examples
from the previous sub-section. We start with two language-pairs; for each language-
pair, we take each rule in turn from that language-pair, and successively attempt to
compose it with all the rules from theother language-pair. Schematically, there are
thus two cases, which we refer to as “forward” and “backward” composition. In the
“forward” case, we take anl1-to-l2 rule

trule([l1,l2], LHS >= RHS)

and attempt to usel2-to-l3 rules to translateRHS into thel3 expressionRHS’; this
may involve adding restrictions toLHS to produceLHS’. The final rule will be

trule([l1,l3], LHS’ >= RHS’)

The “backward” case is similar; we start with anl2-to-l3 rule

trule([l2,l3], LHS >= RHS)

and usel1-to-l2 rules (in reverse) to translateLHS into thel1 expressionLHS’; this
may involve adding restrictions toRHS to produceRHS’. The final rule is again

trule([l1,l3], LHS’ >= RHS’)

Since the two cases are symmetrical, we can without loss of generality restrict ourselves
to the forward one. In more detail, we go through the following steps for eachl1-to-l2
rule

trule([l1,l2], LHS >= RHS)

Note that we use theuncompiledversion of the rule, i.e. the one in which transfer
variables are left unchanged.

1. TranslateRHS into l3 usingl2-to-l3 rules, giving the resultRHS’

2. Transfer is carried out in such a way that a transfer variabletr(Id,Pat) may
be unified with the termT iff Pat unifies withT. Call the list of allId/T pairs
produced in this way the “unification-pair list”.

3. For eachId/T pair in the unification-pair list, translate thel2 expressionT into
anl1 expressionT’, using thel1-to-l2 rules in the inverse direction. Perform
this step non-deterministically, to create a set of possible “inverse unification-
pair lists”, each of which associates all theId with their respective values of
T’.

4. Use each inverse unification-pair list to restrict the transfer variables inLHS.
Thus if tr(Id,Pat) is a transfer variable inLHS, Id/T’ is an entry in the
inverse unification-pair list, andPat unifies withT’, replacetr(Id,Pat)
with tr(Id,T’). The result of performing all these replacements isLHS’.

204

5. The final composed transrule is

trule([l1,l3], LHS’ >= RHS’)

14.2.3 Composing transfer preferences

As explained in Section 12.2.1, the transfer preference model contains two compo-
nents: achannel component, expressing thea priori plausibility of the rules used to
perform a transfer, and atarget language componentexpressing thea priori plausibil-
ity of the result.

In practice, the channel component is calculated by assigning a numerical score to
each transfer rule, and summing the score over the multi-set of all rules used in per-
forming a given transfer. The target language component is calculated from structural
properties of the QLF produced; the details of how this is done are not relevant to the
present discussion. The final preference score is a weighted sum of the channel score
and the target language score.

Our initial approach to composition of transfer preferences is very simple. Let
us assume as usual that we are composingl1-to-l2 andl2-to-l3 to createl1-to-
l3. The target language component for the composed rule-set is simply the target-
language component from thel2-to-l3 transfer set. The intuition is that since the
target-language component estimates the intrinsic plausibility of the resultingl3 QLF,
it should make no difference whether this result was produced by transfer froml1
rather thanl2.

The channel model score assigned to each composed rule is also calculated straight-
forwardly as the sum of the channel model scores for all of the rules used by the al-
gorithm in the previous section to form the composition. Finally, the relative weights
assigned to the target and channel components are (somewhat arbitrarily) defined to be
the same as those for thel2-to-l3 transfer model. Although the transfer preference
composition method as currently defined is clearly no more than a coarse approxima-
tion, it does appear to be good enough to function as a reasonable starting point, and
in practice preserves most of the strong preferences induced from the original transfer
pairs. Problems pertaining to composed transfer preferences are discussed at greater
length in Section 14.4.3.

14.3 Improving automatically composed rule-sets

Our basic system development methodology makes use of rationally constructed, bal-
anced domain corpora to focus the effort on frequently occurring problems (cf Chap-
ter 8). The idea is to start with a large source-language corpus, and automatically iden-
tify commonly-occurring syntactic patterns. A smaller, “representative” corpus can
then be extracted, in which each syntactic pattern is represented by one instance; each
instance is paired with a number showing how many words from the original corpus it
represents.

The key advantage offered by the representative corpus idea is that it simplifies the
task of locating problems which have a large impact on coverage; experience shows

205

that if a particular sentence fails to process correctly, there is a substantial probability
that all or most of the other sentences conforming to its syntactic pattern will fail in
the same way. Thus the size of the syntactic class represented by each representative
corpus sentence provides a natural way of prioritizing problems.

The development cycle for improving a set of automatically composed transfer
rules is the same as for other phases of the system. After the latest round of improve-
ments has been added, the representative corpus is run, and the results evaluated by
a bilingual judge. The priority order implicit in the corpus determines the next set of
problems to be attacked, and the cycle repeats.

In the context of automatic transfer composition, three specific problems may arise:
overgeneration of composed rules, problems with composed preferences, and under-
generation of composed rules due to lack of coverage in the hand-coded rules. The rest
of this section briefly describes these generic problems at an abstract level. In the next
section, we present practical examples taken from our experiences in the Swedish�
English� French language-triple.

14.3.1 Overgeneration of composed rules

Although the transfer composition algorithm cannot in a sense findL� � L
 rules that
are actuallyinvalid, it can certainly create ones that areirrelevant. In practice, the main
consequence of overgeneration in transfer rule composition is increased processing
time due to spurious non-determinism.

If the composedL� � L
 rule set is found to contain undesirable rules, we allow
the developer to supply declarations blocking the combinations that gave rise to them.
(Each rule is tagged with a history identifier which makes this a simple operation).
The format of the declarations allows blocking of classes of rule combinations, for
example inhibiting composition of a given rule fromL� � L� with all but one of a set
of potentially composable rules fromL� � L
.

14.3.2 Composed preferences

As described in section 14.2.3, the initial set of composed preferences is only a rough
approximation, and requires considerable adjustment to achieve high performance. The
issues involved are described in more detail in section 14.4. More generally, ifL� and
L
 have a lexical granularity in common which is not matched by that ofL�, we risk
ending up with too general lexical transfer rules as the result of rule composition.

14.3.3 Lack of coverage in hand-coded rules

Holes in theL� � L
 set result either from blocked compositions (as described above)
or from cases not covered by theL� � L� orL� � L
 transfer rules. When such holes
are found, the developer can plug them by writing her own rules, adding them to the
automatically composed set. The hand-written and automatically composed portions
of the new rule set are kept in separate files, so that the composed portion can be
recompiled without affecting the hand-coded additions.

206

14.4 Swedish� English� French:
a case study

This section describes our experiences in constructing a Swedish-to-French transfer
module using the methods outlined above. The current prototype works in the same
ATIS domain as the other versions of the system, using a vocabulary of about 1 500
source-language stem entries, and has been integrated into the main SLT system to
allow translation of spoken Swedish into spoken French.

14.4.1 Experimental results

As described in the preceding section, most of our development work has been carried
out using rationally constructed Swedish representative corpora. The main corpus we
have used contains 654 sentences, representing between them a total of 13 990 words
from the original Swedish corpus. We normally count coverage in terms of “weighted
scores” on this corpus, multiplying the result on each utterance by the number of words
it represents. On this metric, we currently obtain French translations for 87% of the
sentences; when evaluated by a bilingual judge, 72% were found to be of adequate
quality, and the remaining 14% were deficient in various ways. 13% of the sentences
produced no translation. Only two of the cases where no translation was generated
were caused by the system exceeding its time-out threshold, here set to 90 seconds.
The remainder of the section describes these results in more detail.

14.4.2 Translation failures

When no translation at all is generated, this is normally due to the incompleteness
of the two underlying transfer rule sets. This is especially apparent forL� � L
,
in this case English to French. This transfer module performs relatively well on the
standard collected English corpus data used for testing, but much worse on the type
of English generated by the Swedish-to-English translation module. The degradation
in transfer quality is only to be expected, since spontaneously generated English and
English generated by translating Swedish differ in many important respects. This is at
least true in a transfer framework, where generation of target language utterances is not
independent of the syntactic realisation of the source language utterance (as perhaps
could be the case in an interlingua-based system).

14.4.3 Incorrect translations

Table 14.1 summarizes the main causes of error in the utterances from the Swedish rep-
resentative corpus which failed to produce adequate French translations. The column
headed ‘Freq’ gives the number of sentences affected (frequency-weighted) for each
category.

Correctness of translations is of course not a binary notion; we can distinguish
several different types of reasons why translations fail to be satisfactory. In Agnäset
al. (1994) four different quality dimensions were used to evaluate the SLT system:

207

Type of problem Freq
Transfer preferences 1162 40%

Missing transfer coverage 889 30%
Swedish analysis preferences 228 7%

French grammar 180 6%
Other/unclear 476 16%

TOTAL 2935 100%

Table 14.1: Inadequate translations in Swe� Fre tests

� Degree of meaning preservation

� Degree of preservation of stylistic information

� Grammaticality

� Naturalness

In the above figures on correctness, we have mostly been considering the three first
dimensions.

From the above figures we can see that there are two major problem sources when
using the composed transfer rule set: preferences and missing transfer coverage. In
addition, due to overgeneration of composed rules, problems with efficiency needed to
be addressed through blocking declarations.

Dealing with overgeneration

In the current version of the system the Swedish-to-English transfer rule set contains
1 454 rules and the English-to-French rule set 1 281 rules (both sets counted after
macro-expansion). The automatically composed Swedish-to-French transfer rule set
contains 4 525 rules. As can be seen, it is considerably larger than either of the two
hand-coded rule sets.

This disparity in size appears to be the main reason for the appreciably slower
processing times delivered by the composed Swedish-to-French rule set, compared
for example with the hand-coded English-to-French rules. Using the current version
of the system and the English and Swedish representative corpora described above,
the average processing time for the English-to-French transfer and generation phase is
5.3 seconds/utterance running Quintus 3.2 on an UltraSparc 1; 9.5% of the utterances
(frequency-weighted) took more than 10 seconds. We ran a corresponding test on the
the first 140 sentences of the Swedish-to-French representative corpus, representing
7780 words of the original corpus. This produced 14 time-outs, using a time-out thresh-
old of 90 seconds; over the remaining sentences, we recorded an average processing
time for the transfer and generation phase of 16.2 seconds/utterance, with 40.0% of the
utterances (again frequency-weighted) taking more than 10 seconds. These figures are
clearly not satisfactory.

208

Examination of the composed rule-set revealed that a substantial proportion of the
rules were created by forward or backward composition (cf Section 14.2.2) with a small
set of “problem rules”. A typical offender is the Swedish-to-English rule which re-
sults in English day-of-week/time-of-day expressions like “Monday morning”. These
phrases are a specific type of compound nominal; English compound nominals can be
translated into French in many ways, most often as noun/PP combinations. Conse-
quently, forward composition from the Swedish-to-English rule results in a large set
of Swedish-to-French rules. However, the only acceptable way to translate these par-
ticular compound nominals is as French compound nominals (“Monday morning”�
“lundi matin” etc). The forward composition with the appropriate English-to-French
rule is correct, and all the other compositions are irrelevant.

The above example illustrates how addition of a small set of blocking declarations
(cf Section 14.3.1) makes it possible to effect a substantial reduction in the size of the
composed rule-set. In the current version of the system, 53 declarations between them
block creation of 2 126 out of the 4 525 composed Swedish-to-French rules. Suitable
declarations were found by inspecting utterances for which transfer was clearly slow;
the total time required to write them was on the order of 2–3 days. Rule-filtering
using the blocking declarations reduced the average frequency-weighted processing
time for transfer and generation from 16.2 seconds/utterance to 4.6 seconds/utterance,
with the proportion taking over 10 seconds falling from 40% to 8%. The new figures
are comparable with those for English-to-French quoted above.

Dealing with preference problems

The automatically composed transfer rule preferences are sometimes insufficient to se-
lect the correct lexical target constant. The problems which arise typically concern
incorrect lexical choice when translating prepositions, articles and compound nomi-
nals. This section describes a typical case in detail.

Consider the translation of the Swedish preposition “på”. In the Swedish-to-English
transfer rule set the following lexical transfer rules exist:på� on, with channel score
10, andpå� temporal-NP-marker, with channel score –5. The relatively high transfer
rule score of 10 reflects the fact that the “default” translation of “på” should be “on”.

Then, between English and French there are several different lexical transfer rules
translating “on” into various prepositions, but none ranking higher than any other, not
even the expected “default” translation “sur”; in the ATIS domain, there is in fact no
strong default translation of “on”. Thus for instance “on Delta” becomes “avec Delta”,
“on Monday” becomes “le lundi” (with the preposition being translated into an implicit
temporal NP marker), and so on. Consequently, the Swedish� French transfer rules
på� avecandpå� sur both receive the positive channel score of 10.

Bothpå� onandon� avecare very reasonable transfer rules, and it is correct to
assign a positive score to the first and an approximately zero score to the second. How-
ever, the compositionpå� avecis unlikely, especially in this domain. The problem is
that the English-to-French ruleon� avecis mainly appropriate in contexts where the
object of “on” is an airline, which will frequently be the case in ATIS. However, the
object of the Swedish preposition “på” is hardly ever an object of this type, and so the
two transfer rules are in practice rarely capable of combination. A positive score for

209

the composed rule is thus incorrect.
The above example shows that straight-forward summing of preferences may some-

times lead to awkward results; when similar cases are discovered during system test-
ing, the preference scores need to be corrected by hand. We hope that the new meth-
ods we are developing for semi-automatic acquisition of transfer preferences (cf Sec-
tion 12.2.3) will help us attack these problems during the next phase of the project.

Dealing with lack of coverage in hand-coded rules

Just as the difference between “natural English” and “English generated through trans-
lation from Swedish” sometimes caused complete failure when using the composed
rules for translation between Swedish and French, this difference can also lead toin-
correct translations. Consider for example the Swedish construction “Vad kostarX?”,
having a literal English counter-part in “What doesX cost?” which occurs seldom
in the English training corpus used. Because of this, in the original composed set of
Swedish-to-French rules, no correct rule existed for translating “What doesX cost?”
into “Combien coûteX?”. This in turn led to the quite common construction “Vad
kostarX?” being compositionally and erroneously translated into “Que coûteX?”. In
the figures in Table 14.1, however, a version of the system was used where the relevant
rule had been added to the English-to-French rule set (“What”� “Combien”).

14.5 Conclusions and further directions

To summarize, our basic idea is to abandon the quixotic search for an interlingua,
and instead pursue the more modest goal of efficiently re-using existing linguistic re-
sources. To this end, we have described an algorithm for composition of transfer rules.
We have demonstrated that it can be used to automatically compose non-trivial sets of
transfer rules containing on the order of thousands of rules, and shown that by small
adjustments the performance can be improved to a level only slightly inferior to that
of a corresponding set of hand-coded rules. Our experience is that the amount of work
involved in using these methods is only a fraction of that needed to develop similar
rules from scratch.

In the short-term, we intend to continue to work on hand-improvement of the au-
tomatically composed rule-sets; our aim here will be to ascertain how much effort is
required to close the gap in performance between the automatically composed and the
hand-coded rule-sets. We will also test our methods on two other language triples, En-
glish� French� Spanish and French� English� Swedish. Preliminary results on
the first of these already look promising.

On the basis of the experience gained from these experiments, we will also try to
improve the underlying methodology. In particular, it is important to obtain automati-
cally generated rules that are more transparent. Our current plan is to develop methods
for formatting trace information, so that it becomes easier to see how a particular com-
posed rule was generated. In principle, such trace information is already available, but
right now it is packaged in a way which makes it difficult to read and understand.

210

One option for long-term work would be to systematize the use of transfer rule
composition in a multi-lingual MT framework. The rough picture we have in mind
is to concentrate on a small number of “canonical” language pairs. What constitutes
a canonical pair could either be determined from pragmatic reasons (in the European
Union French–English and German–English would of course be prime candidates),
but also from typological facts. Languages could be clustered according to linguistic
similarity and onlyonerepresentative languageA� selected from language familyA for
manual translation into a single languageB� from familyB; then theA� � B� rules
could be composed with the (hopefully easy-to-construct) rule-sets obtaining within the
language-familiesA andB. In this way, rules would be derived automatically between
A�, . . .An andB�, . . .Bn. If this programme of research proves viable, it could have
interesting implications for the field as a whole.

