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Abstract. Integration of continual planning, monitoring, reason-
ing and lifelong experimental learning is necessary for a robot to
deal with failures by gaining experience through incremental learn-
ing and using this experience in its future tasks. In this paper, we
propose a scene interpretation system combining 3D object recogni-
tion and scene segmentation in order to maintain a consistent world
model involving relevant attributes of the objects and spatial relations
among them. This system provides the required information for our
lifelong experimental learning framework based on Inductive Logic
Programming (ILP) for framing hypotheses. Necessary attributes are
determined for both known and unknown objects. For known ob-
jects, size, shape, color and material attributes are provided before-
hand in the model. For unknown objects, observable attributes are
determined based on similarities with modeled objects. Using seg-
mentation masks, new models are automatically extracted for these
objects. The experiments to evaluate our system include both on-
ground and tabletop scenarios on our Pioneer 3-AT robot and Pioneer
3-DX based humanoid robot. The results of these experiments show
that the required inputs for learning can be extracted successfully
from the environment by using our system for interpreting the scenes
based on the data acquired through the onboard RGB-D sensors of
our robots.

1 Introduction

While a cognitive robot executes its plan in the real-world, different
types of failures may occur due to the gap between the real-world
facts and their symbolic counterparts (Figure 1), unexpected events
affecting the current state of the world or internal problems [11]. To
deal with these types of failures, a consistent world modeling [16]
is essential for efficient execution monitoring. Symbolic representa-
tions of world facts should continually be updated through the se-
quence of states. Furthermore, the robot also needs to gain experi-
ence during its lifelong operation and use its experience for different
contexts to guide its future tasks. This requires having onboard learn-
ing abilities to frame hypotheses through action execution experi-
ences. Lifelong experimental learning based on Inductive Logic Pro-
gramming (ILP) can be considered for this purpose [12]. Hypotheses
are framed for mapping execution contexts to action failures. Execu-
tion contexts including the observable attributes of and the relations
among the objects are represented in first-order logic sentences or
probabilistic graphical models. The derived hypotheses can further
be generalized by incorporating background knowledge and are to
be used for guidance in planning [22].

Consider in a 3-block (a, b, c) stacking tabletop scenario, after
on(b, c) is achieved, execution of stack(a, b) fails. The hypothesis
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Figure 1. Planning operators are symbolic representations of actions in the
real world. The scenes should be continually interpreted and symbolically
represented to plan, monitor action execution and apply further reasoning.

explaining this relation is given as follows:

holding(a) ∧ clear(b) ∧ on table(c) ∧ on(b, c)∧
red(a) ∧ green(b) ∧ yellow(c)∧

cube(a) ∧ cube(b) ∧ cube(c)

⇒ fails(stack(a, b))

(1)

where the predicates in the premise part of this implication should be
maintained in the knowledge base (KB) by temporal interpretation of
the scenes to date. Efficient and consistent scene interpretation is a
prerequisite for determining predicates related to both the attributes
of the objects (e.g., red(a), cube(a)) and the spatial relations (e.g.,
on table(c), on(b, c)) among them. These predicates should be con-
tinually monitored for detecting scene anomalies.

Figure 2 illustrates a classification for properties of physical ob-
jects to be manipulated by robots. Among these attributes, size,
shape, color, texture, location, orientation and grasp positions can be
extracted from a scene by applying 3D vision algorithms on the data
obtained using an RGB-D sensor. However, further sensory modal-
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Figure 2. A general classification for properties of physical objects to be
manipulated by robots. If the robot does not have a predefined model for the

values of these attributes, some of them can be acquired by observations.



ities are needed to extract the other properties. When the robot in-
teracts with known objects, it can use their predefined models (i.e.,
templates) and different properties encoded in the model. If the ob-
ject models are not known in advance, the robot is expected to extract
objects’ some of the observable visual features (e.g., color features,
texture features such as SIFT [15], 3D shape features [2], etc.) as
well as their spatial relations.

We propose a scene interpretation system combining 3D object
recognition and scene segmentation results in order to maintain a
consistent world model involving relevant attributes of objects and
spatial relations among them. This system provides the required in-
formation for our lifelong experimental learning framework based on
Inductive Logic Programming (ILP) for framing hypotheses. Neces-
sary attributes are determined for both known and unknown objects.
For known objects, size, shape, color and material attributes are pro-
vided beforehand in the model. For unknown objects, the visual at-
tributes are determined based on similarities with modeled objects.
Our system can also automatically create templates for unknown ob-
jects by using masks created by segmentation. These templates are
then stored along with the extracted attributes.

