Stream-Based Reasoning Support
for Autonomous Systems '

Fredrik Heintz and Jonas Kvarnstrom and Patrick Doherty?

Abstract. For autonomous systems such as unmanned aerial vehi-
cles to successfully perform complex missions, a great deal of em-
bedded reasoning is required at varying levels of abstraction. To sup-
port the integration and use of diverse reasoning modules we have de-
veloped DyKnow, a stream-based knowledge processing middleware
framework. By using streams, DyKnow captures the incremental na-
ture of sensor data and supports the continuous reasoning necessary
to react to rapid changes in the environment.

DyKnow has a formal basis and pragmatically deals with many
of the architectural issues which arise in autonomous systems. This
includes a systematic stream-based method for handling the sense-
reasoning gap, caused by the wide difference in abstraction levels
between the noisy data generally available from sensors and the sym-
bolic, semantically meaningful information required by many high-
level reasoning modules. As concrete examples, stream-based sup-
port for anchoring and planning are presented.

1 Introduction

For autonomous systems such as unmanned aerial vehicles (UAVs)
to successfully perform complex missions, a great deal of embedded
reasoning is required. For this reasoning to be grounded in the en-
vironment, it must be firmly based on information gathered through
available sensors. However, there is a wide gap in abstraction levels
between the noisy numerical data directly generated by most sensors
and the crisp symbolic information that many reasoning functionali-
ties assume to be available. We call this the sense-reasoning gap.

Bridging this gap is a prerequisite for deliberative reasoning func-
tionalities such as planning, execution monitoring, and diagnosis to
be able to reason about the current development of dynamic and
incompletely known environments using representations grounded
through sensing. For example, when monitoring the execution of a
plan, it is necessary to continually collect information from the envi-
ronment to reason about whether the plan has the intended effects as
specified in a symbolic high-level description.

Creating a suitable bridge is a challenging problem. It requires
constructing representations of information incrementally extracted
from the environment. This information must continuously be pro-
cessed to generate information at increasing levels of abstraction
while maintaining the necessary correlation between the generated
information and the environment itself. The construction typically

1 This work is partially supported by grants from the Swedish Foundation for
Strategic Research (SSF) Strategic Research Center MOVIII, the Swedish
Research Council (VR) Linnaeus Center CADICS, ELLIIT Excellence
Center at Linkoping-Lund for Information Technology and the Center for
Industrial Information Technology CENIIT (projects 06.09 and 10.04).

2 Dept. of Computer and Information Science, Linkoping University, 581 83
Linkoping, Sweden. Email: {frehe, jonkv, patdo} @ida.liu.se

requires a combination of a wide variety of methods, including stan-
dard functionalities such as signal and image processing, state esti-
mation, and information fusion.

These and other forms of reasoning about information and knowl-
edge have traditionally taken place in tightly coupled architectures
on single computers. The current trend towards more heterogeneous,
loosely coupled, and distributed systems necessitates new methods
for connecting sensors, databases, components responsible for fus-
ing and refining information, and components that reason about the
system and the environment. This trend makes it less practical to
statically predefine exactly how the information processing should
be configured. Instead it is necessary to configure the way in which
information and knowledge is processed and reasoned about in a
context-dependent manner relative to high-level goals while globally
optimizing the use of resources and the quality of the results.

To address these issues we have developed the stream-based
knowledge processing middleware framework DyKnow [15,16]
which is a central part of our fully deployed unmanned aircraft sys-
tem architecture [4, 5].

The rest of the paper is structured as follows. Section 2 discusses
the requirements on middleware for embedded reasoning and Sec-
tion 3 describes DyKnow. Sections 4 and 5 give two concrete ex-
amples of how DyKnow can facilitate embedded reasoning through
support for anchoring and planning. Section 6 discusses DyKnow in
relation to the requirements presented in Section 2. Section 7 presents
related work. Finally, the conclusions are presented in Section 8.

2 Requirements

A wide range of functionality could conceivably be provided by mid-
dleware for embedded reasoning, and no single definition will be
suitable for all systems. As a starting point, we present the require-
ments that have guided our work in distributed UAV architectures.
These requirements are not binary in the sense that a system either
satisfies them or not. Instead, a system will satisfy each requirement
to some degree. Later, we will argue that DyKnow provides a signif-
icant degree of support for each of the requirements.