Chapter 15

Database Interface

Ralph Becket, Ian Lewin, David Milward and Manny Rayner

15.1 Overview of Database Processing

In SLT database interface applications, database processing is the last stage in the trans-
lation pipeline. Its purpose is to take a logical representation of the speaker’s request
(expressed in a Target Reasoning Language, TRL) and transform it into an (approxi-
mately) equivalent TRL sentence which can be “executed” to obtain the answer to the
query.

The utterance from the speaker is translated into a logical formula conveying the
meaning of what was said in order to support reasoning and manipulation of it within a
well understood framework. As might be expected, there is still a world of difference
between the way something is going to be described in human terms even in a logical
formalism and the terms which a database query would use (the final, translated form
is essentially a program for extracting the requested data from the database).

The approach taken in the ATIS SLT project is called Abductive Equivalential
Translation, about which we will say more later. The key point is that it is logically
clean, so it is possible to make sensible claims about what the system can do and how
it can be used to attack new problems; it has an efficient implementation, so query re-
sponse times are fast enough to be useful; and it is ideally suited to handling the kind of
context-dependent constructions prevalent in natural language (consider the difference
between, say, any flight, a morning flight and an early morning flight).

Moreover, since it will not always be possible to give a perfect answer, AET can
identify situations where assumptions have to be made (e.g. in its understanding of
what constitutes early morning) and report them to the user. Similarly, the system
can be used to identify errors such as references to flight numbers not listed in the
database. All of this is handled in a straightforward way without the need for special
case solutions or auxiliary mechanisms.

So, essentially, the database processing part of the system is responsible for trans-
lating natural-language style sentences in the target reasoning language (TRL) into

211

212

executable database queries, also in TRL form.
In order for a TRL to be executable it must consist entirely of executable predicates

(i.e. ones for which there exist Prolog definitions). Such predicates include comparison
tests, conversion operations, ordering predicates (e.g. for earliest, latest, cheapest), and
of course predicates for interrogating the various database tables. The input TRL, on
the other hand, consists of predicates representing the “natural” senses of the words
used in the original utterance. The problem addressed by the database processing stage
is that there is no simple one-to-one mapping from the latter to the former and non-
trivial translation is necessary.

Consider the query “What afternoon flights are there from Boston to Denver on
Delta?”. This would be delivered to the database interface system as the TRL1.

forall([A,B,C,D],
impl(and(flight_AirplaneTrip(A),

and(noun_noun_relation(A,B),
and(afternoon_PartOfDay(B),
and(from(A,airport#’BOS’),
and(to(A,airport#’DEN’),
and(on(A,airline#’DL’))))))),

exists([E,F,G],
and(future_event(E),

perform_action(E,display([A]),F,G))))
)

Paraphrasing, the input TRL reads “for every flight in the afternoon that goes from
Boston to Denver on Delta ... let there be an event in the future in which we inform the
user of it.”

Note that declarative forms of request, such as “I want to fly from New York to San
Francisco” are converted into imperative form (“Show me flights from New York to
San Francisco”) in earlier processing stages.

The output from AET is as follows:

forall([A,B,C,D,E,F,G,H,I,J,K,L],
impl(and(db_flight(A,C,’BOS’,’DEN’,B,D,E,’DL’,F,G,

H,I,J,K,L),
and(’<’(B,1800),

’>’(B,1159))),

exists([O,P],
and(db_time_to_printable_time(B,O),
and(db_time_to_printable_time(D,P),

1These TRLs have been slightly edited to improve readability — note that type information like
airport#’BOS’ is in fact delivered in a somewhat different form; see section on object typing on page
215

213

display_tuple([flight#(A),
[’Flight code’,’Day code’,
’From’,’To’,’Departs’,
’Arrives’],
[E,C,’BOS’,’DEN’,O,P])]))))

)

Which contains only structures meaningful to the database and the various executable
predicates. Note, for example, translation of the concept “afternoon flight” into “flight
departing after 11:59am and before 6:00pm”.

Executing this sentence (which essentially defines a program for interrogating the
database) results in the output:

============= ========== ====== ===== ========== ==========
| Flight code | Day code | From | To | Departs | Arrives |
============= ========== ====== ===== ========== ==========
| DL841/DL845 | DAILY | BOS | DEN | 3:25 pm | 7:45 pm |
============= ========== ====== ===== ========== ==========

The next two sections, 15.2 and 15.3, provides a brief introduction to AET, lin-
guistic domain theory construction and a summary of results obtained at the end of the
project.

15.2 Translation and the Domain Theory

In this section we take a whistle-stop tour of AET and give an overview of the Linguis-
tic Domain Theory used to define the translation scheme.

15.2.1 Abductive Equivalential Translation

This is an highly simplified outline of the AET mechanism, intended purely to give the
reader some idea as to how this part of the system works. For more detail and fully
worked examples the reader is referred to Rayner (1993).

The AET process works by incrementally translating an input TRL into an exe-
cutable form according to a set of equivalences defined in a Linguistic Domain Theory
(i.e. the set of equivalences, descriptions of functional relationships between various
predicate arguments, and auxiliary implications).

What should be stressed is that the AET formalism makes for elegant, declarative
and concise mapping between first order theories. The translation can occur in natural
stages and handles more complex situations without great difficulty. Moreover, the
approach seems to scale well: this project has significantly expanded the size of the
LDT without having caused any noticable increase in processing time.

Translating Logical Formulae

The basic idea behind AET is that a sentence

P� � Rest

214

can be translated into
�Q� �Q� �Q
� �Rest

provided we have an rule2 to say that

�P� � P� � � � � � Pn� �Q� �Q� �Q
�

and we can prove thatP� � � � � � Pn holds assumingRest. TheQ� � Q� � Q
 may
well go on to be translated further or take part in the translation of other terms in the
resulting sentence. Translation stops once no more progress is possible. Note that there
are translation schemata to handle all the standard logical connectives (conjunction as
above, disjunction, implication, negation and quantification), but we need not go into
detail here.

For efficiency reasons, a backwards chaining theorem prover is employed to decide
the condition of applicabilityP� � � � � � Pn for the equivalence above. Implications
(Horn clauses) derived from the equivalences in the LDT form the greater part of the
inferential rules used to decide whether the condition is met or not.

A (simplified) example of an equivalence in the ATIS LDT specifying the (partial)
translation of the concept “flights in the morning” is

in�flight�F� PartOfDay� � morning�PartOfDay�

departure time�flight�F� time�DepT ime� � �DepT ime � �
		�

which reads as “sayingF is a flight inPartOfDay wherePartOfDay is a morning
is equivalent to saying thatDepT ime is the departure time of flightF andDepT ime
is less than�
		 hours. In turn, we might have another equivalence

departure time�flight�F� time�DepT ime� co flight � �id � F� dept � DepT ime�

to connect a flight and its departure time through the conceptual flight relation (for an
explanation of the����� slot notation andname�Object type scheme see below).

It is likely that multipleco flight relations all keyed on theflight�F object will
be generated in the course of translation (e.g. forfrom andto constraints in the query).
A simplifier is employed which can collapse them into a single instance since it knows
that there is a functional relationship from theid slot to all the others for conceptual
flight terms. The simplifier also uses implications derived from the equivalences in the
LDT to discard terms which can be deduced from their context.

Unsuccessful translation attempts are detected by the presence of non-executable
predicates in the TRL. Otherwise the term is reordered to manimise the amount of
database searching (again using knowledge of the functional relationships between ar-
guments in various predicates) before being executed.

Implicit Quantification

Strictly speaking, AET requires that all but variables with global, universal scope need
to be explicitly quantified. On the other hand, it is often obvious from an equivalence
what the appropriate quantification for variables is.

2Note that we use rules in a left-to-right fashion only in order to keep things tractable.

215

The general rule is that equivalences of the form

p�X�Y � q�Y� Z�

are interpreted as meaning

�X�p�X�Y � �Z�q�Y� Z�

with free variable Y being treated as universally quantified as per usual.
Due to the nature of the way AET works, non-atomic existential equivalences must

split into separate universal and the atomic existential cases, so

�X�Y�p�X�Y� Z� � q�X�Y� Z� r�Z�

becomes
p�X�Y� Z� � q�X�Y� Z� new�X�Y� Z�
�X�Y�new�X�Y� Z� r�Z�

The LDT constructor, however, need not be concerned about these issues since
preprocessing automatically converts equivalences into canonical form. In fact, the
only time explicit quantification is necessary is when the right hand side of a rule has
a local universally quantified variable (a situation which has not, so far, arisen in the
ATIS LDT).

Object Typing

To increase efficiency a simple (flat) syntactic type-scheme is now in use. At an early
stage in translation conceptual objects denoting such things as flights are tagged with
their type. So a clause such asflight(F) in the input TRL will be translated into
F=flight#Id.

It should be kept in mind that the type scheme is (a) purely notational and (b) just
a means of making explicit object types that are implicit at the linguistic and database
levels. In other words, this form of typing information is only acquired and employed
in the LDT and has no bearing in other phases where it would, more than likely, get in
the way.

Efficiency is improved since Prolog’s unification will prevent consideration of equiv-
alences whose predicates contain slots with incompatible types (e.g. for separating
cases such as ‘flights from...” and “fares from...’). Use of explicit typing also helps
improve readability of equivalences:

equiv(economy_fare, regularize,

economy(fare#(Id, OneWayOrReturn)),

and(co_fare:[
fare_id=fare#(Id, OneWayOrReturn),
fare_basis_code=

216

farebasis#DBFareCode],
db_fare_basis:[

fare_basis_code=DBFareCode,
economy=’YES’’])

).

equiv(economy_flight, regularize,

economy(flight#Id),

and(co_flight:[flight_id = flight#Id],
and(co_flight_fare(flight#Id,

fare#(FareId, OWorR)),
economy(fare#(FareId, OWorR))))

).

15.2.2 Summary of the ATIS Linguistic Domain Theory

The ATIS LDT comprises some 459 equivalences divided into seven groups3. Trans-
lation is restricted to one group at a time, the next group only being applied when no
further progress is possible with rules from the current group. The idea is that each
rule group canonicalizes one aspect of the sentence under translation: groups exists for
identifying type information (69 equivalences), pre-processing relational structures (32
equivalences), regularizing linguistic forms (this is the largest group with 258 equiva-
lences), handling temporal relationships (21 equivalences), display of information (24
equivalences), final translation from the general conceptual level to the database level
(10 equivalences), and optimisation (23 equivalences); the remainder consist of rules
for format conversion etc.

Rules in each group are largely stereotypical and by and are generally fairly straight-
forward, although the formalism is well equipped to deal with cases where more so-
phistication is required (e.g. for informative error feedback) and there are subtle cases
where the LDT coder must exercise care. Here are examples of typical equivalences
from each class:

The LDT is constructed such that translation occurs in three roughly distinct stages.
First of all the untranslated TRL is converted from using predicates denoting natural
word senses to an intermediary conceptual level (this is also the point at which object
types are identified). Then the conceptual form is translated into a simpler version in
which everything has a direct database analogue. Finally, the canonicalised conceptual
level sentence is converted to the database level in which all predicates denote either
database lookups or executable procedures (e.g. for comparison or formatting of dates).

� Typing

equiv(flight_arrives, types,

3Of these 110 are domain independent “legacy equivalences” from previous projects. It is believed that
this number could be reduced given our now much improved understanding of the domain.

217

arrive_TurnUp(Event, flight#Id),

and(Event = arrival_event#(flight#Id),
co_flight:[flight_id=flight#Id])

).

This equivalence (given the name “flight_arrives” in the “types’ rule group)
translates the verb “arrive” in the context of a flight by connectingEvent to
the arrival of that flight; theco_flight:[...] part simply ensures that
the translation includes reference to someparticular flight. Thename#Object
forms simply declareObject to be an instance of the typename.

� Relational Pre-processing

equiv(on_relation, regularize,

on(X, Y),

r(X, on, Y)
).

Here we are just transforming the structure of a two place relationon into the
canonical three place relationr which contains the name of the original. This
allows us to generalise over relations which are interchangable in certain contexts
(see the next example).

� Regularisation

equiv(flight_on_with_relative_run_by_for_airline,

regularize,

r(flight#Id, R, airline#Airline),

co_flight:[flight_id=flight#Id,
airline_code=airline#Airline]

) :- member(R, [on, with, relative, run_by, for]).

Translates any phrase of the form flight on/with/for/relative to/run by some air-
line by connecting the flight and airline objectsId andAirline via the appro-
priate slots in the conceptual flight relation. Without the generalisedr relation
we would need a separate equivalence for each form.

� Temporal Relationships

218

equiv(date_before_seconds_granularity, temporal,

date_before3(Type, [Date1, seconds],
[Date2, seconds]),

date_before4(Type, seconds, Date1, Date2)
).

This is a straightforward translation of an intermediate term into a canonical
form. The handling of time is overly general in the current LDT: the model of
time used in the database is very simple, consisting of just days of the week and
integers to represent time on the clock; on the other hand the inherited temporal
model comes from a domain with a much more sophisticated notion of time.

� Displaying Information

equiv(display_airport, regularize,

display_format(airport#Airport_Code, Columns,
Data),

and(db_airport:[Airport_Code, Airport_Name,
Airport_Location],

and(Columns = [’Code’, ’Full name’, ’City’’],
Data = [Airport_Code, Airport_Name,

Airport_Location]))
).

This equivalence says how to display an airport: columns are headed “Code”,
“Full name” and “City”. The data for the last two colums is obtained by per-
forming a database lookup.

� Translation to Database Predicates

equiv(co_ground_service_to_db, db_connect,

co_ground_service(Co_Ground_Service, Co_Cost),

and(Co_Ground_Service =
transport#(Co_City, Co_Airport, Co_Type),

and(Co_City = city#DB_City_Code,
and(Co_Airport = airport#DB_Airport_Code,
and(Co_Type = type#DB_Transport_Type,
and(Co_Cost = cash#DB_Ground_Fare,

db_ground_service(
DB_City_Code,
DB_Airport_Code,

219

DB_Transport_Type,
DB_Ground_Fare))))))

).

Here we translate the conceptual airport ground service (e.g. bus, taxi) represen-
tation into the appropriate database lookup. The conceptual level objects are all
explicitly typed, whereas the database records are not. Note also that the ground
service keytransport#(Co_City, Co_Airport, Co_Type) is struc-
tured so as to uniquely define a ground service instance. The practice of using
unique keys whenever possible has significant efficiency benefits since we can
merge predicates with identical keys into a single term.

The stereotypical nature of the majority of equivalences suggests that an easy to
use form-filling tool or some-such could be used by inexpert programmers to develop
large parts of an LDT for a new domain. Indeed, it has become apparent that many
equivalences connecting different database relations could be automatically generated
from a suitable description of the database schemata. We therefore believe that we
are in a position to be able to build tools which would greatly aid in porting to new
domains.

The remainder of this section consists of an highly abridged introduction to AET, a
summary of achievements including coverage, reorganisation of the LDT, preprocess-
ing stages for a simple type and slot filling mechanism, handling of error predicates,
use of preferences in selecting applicable equivalences, sticky defaults for context de-
pendent dialogue processing, and improvements to the robustness and usability of the
testing software.

15.3 What Has Been Achieved

15.3.1 Scores on the New Context Independent Repcorpus (Small
and Full-Size versions of Database)

Development of the system has been based around increasing the coverage of queries
taken from a representative corpus, that is, a subset of the full corpus selected to contain
instances of the great majority of utterance types. Initial development was conducted
using an 175 example repcorpus covering 1101 utterances. For this part of the project
a larger 766 example repcorpus was constructed, this time covering 5022 utterances.
Since the utterances in the repcorpora are selected by frequency, the smaller repcorpus
is effectively just the front part of the new version.

It should be pointed out that these repcorpora only consist of context independent
queries; that is, those whose meaning does not depend upon the surrounding dialogue.
So, while an query such as “What are the flights from Boston to Atlanta on Saturday?”
is regarded as context independent, “Just the first class fares.” is not since it clearly
refers to a preceeding reply. Context dependent processing is discussed elsewhere in
this document.