Throughout the paper, we first present earlier work related to
scene interpretation. Then, we describe our system for determining
attributes related to known objects based on 3D recognition and ex-
tracting these attributes from the scene for unknown objects based on
segmentation. We also show how the spatial relations among all the
objects are maintained as well as the attributes of the objects in a con-
sistent world model. We then give empirical results of our approach
followed by the conclusions.

2 Background

A qualitative description of the scene could be extracted by using
scene interpretation based on the quantitative data obtained using vi-
sual sensors [16]. Various approaches exist for interpreting the scene.
In some of these works, qualitative spatial relations are extracted
from the scene by using 2D visual data [6, 20]. In another work,
topological spatial relations on and in are determined among the rec-
ognized objects using SIFT keypoints [15] and these relations are
used for guiding the search of the robot [19]. There is another study
with a similar purpose of improving the search of a robot by con-
sidering qualitative spatial relations based on a Gaussian Mixture
Model (GMM) [14]. Another work is based on extracting proximity-
based high-level relations (e.g., relative object positions to find ob-
jects that are generally placed together) by considering 3D Euclidean
distances between pairs of recognized objects in the scene [13]. In
another study, a probability model for the symbolic world represen-
tation is constructed based on observations from the environment and
this model is used for manipulation planning [3]. Another relevant
study is based on learning symbolic representations of manipulation
actions by extracting relevant features from a few teacher demonstra-
tions [1]. Moreover, there are some studies using semantic knowl-
edge for scene interpretation [8, 9]. Hawes et al. have proposed a
system for reasoning about spatial relations based on context (e.g.,
nearby objects, functional use etc.) in previously unseen scenes [9].
To maintain a consistent model of the world, Elfring et al. have pro-
posed a system based on probabilistic multiple hypothesis anchoring
for associating data from different sources [4].

Different from these studies, our system combines 3D recognition
and segmentation results to create and maintain a consistent world
model involving attributes of the objects and spatial relations among
them. These attributes are extracted from the scene to be used in our

lifelong learning framework based on Inductive Logic Programming
(ILP) [12]. Unknown objects are modeled by using the segmenta-
tion output to determine their sizes and considering similarities with
existing models to determine their shapes and colors. Then, these
models are also stored as templates to be used for recognition along
with the extracted attributes.

3 Extracting Predicates from Scenes
In this work, we propose a temporal scene interpretation system for
cognitive robots to represent their world models symbolically in their
KBs including the attributes of and the relations among the objects
in the environment. We focus on the extraction of size, shape and
color attributes as well as the following unary and binary spatial re-
lations: on, on ground/on table, clear and near for object manipula-
tion scenarios. These predicates are generated and updated over time
to maintain a consistent world model. Later, these predicates are to
be used for monitoring execution and framing hypotheses for failure
cases. The raw data taken from the environment by the sensors of
the robot are processed through a series of different operations (e.g.,
3D object recognition, scene segmentation etc.) running in parallel to
maintain a more enhanced interpretation of the world. The system is
designed to recognize modeled objects with manually fed templates
and attribute values. Furthermore, a segmentation based automatic
template and attribute extraction method is proposed for unknown
objects.

3.1 Associating the Attributes of Known Objects
In our system, objects are modeled using LINE-MOD templates [10]
to recognize them in the environment. LINE-MOD is a linearized
multi-modal template matching approach considering both the color
gradients around the borders of the object and the surface normals
inside the template of the object. This method is suitable for ob-
ject recognition tasks in object manipulation scenarios for cognitive
robots as it is fast enough to be processed in real-time using an ordi-
nary computer. We further involve color histograms in the HSV color
space to verify the recognition results obtained from LINE-MOD in
order to have more reliable outcomes [5]. V(value) channel is not
considered while creating these histograms as it is strongly depen-
dent on the illumination conditions.