Support integration of existing reasoning functionality. The most
fundamental property of middleware is that it supports interoperabil-
ity. In the case of knowledge processing middleware, the main goal
is to facilitate the integration of a wide variety of existing reasoning
engines and sensors, bridging the gap between the distinct types of
information required by and produced by such entities.

Support distributed sources and processing. Knowledge process-
ing middleware should permit the integration of information from
distributed sources and the distribution of processing across multiple
computers. For UAVs, sources may include cameras, GPS sensors,

and laser range scanners as well as higher level geographical infor-
mation systems and declarative specifications of objects and their
behaviors. Knowledge processing middleware should be sufficiently
flexible to allow the integration of these into a coherent processing
system while minimizing restrictions on connection topologies and
the type of information being processed.

Support quantitative and qualitative processing on many levels of
abstraction. In many applications there is a natural information ab-
straction hierarchy starting with quantitative signals from sensors,
through representations of objects with both qualitative and quan-
titative attributes, to high level events and situations where objects
have complex spatial and temporal relations. It should be possible to
process information having arbitrary forms at arbitrary levels of ab-
straction, incrementally transforming it to forms suitable for various
types of low-level and high-level reasoning.

Support bottom-up data processing and top-down model-based
processing. While each process can be dependent on “lower level”
processes for its input, it should also be possible for its output to
guide processing in a top-down fashion. For example, if a vehicle is
detected a vehicle model could be used to predict possible future lo-
cations, thereby directing or constraining processing on lower levels.

Support management of uncertainty. Uncertainty exists not only
at the quantitative sensor data level but also in the symbolic identity
of objects and in temporal and spatial aspects of events and situa-
tions. Therefore, middleware should not be constrained to the use
of a single approach to handling uncertainty but should enable the
combination and integration of different approaches.

Support flexible configuration and reconfiguration. When an
agent’s resources are insufficient, either due to lack of processing
power or due to sensory limitations, various forms of trade-offs are
required. For example, update frequencies may be lowered, permit-
ted processing delays may be increased, resource-hungry algorithms
may be dynamically replaced with more efficient but less accurate
ones, or the agent may focus its attention on the most important as-
pects of its current task. Reconfiguration may also be necessary when
the current context or task changes.

Provide a declarative specification of the information being gen-
erated and the available information processing functionality. An
agent should be able to reason about trade-offs and reconfigura-
tion without outside help, which requires introspective capabilities.
Specifically, it must be possible to determine what information is cur-
rently being generated as well as the potential effects of a reconfig-
uration. The declarative specification should provide sufficient detail
to allow the agent to make rational trade-off decisions.

3 DyKnow

DyKnow is a fully implemented stream-based knowledge process-
ing middleware framework providing both conceptual and practical
support for structuring a knowledge processing system as a set of
streams and computations on streams. Input can be provided by a
wide range of distributed information sources on many levels of ab-
straction, while output consists of streams representing for example
objects, attributes, relations, and events. As argued in Section 6, it
satisfies each of the presented requirements to a significant degree.
Knowledge processing for a physical agent is fundamentally in-
cremental in nature. Each part and functionality in the system, from
sensing to deliberation, needs to receive relevant information about
the environment with minimal delay and send processed information
to interested parties as quickly as possible. Rather than using polling,
explicit requests, or similar techniques, we have therefore chosen to

Knowledge Process)

policy stream
Stream i
i
Generator ! "
policy stream

/

A prototypical knowledge process.

Figure 1.

model and implement the required flow of data, information, and
knowledge in terms of streams, while computations are modeled
as active and sustained knowledge processes ranging in complexity
from simple adaptation of raw sensor data to complex reactive and
deliberative processes.

Streams lend themselves easily to a publish/subscribe architecture.
Information generated by a knowledge process is published using
one or more stream generators, each of which has a (possibly struc-
tured) label serving as an identifier within a knowledge processing
application. Knowledge processes interested in a particular stream
of information can subscribe to it using the label of the associated
stream generator, which creates a new stream without the need for
explicit knowledge of which process hosts the generator. Information
produced by a process is immediately provided to the stream gener-
ator, which asynchronously delivers it to all subscribers, leaving the
knowledge process free to continue its work. Using an asynchronous
publish/subscribe pattern of communication decouples knowledge
processes in time, space, and synchronization [9], providing a solid
foundation for distributed knowledge processing applications.