At the time of writing (2nd January 1997) a success rate of 82.8% has been achieved
on the new repcorpus. This shows an improvement in excess of 25% compared to

220

when the project started in October where the score was somewhere in the mid fifties.
It is true that on the older representative corpus scores in excess of 90% were being
recorded, however the new corpus is nearly five times as large and presents a much
broader range of problems (the larger corpus contains a much higher proportion of
low-frequency query types). Still, the success rate with the new corpus after the first
1100 represented queries is 100%, while after 175 examples is 94.5% which strongly
suggests that general coverage has been greatly improved.

The current implementation holds the database as a collection of Prolog records.
For pragmatic reasons we have been working with a restricted subset of the database
consisting of the thirteen most important relations ranging over ten cities. The full size
database consists of a further fourteen relations ranging over about fifty cities. Tests
were made on a full size version of the database and, apart from the relatively long
time needed to load the image, no significant difference in either speed or accuracy of
responses was observed. It is intended that future versions of the system should make
use of a proper database engine which should drastically reduce the size of the Prolog
image and improve performance.

Coverage currently includes:

� flights;

� times of arrivals and departures (including earliest/latest);

� periods during the day such as morning and night and dates including days of the
week and/or particular month days;

� stops for flights, meals served on flights, fares and fare classes (e.g. first, busi-
ness);

� prices (including cheapest, most expensive);

� ground transport available at airports;

� airlines; and

� and informative error recovery.

This accounts for the majority of the most frequent types of request in the corpus, al-
though there are obviously some gaps. Perhaps the most significant of these is that the
system currently has very little provision for handling queries asking for several dif-
ferent types of information. Thus “Show me the fares for nonstop flights from Boston
to Denver” causes no problem (only the fares are being requested), but something like
“Flights and fares from San Francisco to Dallas” will cause the system to balk since it
is a request for two distinct types of data, namely flight information and fare informa-
tion. Although it is no great problem to extend the database system to handle this kind
of query, it turns out that some support upstream is also necessary (e.g. for “flightsand
fares...” or even “flightswith fares...”). This is the responsibility of the resolution phase
which is discussed in another section.

221

15.3.2 Reorganisation and Recoding of Equivalences

Efforts have been made to regularize and simplify the structure of the equivalences
comprising the linguistic domain theory (LDT) defining the mapping from untranslated
TRLs to translated TRLs which can be “executed” to produce a response from the
database.

The general scheme used is to translate first into a canonical ‘conceptual” or “open”
form, then into an executable “closed’ form, and finally perform various simplifica-
tions. Conceptual level predicates are intended to be “open” versions of their closed
database counterparts (the difference being that, for example, while a conceptual predi-
cate might refer to flights from Boston to Denver, the corresponding database predicate
can only refer to such flights as are recorded within the database, and to those by the
various codes used in the database model). Conceptual predicates now all have names
starting with “co_’; database predicates start with “db_’. Otherwise corresponding
predicates have suffixes with names identical to those used in the defining database
schema.

Slot/Value Notation

Since many predicates take a large number of arguments of which only a few are gen-
erally of relevance in any particular case, a slot/value notation has been implemented.
Thus, it is now possible to rewrite, say

co_flight(Id, _, From, To, _, _, _, _, _, _, _, _, _, _, _, _)

as

co_flight:[flight_id=Id, from_airport=From, to_airport=To]

where the latter is expanded to the former by the pre-processor.
In the former case, anonymous variables would generally be eschewed in the LDT

and instead proper names would be used to aid documentation of the code:

co_flight(
Id, Day, From, To, Departure_Time, Arrival_Time,
Airline_Flight, Airline_Code, Flight_Number,
Aircraft_Code_Sequence, Meal_Id, Stops,
Connections, Dual_Carrier, Time_Elapsed

)

This is clearly too cumbersome and long winded. On the other hand, while the
amount of typing required is not greatly reduced if anonymous variables are used in
the LDT, the need to remember place values is relieved and the LDT becomes much
easier to read.

Inclusion of Error Predicates in the Translated Form

One of the more important aspects of the user interface is provision of helpful error
messages when something goes wrong. Whilst it is obvious when the system cannot

222

translate an utterance, there are other classes of error which hitherto have not been han-
dled in a terribly satisfactory way (the most common response being to fail relatively
quietly).

To improve matters we have taken advantage of the fact that many kinds of data
errors, such as reference to flights that do not exists or at least are not recorded in
the database, can be identified at translation time. In such cases we include a special
error predicate in the translation giving details of the nature of the problem. Before
a translated query is executed, it is checked to see whether any such error terms form
part of the translation. If so, execution is abandoned and an helpful message printed on
the basis of what is contained in the error term. This generally occurs in situations like
the one mentioned above. It cannot cover all situations, however: if the user mentions,
say, a city that the system has no knowledge of then it cannot deduce that what was
mentioned was indeed a city. On the other hand, if the user mentions London and the
system knows that London is a city, but one which is outside the sphere of the database,
then the error term mechanism can be usefully applied. [Another benefit of the error
mechanism is that sticky defaults (see later) acquired from the problem term can be
withdrawn if necessary].

Use of preferences to simplify application of default cases

Applicability of equivalences during the translation process is determined by deciding
whether appropriate preconditions have been met by the formula being translated. This
processing is carried out by the theorem prover. Unfortunately, proof of inverted goals
is generally quite difficult in domains as broad as ATIS and indeed the current imple-
mentation of the theorem prover often fails to prove such goals when it should. This
is a problem since there are relatively common situations where it is useful to be able
to assume that certain things are false if they are not present (consider “I would like an
early morning flight” vs. just “I would like a morning flight”). In order to get around
the problem, we have exploited the preference mechanism used in several parts of the
system to guide AET into testing more specific equivalences first (so in our example,
the system would first try to translate “morning” with the “early morning” equivalence
before going on to the more general one). Once an equivalence has been successfully
applied, the system commits to that choice. It is felt that this approach is good in that it
is robust, easy to understand, and avoids the efficiency problems of having to deal with
negation more than is strictly necessary.

Improved Interface to Existing Testing Software and Improved Robustness in
Testing Facilities

Due to rapid changes in various parts of the system, there has been a drift between the
interface to the main parts of the system, the structures output, and the structures and
interfaces expected by the testing software. As is often the case with such things, prob-
lems have been solved by successive layers of patches, leading to a somewhat baroque
suite of testing facilities. In order to ameliorate the problem, we have developed a
test-debug-loop interface that hides much of the underlying complexity behind a more
user-friendly menu driven interface. We have also put some effort into making testing

223

procedures robust (since the system is generally in a state of flux, sometimes an un-
noticed bug introduced by a change can cause a test run to crash at some point. The
robustness facility now spots when this happens and quietly restarts the test at a point
after where the crash occurred). As with much of the above, the next iteration of the
project will include development of a reworked set of testing facilities taking advantage
of experience gained from this and previous projects.

15.4 Context-Dependent Database Query

15.4.1 Overview

ATIS dialogues, though limited in their use of vocabulary, exhibit a very wide range of
context dependent phenomena. Although there is surprisingly little use of pronouns,
there is a huge variety of elliptical constructions, plus various kinds of contextually
restricted noun phrases. Processing of dialogues in the SLT system proceeds through
several stages. For example, consider the following dialogue from the Atis2 corpus:

I would like to travel from Boston to Denver
I would like the cheapest flight
One way

The effect of QLF-to-QLF translation (as described above) is to convert the first two
sentences to equivalent direct requests. The dialogue thus becomes equivalent to:

Show all flights that travel from Boston to Denver
Show the cheapest flight
One way

We now have two further tasks. To interpret the second utterance correctly, we do not
want the cheapest flight on any route, but the cheapest flight from Boston to Denver.
To interpret the third utterance, we need to form a query along the lines ofShow the
cheapest one way flight, and then restrictflight to flight from Boston to Denver. Both
tasks require the use of contextual information, not just domain knowledge.

In the database system the two tasks are handled at different stages. Contextual
restriction (e.g. restriction offlight to flight from Boston to Denver) is handled by a
sticky defaultmechanism. Formation of queries from ellipses, and traditional reference
resolution problems (such as interpretation of pronouns) are handled by a separate
reference resolution component.

The two mechanisms both have advantages for their particular tasks. The sticky
default mechanism is essentially a slot filling mechanism. By choosing database argu-
ments as slots, this ensures that information is in as canonical a format as possible. For
example,from Bostonandleaving Bostonare both mapped to the valueBostonin the
departure slot. A canonical format makes it possible to recognise when a new value
should replace an old without employing complex reasoning (for example, a departure
slot cannot be filled by both Boston and Philadelphia simultaneously).

In contrast, reference resolution is done at the level of QLFs. Although this means
that information is in a less canonical format (though more canonical than e.g. the

224

surface string), this is necessary for the kind of phenomena reference resolution deals
with. Consider the following contrasting pairs of dialogues:

Show me flights from Boston on American.
I would like to go to Denver.
What is the ground transportation?

Show me flights to Denver on American.
I would like to fly from Boston.
What is the ground transportation?

Show me the cheapest fare for a flight from Boston to Denver
How about Altanta?

Show me the flight from Boston to Denver with the cheapest fare
How about Altanta?

In the first pair of dialogues, different cities are more or less recent, and hence salient.
This means that the preferred reading for the first case isground transportation in
Denverand in the second,ground transportation from Boston. In the second pair of
dialogues, different nouns head the questions:fare in one case,flight in the other.

The kind of recency information or structural information which these examples
require would not normally be found in contexts formed purely by slot filling, although
extra slots can be added to deal with specific examples (for example, the BBN system
(Miller et al. 1996) can deal with the second pair of examples since they add a special
slot to contain the last head noun mentioned).

15.4.2 Reference Resolution Component

The reference resolution component was built over a long period, and is described in the
CLE book (1992). The treatment of ellipsis is described in Crouch (1995). Resolution
is rule based with hand-coded preferences. The resolution component is comprehensive
with a treatment of common kinds of definites, pronouns, demonstratives and ellipses.

The major change to reference resolution in the new system is the addition of rules
to deal with highly elliptical utterances consisting of one or more prepositional phrases,
a single noun phrase, or aning phrase such asflying first class. Consider, for example,
the treatment of the following example:

Show me flights from Boston to San Francisco on Continental
On Saturday morning
To New York

The last two utterances need to be expanded into suitable queries. The first is treated
by extracting a salient noun phraseflights from Boston to San Francisco on Continental
and replacing it by the head noun,flightswith the restrictionon Saturday morning. The
result after reference resolution is thus:

Show me flights on Saturday morning

225

This is then restricted by sticky default processing to a query equivalent to

Show me flights on Saturday morning from Boston to San Francisco on
Continental

Similarly, To New Yorkresults in replacement of the noun phraseflights on Saturday
morningwith flights to New York. This is then restricted by the sticky defaults to:

Show me flights to New York on Saturday morning from Boston on Con-
tinental

The final query includes all the prior constraints except forto San Francisco. This
has been achieved by reference resolution providing a minimal, underspecified, query
which just includes the old head noun plus the new constraint, and sticky defaults
providing the appropriate constraints from the prior context.

So far, the idea of using reference resolution to produce minimal queries has only
been used in the new rules extending the coverage to highly elliptical utterances. In
future work, it is likely that this idea will become much more widely used through-
out the reference resolution component, giving much simplified rules, and a clearer
demarcation between the work of reference resolution and sticky default processing.

15.4.3 Sticky defaults

It turns out that a good deal of the context of an utterance in a dialogue can be obtained
from the translated forms of the preceeding utterances. This context can be extracted
and used to fill in “holes” in succeeding translations. For example, if the user asks for
“flights from Boston to New York”, the system will pick out (from = “Boston”) and (to
= “New York”) as part of the context for later translations. Then, when the user follows
up her question with “flights after 5pm”, “Boston” and “New York” will be used to fill
the to and from slots of the flight relation in the final translation. Furthermore, the new
constraint on the flight times being before 5pm will also be extracted and applied in
later translations if appropriate.

In the case of dialogues where the user changes some part of a request, such as in
“New York to San Francisco on June twenty first”, “How about on the twenty second?”,
we find a clash between the context (day = “twenty first”) and the information in the
latest request (day = “twenty second”). This problem is resolved by simply replacing
the old context for the day slot, in this case, with the new value specified in the request
whenever there is a conflict. Currently this is done in a rather simple-minded way
which does not take into account refinements of constraints on particular slot types.
For instance, “Flights after noon”, “Before 6pm” will end up with only the default
(departure_time < 6pm), rather than what was probably intended by the speaker (noon
< departure_time < 6pm). We intend to greatly improve upon this in future work (see
later section). However, for the present, the worst that can happen is that the user
receives slightly more information than expected.

This approach is surprisingly effective and helps simplify the task of the more com-
plex reference resolution stage which precedes AET. More work remains to be done, of
course. The most notable problems are (1) that transitive dependencies such as “flights

226

to Oakland after 7pm”, “show me the fares”, where the second query is referring to
fares for flightsafter 7pm, are currently not dealt with and (2) that the currently fairly
simple minded way of extracting context relevant to a slot can cause the size of the
sticky defaults to explode, each containing much that is irrelevant or unhelpful.

15.4.4 Development suites

The work on reference resolution has been empirically driven from ATIS 2/3 dialogues.
To ensure the most important phenomena were treated first we developed two corpora
of representative dialogues. The most important contains around fifty representative
dialogues for different anaphoric phenomena, ordered according to how large a set of
examples the dialogue represents. This set was created by annotating a set of approxi-
mately 1400 ATIS2/3 dialogues according to the following features:

1. class of anaphor e.g. bare noun, pronoun, demonstrative

2. way context is used e.g. full, partial

3. requirement for real world reasoning

4. kind of antecedent e.g. linguistic, bridging, database entity, none.

Equivalence classes were created for dialogues containing the same annotation for one
or more of their anaphors, and a representative dialogue was picked from each equiva-
lence class. Since a dialogue can contain more than one anaphor, and hence can appear
in more than one class, the selection program ensures any one dialogue appears no
more than once in the representative corpus.

To provide some check that the procedure above is providing good candidates for
representative dialogues, we also used a second development corpus based on gather-
ing together around a hundred of the most frequent dialogue kinds. This was based
merely on syntactic similarity between non-initial utterances in dialogues. As might be
expected, short utterances such asto hcitynamei appear highly ranked.

Chapter 16

Common Language-Speech
Issues

David Carter, Jaan Kaja, Leonardo Neumeyer, Manny Rayner, Fuliang Weng and Mats
Wirén

In this chapter we cover a number of issues arising from the need to interface the Deci-
pher recognizer with the CLE. These issues include the number of sentence hypotheses
that should be processed, covered in Section 16.2; the coverage of compound nouns
in languages like Swedish, where they are productive (Section 16.3); and the use of
acoustic scores in parsing and disambiguation, already covered in Sections 6.2.3 and
6.4.3. We begin, however, with a description of the interface itself.

16.1 The Speech-Language Interface

The CLE converts N-best sentence hypothesis lists provided by Decipher into word
lattices; see Figure 6.1 on page 68 for an example. This is done by initializing the
lattice to be the sequence of words in the first hypothesis, and then, for each subsequent
sentence hypothesis in turn, adding as few edges as possible to it so as to provide a path
corresponding to that hypothesis. As each edge is added, it is assigned the acoustic
cost (represented as the shortfall from the score of the top hypothesis) of the current
sentence hypothesis. This lattice forms the basis of the analysis chart (see Section 5.2).

Usually, each new sentence hypothesis after the first can be catered for by adding
only one or two new word edges to the lattice. Thus most of the redundancy inherent in
the N-best list is factored out, allowing parsing to be much more efficient than if each
sentence hypothesis were processed independently. Often, the word lattice will license
a few paths not included in the N-best list; for example, an N-best list consisting of the
three hypotheses “one way”, “one day” and “some way” would give rise to a lattice
in which either “one” or “some” could be followed by either “way” or “day”, thus
licensing the sequence “some day”. This extra generality, when it makes any difference
at all, is usually an advantage, as sometimes one of the additional paths is the correct

227

228

N %Correct Shortfall %Correct %Gain
1 60.6 0 60.8 +0.2
2 70.3 102 70.0 -0.3
3 73.4 165 73.1 -0.3
5 76.6 259 78.2 +1.6
10 80.5 427 81.6 +1.1

Table 16.1: “Correct” N-best lists for various N and corresponding shortfalls

one, and an analysis is found and selected for it.
A number of subtleties arise in constructing the lattice. Firstly, some sentence

hypotheses can be ignored: if the words in a hypothesis have the same sequence of se-
mantic classes as a better-scoring hypothesis (e.g. “Show me flights to Oakland” when
“Show me flights to Atlanta” scores better) then it cannot give rise to the winning anal-
ysis, so is pruned out at this early stage. Secondly, filled pauses (“um”, “er”) are simply
deleted before the word sequence is added to the lattice. Thirdly, for some languages,
especially French, it is convenient for the recognizer to treat as words some units which
syntactically are multiple words, and vice versa: e.g. in French, “d’American Airlines”
is recognized as the two units “d’American” and “Airlines”, whereas the CLE treats
them as “d’ ” (a contraction of “de”) followed by the lexical item “American Airlines”.
The necessary separating and joining of lexical items is done by applying the CLE’s
spelling rule mechanism (see Appendix A) just as for text input.