In order to maintain a consistent world model by eliminating
wrong recognition results due to noisy data obtained using the RGB-
D camera, a temporal filtering method is used [16]. This system gen-
erates and maintains objects in the world model and their attributes
depending on the cumulative recognitions made by LINE-MOD. Be-
fore determining an object’s attributes, first, a predicate object(oi)
is created in the KB representing the existence of an object and is
associated with a temporal confidence value (cti) for representing the
belief on the existence of the object at time step t. This value is com-
puted with the following formula:

cti = ct−1
i +


−0.1, if

∑
sj

ctij = 0 ∧
∑
sj

f t
ij > 0∑

sj

wj · f t
ij · ctij , if

∑
sj

ctij > 0 ∧ ct−1
i < 1

0, otherwise

(2)

When an object is detected in the scene, the confidence value for
the existence of this object is increased based on similarity values
(Formula 2 Equation 2). ctij denotes the match similarity of the recog-
nition of object oi by source sj (LINE-MOD, LINE-MOD&HS or
segmentation), which has an empirically determined weight wj that



specifies the reliability of the source. Similarity value for segmenta-
tion is taken as 1 as it does not involve matching based on similarity.
According to our previous experiments, we have observed that using
LINE-MOD along with color histograms is more reliable than only
using LINE-MOD [5]. Depending on the robot’s location and orien-
tation, objects in some portions of the environment are expected to be
recognized while those that are outside the robot’s field of view (f t

ij)
cannot be detected. This field of view is determined by the range of
the RGB-D sensor and the recognition performance [16]. When an
object oi is not in the robot’s field of view, its confidence value is
preserved (Formula 2 Equation 3).

Recognition results on intersecting regions are treated as belong-
ing to the same object even the recognized types and colors are differ-
ent. For this case of conflicting assignments, the possible types and
colors for an object are held in weighted lists to find the likely values.
The type and color with the maximum likelihoods are then predicted
to be the real type and color of the object in the final decision. Dele-
tion of an object from the KB is performed gradually by considering
the noise in the obtained sensor data as the robot moves in the envi-
ronment. If the robot cannot recognize an object that is expected to
be recognized in a location within its field of view in a time step t,
the confidence value for the object is decreased by 0.1 (Formula 2
Equation 1). When the confidence value of an object becomes zero,
the object is deleted from the KB.

3.2 Reasoning About the Attributes of Unknown
Objects

It is likely to encounter unknown objects as the robot explores its
environment (perception in the wild). To reason about these objects,
besides a template-based recognition method, a depth-based segmen-
tation algorithm is applied to the point cloud acquired from the RGB-
D sensor. Organized Point Cloud Segmentation [21] is used for this
purpose. The point cloud frame gathered from the sensor is first fil-
tered such that the points farther than a given threshold (empirically
determined as 2 m) are removed. Then, planar regions above a cer-
tain size (empirically determined as 10,000 points) are segmented
out since they represent large planes such as ground, table, and walls.
On the points of the remaining cloud, Connected Component Label-
ing is applied using Euclidean distance as a comparison metric [21].
Here, each label represents a cluster. The clusters having less points
than the lower threshold and more points above the upper threshold
(500-2000 points for ground robot scenarios and 300-1000 points for
tabletop scenarios) are discarded. The others are defined as object
clusters/segments, and their sizes and center locations in the global
map are calculated. A sample output from the segmentation algo-
rithm depicting three objects can be seen in Figure 3.

In order to extract only the target objects in the scene, segments
that are not on the ground/table or larger than a certain threshold are
further discarded by the scene interpreter. As the objects detected
only by segmentation have no type information in the KB, it is not
possible to associate encoded attributes with these objects. However,
values for the observable attributes can be determined by further rea-
soning based on similarities with the modeled objects. To be able
to extract visual features for unknown objects detected as segments,
binary masks are passed to the automated template generation pro-
cedure for creating multi-modal LINE-MOD templates and HS his-
tograms to reason about the shape and color of unknown objects.
When an unknown object is added to the KB, the automatically cre-
ated LINE-MOD template for this object is compared with the tem-
plates of the known objects in order to find the object with the most

(a) (b)

Figure 3. (a) Point cloud of the scene and (b) output of segmentation
where the two planes are determined and the three objects are segmented.

similar shape. Similarity threshold is taken as half of the one used in
recognition. To determine the color of an unknown object, HS color
histogram comparison is applied with the histograms of the modeled
objects and the result with the best correlation above 0.2 is selected.
In Figure 4, an example case is given to illustrate the results of LINE-
MOD, LINE-MOD&HS, segmentation and the fused information in
the KB. In the given case, the red toy car is not modeled beforehand.
However as it can be seen from the figure, its shape and color at-
tributes can be determined by using automatically created templates.
For its shape, a similar sized prism is selected as the most similar
template which is the one that belongs to the pink box. Similarly, its
color is determined to be pink. Note that the color histogram of the
cylindrical covered tape is not provided. Since a similar color ob-
ject is not modeled, the color of the object cannot be determined by
recognition, and only its shape information is taken from the output
of only LINE-MOD.