Each stream is associated with a declarative policy, a set of re-
quirements on its contents. Such requirements may include the fact
that elements must arrive ordered by valid time, that each value must
constitute a significant change relative to the previous value, that up-
dates should be sent with a specific sample frequency, or that there is
a maximum permitted delay. Policies can also give advice on how
these requirements should be satisfied, for example by indicating
how to handle missing or excessively delayed values.

A knowledge processing application in DyKnow consists of a set
of knowledge processes connected by streams satisfying policies. An
abstract view of a knowledge process is shown in Fig. 1. Each knowl-
edge process is either an instantiation of a source or a computational
unit. In the first case, it makes external information available through
a stream generator, and in the second it refines and processes streams.
A formal language called KPL is used to write declarative specifica-
tions of DyKnow applications (see [15, 19] for details). It provides
a formal semantics for policies and streams. The DyKnow service,
which implements the DyKnow framework, sets up the required pro-
cessing and communication infrastructure for a given set of KPL dec-
larations. Due to the use of CORBA [25] for communication, knowl-
edge processes are location-unaware, supporting distributed architec-
tures running on multiple networked computers.

Fig. 2 provides an overview of how part of the incremental pro-
cessing required for a traffic surveillance task we have implemented
is organized as a set of distinct DyKnow knowledge processes.

At the lowest level, a helicopter state estimation component uses
data from an inertial measurement unit (IMU) and a global position-
ing system (GPS) to determine the current position and attitude of the
UAV. A camera state estimation component uses this information, to-
gether with the current state of the pan-tilt unit on which the cameras
are mounted, to generate information about the current camera state.
The image processing component uses the camera state to determine
where the camera is currently pointing. Video streams from the color
and thermal cameras can then be analyzed in order to generate vision

Chronicle
Recognition

[0, 20] 15, 10]

Symbolic reasoning

[0, 10]
Qualitative spatial relations [10. 20] 10, 10]
(close, behind, same_road, ...)
Geographical Qualitative Spatial
Information Reasoning Temporal Logic
. Progression
Car objects
Sensor Vision|objects
o Color camera |
processing —>| Processing Legend
Thermal camera
Source
Camera|state l:l
Helicopter State | Helicopter [~ Camera State () Computational
Estimation state Estimation it
D T uni
[cps | [Pan-titunit | —> Stream

Figure 2. An overview of how the incremental processing required for a
traffic surveillance task could be organized.

percepts representing hypotheses about moving and stationary phys-
ical entities, including their approximate positions and velocities.

Symbolic formalisms such as chronicle recognition [11] require a
consistent assignment of symbols, or identities, to the physical ob-
jects being reasoned about and the sensor data received about those
objects. Image analysis may provide a partial solution, with vision
percepts having symbolic identities that persist over short intervals
of time. However, changing visual conditions or objects temporarily
being out of view lead to problems that image analysis cannot (and
should not) handle. This is the task of the anchoring system to be
described in the next section, which uses progression of formulas in
a metric temporal logic to evaluate potential hypotheses about the
observed objects. The anchoring system also assists in object classi-
fication and in the extraction of higher level attributes of an object.
For example, a geographic information system can be used to deter-
mine whether an object is currently on a road or in a crossing. Such
attributes can in turn be used to derive relations between objects, in-
cluding qualitative spatial relations such as beside(car, carz) and
close(car1, carz). Concrete events corresponding to changes in such
attributes and predicates finally provide sufficient information for the
chronicle recognition system to determine when higher-level events
such as reckless overtakes occur.

4 Support for Anchoring

Many reasoning systems assume perfect knowledge about the iden-
tity of objects. For example, a planner assumes that all objects in its
planning domain are distinct and unique. An important problem, es-
pecially when bridging the sense-reasoning gap, is therefore to detect
objects in streams of sensor data and to reason about their identities.
The problem of how to create and maintain a consistent correlation
between symbolic representations of objects and sensor data that is
being continually collected about these objects is called the anchor-
ing problem [3], a special case of the symbol grounding problem
[14]. A concrete example is to detect and track cars during traffic
monitoring using a UAV equipped with color and thermal cameras.
Tracking an object, such as a car, through a series of images is
a classical problem. There are many effective solutions for the case
where the object is easily distinguishable and can be tracked with-
out interruptions. However, we must also consider the case where an
object is temporarily hidden by obstacles (or tunnels in the case of
traffic), and where many similar objects may be present in the world.
Then, pure image-based tracking is not a complete solution, since it
usually only considers the information available in the image itself. A