16.2 The N-best interface: what should N be?

Currently, the SLT system uses an N-best interface with N fixed at 5. We have experi-
mented with different values of N, reported below, and also with the idea of processing
not a fixed number of sentence hypotheses, but all sentence hypotheses whose score is
within a fixed threshold of the best one.

A priori, one might expect that a hypothesis in, say, seventh position in the N-best
list will be more likely to be correct the closer its score is to the top hypothesis in the
list. We tested for this possibility using N-best lists produced by Decipher for a corpus
of 1000 ATIS-3 test N-best lists not previously used for system development.

For each of the values ofN listed in the first column of table 16.1, we show in
column two the percentage of utterances for which the reference version was in the
topN , making the N-best list a “correct” one in the sense that it contains the correct
word sequence. The “Shortfall” is the shortfall threshold (i.e. the maximum allowable
shortfall from the recognizer score for the top hypothesis) which causes the same num-
ber of hypotheses to be considered over the corpus as a whole as that value ofN , and
would therefore be expected to require similar overall processing times. Irrespective
of the shortfall, no more than 20 hypotheses were considered, as to do so could lead to
rather slow processing. Column four shows the percentage of utterances for which the
reference version fell within this shortfall of the top one. The “gain” is the difference
in correctness percentages between the shortfall and fixed-N methods.

229

N� N� N� time N� time N� better N� better Ties Gain
1 2 0.76 0.87 17 45 7 +2.8%
2 3 0.87 0.96 7 17 5 +1.0%
3 5 0.96 1.14 15 19 4 +0.4%
5 10 1.14 1.58 28 26 3 -0.2%
10 20 1.58 2.48 26 17 4 -0.6%

Table 16.2: Analysis performance for different N values

Perhaps surprisingly, no clear advantage exists for the shortfall method. The appar-
ent advantage for N=5 is within the bounds of statistical variation, and in fact in this
particular sample of data, the fifth position contains, by chance, relatively few correct
hypotheses: ten, compared to 22 in fourth position and 15 in sixth.

This confirms our decision to use the fixed-N method, partly for reasons of simplic-
ity (e.g. it is easier to display and explain a fixed-length list) and partly because fixing
N is likely to lead to less variation between the language analysis times for different
utterances. Furthermore, there is no guarantee that the merepresenceof the correct
utterance in an extended N-best list will lead to it beingselectedfor translation; thus
even if the 1.6% advantage for N=5 in our sample reflects a real underlying difference,
it may not lead to much improvement in overall system performance, since the crucial
extra 1.6% of correct hypotheses are by definition lower than position 5 in the list and
are therefore competing with a lot of other acoustically superior possibilities.

In fact, the same observation applies to the idea of increasing N in a fixed-N inter-
face; doing so will obviously lead to more correct hypotheses being considered (see the
increasing figures in column two of Table 16.1) but there is no guarantee they will be
selected for translation. There is, presumably, a value of N at which selection accuracy
stops increasing or even goes down.

To assess this, we looked at the relative performance of the English system, for
the different values of N given above plus N=20, when run on the same corpus of
1000 ATIS-3 test N-best lists as used for the first experiment. For each neighbouring
pair of N values, when the strings for the selected QLFs differed, the strings were
compared, and the one which seemed closer in meaning to the reference sentence was
marked. When a QLF was produced for only one value of N, a decision was made on
whether the string for that QLF suggested it would be likely to produce a translation
that would be better than nothing: that is, that it would lead a hearer to provide some
useful information, rather than misleading information or no information. Sometimes,
there was a tie, when both outcomes seemed equally good or equally bad.

In table 16.2 we show the results of comparing neighbouring values of N, and in
particular the “gain” for each pair of values: the improvement in overall source side
(speech recognition and language analysis) performance to be expected from moving
from N � N� to N � N�, measured as the number of timesN� gives a better re-
sult minus the number of timesN� is better. The times shown are the average number
of CPU seconds needed for language analysis on a Sparc Ultra-II, using the conven-
tional (non-“anytime”) LR parser. Because of statistical variation, the gain figures are

230

only reliable to within about 0.6%. Also, it would have been slightly more informa-
tive (though more time-consuming) to compare translations rather than selected source
strings. Nevertheless, the trend is clear: increasingN to 3 gives a definite advantage
overN � � andN �
, andN � � may well be better still, but thereafter perfor-
mance does not improve and may even worsen, while processing time (unsurprisingly)
continues to increases.

16.3 Handling Compound Nouns in Swedish

This section describes and evaluates a simple and general solution to the handling of
compound nouns in Swedish and other languages in which compounds can be formed
by concatenation of single words. The basic idea is to split compounds into their com-
ponents and treat these components as recognition units equivalent to other words in
the language model. By using a principled grammar-based language-processing archi-
tecture, it is then possible to accommodate input in split-compound format.

16.3.1 Introduction

In many languages, including German, Dutch, Swedish, Finnish and Greek, compound
nouns can be formed by concatenation of single nominals. For example, in Swedish
“folk” and “musik” can be put together to form “folkmusik” (folk music), and this
in turn can be combined with “grupp” to form “folkmusikgrupp” (folk music group),
and so on. In most previously reported work, such as the widely publicized SQALE
project, compounds have been treated in the same way as any other words. However,
as the vocabulary size grows, the productive nature of compounding makes this kind
of approach increasingly less feasible; the most obvious indication of the problem’s
seriousness is the magnitude of the out-of-vocabulary (OOV) rate. For example, in
an experiment on SQALE training texts (Lamel et al. 1995:186), using 20 000-word
lexicons for both German and English resulted in a 7.5 % OOV rate for German and
2.5 % for English. The German lexicon had to be extended to 64 000 words to obtain
OOV rates similar to those of the 20 000-word lexicon for English.

Results like those quoted above strongly suggest that treating compounds in the
same way as other words is not satisfactory. Two recent papers address this issue.
Spies (1995) reports results on an isolated-word large-vocabulary German dictation
application, in which the components of compounds, rather than the compounds them-
selves, were treated as units. Geutner (1995) describes a more elaborate method, also
implemented for German, in which full morphological decomposition of words was
used. Both authors report unspectacular but encouraging initial results.

This section describes and evaluates a simple and general solution to the handling
of Swedish compound nouns, carried out in the spirit of the work reported in the
two above-mentioned papers. Syntactically, semantically and phonologically, Swedish
compound nouns are similar to English compound nominals except for the obvious
difference: English orthography inserts spaces between components, while Swedish
omits them. These observations suggested to us that Spies’ strategy should be an ap-
propriate way to attack the problem: splitting compounds into their components, and

231

treating these components as recognition units equivalent to other words in the lan-
guage model. In contrast to Spies, however, our recognizer is for continuous speech,
and is embedded in a spoken language understanding system. It is thus necessary not
only to recognize, but also to reassemble and make sense of the split compounds, the
means to do this being provided by the language-processing modules of the system.

We believe that our methods should handle verbal and other kinds of compounds
equally well; however, since noun compounding in Swedish is more productive, and
the other kinds of compound less common in our material, we have chosen here to con-
centrate on nouns. Inflectional morphology is a less serious problem in Swedish than
in German (in particular, Swedish verbs are not inflected by either number or person).
For this reason, we decided that full morphological decompositionà la Geutner would
probably not justify the additional complexity introduced.

Our approach has been fully implemented within the Swedish-to-English version
of the SLT system.

The rest of this section is organized as follows. Section 16.3.2 describes the corpus
material used for othe experiments. Section 16.3.3 describes experiments involving the
Swedish speech recognizer alone, and Section 16.3.4 describes further experiments on
the full speech translation system. Section 16.3.5 presents our conclusions.

16.3.2 Corpus

The current version of the SLT system operates in the ATIS domain. For English,
there is a carefully collected corpus of about 20 000 utterances. No corresponding
corpus existed for Swedish when the current project started in 1995. We have gone
through several iterations of creating successively more realistic Swedish versions of
the ATIS corpus. The experiments described here were performed using Version 1 of
Swedish ATIS (hereafter “ATIS-S-1”). A second version of Swedish ATIS, constructed
since then, is described briefly in Section 16.3.5, and a third version is currently being
collected.

ATIS-S-1 was produced by the following process. First, a set of about 5 000 origi-
nal English ATIS utterances was randomly selected from the full English ATIS corpus.
Four randomly selected subsets, each of about 2 800 sentences, were then each trans-
lated into Swedish by each of four different Telia employees. Finally, the resulting
Swedish sentences were divided, roughly equally, between 100 native speakers of the
Stockholm dialect of Swedish for reading and recording. In total, 11 275 sentences
were recorded, of which 10 831 sentences were used for training and 444 held out for
testing. The primary goal of this initial corpus collection effort was rapid creation of
training material for a first version of the Swedish recognizer. A secondary goal was
to provide basic text resources for use in the development of the Swedish language-
processing modules.

The orthographic transcriptions of the ATIS-S-1 sentences were further processed
to create two different versions of the text corpus. In the first, “split” version, all com-
pound words, including numbers, were split into their components. In the second,
“unsplit” version, only numbers were split. In both cases, the numbers were split be-
cause it would be futile to try to list them in the lexicon; the same approach was taken
in the German SQALE experiments (Lamel et al. 1995:186).

232

Split Unsplit
WER with respect to
compound components 7.9 % 8.2 %
(method 1)
WER with respect to
full compounds 8.3 % 8.7 %
(method 2)

Table 16.3: Word-error rates obtained in the experiments.

The split and unsplit versions of the ATIS-S-1 text were used to train two different
versions of the Swedish recognizer. The two versions of the recognizer differed only
in terms of vocabulary and language model. The recognition vocabulary consisted of
the set of all surface words in the relevant version of the corpus. The bigram language
model was calculated directly from the corpus, without, for example, backing off
surface words to classes.

16.3.3 Speech-Recognition Experiments

To compare the split and unsplit approaches at the recognition level, we performed two
experiments with respect to word-error rate (WER), using data from the full set of 444
test sentences with 3 584 unsplit words and 3 758 split words. In one experiment, split
training data and a split lexicon were used for language modeling; in the other, unsplit
training data and an unsplit lexicon were used. The results are shown in Table 16.3.

Since the total number of words is different in the split and unsplit cases, the WER
with respect to compounds can be measured in two ways. More specifically, the fol-
lowing two methods for calculating the WER were used: In the first one, corresponding
to the first row of Table 16.3, a splitting function, which (for the purpose of the exper-
iments) is used for mapping compounds to their components, was applied to both the
hypotheses from the recognizer and to the references. (This function modifies only the
unsplit data.) We then compared the newly formed hypotheses and references to get
the WER. Thus, in this case the WER was calculated with respect to the compound
components.

In the second method, corresponding to the second row of the table, the same split-
ting function, but with mappings of numbers removed, was used in the reverse direction
to map all the compound components in both hypotheses and references back to their
compounds. The result was then used for computing the WER. Thus, in this case the
WER was calculated with respect to the full compounds.

From the point of view of language processing, it is the main (bold-faced) diagonal
that is of primary relevance, since what we want to compare are recognizers that output
either split or unsplit words. These figures show a modest improvement in WER. The
other diagonal has been included to provide a fair comparison from the point of view
of speech-recognition performance.

As for the unsplit case in method 1, we have the methodological problem that com-

233

pound words as well as their components are in the recognizer lexicon. There is thus
a good chance that the recognizer will output the components, whereas the reference
contains the compound. This will then be counted as one substitution followed by one
or more insertions. It can be argued that the confusion between a compound and its
components is not a major error. Method 1, applied to the unsplit case, removes this
ambiguity and gives a performance figure that can be compared with the split case.

Method 2 can be said to simulate a language-processing system in the sense of re-
assembling the compounds. In most cases, this reverse mapping is straightforward, but
there are cases in which a potential compound does not actually constitute a compound
where it occurs in a sentence. For example, the temporal noun phrase “måndag efter-
middag” (Monday afternoon) has a corresponding compound “måndageftermiddag”.
However, the two forms differ in meaning (and are also prosodically distinct). Since
method 2 creates a compound from every sequence of words that in some context could
be a compound, it does not take this difference into account, and in this sense the figures
in the second row of Table 16.3 are imperfect.

As a comparison, the WER in the unsplit casewithoutthe reverse mapping is 9.3 %.
This number is relevant to tasks like dictation, where a confusion between a compound
and its components would be considered an error.

16.3.4 Split vs. Unsplit Compounds
in Speech Understanding

The results in Section 3 show that compound splitting produced a modest improve-
ment in the recognizer’s WER. In the context of a speech-understandingsystem like
SLT, however, the most relevant criterion for success is the effect on end-to-end perfor-
mance. Another question of practical importance is the extent to which the language-
processing modules need to be altered to accommodate input in split-compound form.

End-to-end performance evaluation

To test the effect of compound splitting on end-to-end system performance, we used
the 444-sentence test set as input to two experiments involving language processing
as well as speech recognition. The two sets of N-best speech hypothesis lists were
each processed through the successive stages of Swedish language analysis, Swedish-
to-English transfer, and English language generation. Finally, the two sets of English
outputs were pairwise compared. Language processing was carried out using a robust
fallback mechanism (described elsewhere), so that a translation was always produced.

We have noticed when testing and demonstrating the SLT system that people give
widely different judgments as to whether a translation is “acceptable”. Indeed, it seems
unlikely to us that this notion can be given a clear definition independent of a specific
context of use. We have also observed, however, that there is much greater agreement
on therelativequality of different translations. Given two candidate translations of the
same utterance, it is normally not controversial to claim that one is better than the other,
or that they are in practice equally good.

Our experiments involved 444 test utterances, 41 of which gave rise to different
translations when compound splitting was introduced. These 41 utterances were exam-

234

Split Unsplit Unclear
better better

Judge 1 19 12 10
Judge 2 24 11 6
Judge 3 19 10 12

Table 16.4: End-to-end evaluation comparison, giving each judge’s preferences for
utterances where the translation was affected by compound splitting.

ined by three independent judges, who were all native speakers of English and fluent
in Swedish. Each utterance was presented together with the two candidate transla-
tions produced by the “split” and “unsplit” versions of the system, respectively: each
judge was asked to state whether translation 1 was better or worse than translation 2,
or alternatively that neither translation was clearly better than the other. The order
in which the two translations were presented—that is, “split” before “unsplit” orvice
versa—was decided randomly in each case. The results are summarized in Table 16.4.
Agreement between the judges was good: in only five sentences out of the 41, a pair of
judges gave opposite judgments, one marking the split version as better and the other
marking it as worse.

It is interesting to note that although the unsplit version was in several cases better
than the split one, the errors in the split translations were never actually caused by
failure on the part of the CLE (see Section 4.2) to reassemble a split compound.

Language processing for split compounds

Language processing in SLT is carried out by the Core Language Engine (CLE), a gen-
eral language-processing system, which has been developed by SRI International in
a series of projects starting in 1986. The original system was for English only. The
Swedish version (Gamback and Rayner, 1992) was developed in a collaboration with
the Swedish Institute of Computer Science. The CLE is extensively described else-
where (Agnäset al., 1994; Alshawiet al., 1992; Alshawi (ed), 1992) so we only give
the minimum background necessary for understanding our handling of compounds.

The basic functionality offered by the CLE is two-way translation between surface
form and a representation in terms of a logic-based formalism called Quasi Logical
Form (QLF). The modules consistuting a version of the CLE for a given language can
be divided into three groups, which we refer to as “code”, “rules,” and “preferences”.
The “code” modules constitute the language-independent compilers and interpreters
that make up the basic processing engine; the other two types of module between them
constitute a declarative description of the language.