3.3 Determining Spatial Relations Among Objects

In object manipulation tasks, extracting spatial relations among the
objects is of great importance as well as the attributes describing
these objects. Two spatial relations are considered in our system:
on and near [16]. Moreover, spatial predicates associated with the

(a) (b)

(c) (d)

Figure 4. Construction of the KB: (a) LINE-MOD results, (b) LINE-MOD
&HS results, (c) segmentation results and (d) KB fusing all this information.



on relation in the blocks world domain (i.e., on table and clear) are
determined along with the stability for the on relation.

Initially all the present objects in the world model are assumed to
be on table (on ground for ground robot scenarios) and clear. The
on relation is determined as follows for each pair of objects (oi, ok)
by checking whether their projections on the ground plane (i.e., xy
plane) overlap and the bounding box of one of the objects lie on the
bounding box of the other one.

∀oi, ok,¬(DCxy(oi, ok) ∨ ECxy(oi, ok)) ∧ UP (oi, ok)

⇒ on(oi, ok)
(3)

where DC(disconnected) and EC(externally connected) are topolog-
ical predicates of RCC8 [18] and UP is a directional predicate which
can be considered as the 3D expansion of N(north) from cardinal di-
rection calculus [7]. stability is determined for stacks of objects as
inversely proportional to the size of the unsupported region of the
top object. For the objects involved in the on relation, on table (or
on ground) and clear predicates are updated as follows,

∀oi, ok, on(oi, ok)⇒ ¬on table(oi) ∧ ¬clear(ok) (4)

For each pair of localized objects in the environment, the near rela-
tion is determined by comparing the distance between the centers of
these objects in each dimension (i.e., x, y and z) with the sum of the
corresponding sizes in that dimension.

4 Experimental Evaluation

To evaluate the proposed system, we have conducted both ground
and tabletop experiments. In ground experiments, we have used our
Pioneer 3-AT robot and the objects shown in Figure 5. Tabletop ex-
periments have been made on our humanoid robot with a Pioneer
3-DX base and the object set shown in Figure 6. Both robots are
equipped with front sonar sensors to detect obstacles and Hokuyo
laser rangefinders on top of the bases of them facing forward for
mapping and localization in the environment. We also placed ASUS
Xtion Pro Live RGB-D cameras on top of the laser rangefinders for
3D object recognition and segmentation. Humanoid robot has an ad-
ditional RGB-D camera mounted on its head to be used for interpret-
ing the scene in tabletop object manipulation scenarios. The robots
have 2-DOF grippers to manipulate objects. Intel i5 laptops with
Ubuntu 12.04 are used to control the robots and all the system is
implemented under ROS (Robot Operating System) framework [17].

Figure 5. Pioneer 3-AT robot and the objects used in the ground exp.

Figure 6. Pioneer 3-DX and the objects used in the tabletop exp.

4.1 Ground Experiments

In these sets of experiments, we have evaluated the performance of
our proposed system using our ground robot on the objects shown in
Figure 5. These objects are a green plastic bowling pin, a red plastic
bowling pin, a green cylindrical box, a red cylindrical box, two black
boxes with different sizes, a small pink ball and a big beach ball. In
these experiments, threshold for matching LINE-MOD templates is
set to 80% considering the noise in the acquired data from the RGB-
D sensor and threshold for HS histogram correlation is determined
to be 0.3 to deal with changing lighting conditions.

First, we have evaluated the validity of the automatically extracted
attributes for unknown objects in the physical world. In this set of ex-
periments (involving 20 trials by 5 trials per each object), the models
of the large black box, beach ball and the cylinders have been pro-
vided beforehand. The shape and color attributes of the remaining
objects are tested. The results are given in Table 1. As seen from these
results, the proposed similarity-based reasoning approach generally
gives reasonable values for the shape and color attributes. The shapes
of the plastic bowling pins cannot be determined in half of the trials
as there is not a similar shaped object in the stored models and in the
other half of the trials these pins are determined to be cylindrical as
the curvature of the modeled cylinders is somewhat similar to that of
the pins. Similarly, the pink ball has been observed to be classified as
a cylinder in one of the trials. For the small box, its shape has been
determined correctly as a prism in all 5 trials. It seems in general,
the most similar color has been observed to be assigned for each un-
known object. In some trials (e.g., the black box), wrong values are
determined for the color due to changing illumination conditions.