Laser Range

Radar Percept Finder Percept

Vision Percept

Lo e mmm e 1
1
World Object
[]
Off-Road On-Road
Object Object
|
[I]
. Motorcycle .
Car Object Object Truck Object

Figure 3. The example percept (white) / object (gray) hierarchy used in the
traffic monitoring scenario.

more robust approach would need to actively reason about available
knowledge of the world at higher abstraction levels, such as the nor-
mative characteristics of specific classes of physical objects. In the
case of traffic, this would include the layout of the road network and
the typical size, speed, and driving behavior of cars. It has been ar-
gued that anchoring can be seen as an extension to classical tracking
approaches which handles missing data in a principled manner [10].

Existing approaches to anchoring work under the limiting assump-
tion that each individual piece of sensor data, such as a blob found
in a single frame from a video camera, should be anchored to a sym-
bol in a single step. We believe that much can be gained in terms of
accuracy as well as speed of recognition by taking advantage of the
fact that one generally has access to a timed sequence, or stream, of
sensor data related to a particular object.

We have therefore extended DyKnow with a stream-based hierar-
chical anchoring framework for incrementally anchoring symbols to
streams of sensor data [18]. The anchoring process constructs and
maintains a set of object linkage structures representing the best pos-
sible hypotheses at any time. Each hypothesis is continually moni-
tored and refined as more and more information becomes available.
Symbols can be associated with an object at any level of classifica-
tion, permitting symbolic reasoning on different levels of abstraction.

An example hierarchy for traffic monitoring can be seen in Fig. 3.
A world object represents a physical object detected in the world. Its
attributes are based on information from one or more linked percepts
and include the absolute coordinates of the object in the physical
world. World objects could either be on-road objects moving along
roads or off-road objects not following roads. An on-road object has
attributes representing the road segment or crossing the object occu-
pies, enabling more qualitative forms of reasoning, and an improved
position estimation which is snapped to the road. Finally, an on-road
object could be a car, a motorcycle, or a truck. Each level in the
hierarchy adds more abstract and qualitative information while still
maintaining a copy of the attributes of the object it was derived from.
Thus, an on-road object contains both the original position from the
world object and the position projected onto the road network.

Hypotheses about object types and identities must be able to
evolve over time. For example, while it might be determined quickly
that a world object is an on-road object, more time may be required
to determine that it is in fact a car. Also, what initially appeared to be
a car might later turn out to be better classified as a truck. To support
incremental addition of information and incremental revision of hy-
potheses, a single physical object is not represented as an indivisible
object structure but as an object linkage structure.

An object linkage structure consists of a set of objects which are
linked together (note that percepts are also considered to be objects).

Vision Percept World Object On-Road Object Car Object
vp8 wo5 003 co2

Figure 4. An example object linkage structure.

Each object has a type and is associated with a symbol, and repre-
sents information about a particular physical object at a given level
of abstraction. A symbol is anchored if its object is part of an object
linkage structure that is grounded in at least one percept. For exam-
ple, Fig. 4 represents the hypothesis that vision percept vp8, world
object wo5, on-road object 003, and car object co2 all correspond to
the same physical object.

Whenever a new object of a given type is generated, it must be de-
termined whether it also belongs to a particular subtype in the hierar-
chy. For example, a new vision percept originating in image process-
ing may be classified as corresponding to a world object. In this case,
it must also be linked to a world object structure, thereby generating
an object linkage structure. However, it is essential that sensor data
can be anchored even to symbols / objects for which no percepts have
arrived for a period of time. Thus, objects and their symbols are not
immediately removed when their associated percepts disappear, and
any new object at one level might correspond to either a new object
or an existing object at the next level. To reduce the computational
cost, objects that are not likely to be found again are removed. Cur-
rently we discard objects which have not been observed or anchored
for a certain application-dependent time.

Three conditions are used to determine when to add and remove
links between objects belonging to types A and B. These conditions
are written in an expressive temporal logic, similar to the well known
Metric Temporal Logic [21], and incrementally evaluated by Dy-
Know using progression over a timed state sequence.’