The “rules” contain domain-independent lexico-grammatical information for the
language in question; they encode a relationship between surface strings and QLF rep-
resentations. Thus, for any given surface string, the rules define a set of possible QLF
representations of that string. Conversely, given a well-formed QLF representation, the
rules can be used to produce a set of possible surface-form realizations of the QLF. The

235

code modules support compilation of the rules into forms that allow fast processing in
both directions: surface-form� QLF (analysis) and QLF� surface-form (genera-
tion).

The relationship between surface form and QLF is in general many-to-many. “Pref-
erence” modules contain data in the form of statistically learned distributional facts,
based on analysis of domain corpora (Alshawi and Carter, 1994). Using this extra in-
formation, the system can distinguish between plausible and implausible applications
of the rules with a fairly high degree of accuracy.

The principled grammar-based architecture of the CLE made it simple to modify
the speech-language interface (Carter and Rayner, 1994) to accommodate input in split-
compound format. Since morphology and syntax rules have the same form (Alshawiet
al., 1992, Section 3.9) all that was necessary was to change the status of compounding
rules from “morphology” to “syntax”. In a little more detail:

� Declarations were supplied to identify some morphology rules as specifically
compounding rules.

� A switch was added, which, when On, allowed the designated morphology rules
to be used as syntax rules.

After a little experimentation, it also turned out to be advantageous to add a few dozen
lexicon entries, to cover words that could potentially be constructed as compounds, but
in reality are noncompounds. These were automatically generated from the lexicon
by using a simple algorithm. No other changes to the system were made, and the
adaptation process required only two person-days of work.

16.3.5 Conclusions

To summarize the results of our experiments on ATIS-S-1, we found that compound
splitting introduced an undramatic but tangible improvement in both WER and end-to-
end system performance. It decreased the vocabulary size for both speech and language
processing, and required no substantial modification of any part of the system. Our
overall conclusion is that it is a clear win.

We were nonetheless somewhat disappointed to find that the improvement resulting
from compound splitting was not larger. We believe that one reason for this lack of
improvement was the very small number of translators used to create ATIS-S-1, which
led to an unnaturally uniform and homogeneous corpus; in particular, the OOV rate
on the test portion, even without compound splitting, is only about 0.5 %. Preliminary
results on a new version of Swedish ATIS, ATIS-S-2, support this hypothesis.

ATIS-S-2 has been created in roughly the same way as ATIS-S-1, but using a much
larger number of translators, 427 in all. The result, a text corpus containing 4 592
sentences, is a considerably more reasonable approximation to a “real” Swedish ATIS
corpus. We merged the ATIS-S-1 and ATIS-S-2 corpora, taking half of ATIS-S-2 as
test data and the remaining material as training. Examining this new data, about 5 % of
all tokens in the test set are compounds, and the OOV rate of the full test set is 3.0 %.
In contrast, the OOV rate measured just on compounds is nearly 23 %. However, if

236

compounds are split, OOV falls from 3.0 % to 2.1 % (30 % relative) on the whole test-
set, and from 23 % to 7 % (70 % relative) on compounds only. The above statistics
give us reason to expect that the effect of compound-splitting on WER and end-to-end
performance would be rather greater on a more realistic corpus.

Chapter 17

Summary and Conclusions

David Carter, Jaan Kaja, Leonardo Neumeyer and Manny Rayner

This chapter will be completed for the final version of the report. It will describe global
system performance.

237

Appendix A

Morphology

David Carter

In this appendix, we describe the CLE’s compiler and development environment for
feature-augmented two-level morphology rules. This part of the CLE is used in the
SLT system but the work involved was done under other funding.

The compiler is optimized for a class of languages including many or most Euro-
pean ones, and for rapid development and debugging of descriptions of new languages.
The key design decision is to compose morphophonological and morphosyntactic in-
formation, but not the lexicon, when compiling the description. This results in typical
compilation times of about a minute, and has allowed a reasonably full, feature-based
description of French inflectional morphology to be developed in about a month by a
linguist new to the system.

A.1 Introduction

The paradigm of two-level morphology (Koskenniemi, 1983) has become popular for
handling word formation phenomena in a variety of languages. The original formu-
lation has been extended to allow morphotactic constraints to be expressed by feature
specification (Trost, 1990; Alshawiet al, 1991) rather than Koskenniemi’s less perspic-
uous device of continuation classes. Methods for the automatic compilation of rules
from a notation convenient for the rule-writer into finite-state automata have also been
developed, allowing the efficient analysis and synthesis of word forms. The automata
may be derived from the rules alone (Trost, 1990), or involve composition with the
lexicon (Karttunen, Kaplan and Zaenen, 1992).

However, there is often a trade-off between run-time efficiency and factors impor-
tant for rapid and accurate system development, such as perspicuity of notation, ease
of debugging, speed of compilation and the size of its output, and the independence of
the morphological and lexical components. In compilation, one may compose any or
all of

(a) the two-level rule set,

238

239

(b) the set of affixes and their allowed combinations, and

(c) the lexicon;

see Kaplan and Kay (1994) for an exposition of the mathematical basis. The type of
compilation appropriate for rapid development and acceptable run-time performance
depends on, at least, the nature of the language being described and the number of base
forms in the lexicon; that is, on the position in the three-dimensional space defined by
(a), (b) and (c).

For example, English inflectional morphology is relatively simple; dimensions (a)
and (b) are fairly small, so if (c), the lexicon, is known in advance and is of manageable
size, then the entire task of morphological analysis can be carried out at compile time,
producing a list of analysed word forms which need only be looked up at run time, or
a network which can be traversed very simply. Alternatively, there may be no need to
provide as powerful a mechanism as two-level morphology at all; a simpler device such
as affix stripping (Alshawi, 1992, p119ff) or merely listing all inflected forms explicitly
may be preferable.

For agglutinative languages such as Korean, Finnish and Turkish (Kwon and Kart-
tunen, 1994; Koskenniemi, 1983; Oflazer, 1993), dimension (b) is very large, so creat-
ing an exhaustive word list is out of the question unless the lexicon is trivial. Compi-
lation to a network may still make sense, however, and because these languages tend
to exhibit few non-concatenative morphophonological phenomena other than vowel
harmony, the continuation class mechanism may suffice to describe the allowed affix
sequences at the surface level.

Many European languages are of the inflecting type, and occupy still another re-
gion of the space of difficulty. They are too complex morphologically to yield easily
to the simpler techniques that can work for English. The phonological or orthographic
changes involved in affixation may be quite complex, so dimension (a) can be large,
and a feature mechanism may be needed to handle such varied but interrelated mor-
phosyntactic phenomena as umlaut (Trost, 1991), case, number, gender, and different
morphological paradigms. On the other hand, while there may be many different af-
fixes, their possibilities for combination within a word are fairly limited, so dimension
(b) is quite manageable.

This appendix describes a representation and associated compiler intended for two-
level morphological descriptions of the written forms of inflecting languages. The CLE
supports both a built-in lexicon and access to large external lexical databases, and in
that context, highly efficient word analysis and generation at run-time are less impor-
tant than ensuring that the morphology mechanism is expressive, is easy to debug, and
allows relatively quick compilation. Morphology also needs to be well integrated with
other processing levels. In particular, it should be possible to specify relations among
morphosyntactic and morphophonological rules and lexical entries; for the convenience
of developers, this is done by means of feature equations. Further, it cannot be assumed
that the lexicon has been fully specified when the morphology rules are compiled. De-
velopers may wish to add and test further lexical entries without frequently recompiling
the rules, and it may also be necessary to deal with unknown words at run time, for ex-
ample by querying a large external lexical database or attempting spelling correction

240

(Alshawi, 1992, pp124-7). Also, both analysis and generation of word forms are re-
quired. Run-time speed need only be enough to make the time spent on morphology
small compared to sentential and contextual processing.

These parameters – languages with a complex morphology/syntax interface but a
limited number of affix combinations, tasks where the lexicon is not necessarily known
at compile time, bidirectional processing, and the need to ease development rather than
optimize run-time efficiency – dictate the design of the morphology compiler described
in this appendix, in which spelling rules and possible affix combinations (items (a) and
(b)), but not the lexicon (item (c)), are composed in the compilation phase. Descriptions
of French, Polish and English inflectional morphology have been developed for it, and
I show how various aspects of the mechanism allow phenomena in these languages to
be handled.

A.2 The Description Language

A.2.1 Morphophonology

The formalism forspelling rules(dimension (a)) is a syntactic variant of that of Ruessink
(1989) and Pulman (1991). A rule is of the form

spell(Name, Surface Op Lexical, Classes, Features).

Rules may be optional (Op is “�”) or obligatory (Op is “”). Surface andLexical
are both strings of the form

"LContext|Target|RContext"

meaning that the surface and lexical targets may correspond if the left and right contexts
and theFeatures specification are satisfied. The vertical bars simply separate the parts
of the string and do not themselves match letters. The correspondence between surface
and lexical strings for an entire word is licensed if there is a partitioning of both so that
each partition (pair of corresponding surface and lexical targets) is licensed by a rule,
and no partition breaks an obligatory rule. A partition breaks an obligatory rule if the
surface target does not match but everything else, including the feature specification,
does.

TheFeatures in a rule is a list ofFeature � V alue equations. The allowed
(finite) set of values of each feature must be prespecified.V alue may be atomic or it
may be a boolean expression.

Members of the surface and lexical strings may be characters or classes of single
characters. The latter are represented by a single digitN in the string and an item
N/ClassName in theClasses list; multiple occurrences of the sameN in a single
rule must all match the same character in a given application.

Figure A.1 shows three of the French spelling rules developed for this system. The
change_e_è1 rule (simplified slightly here) makes it obligatory for a lexicale to
be realised as a surfaceè when followed byt, r, or l, then a morpheme boundary,
thene, as long as the featurecdouble has an appropriate value. Thedefault rule
that copies characters between surface and lexical levels and theboundary rule that

241

spell(change_e_è1, "|è|" "|e|1+e",
[1/trl], [cdouble=n]).

spell(default, "|1|" � "|1|", [1/letter], []).
spell(boundary, "||" � "|1|", [1/bmarker], []).

Figure A.1: Three spelling rules

Surface: c h è r e
Lexical: c h e r + e +
Rule: def� def� c.e_è1 def� bdy� def� bdy�

Figure A.2: Partitioning ofchèreascher+e+

deletes boundary markers are both optional. Together these rules permit the following
realization ofcher (“expensive”) followed bye (feminine gender suffix) aschère, as
shown in Figure A.2. Because of the obligatory nature ofchange_e_è1, and the fact
that the orthographic feature restriction on the rootcher, [cdouble=n], is consistent
with the one on that rule, an alternative realisationchere, involving the use of the
default rule in third position, is ruled out.1

Unlike many other flavours of two-level morphology, theTarget parts of a rule
need not consist of a single character (or class occurrence); they can contain more than
one, and the surface target may be empty. This obviates the need for “null” characters at
the surface. However, although surface targets of any length can usefully be specified,
it is in practice a good strategy always to make lexical targets exactly one character
long, because, by definition, an obligatory rule cannot block the application of another
rule if their lexical targets are of different lengths. The example in Section A.4.1 below
clarifies this point.

A.2.2 Word Formation and Interfacing to Syntax

The allowed sequences of morphemes, and the syntactic and semantic properties of
morphemes and of the words derived by combining them, are specified by morphosyn-
tacticproduction rules(dimension (b)) and lexical entries both for affixes (dimension
(b)) and for roots (dimension (c)), essentially as described by Alshawi (1992) (where
the production rules are referred to as “morphology rules”). Affixes may appear ex-
plicitly in production rules or, like roots, they may be assigned complex feature-valued
categories. Information, including the creation of logical forms, is passed between
constituents in a rule by the sharing of variables. These feature-augmented produc-
tion rules are just the same device as those used in the CLE’s syntactico-semantic de-
scriptions, and are a much more natural way to express morphotactic information than
finite-state devices such as continuation classes (see Trost and Matiasek, 1994, for a
related approach).

1Thecdouble feature is in fact used to specify the spelling changes whene is added to various stems:
cher+e=chère, achet+e=achète, butjet+e=jette.

242

morph(adjp_adjp_fem, % rule (syntax)
% mother category:
[adjp:[agr= @agr(3,sing,f) | Shared],
% first daughter (category):
adjp:[agr= @agr(3,sing,m) | Shared],
% second daughter (literal)
e])
% shared syntactic features:
:- Shared=[aform=Aform, ..., wh=n].

deriv(adjp_adjp_fem, only, % rule (semantics)
% mother logical form and category:
[(Adj,adjp:Shared),
% first daughter:
(Adj,adjp:Shared),
% second daughter:
(_,e)])
% shared semantic features:
:- Shared=[anaIn=Ai, ..., subjval=Subj].

Figure A.3: Syntactic and semantic morphological production rules

The syntactic and semantic production rules for deriving the feminine singular of a
French adjective by suffixation with “e” are given, with some details omitted, in Figure
A.3. In this case, nearly all features are shared between the inflected word and the root,
as is the logical form for the word (shown asAdj in the deriv rule). The only
differing feature is that for gender, shown as the third argument of the@agr macro,
which itself expands to a category.

Irregular forms, either complete words or affixable stems, are specified by listing
the production rules and terminal morphemes from which the appropriate analyses may
be constructed, for example:

irreg(dit,[dire,’PRESENT_3s’],[v_v_affix-only]).

Here,PRESENT_3s is a pseudo-affix which has the same syntactic and semantic infor-
mation attached to it as (one sense of) the affix “t”, which is used to form some regular
third person singulars. However, the spelling rules make no reference toPRESENT_3s;
it is simply a device allowing categories and logical forms for irregular words to be built
up using the same production rules as for regular words.

A.3 Compilation

All rules and lexical entries in the CLE are compiled to a form that allows normal
Prolog unification to be used for category matching at run time. The same compiled
forms are used for analysis and generation, but are indexed differently. Each feature

243

for a major category is assigned a unique position in the compiled Prolog term, and
features for which finite value sets have been specified are compiled into vectors in a
form that allows boolean expressions, involving negation as well as conjunction and
disjunction, to be conjoined by unification (see Mellish, 1988; Alshawi, 1992, pp46–
48).

The compilation of morphological information is motivated by the nature of the
task and of the languages to be handled. As discussed in Section A.1, we expect the
number of affix combinations to be limited, but the lexicon is not necessarily known in
advance. Morphophonological interactions may be quite complex, and the purpose of
morphological processing is to derive syntactic and semantic analyses from words and
vice versa for the purpose of full NLP. Reasonably quick compilation is required, and
run-time speed need only be moderate.

A.3.1 Compiling Spelling Patterns

Compilation of individualspell rules is straightforward; feature specifications are
compiled to positional/boolean format, characters and occurrences of character classes
are also converted to boolean vectors, and left contexts are reversed (cf Abramson,
1992) for efficiency. However, although it would be possible to analyse words directly
with individually compiled rules (see Section A.5 below), it can take an unacceptably
long time to do so, largely because of the wide range of choices of rule available at each
point and the need to check at each stage that obligatory rules have not been broken.
We therefore take the following approach.

First, all legal sequences of morphemes are produced by top-down nondeterministic
application of the production rules (Section A.2.2), selecting affixes but keeping the
root morpheme unspecified because, as explained above, the lexicon is undetermined
at this stage. For example, for English, the sequences*+ed+ly andun+*+ing are
among those produced, the asterisk representing the unspecified root.

Then, each sequence, together with any associated restrictions on orthographic fea-
tures, undergoes analysis by the compiled spelling rules (Section A.2.1), with the sur-
face sequence and the root part of the lexical sequence initially uninstantiated. Rules
are applied recursively and nondeterministically, somewhat in the style of Abramson
(1992), taking advantage of Prolog’s unification mechanism to instantiate the part of
the surface string corresponding to affixes and to place some spelling constraints on the
start and/or end of the surface and/or lexical forms of the root.

This process results in a set ofspelling patterns, one for each distinct application of
the spelling rules to each affix sequence suggested by the production rules. A spelling
pattern consists of partially specified surface and lexical root character sequences, fully
specified surface and lexical affix sequences, orthographic feature constraints associ-
ated with the spelling rules and affixes used, and a pair of syntactic category specifi-
cations derived from the production rules used. One category is for the root form, and
one for the inflected form.

Spelling patterns are indexed according to the surface (for analysis) and lexical (for
generation) affix characters they involve. At run time, an inflected word is analysed
nondeterministically in several stages, each of which may succeed any number of times
including zero:

244

� stripping off possible (surface) affix characters in the word and locating a spelling
pattern that they index;

� matching the remaining characters in the word against the surface part of the
spelling pattern, thereby, through shared variables, instantiating the characters
for the lexical part to provide a possible root spelling;

� checking any orthographic feature constraints on that root;

� finding a lexical entry for the root, by any of a range of mechanisms including
lookup in the system’s own lexicon, querying an external lexical database, or
attempting to guess an entry for an undefined word; and

� unifying the root lexical entry with the root category in the spelling pattern,
thereby, through variable sharing with the other category in the pattern, creat-
ing a fully specified category for the inflected form that can be used in parsing.

In generation, the process works in reverse, starting from indexes on the lexical affix
characters.

A.3.2 Representing Lexical Roots

Complications arise in spelling rule application from the fact that, at compile time, nei-
ther the lexical nor the surface form of the root, nor even its length, is known. It would
be possible to hypothesize all sensible lengths and compile separate spelling patterns
for each. However, this would lead to many times more patterns being produced than
are really necessary.

Lexical (and, after instantiation, surface) strings for the unspecified roots are there-
fore represented in a more complex but less redundant way: as a structure

L� ��� Lm v(L�R) R� ...Rn.

Here theLi’s are variables later instantiated to single characters at the beginning of the
root, andL is a variable, which is later instantiated to a list of characters, for its con-
tinuation. Similarly, theRi’s represent the end of the root, andR is the continuation
(this time reversed) leftwards into the root fromR�. Thev(L�R) structure is always
matched specially with a Kleene-star of thedefault spelling rule. For full generality
and minimal redundancy,Lm andR� are constrained not to match the default rule, but
the otherLi’s andRi’s may. The values ofn required are those for which, for some
spelling rule, there arek characters in the target lexical string andn�k from the begin-
ning of the right context up to (but not including) a boundary symbol. The lexical string
of that rule may then matchR�� ���� Rk, and its right context matchRk��� ���� Rn�+� ���.
The required values ofmmay be calculated similarly with reference to the left contexts
of rules.2

2Alternations in the middle of a root, such as umlaut, can be handled straightforwardly by altering the
root/affix pattern fromL� � � � Lm v(L�R) R����Rn toL� � � � Lm v(L�R)M v(L�� R�) R����Rn, with
M forbidden to be thedefault rule. This has not been necessary for the descriptions developed so far,
but its implementation is not expected to lead to any great decrease in run-time performance, because the
non-determinism it induces in the lookup process is no different in kind from that arising from alternations
at root-affix boundaries.

245

Compile Rule: def�� c.e_è1 def� bdy� def� bdy�
time: Variable: v(L�R) R� R� ...

Run Surface: c h è r e
time: Lexical: c h e r + e +

Figure A.4: Spelling pattern application to the analysis ofchère

During rule compilation, the spelling pattern that leads to the run-time analysis of
chèregiven above is derived fromm � 	 andn �
 and the specified rule sequence,
with the variablesR� R� matching as in Figure A.4.

A.3.3 Applying Obligatory Rules

In the absence of a lexical string for the root, the correct treatment of obligatory rules
is another problem for compilation. If an obligatory rule specifies that lexicalX must
be realised as surfaceY when certain contextual and feature conditions hold, then a
partitioning whereX is realised as something other thanY is only allowed if one or
more of those conditions is unsatisfied. Because of the use of boolean vectors for both
features and characters, it is quite possible to constrain each partitioning by unifying
it with the complement of one of the conditions of each applicable obligatory rule,
thereby preventing that rule from applying. For English, with its relatively simple
inflectional spelling changes, this works well. However, for other languages, including
French, it leads to excessive numbers of spelling patterns, because there are many
obligatory rules with non-trivial contexts and feature specifications.

For this reason, complement unification is not actually carried out at compile time.
Instead, the spelling patterns are augmented with the fact that certain conditions on
certain obligatory rules need to be checked on certain parts of the partitioning when it
is fully instantiated. This slows down run-time performance a little but, as we will see
below, the speed is still quite acceptable.

A.3.4 Timings

The compilation process for the entire rule set takes just over a minute for a fairly
thorough description of French inflectional morphology, running on a Sparcstation
10/41 (SPECint92=52.6). Run-time speeds are quite adequate for full NLP, and re-
flect the fact that the system is implemented in Prolog rather than (say) C and that
full syntactico-semantic analyses of sentences, rather than just morpheme sequences
or acceptability judgments, are produced.

Analysis of French words using this rule set and only an in-core lexicon averages
around 50 words per second, with a mean of 11 spelling analyses per word leading
to a mean of 1.6 morphological analyses (the reduction being because many of the
roots suggested by spelling analysis do not exist or cannot combine with the affixes
produced). If results are cached, subsequent attempts to analyse the same word are
around 40 times faster still. Generation is also quite acceptably fast, running at around

246

Surface: b e a u e
Lexical: b e a u + e +
Rule: def� def� def� def� bdy� def� bdy�

Figure A.5: Incorrect partitioning forbeau+e+

100 words per second; it is slightly faster than analysis because only one spelling, rather
than all possible analyses, is sought from each call. Because of the separation between
lexical and morphological representations, these timings are essentially unaffected by
in-core lexicon size, as full advantage is taken of Prolog’s built-in indexing.

Development times are at least as important as computation times. A rule set em-
bodying a quite comprehensive treatment of French inflectional morphology was de-
veloped in about one person month. The English spelling rule set was adapted from
Ritchieet al (1992) in only a day or two. A Polish rule set is also under development,
and Swedish is planned for the near future.

A.4 Some Examples

To clarify further the use of the formalism and the operation of the mechanisms, we
now examine several further examples.

A.4.1 Multiple-letter spelling changes

Some obligatory spelling changes in French involve more than one letter. For example,
masculine adjectives and nouns ending ineauhave feminine counterparts ending in
elle: beau(“nice”) becomesbelle, chameau(“camel”) becomeschamelle. The finale
is a feminizing affix and can be seen as inducing the obligatory spelling changeau�
ll . However, although the obvious spelling rule,

spell(change_au_ll, "|ll|"� "|au|+e"),

allows this change, it does not rule out the incorrect realization ofbeau+e as*beaue,
shown in Figure A.5, because it only affects partitionings where theau at the lexical
level forms asinglepartition, rather than one fora and one foru. Instead, the following
pair of rules, in which the lexical targets have only one character each, achieve the
desired effect:

spell(change_au_ll1, "|l|"� "|a|u+e")
spell(change_au_ll2, "|l|"� "a|u|+e")

Here,change_au_ll1 rules out thea:a partition in Figure A.5, andchange_au_ll2
rules out theu:u one.

It is not necessary for thesurfacetarget to contain exactly one character for the
blocking effect to apply, because the semantics of obligatoriness is that thelexical
target and all contexts, taken together, make the specifiedsurfacetarget (of whatever

247

Surface: b o j e
Lexical: b ó j + e +
Rule: def� c_ó_o. def� bdy� def� bdy�

Surface: z b ó j e
Lexical: z b ó j + e +
Rule: def� def� def� def� bdy� def� bdy�

Figure A.6: Feature-dependent dropping of accent

length) obligatory for that partition. The reverse constraint, on the lexical target, does
not apply.

A.4.2 Using features to control rule application

Features can be used to control the application of rules to particular lexical items where
the applicability cannot be deduced from spellings alone. For example, Polish nouns
with stems whose final syllable has voweló normally have inflected forms in which
the accent is dropped. Thus in the nominative plural,krój (“style”) becomeskroje, bór
(“forest”) becomesbory, bój (“combat”) becomesboje. However, there are exceptions,
such aszbój(“bandit”) becomingzbóje. Similarly, some French verbs whose infinitives
end in-elertake a grave accent on the firste in the third person singular future (modeler,
“model”, becomesmodèlera), while others double thel instead (e.g.appeler, “call”,
becomesappellera).

These phenomena can be handled by providing an obligatory rule for the case
whether the letter changes, but constraining the applicability of the rule with a fea-
ture and making the feature clash with that for roots where the change does not occur.
In the Polish case:

spell(change_ó_o, "|o|" � "|ó|1+2",
[1/c, 2/v], [chngo=y]).

orth(zbój, [chngo=n]).

Then the partitionings given in Figure A.6 will be the only possible ones. Forbój, the
change_ó_o rule must apply, because thechngo feature forbój is unspecified and
therefore can take any value; forzbój, however, the rule is prevented from applying by
the feature clash, and so the default rule is the only one that can apply.

A.5 Debugging the Rules

The debugging tools help in checking the operation of the spelling rules, either (1) in
conjunction with other constraints or (2) on their own.

For case (1), the user may ask to see all inflections of a root licensed by the spelling
rules, production rules, and lexicon; forcher, the output is

248

"chère" has root "cher" with pattern 194 and tree
17.

Pattern 194:

"___è{clmnprstv=A}e" <-> "___e{clmnprstv=A}+e+"
=> tree 17 and 18 if [doublec=n]
Uses: default* change_e_è1 default boundary

default boundary

Tree 17:

Both = adjp:[dmodified=n,headfinal=y,mhdfl=y,
synmorpha=1,wh=n]

Root = adjp:[agr=agr:[gender=m]]
Infl = adjp:[agr=agr:[gender=f]]
Tree = adjp_adjp_fem=>[*,e]

Figure A.7: Debugger trace of derivation ofchère

[cher,e]: adjp -> chère
[cher,e,s]: adjp -> chères
[cher,s]: adjp -> chers

meaning that whencher is anadjp (adjective) it may combine with the suffixes listed
to produce the inflected forms shown. This is useful in checking over- and undergen-
eration. It is also possible to view the spelling patterns and production rule tree used to
produce a form; forchère, the trace (slightly simplified here) is as in Figure A.7. The
spelling pattern 194 referred to here is the one depicted in a different form in Figure
A.4. The notation{clmnprstv=A} denotes a set of possible consonants represented
by the variableA, which also occurs on the right hand side of the rule, indicating that
the same selection must be made for both occurrences. Production rule tree 17 is that
for a single application of the ruleadjp_adjp_fem, which describes the feminine
form of the an adjective, where the root is taken to be the masculine form. TheRoot
andInfl lines show the features that differ between the root and inflected forms,
while theBoth line shows those that they share. Tree 18, which is also pointed to by
the spelling pattern, describes the feminine forms of nouns analogously.

For case (2), the spelling rules may be applied directly, just as in rule compilation,
to a specified surface or lexical character sequence, as if no lexical or morphotactic con-
straints existed. Feature constraints, and cases where the rules will not apply if those
constraints are broken, are shown. For the lexical sequencecher+e+, for example,
the output is as follows.

Surface: "chère" <->
Lexical: "cher". Suffix: "e"

249

c :: c <- default
h :: h <- default
è :: e <- change_e_è1
r :: r <- default
:: + <- boundary

Category: orth:[cdouble=n]
e :: e <- default
:: + <- boundary

Surface: "chere" <->
Lexical: "cher". Suffix: "e"
c :: c <- default
h :: h <- default
e :: e <- default (breaks "change_e_è1")
r :: r <- default
:: + <- boundary

e :: e <- default
:: + <- boundary

This indicates to the user that ifcher is given a lexical entry consistent with the con-
straintcdouble=n, then only the first analysis will be valid; otherwise, only the sec-
ond will be.

A.6 Conclusions and Further Work

The rule formalism and compiler described here work well for European languages
with reasonably complex orthographic changes but a limited range of possible affix
combinations. Development, compilation and run-time efficiency are quite acceptable,
and the use of rules containing complex feature-augmented categories allows morpho-
tactic behaviours and non-segmental spelling constraints to be specified in a way that
is perspicuous to linguists, leading to rapid development of descriptions adequate for
full NLP.

The kinds of non-linear effects common in Semitic languages, where vowel and
consonant patterns are interpolated in words (Kay, 1987; Kiraz, 1994) could be treated
efficiently by the mechanisms described here if it proved possible to define a repre-
sentation that allowed the parts of an inflected word corresponding to the root to be
separated fairly cleanly from the parts expressing the inflection. The latter could then
be used by a modified version of the current system as the basis for efficient lookup of
spelling patterns which, as in the current system, would allow possible lexical roots to
be calculated.

Agglutinative languages could be handled efficiently by the current mechanism if
specifications were provided for the affix combinations that were likely to occur at all
often in real texts. A backup mechanism could then be provided which attempted a
slower, but more complete, direct application of the rules for the rarer cases.

250

The interaction of morphological analysis with spelling correction (Carter, 1992;
Oflazer, 1994; Bowden, 1995) is another possibly fruitful area of work. Once the
root spelling patterns and the affix combinations pointing to them have been created,
analysis essentially reduces to an instance of affix-stripping, which would be amenable
to exactly the technique outlined by Carter (1992). As in that work, a discrimination
net of root forms would be required; however, this could be augmented independently
of spelling pattern creation, so that the flexibility resulting from not composing the
lexicon with the spelling rules would not be lost.

Appendix B

SLT in the Media

Robert Eklund

In this appendix, media coverage of the SLT projects will be summarised. Since they
are leading-edge research, the two SLT projects have received a good deal of attention
from the media. Moreover, media interest increased during the SLT-2 phase, especially
in Sweden, probably due to the existence of a state-of-the-art Swedish speech recog-
nizer. This appendix will list and summarise the media coverage the two SLT projects
have received. The contents of the articles will be briefly accounted for, as will the par-
ticular media in which they appeared and some indication of circulation figures where
available.

B.1 SLT-1

During SLT-1, media interest was sparse, with a few, though notable, exceptions. Still,
nationwide exposure was catered for through the article in Aftonbladet (Section B.1.1
below), and at least all Telia employees were made aware of the activities through the
article in Televärlden (Section B.1.3). The article in Computer Sweden (Section B.1.2)
also introduced computer-literate Swedes to the SLT system.

B.1.1 Aftonbladet

Aftonbladet is one of Sweden’s biggest daily newspapers. At the time of the article, it
was the second biggest, with a circulation of about 400,000.

Issue ??

Article Magnus Ringman:Nu vet Bildt hur framtiden ser ut(Now Bildt knows what
the future looks like), p. ?

Content Swedish premier minister Carl Bildt – known to be an avid proponent of IT
– paid a visit to the Swedish Institute of Computer Science (SICS), an SLT party
at the time. The English-to-Swedish translation was demonstrated to him, and

251

252

he was given the opportunity to try it out himself. Christer Samuelsson quoted.
Picture of Carl Bildt in front of a Sun Sparcstation, wearing a headset, while
addressing the SLT application.

B.1.2 Computer Sweden

Computer Sweden is a medium covering the computer world.

Issue Friday 17 December 1993.

Article Tomas Zirn:Låt datorn sköta översättningen(Let the computer do the trans-
lation). p. 31.

Content This article is a fairly detailed description of the English-to-Swedish version
of the Spoken Language Translator. Telia Research AB, SICS and SRI Interna-
tional are mentioned by name. Interviews with Björn Gambäck. Picture of Ivan
Bretan in front of SUN Sparc station with headset.

B.1.3 Televärlden (1)

Televärlden is Telia’s official internal medium, distributed to all Telia employees.

Issue No. 17, 1993.

Article Jens Busch:Engelskt tal blir svenskt – dator översätter muntliga flygbokningar
(English speech becomes Swedish – computer translates oral flight bookings), p.
??.

Content This article constitutes a small presentation of SLT-1. The project is not
mentioned by name, but Telia Research AB, SRI International and SICS are. In-
terview with Bertil Lyberg, Telia Research. Stephen Pulman of SRI, Cambridge,
is mentioned.

B.1.4 Televärlden (2)

See Section B.1.3 for a general description of the medium.

Issue [BERTIL TO CHECK]

Article Jens Busch:Telefonen skall bli översättare(The telephone will be a transla-
tor.), p. ??.

Content This article discusses possible applications based on speech technology. In-
terview with Bertil Lyberg. SLT parties SRI International and SICS are men-
tioned by name.