The unary establish condition expresses when an object of type A,
which may be a percept or a higher level object, should be linked to
a new object of type B. When a new object of type A is created, the
anchoring system immediately begins evaluating this condition. This
is similar to the Find functionality suggested by Coradeschi and Saf-
fiotti [3], which takes a symbolic description of an object and tries to
anchor it in sensor data. A world object could for example be linked
to a new on-road object if it is on a road for at least five seconds.

The binary reestablish condition expresses the condition for an ob-
ject of type A to be linked to a known object of type B, as in the case
where a new world object corresponds to an existing on-road object
that had temporarily been hidden by a bridge. When a new object of
type A is created, the anchoring system immediately begins to evalu-
ate the re-establish condition for every known object of type B that is
not linked to an object of type A. If and when one of these conditions
becomes true, a link is created between the associated objects. This
is similar to the Reacquire functionality [3]. A link from a world ob-
ject to an existing on-road object could for example be reestablished
if the distance is less than thresh within five seconds.

While two objects are linked, a computational unit generates the
attributes of the more specific object from those of the less specific
object, possibly together with information from other sources.

Finally, since observations are uncertain and classification is im-
perfect, any link created between two objects is considered a hypoth-
esis and is continually validated through a maintain condition. Such
conditions can compare the observed behavior of an object with be-

3 Progression incrementally evaluates formulas in a state sequence. The re-
sult of progressing a formula through the first state in a sequence is a new
formula that holds in the remainder of the state sequence iff the original
formula holds in the complete state sequence.

havior that is normative for its type, and possibly with behavior pre-
dicted in other ways. For example, one might state that an on-road
object should remain continually on the road, maybe with occasional
shorter periods being observed off the road due to sensor error.

If a maintain condition is violated, the corresponding link
is removed. However, all objects involved remain, enabling re-
classification and re-identification at a later time. The state of an ob-
ject having no incoming links will be predicted based on a general
model of how objects of this type normally behave. This is similar to
the Track functionality [3].

5 Support for Planning

One approach to solving complex problems is to use a task planner.
To integrate task planners into an embedded reasoning system there
are a number of issues to consider.

Initial state. For a planner to be able to generate a plan which is
relevant in the current situation it must have an accurate and up-to-
date domain model. In a static environment it is possible to write a
domain model once and for all since the world does not change. In
a dynamic environment, such as a disaster area, we do not have the
luxury of predefined static domain models. Instead, the UAV must
itself generate information about the current state of the environment
and encode this in a domain model.

Execution. Executing an action in a plan generally requires sophisti-
cated feedback about the environment on different levels of abstrac-
tion. For example, a UAV following a three-dimensional trajectory
must continually estimate its position by fusing data from several
sensors, such as GPS and IMU. If it loses its GPS signal due to mal-
function or jamming, vision-based landing may be needed, which
requires processing video streams from cameras in order to estimate
altitude and position relative to the landing site.

Monitoring. Classical task planners are built on the fundamental as-
sumption that the only agent causing changes in the environment is
the planner itself, or rather, the system or systems that will eventually
execute the plan that it generates. Furthermore, they assume that all
information provided to the planner as part of the initial state and the
operator specifications is accurate. This may in some cases be a rea-
sonable approximation of reality, but it is not always the case. Other
agents might manipulate the environment of a system in ways that
may prevent the successful execution of a plan. Sometimes actions
can fail to have the effects that were modeled in a planning domain
specification, regardless of the effort spent modeling all possible con-
tingencies. Consequently, robust performance in a noisy environment
requires some form of supervision, where the execution of a plan is
constantly monitored in order to detect any discrepancies and recover
from potential or actual failures.

We have developed a task planning and execution monitoring frame-
work that handles these issues and integrated it into our unmanned
aircraft system [8]. In the spirit of cognitive robotics, this framework
makes extensive use of Temporal Action Logic (TAL [7]), a logic for
reasoning about action and change. For example, knowledge gath-
ered during plan execution can be used by DyKnow to incrementally
create state structures that correspond to partial logical models in
TAL, representing the actual development of the system and its en-
vironment over time. Desired and expected behaviors can then be
described using TAL formulas.