253

B.2 SLT-2

During SLT-2, media interest increased, resulting in wide exposure both geographically
and professionally. In the following paragraphs, the articles and TV features are listed
in chronological order.

B.2.1 Verkstäderna

Verkstäderna – Tidskriften för Sveriges Verkstadsindustrier is a technical magazine
published by Verkstädernas Förlag AB. It has a membership circulation to eight indus-
trial organizations.

Issue No. 11, 1995.

Article Eva Regårdh:Det mänskliga gränssnittet – Tala med datorn(The Human
Interface – Speak with the computer), pp. 6–8.

Content A fairly detailed description of the SLT project. Also a general introduc-
tion to speech technology. Interviews with Robert Eklund, Mats Ljungqvist and
Bertil Lyberg, all of whom at Telia Research AB.

B.2.2 Mitt i Haninge

Mitt i Haninge is a weekly newspaper distributed to all households in Haninge Kom-
mun (Haninge municipality), where Telia Research is located. The circulation is 30,300.

Issue No. 325, 15th October, 1996, week 42, year 8.

Article Lena Granström:Datorn ger svar på tal(The computer talks back).

Content Since Telia is the biggest employer in Haninge Kommun, Mitt i Haninge
published a series of articles to present Telia and its subcompanies to the inhabi-
tants of the municipality. Interview with Robert Eklund. The SLT activity (albeit
not by name) is described, as are possible future applications based on speech
technology.

B.2.3 Expressen

Expressen was at the time of the article Sweden’s biggest newspaper, with a circulation
of around 400,000. The article was published in the Sunday supplement “exxet”.

Issue October 22, 1995.

Article Per Runhammar:Låt datorn sköta snacket(Let the computer do the talking),
pp. 58–59.

Content This article may be described as a “crash course” description of the SLT
project. The project is not mentioned by name, but its parties are. It con-
tains “nutshell” explanations of speech recognition, automatic text translation
and speech synthesis. Some examples of possible future applications are men-
tioned.

254

B.2.4 BBC World Service

“New Ideas” radio program broadcast on September 1st, 1996. The program empha-
sized the English-to-French translation, and included interviews with Manny Rayner
and David Carter.

B.2.5 Ny Teknik

Ny Teknik – Teknisk Tidsskrift is a technical journal distributed to all Swedish engi-
neers.

Issue Nr 37, 12 september 1996.

Article Håkan Borgström:Åsa lär datorn förstå svenska(Åsa teaches the computer
to understand Swedish), pp. 12–14. Front page picture of Robert Eklund super-
vising recording session titledDatorn förstår hans språk(The computer under-
stands his language).

Content A synoptic overview of speech technology in Sweden (other institutes are
also covered). Interviews with Robert Eklund, Bertil Lyberg and Per Sautermeis-
ter. SRI International is mentioned. Picture of Åsa Hällgren of Telia Research
in an anechoic chamber. Picture of Per Sautermeister in front of a Sun Sparc
station. Figure explaining concatenation synthesis principles.

B.2.6 Metro

Metro is a weekday newspaper distributed free in the public transportation network in
Stockholm and suburbs. The circulation is around 237,000.

Issue Wednesday 18th September 1996.

Article Håkan Borgström:Datorerna som kan stockholmska – forskare på Telia lär
datorer att förstå mänskligt tal. (The computers that understand Stockholmian
– Researchers at Telia teaches computers to understand human speech), pp. 12–
13. Front page picture (same picture as the one published in Ny Teknik) of
Åsa Hällgren in an anechoic chamber titledNu lär sig datorn att höra(Now the
computer is learning to hear).

Content This article, which was the cover story here, is basically a rehash of the article
published in Ny Teknik. Compared to the version in Ny Teknik, it is adapted
for a wider audience. Interviews with Robert Eklund, Bertil Lyberg and Per
Sautermeister. Picture of Robert Eklund, Bertil Lyberg and Per Sautermeister
on the roof of Telia Research, Haninge. Picture of Robert Eklund supervising
recording session.

255

B.2.7 Televärlden (3)

See Section B.1.3 for description.

Issue No. 12, 27 June 1996.

Article Margareta Johansson:Han lär datorn prata(He teaches the computer to speak),
p. 19.

Content This article is basically an interview with Robert Eklund of Telia Research
AB. It may be described as a general presentation of phonetics, linguistics and
speech technology. SLT activities are used as examples but neither the project
nor its parties are mentioned by name.

B.2.8 Radio-Vian

Radio-Vian is an internal newspaper published by Telia MobiTel AB.

Issue No. 6, September 1995.

Article Jan Sjöberg:Kunglig glans över huvudkontoret(Royal splendour over the
headquarter).

Content As a part of the Royal visit to Haninge Kommun in August 1995, the Swedish
King and Queen visited Telia. Telia CEO Lars Berg hosted the Telia visit. Telia
MobiTel was presented by its CEO Seth Myhrby. Telia Research was presented
by its CEO Östen Mäkitalo. As a part of the latter presentation Robert Ek-
lund gave a short demonstration of the English-to-Swedish SLT-1 system. The
demonstration is mentioned in the article in very positive terms.

B.2.9 Rapport

Rapport is a major TV network news magazine. It is currently the largest audience in
Sweden.

“Issue” December 1996.

Content A very short presentation of the system. A TV reporter tries two utterances.
No interviews.

B.2.10 Nova

Nova is a major network, popular scientific TV magazine.

Issue Loosely scheduled for broadcasting in May 1997.

Article Interviews with Rolf Hulthén and Bertil Lyberg of Telia Research AB. Per
Sautermeister exemplifies two sentences of the Swedish-to-English translator.

256

B.3 Final Remarks

Summing up, it may be said that the SLT project has received very good exposure.
Thanks to the article in Ny Teknik, most – theoretically all – engineers in Sweden
should have had SLT brought to their attention. The article in Mitt i Haninge has
exposed the entire population of the municipality to SLT activities. The articles in
Televärlden has exposed SLT to all Telia employees. The cover story in Metro meant
that most people in the greater Stockholm area were given a good introduction to the
SLT project and the field of speech technology in general. Finally, following the SLT-
1 exposure in Aftonbladet, the “crash course” article in Expressen meant nationwide
exposure.

References

Abramson, H. 1992. “A Logic Programming View of Relational Morphology”. Pro-
ceedings of COLING-92, 850–854.

Agnäs, M-S., and 17 others 1994.Spoken Language Translator: First Year Report.
Joint report by SRI International (Cambridge) and SICS.*1

Agnäs, M-S., H. Alshawi, I. Bretan, D.M. Carter, K. Ceder, M. Collins, R. Crouch, V.
Digalakis, B. Ekholm, B. Gambäck, J. Kaja, J. Karlgren, B. Lyberg, P. Price, S.G.
Pulman, M. Rayner, C. Samuelsson, and T. Svensson. 1994.Spoken Language
Translator: First Year Report.*

Alshawi, H. (ed) 1992.The Core Language Engine. Cambridge, Massachusetts: MIT
Press.

Alshawi, H., D.J. Arnold, R. Backofen, D.M. Carter, J. Lindop, K. Netter, S.G. Pul-
man, J. Tsujii, and H. Uszkoreit 1991.Eurotra ET6/1: Rule Formalism and
Virtual Machine Design Study. Commission of the European Communities, Lux-
embourg.

Alshawi, H., C.G. Brown, D.M. Carter, B. Gambäck, S.G. Pulman, and Manny Rayner.
1991. “Bilingual Conversation Interpreter: A Prototype Message Translator. Fi-
nal Report”. Joint Research Report R91011 and CCSRC-018, SICS and SRI
International, Stockholm, Sweden and Cambridge, England.*

Alshawi, H., and D.M. Carter. 1994 “Training and Scaling Preference Functions for
Disambiguation.”Computational Linguistics, 20:4.

Alshawi, H., D.M. Carter, R. Crouch, S.G. Pulman, M. Rayner, and A. Smith. 1992.
“CLARE: A Contextual Reasoning and Cooperative Response Framework for
the Core Language Engine” SRI technical report CRC-028.*

Alshawi, H., and R. Crouch 1992. “Monotonic Semantic Interpretation”. InProceed-
ings of 30th Annual Meeting of the Association for Computational Linguistics,
pp. 32–39, Newark, Delaware.*

Alshawi, H., and R. Crouch. 1992. “Monotonic Semantic Interpretation”. Proceedings
of 30th ACL.

1Starred references are also available fromhttp://www.cam.sri.com.

257

258

Amalberti, R., N. Carbonell, and P. Falzon. 1993. “User representations of computer
systems in human–computer speech interaction”.Int. J. Man–Machine Studies,
vol. 38, pp. 547–566.

Andry, F., J. Dowding, M. Gawron, and R. Moore. 1994. “A Tool for Collecting
Domain Dependent Sortal Constraints From Corpora.”Proceedings of COLING-
94, Kyoto.

Aubert, X., R. Haeb-Umbach, and H. Ney. 1993. “Continuous Mixture Densities and
Linear Discriminant Analysis for Improved Context-Dependent Acoustic Mod-
els,” Proceedings ICASSP,pp. 648-65.

Bäckström, M., K. Ceder and B. Lyberg. 1989: “Prophon - an Interactive Environment
for Text-to-Speech Conversion”.Proceedings of the European Conference on
Speech Communication and Technology, Vol. 1, pp. 144-147.

Bès, G., and C. Gardent. 1989. “French Order without Order.” Proceedings of 4th
European ACL.

Bowden, T. 1995. “Cooperative Error Handling and Shallow Processing”, these pro-
ceedings.

Bretan, I., C. Ereback, C. MacDermid, A. Waern. 1995. “Simulation-Based Dialogue
Design for Speech-Controlled Telephone Services”.Proceedings of CHI’95,
Denver.

Bretan, I., R. Eklund, C. MacDermid. 1996. “Approaches to Gathering Realistic Train-
ing Data for Speech Translation Systems.”IEEE Third Workshop Interactive
Voice Technology for Telecommunications Applications, pp. 97–100, September
30 – October 1, 1996. Basking Ridge, New Jersey.

Briscoe, E.J., and J. Carroll 1993. “Generalized Probabilistic LR Parsing of Natural
Language (Corpora) with Unification-Based Grammars.”Computational Lin-
guistics, 19:1, pp. 25-60.

Brown, P., S.A. Della Pietra, V.J. Della Pietra. 1992. J.C. Lai, and R.L. Mercer, “Class-
Based n-gram Models of natural Language,”Computational Linguistics,pp. 31-
40, Vol. 18 (4).

Brown, K., and E. B. George. 1995. CTIMIT: A speech corpus for the cellular envi-
ronment with applications to automatic speech recognition. InICASSP-95, pp.
105–108.

Bruce, G., and E. Gårding. 1978. “A Prosodic Typology for Swedish Dialects”. In
Nordic Prosody, Travaux de L’Institut de Lund. Department of Linguistics, Uni-
versity of Lund.

Carter, D.M. 1989. “Lexical acquisition in the Core Language Engine” European ACL,
Manchester.

Carter, D.M. 1992. “Lattice-based Word Identification in CLARE”. Proceedings of
ACL-92.

Carter, D.M. 1995. “Rapid Development of Morphological Descriptions for Full Lan-
guage Processing Systems.” Proceedings of 7th European ACL. Also SRI Tech-
nical Report CRC-047

259

Carter, D.M., J. Kaja, L. Neumeyer, M. Rayner, F. Weng, M. Wiren. 1996. “Handling
Compound Nouns in a Swedish Speech-Understanding System”, Processings of
ICSLP-96, June 1996.*

D.M. Carter and M. Rayner. 1994. “The Speech-Language Interface in the Spoken
Language Translator”. InProc. 8th Twente Workshop on Language Technology,
University of Twente, Enschede, the Netherlands.

Chow Y.L., and R. Schwartz. 1990. “The B-Best Algorithm: An efficient procedure
for finding Top N Sentence Hypotheses,’ Proceedings of ICASSP.

Church, K. 1988. “A stochastic parts program and noun phrase parser for unrestricted
text.” Proceedings of 1st ANLP, Austin, Tx., pp. 136-143.

Crouch, R. 1995 “Ellipsis and Quantification: A Substitutional Approach”. Proceed-
ings of EACL-95, 229-236

Cutting, D., J. Kupiec, J. Pedersen and P. Sibun. 1992. “A Practical Part-of-Speech
Tagger” Proceedings of 3rd ANLP, Trento, Italy, pp. 133-140.

Dagan, I., and A. Itai. 1994. “Word Sense Disambiguation Using a Second Language
Monolingual Corpus”,Computational Linguistics20:4, pp. 563–596.

DeMarcken, C.G. 1990. “Parsing the LOB Corpus”Proceedings of 28th ACL, Pitts-
burgh, Pa., pp. 243-251

Dempster, A.P., N.M. Laird and D.B. Rubin. 1977. “Maximum Likelihood Estimation
from Incomplete Data,”Journal of the Royal Statistical Society (B), Vol. 39, No.
1, pp. 1–38.

DeRose, S. 1988. “Grammatical Category Disambiguation by Statistical Optimiza-
tion.” Computational Linguistics14, pp. 31-39

Digalakis, V., P. Monaco and H. Murveit. 1996. “Genones: Generalized Mixture
Tying in Continuous Hidden Markov Model-Based Speech Recognizers,”IEEE
Transactions Speech and Audio Processing,pp. 281-289.

Digalakis, V., and L. Neumeyer. 1996. “Speaker Adaptation Using Combined Trans-
formation and Bayesian Methods,”IEEE Transactions Speech and Audio Pro-
cessing,pp. 294-300.

Digalakis V., L. Neumeyer and D. Rtischev. “Speaker Adaptation Using Constrained
Reestimation of Gaussian Mixtures,”IEEE Transactions Speech and Audio Pro-
cessing,pp. 357–366, September 1995.

van Eijck, J. and R. Moore. 1992. “Semantic Rules for English.” In Alshawi (ed),
1992.

Ejerhed, E., G. Källgren, O. Wennstedt and M. Åström. 1992.The Linguistic Anno-
tation System of the Stockholm–Umeå Corpus Project. Description and Guide-
lines. Version 4.31, May 22, 1992. University of Umeå.

Eklund, R. and A. Lindström. 1996. “Pronunciation in an internationalized society:
a multi-dimensional problem considered”. FONETIK 1996, Swedish Phonetics
Conference, Nässlingen, 29–30 May, 1996.TMH-QPSR/1996.

260

ELAN informatique. 1996.CNETVOX user’s manual. ELAN informatique, 4, rue
Jean Rodier, 31400 Toulouse, France.

Elert, C-C. 1994. “Indelning och gränser inom området för den nu talade svenskan –
en aktuell dialektografi”. In L-E. Edlund:Kulturgränser – myt eller verklighet,
pp. 215–228. Diabas, University of Umeå.

Engelson, S., and I. Dagan. 1996. “Minimizing Manual Annotation Cost in Super-
vised Training from Corpora”. InProceedings of 34th Annual Meeting of the
Association for Computational Linguistics, pp. 319-326, Santa Cruz, CA.

Entropic Research Laboratory, Inc. 1995Developer TruetalkEntropic Research Labo-
ratory, Inc., 600 Pennsylvania Ave., SE Suite 202, Washington, DC 20003, USA.

Estival, D. 1990. “Generating French with a Reversible Unification Grammar.” Pro-
ceedings of 13th COLING.

Fries, S. 1994. “ Dialektgränser och kulturgränser”. In L-E. Edlund:Kulturgränser –
myt eller verklighet, pp. 189–198. Diabas, University of Umeå.

Fromkin, V. (ed.). 1980.Errors in Linguistic Performance: Slips of the Tongue, Ear,
Pen and Hand. New York Academic Press.

Gambäck, B., and M. Rayner. 1992. “The Swedish Core Language Engine”.Proceed-
ings of 3rd Nordic Conference on Text Comprehension in Man and Machine,
Linköping, Sweden.Also SRI Technical Report CRC-025.

Gauvain, J-L., and C-H. Lee. 1994. “Maximum a Posteriori Estimation for Multivari-
ate Gaussian Observations of Markov Chains,”IEEE Transactions Speech and
Audio Processing,pp. 291–298.

Geutner, P. 1995. “Using Morphology Towards Better Large-Vocabulary Speech Recog-
nition Systems”. InProceedings of ICASSP 95, 1995.