Example 1 Suppose that a UAV supports a maximum continuous
power usage of M, but can exceed this by a factor of f for up to T

Plan Executor

status -

« command
sequence

« execution

flags Task Planner

DyKnow Command Executor

(TALplanner)

state policies -
status events -

« state
« TP request

plan request - Path Planner

« plan solution Service

Task Procedure

E tion Monit .
xecution Monitor Execution Module

 FCL commands
status events —

Miscellaneous
UAV Services
and Controllers

Figure 5. Task planning and execution monitoring overview

units of time, if this is followed by normal power usage for a period
of length at least 7'. The following formula can be used to detect
violations of this specification:
O Yuav.(power(uav) > M —

power(uav) < f - M Uy~ Ojo,r] power(uav) < M) O

The pervasive use of this logic throughout the higher level delib-
erative layers of the system architecture also provides a solid shared
declarative semantics that facilitates knowledge transfer between dif-
ferent modules. Specifically, TAL also forms the semantic basis for
our task planner TALplanner [6, 23], which is used to generate mis-
sion plans. Basing the execution monitoring framework on the same
logic enables us to automatically extract certain necessary conditions
that should be monitored during execution.

Fig. 5 shows the relevant part of the UAV system architecture asso-
ciated with task planning, plan execution, and execution monitoring.

At the top of the center column is the plan executor which given a
mission request uses DyKnow to acquire essential information about
the current contextual state of the world and the UAV’s own internal
state. Together with a domain specification and a goal specification
related to the current mission, this information is fed to TALplanner,
which outputs a plan that will achieve the designated goals, under
the assumption that all actions succeed and no failures occur. Such a
plan can also be automatically annotated with global and/or operator-
specific TAL formulas representing conditions to be monitored dur-
ing execution in order to relax the assumption of success.

The plan executor translates operators in the high-level plan re-
turned by TALplanner into lower level command sequences which
are given to the command executor. The command executor is re-
sponsible for controlling the UAV, either by directly calling the func-
tionality exposed by its lowest level Flight Command Language
(FCL) interface or by using Task Procedures, a type of reactive pro-
cedures, through the Task Procedure Execution Module.

During execution, the command executor adds formulas to be
monitored to the execution monitor. The monitor configures Dy-
Know to continuously provide it with current states and uses a pro-
gression algorithm [8] to partially evaluate monitor formulas and
promptly detect violations. States are generated from potentially
asynchronous streams by a synchronization mechanism that uses the
formal semantics of the input streams as specified by declarative poli-
cies to determine when states should be created.

If a violation is detected, this is immediately signaled by the exe-

cution monitor as an event to the command executor, which can sus-
pend the execution of the current plan, invoke an emergency brake
command if required, optionally execute an initial recovery action,
and finally signal the new status to the plan executor. The plan ex-
ecutor is then responsible for completing the recovery procedure.

The fully integrated system is implemented on our UAVs. It shows
that this approach allows integrating high-level deliberative capabil-
ity with lower-level reactive and control functionality.

6 Discussion

In the beginning of the paper we introduced a number of require-
ments for middleware for embedded reasoning. In this section we
argue that DyKnow provides a significant degree of support for each
of those requirements.

Support integration of existing reasoning functionality. Streams
provide a powerful yet very general representation of information
varying over time, and any reasoning functionality whose inputs can
be modeled as streams can easily be integrated using DyKnow. As
two concrete examples, we have shown how progression of temporal
logical formulas [8] and chronicle recognition [20] can be integrated
using DyKnow.

Support distributed sources and processing. DyKnow satisfies this
requirement through the use of the general concepts of streams and
knowledge processes. Since the implementation is CORBA-based it
provides good support for distributed applications. DyKnow explic-
itly represents both the time when information is valid and when it
is available. Therefore it has excellent support for integrating infor-
mation over time even with varying delays. DyKnow also provides a
very useful stream synchronization mechanism that uses the formal
semantics of the declarative policies to determine how to synchro-
nize a set of asynchronous streams and derive a stream of states.
This functionality is for example used to create synchronized state
sequences over which temporal logical formulas can be evaluated.