Grimshaw, J. 1982. “On the Lexical Representation of Romance Reflexives.” In J.
Bresnan (ed.), The Mental Representation of Grammatical Relations. MIT Press.

Grishman, R., L. Hirschmann, E. Marsh and N. Nhan. 1984. “Automated Deter-
mination of Sublanguage Usage.”Proceedings of 22nd COLING, Stanford, pp.
96-100.

van Harmelen, F., A. Bundy. 1988. “Explanation-Based Generalization = Partial Eval-
uation” (Research Note) Artificial Intelligence 36, pp. 401–412.

Gårding, E. 1975. “Toward a Prosodic Typology for Swedish Dialects”. In K-H.
Dahlstedt (ed.):The Nordic Languages and Modern Linguistics 2. pp. 466–474.
Almqvist & Wiksell, Stockholm.

Hemphill, C.T., J.J. Godfrey and G.R. Doddington. 1990. “The ATIS Spoken Lan-
guage Systems pilot corpus.” Proceedings of DARPA Speech and Natural Lan-
guage Workshop, Hidden Valley, Pa., pp. 96-101.

Hetherington, I.L., V.W. Zue. 1993. “New Words: Implications for Continuous Speech
Recognition”.Proc. Eurospeech 1993.

Kaplan, R.M., and M. Kay. 1994. “Regular Models of Phonological Rule Systems”,
Computational Linguistics, 20:3, 331–378.

261

Karlsson, F., A. Anttila, J. Heikkilä and A. Voutilainen (eds). 1995.Constraint Gram-
mar. Mouton de Gruyer, Berlin, New York.

Karttunen, L., R.M. Kaplan, and A. Zaenen. 1992. “Two-level Morphology with Com-
position”. Proceedings of COLING-92, 141–148.

Katz, S.M. 1987. “Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recognizer,”IEEE Trans. on Acoust., Speech
and Signal Proc., ASSP-35, pp. 400-401,

Kay, M. 1987. “Non-concatenative Finite-State Morphology”. Proceedings of EACL-
87.

Kinoshita, S., J. Phillips, and J. Tsujii. 1992. “Interaction between Structural Changes
in Machine Translation”.Proceedings in the 14th International Conference on
Computational Linguistics, vol 2, pp. 679-685, Nantes, France.

Kiraz, G. 1994. “Multi-tape Two-level Morphology”.Proceedings of COLING-94,
180–186.

Koskenniemi, K. (1983). “Two-level morphology: a general computational model for
word-form recognition and production”. University of Helsinki, Department of
General Linguistics, Publications, No. 11.

Kwon, H-C., and L. Karttunen. 1994. “Incremental Construction of a Lexical Trans-
ducer for Korean”. Proceedings of COLING-94, 1262–1266.

Källgren, G. 1990. “The first million is hardest to get”: Building a Large Tagged
Corpus as Automatically as Possible. In: Karlgren, H. (ed.):Papers presented
to the 13th International Conference on Computational Linguistics, vol. 3, pp.
168–173. University of Helsinki.

Lamel, L., M. Adda-Decker, and J.L. Gauvain. 1995. “Issues in Lage Vocabulary,
Multilingual Speech Recognition,”Proceedings Eurospeech,pp. 185-188.

Lee, C-H., B-H. Juang, and C-H. Lin. 1991. “A Study on Speaker Adaptation of the
Parameters of Continuous Density Hidden Markov Models,”IEEE Trans. on
Acoust., Speech and Signal Proc.,Vol. ASSP-39(4), pp. 806–814.

Lee, C., R. Pieraccini, L. Rabiner, and J. Wilpon, “Acoustic Modeling for Large Vo-
cabulary Speech Recognition,”Computer Speech and Language,pp. 127-165.

Leggetter C.J., and P.C. Woodland. 1995. “Maximum Likelihood Linear Regression
for Speaker Adaptation of Continuous Density Hidden Markov Models,”Com-
puter Speech and Language,pp. 171–185.

Lewin, I., S. Browning, D.M. Carter, K. Ponting, S.G. Pulman, and M. Russell. 1993.
“A speech-based route enquiry system built from general-purpose components”

Life, A., and I. Salter. 1996. “Data Collection for the MASK Kiosk: WOZ vs Prototype
System.”Proc. ICSLP ’96, Philadelphia.

Linell. P. 1981. “Speech errors and the Grammaticla Planning of Utterances”. In Koch,
W., C. Platzack, and G. Tottie (eds.):Textstrategier i tal och skrift, pp. 134–151.
Almqvist & Wiksell, Stockholm.

262

Linguistic Data Consortium.http://www.ldc.upenn.edu/

McCord, M. 1993. “Heuristics for Broad-Coverage Natural Language Parsing.” Pro-
ceedings of 1st ARPA Workshop on Human Language Technology, Princeton,
NJ. Morgan Kaufmann.

MacDermid, C., M. Goldstein. 1996. “The ‘Storyboard’ Method: Establishing an unbi-
ased vocabulary for keyword and voice command applications”.Proc. HCI’06,
London, August 1996. (In press.)

Mellish, C.S. 1988. “Implementing Systemic Classification by Unification”.Compu-
tational Linguistics14:40–51.

Meyer, E.A. 1937. “Die Intonation im Schwedischen, I: Die Sveamundarten”.Studies
Scand. Philol. Nr 10. University of Stockholm.

Meyer, E.A. 1954. “Die Intonation im Schwedischen, II: Die norrländischen
Mundarten.”Studies Scand. Philol. Nr 11. University of Stockholm.

Miller, S., R. Bobrow, R. Schwartz, and D. Stallard. 1996 “A Fully Statistical Approach
to Natural Language Interfaces”.Proceedings of ACL-1996, 55-61.

Miller, P. and I. Sag. 1995. “French Clitic Movement Without Clitics or Movement.”
CSLI Technical Report.

Mitchell, T., S. Kedar-Cabelli and R. Keller. 1986. “Explanation-Based Generaliza-
tion: a Unifying View.” Machine Learning 1:1, pp. 47-80.

Murveit, H., J. Butzberger, V. Digalakis and M. Weintraub. 1993. “Large Vocabulary
Dictation using SRI’s DECIPHER(TM) Speech Recognition System: Progres-
sive Search Techniques”. InProceedings of ICASSP-93.

Murveit, H., J. Butzberger, V. Digalakis, and M. Weintraub. 1993. “Large Vocabulary
Dictation using SRI’s DECIPHER(TM) Speech Recognition System: Progres-
sive Search Techniques.” Proceedings of Inter. Conf. on Acoust., Speech and
Signal, Minneapolis, Mn.

Neumeyer, L., V. Digalakis and A. Sankar. 1995. “A Comparative Study of Speaker
Adaptation Techniques”, Proceedings of European Conference on Speech Com-
munication and Technology, pp. 1127–1130, Madrid, Spain.

Oflazer, K. 1993. “Two-level Description of Turkish Morphology”.Proceedings of
European ACL-93.

Oflazer, K. 1994.Spelling Correction in Agglutinative Languages. Article 9410004
in
cmp-lg@xxx.lanl.gov archive.

Paul, D.B. 1989. “The Lincoln Robust Continuous Speech Recognizer,”Proceedings
ICASSP,pp. 449-452.

Paul, D.B. 1992. “An efficient stack decoder algorithm for continuous speech recogni-
tion with a stochastic language model.”Proceedings of 1992 International Con-
ference on Acoustics, Speech, and Signal Processing, volume 1, pages 25–28,
San Francisco.

263

Paul, D.B., and J. Baker. 1992. “The Design for the Wall Street Journal-based CSR
corpus,”Proceedings of the DARPA Speech and Natural Language Workshop,
pp. 357–362.

Pulman S.G. 1992. “Passives”. InProceedings of the 3rd Conference of the European
Chapter of the Association for Computational Linguistics, pp. 306-313, Univer-
sity of Copenhagen, Copenhagen, Denmark.

Pulman, S.G. 1992. “Unification-Based Syntactic Analysis.” In Alshawi (ed), 1992.

Rayner, M. 1988. “Applying Explanation-Based Generalization to Natural-Language
Processing.” Proceedings of the International Conference on Fifth Generation
Computer Systems, Kyoto, pp. 1267-1274.

Rayner, M. 1993. “Abductive Equivalential Translation and its Application to Nat-
ural Language Database Interfacing.” PhD thesis, Royal Institute of Technol-
ogy/Stockholm University. Also SRI Technical Report CRC-052

Rayner, M. 1994. “Overview of English Linguistic Coverage.” In Agnäset al, (1994).

Rayner, M. 1994. “English linguistic coverage.” In Agnäset al, (1994).

Rayner, M., H. Alshawi, I. Bretan, D.M. Carter, V. Digalakis, B. Gambäck, J. Kaja,
J. Karlgren, B. Lyberg, P. Price, S.G. Pulman, and C. Samuelsson. 1993. “A
Speech to Speech Translation System Built From Standard Components.” Pro-
ceedings of 1st ARPA workshop on Human Language Technology, Princeton,
NJ. Morgan Kaufmann. Also SRI Technical Report CRC-031.

Rayner, M., P. Bouillon, and D.M. Carter. 1995. “Using Corpora to Develop Limited-
Domain Speech Translation Systems”. InProceedings of Translating and the
Computer 17, ASLIB, London.*

Rayner, M., P. Bouillon and D.M. Carter. 1996. “Adapting the Core Language Engine
to French and Spanish”. InProceedings of NLP-IA, Moncton, New Brunswick.*

Rayner, M., D.M. Carter, V. Digalakis and P. Price (1994). “Combining Knowledge
Sources to Reorder N-Best Speech Hypothesis Lists”. InProceedings of the
ARPA workshop on Human Language Technology, Princeton, NJ.*

Rayner, M., and D.M. Carter. 1996. “Fast Parsing using Pruning and Grammar Spe-
cialization”. InProceedings of 34th Annual Meeting of the Association for Com-
putational Linguistics, pp. 223–230, Santa Cruz, CA.*

Rayner, M., E. Beshai, I. Bretan, S. Rydin, and M. Wiren. 1996. “Composition of
transfer rules in a multi-lingual MT system”, Proceedings of workshop on “Fu-
ture Issues for Multilingual Text Processing”, Cairns, Australia, August 1996.*

Rayner, M., I. Bretan, D.M. Carter, M. Collins, V. Digalakis, B. Gambäck, J. Kaja, J.
Karlgren, B. Lyberg, P. Price, S.G. Pulman and C. Samuelsson, “Spoken Lan-
guage Translation with Mid-90’s Technology: A Case Study,”Proc. Eurospeech
’93, Berlin, 1993.*

Rayner, M., P. Bouillon, and D.M. Carter. 1995. “Using Corpora to Develop Limited-
Domain Speech Translation Systems”. InProceedings of Translating and the
Computer 17, ASLIB, London.*

264

Rayner, M., and P. Bouillon, D.M. Carter. 1996. “Adapting the Core Language Engine
to French and Spanish.” Proceedings of NLP-IA, Moncton, New Brunswick.
Also SRI Technical Report CRC-061.*

Rayner, M., and D.M. Carter. 1996. “Fast Parsing using Pruning and Grammar Spe-
cialization”, Proceedings of ACL-96, April 1996.*

Rayner, M., D.M. Carter, V. Digalakis and P. Price. 1994. “Combining Knowledge
Sources to Reorder N-Best Speech Hypothesis Lists.” Proceedings of 2nd ARPA
workshop on Human Language Technology, Princeton, NJ., pp. 217-221. Mor-
gan Kaufmann. Also SRI Technical Report CRC-044.*

Rayner. M., and C. Samuelsson. 1990. “Using Explanation-Based Learning to Increase
Performance in a Large NL Query System.” Proceedings of DARPA Speech and
Natural Language Workshop, June 1990, pp. 251-256. Morgan Kaufmann.

Rayner, M., and C. Samuelsson. 1994. “Corpus-Based Grammar Specialization for
Fast Analysis.” In Agnäset al, (1994).

Rayner, M., Alshawi, H., Bretan, I., Carter, D.M., Digalakis, V., Gambäck, B., Kaja,
J., Karlgren, J., Lyberg, B., Price, P., Pulman, S. and Samuelsson, C. 1993. “A
Speech to Speech Translation System Built From Standard Components.” Pro-
ceedings of 1st ARPA workshop on Human Language Technology. Also SRI
Technical Report CRC-031.

Rayner, M. and P. Bouillon. 1995. “Hybrid Transfer in an English-French Spoken
Language Translator.” Proceedings of IA ’95, Montpellier, France. Also SRI
Technical Report CRC-056.

Rayner, M., D.M. Carter. 1995. “The Spoken Language Translator Project”, Proceed-
ings of the Language Engineering Convention, London, July 1995.*

Rayner, M., and D.M. Carter. 1996. “Hybrid language processing in the Spoken Lan-
guage Translator”, Proceedings of ICASSP-97, Munich, Germany.*

Rayner, M., P. Bouillon, D.M. Carter. 1995. Using Corpora to Develop Limited-
Domain Speech Translation Systems.Proc. Translating and the Computer 17
(ASLIB), November 1995.

Rayner, M., D.M. Carter, V. Digalakis and P. Price. 1994. “Combining Knowledge
Sources to Reorder N-Best Speech Hypothesis Lists.” Proceedings of 2nd ARPA
workshop on Human Language Technology.*

Rayner, M., D.M. Carter, P. Price and B. Lyberg. 1994. “Estimating the Performance
of Pipelined Spoken Language Translation Systems.” Proceedings of ICSLP ’94,
Yokohama.*

Rayner, M., D.M. Carter, P. Price, B. Lyberg. 1994. “Hybrid Transfer in an English-
French Spoken Language Translator”, Proceedings of IA ’95, Montpellier, France,
June 1995.*

Ritchie, G., G.J. Russell, A.W. Black and S.G. Pulman. 1992.Computational Mor-
phology. MIT Press.

Ruessink, H. 1989.Two Level Formalisms. Utrecht Working Papers in NLP, no. 5.

265

Samuelsson, C. 1994. “Notes on LR Parser Design.” Proceedings of COLING-94,
Kyoto, pp. 386-390.

Samuelsson, C. 1994. “Grammar Specialization through Entropy Thresholds.” Pro-
ceedings of ACL-94, Las Cruces, NM, pp. 188-195.

Samuelsson, C., and M. Rayner. 1991. “Quantitative Evaluation of Explanation-Based
Learning as an Optimization Tool for a Large-Scale Natural Language System.”
Proceedings of 12th IJCAI, Sydney, pp. 609-615.

Sankar, A., and C-H. Lee. 1996. “A Maximum Likelihood Approach to Stochastic
Matching for Robust Speech Recognition,”IEEE Transactions Speech and Audio
Processing,pp. 190–202.

Schwartz, R., and S. Austin. 1991. “A Comparison of Several Approximate Algorithms
for Finding Multiple N-Best Sentence Hypotheses,” Proceedings of ICASSP.

Shieber, S.M., G. van Noord, F.C.N. Pereira, and R.C. Moore. 1990. “Semantic-Head-
Driven Generation.” Computational Linguistics, 16:30–43.

Spies, M. 1994. “A Language Model for Compound Words in Speech Recognition”.
In Proceedings of Eurospeech ’95, pages 1767–1770.

Tannen, D. 1982. “Oral and literate strategies in spoken and written narratives”.Lan-
guage, vol. 58. No. 1, pp. 1–21.

TMI. 1992. Proceedings of Fourth International Conference on Theoretical and Method-
ological Issues in Machien Translation. Montreal, Canada.

Tomita, M. 1986. Efficient Parsing for Natural Language. Kluwer Academic Publisher.

Trost, H. 1990. “The Application of Two-level Morphology to Non-Concatenative
German Morphology”. Proceedings of COLING-90, 371–376.

Trost, H. 1991. “X2MORF: A Morphological Component Based on Augmented Two-
level Morphology”. Proceedings of IJCAI-91, 1024–1030.

Trost, H., and J. Matiasek. 1994. “Morphology with a Null-Interface”, Proceedings of
COLING-94.

Woods, W. 1985. “Language Processing for Speech Understanding.” Computer Speech
Processing, W. Woods and F. Fallside (eds), Prentice-Hall International.

Yarowsky, D. 1994. “Decision Lists for Lexical Ambiguity Resolution”.Proceedings
of 32nd Annual Meeting of the Association for Computational Linguistics, pp.
88-95, Las Cruces, New Mexico.