Support processing on many levels of abstraction. General sup-
port is provided in DyKnow through streams, where information can
be sent at any abstraction level from raw sampled sensor data and
upwards. Knowledge processes also provide general support for ar-
bitrary forms of processing. At the same time, DyKnow is explicitly
designed to be extensible to provide support for information struc-
tures and knowledge processing that is more specific than arbitrary
streams. DyKnow directly supports specific forms of high-level in-
formation structures, such as object linkage structures, and specific
forms of knowledge processing, including formula progression and
chronicle recognition. This provides initial support for knowledge
processing at higher levels than plain streams of data. In [17] we ar-
gue that this provides an appropriate framework for supporting all
the functional abstraction levels in the JDL Data Fusion Model [27].

Support quantitative and qualitative processing. Streams provide
support for arbitrarily complex data structures, from real values to
images to object structures to qualitative relations. The structured
content of samples also allows quantitative and qualitative informa-
tion to be part of the same sample. DyKnow also has explicit support
for combining qualitative and quantitative processing in the form of
chronicle recognition, progression of metric temporal logical formu-
las, and object linkage structures. Both chronicles and temporal log-
ical formulas support expressing conditions combining quantitative
time and qualitative features.

Support bottom-up data processing and top-down model-based
processing. Streams are directed but can be connected freely, giving
the application programmer the possibility to do both top-down and

bottom-up processing. Though this article has mostly used bottom-up
processing, chronicle recognition is a typical example of top-down
model-based processing where the recognition engine may control
the data being produced depending on the general event pattern it is
attempting to detect.

Support management of uncertainty. In principle, DyKnow sup-
ports any approach to representing and managing uncertainty that
can be handled by processes connected by streams. It is for exam-
ple easy to add a probability or certainty factor to each sample in a
stream. This information can then be used by knowledge processes
subscribing to this stream. Additionally, DyKnow has explicit sup-
port for uncertainty in object identities and in the temporal uncer-
tainty of complex events that can be expressed both in quantitative
and qualitative terms. The use of a metric temporal logic also pro-
vides several ways to express temporal uncertainty.

Support flexible configuration and reconfiguration. Flexible con-
figuration is provided by the declarative specification language KPL,
which allows an application designer to describe the processes in a
knowledge processing application and how they are connected with
streams satisfying specific policies. The implementation uses the
specification to instantiate and connect the required processes.

Provide a declarative specification of the information being gen-
erated and the available information processing functionality. This
requirement is satisfied through the formal language KPL for declar-
ative specifications of DyKnow knowledge processing applications.
The specification explicitly declares the properties of the streams by
policies and how they connect the different knowledge processes.

7 Related Work

Stream processing has a long history [26] and today data stream man-
agement systems such as XStream [12], Aurora [2], and Borealis [2]
provide continuous query languages supporting filters, maps, and
joins on streams. Similarly, systems for complex event processing,
such as Cayuga [1] and SASE [13], provide specification languages
for defining complex events in terms of more primitive events oc-
curring in event streams. However, these systems do not provide the
appropriate abstractions for stream-based reasoning by themselves.
There are also many development frameworks for robotic systems
[22,24] which focus on integration aspects, but do not explicitly
provide support for stream-based reasoning. What these frameworks
lack are formal ways to specify streams. For example, in DyKnow it
is possible to formally specify the start and end time of a stream, the
sampling period, and how to approximate missing values. DyKnow
streams are also active, producing samples according to the seman-
tics of a policy while other frameworks use streams only to transport
given input to multiple subscribers. Another important aspect that is
often not supported is an explicit representation of time. In DyKnow
each sample is tagged with a valid and an available time which makes
it possible to reason about when a value is true, when it was actually
available to the process, and how much it was delayed by previous
processing. Using policies and these time-stamps synchronized states
can be extracted from asynchronous streams with a precise meaning.

8 Conclusion

As autonomous systems become more sophisticated and are expected
to handle increasingly complex and challenging tasks and missions,
there is a growing need to integrate a variety of reasoning functionali-
ties. In this paper we have given a high-level overview of the stream-
based middleware DyKnow and how it can support embedded rea-

soning. We discussed general requirements on this type of middle-
ware and showed how DyKnow can support stream-based reasoning
such as anchoring and planning in an autonomous system. We have
thereby taken the first steps towards developing powerful, robust, and
general support for stream-based reasoning, which we believe will
continue to increase in importance since it captures the incremen-
tal nature of the information available and the continuous reasoning
necessary to react to rapid changes in the environment.

REFERENCES

[1] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda,
M. Riedewald, M. Thatte, and W. White, ‘Cayuga: a high-performance
event processing engine’, in Proc. ICMD, (2007).

[2] U. Cetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska,
M. Cherniack, J. Hwang, W. Lindner, S. Madden, A. Maskey, A. Rasin,
E. Ryvkina, M. Stonebraker, N. Tatbul, Y. Xing, and S. Zdonik, ‘The
Aurora and Borealis Stream Processing Engines’, in Data Stream Man-
agement: Processing High-Speed Data Streams, (2007).

[3] S. Coradeschi and A. Saffiotti, ‘An introduction to the anchoring prob-
lem’, Robotics and Autonomous Systems, 43(2-3), 85-96, (2003).

[4] P. Doherty, ‘Advanced research with autonomous unmanned aerial ve-
hicles’, in Proc. KR, (2004).

[5] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and
B. Wingman, ‘A distributed architecture for autonomous unmanned
aerial vehicle experimentation’, in Proc. DARS, (2004).

[6] P. Doherty and J. Kvarnstrom, ‘TALplanner: A temporal logic-based
planner’, Al Magazine, 22(3), 95-102, (2001).

[7] P. Doherty and J. Kvarnstrom, ‘Temporal action logics’, in Handbook
of Knowledge Representation, Elsevier, (2008).

[8] P.Doherty, J. Kvarnstrom, and F. Heintz, ‘A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft sys-
tems’, J. of Auton. Agents and Multi-Agent Systems, 19(3), (2009).

[9] P. Eugster, P. Felber, R. Guerraoui, and A-M. Kermarrec, ‘The many
faces of publish/subscribe’, ACM Comput. Surv., 35(2), (2003).

[10] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plotz, G. A. Fink,
and G. Sagerer, ‘Multi-modal anchoring for human-robot interaction’,
Robotics and Autonomous Systems, 43(2-3), 133-147, (2003).

[11] M. Ghallab, ‘On chronicles: Representation, on-line recognition and
learning’, in Proc. KR, (1996).

[12] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrishnan,
and S. Madden, ‘Xstream: a signal-oriented data stream management
system’, in Proc. ICDE, (2008).

[13] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, and G. Anderson,
‘Sase: Complex event processing over streams’, in Proc. CIDR, (2007).

[14] S. Harnad, ‘“The symbol-grounding problem.’, Physica, D(42), (1990).

[15] FE Heintz, DyKnow: A Stream-Based Knowledge Processing Middle-
ware Framework, Ph.D. dissertation, Linkopings universitet, 2009.

[16] F. Heintz and P. Doherty, ‘DyKnow: An approach to middleware for
knowledge processing’, J. of Intelligent and Fuzzy Syst., 15(1), (2004).

[17] FE Heintz and P. Doherty, ‘A knowledge processing middleware frame-
work and its relation to the JDL data fusion model’, J. of Intelligent and
Fuzzy Syst., 17(4), (2006).

[18] F. Heintz, J. Kvarnstrom, and P. Doherty, ‘A stream-based hierarchical
anchoring framework’, in Proc. IROS, (2009).

[19] F. Heintz, J. Kvarnstrom, and P. Doherty, ‘Bridging the sense-reasoning
gap: DyKnow — stream-based middleware for knowledge processing’,
Journal of Advanced Engineering Informatics, 24(1), 14-26, (2010).

[20] E Heintz, P. Rudol, and P. Doherty, ‘From images to traffic behavior —
a UAV tracking and monitoring application’, in Proc. Fusion, (2007).

[21] R. Koymans, ‘Specifying real-time properties with metric temporal
logic’, Real-Time Systems, 2(4), 255-299, (1990).

[22] J. Kramer and M. Scheutz, ‘Development environments for au-
tonomous mobile robots: A survey’, Autonomous Robots, 22(2), (2007).

[23] J. Kvarnstrom, TALplanner and Other Extensions to Temporal Action
Logic, Ph.D. dissertation, Linkopings universitet, 2005.

[24] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, ‘Middleware for robotics: A
survey’, in Proc. RAM, (2008).

[25] Object Management Group. The CORBA specification v 3.1, jan 2008.

[26] R. Stephens, ‘A survey of stream processing’, Acta Informatica, 34(7),
(1997).

[27] F. White, ‘A model for data fusion’, in Proc. Sensor Fusion, (1988).