Table 1. Confusion matrix for unknown objects in the ground exp.

Shape Color
prism cylinder sphere none green red black mixed none

green pin 0 2 0 3 5 0 0 0 0
red pin 0 3 0 2 0 4 1 0 0
pink ball 0 1 3 1 0 5 0 0 0
black box 5 0 0 0 0 1 3 1 0



Second, the determined spatial relations among the objects in the
world model have been evaluated using precision, recall and F-score
measures. This set of experiments have been conducted on 20 differ-
ent scenes for each case with the scenes involving objects having the
on relation, the scenes involving objects having the near relation and
the scenes involving no pairwise object relations. As seen from the
results presented in Table 2, our system can successfully determine
relations for/among the objects in most of the trials. The highest er-
ror rates are observed for the on relation and determining its stability
where the former is mainly caused by object recognition and seg-
mentation problems, and the latter is due to alignment problems. The
success in determining the on relation also accounts for the errors
in the clear and on ground relations. near relation is observed to be
determined correctly in all the scenes.

Table 2. Success in extracting spatial relations in the ground exp.

Precision Recall F-Score
on 94.74% 90.00% 92.31%
stable 88.89% 100.00% 94.12%
on ground 97.44% 98.70% 98.06%
clear 97.44% 98.70% 98.06%
near 100.00% 100.00% 100.00%

4.2 Tabletop Experiments

These sets of experiments have been conducted to see whether the
results for the ground experiments are reproduced for smaller ob-
jects suitable for tabletop object manipulation tasks. The used objects
are a pink paper box, a brown cylindrical covered tape, a yellow toy
car, a red toy car, a wooden toy wagon, a beige world globe, a toy
pumpkin and a white half spherical squeezed plastic bag (See Fig-
ure 6). Different from the ground experiments, similarity threshold
for LINE-MOD is taken as a higher value (i.e., 90%) to have more
reliable recognition results for these smaller objects.

First, we have evaluated the validity of the determined attributes
for unknown objects. In this set of experiments (involving 20 trials by
5 trials per each object), the models of the pink box, the brown cylin-
drical tape, the yellow toy car and the beige world globe have been
provided beforehand. The shape and color attributes of the remain-
ing objects are validated. Similar results are obtained as the ground
experiments (See Table 3). Note that since the shape of the yellow
car is encoded in the KB as a prism, the shape of the red car is auto-
matically determined as a prism in all the trials. The validity of color
values are better than that of the ground experiments as the lighting
conditions are more stable.

Table 3. Confusion matrix for unknown objects in the tabletop exp.

Shape Color
prism cylinder sphere none pink yellow brown beige none

red car 5 0 0 0 5 0 0 0 0
pumpkin 0 4 1 0 0 1 0 0 4
wagon 5 0 0 0 0 1 0 4 0
plastic bag 0 1 4 0 0 0 0 5 0

Second, the determined spatial relations among the objects in the
world model have been evaluated using the same measures as in the
ground experiments with the same number of trials for each case
(See Table 4). Slightly better results are obtained for the tabletop

objects as the recognition performance is better due to more stable
illumination conditions.

Table 4. Success in extracting spatial relations in the tabletop exp.

Precision Recall F-Score
on 100.00% 95.00% 97.44%
stable 94.44% 94.44% 94.44%
on ground 98.04% 100.00% 99.01%
clear 98.04% 100.00% 99.01%
near 100.00% 100.00% 100.00%

4.3 Scene Interpretation Experiments

Finally, we have conducted object manipulation experiments on Pio-
neer 3-AT robot to evaluate the performance of the scene interpreter.
In this set of experiments, the robot is given the task of recognizing
and collecting objects (see Figure 7 for the objects and how they are
placed in the environment) from the environment and moving them
to a given destination. The used objects are two cylindrical boxes in
different colors, three plastic bowling pins in different colors, three
small balls in different colors and two big balls in different colors.
These similar shaped and similar colored objects are selected to en-
sure confusion of types and colors for testing our scene interpreter
in a challenging scenario. The detection results for the types of ob-
jects using LINE-MOD and for the colors of objects using LINE-
MOD&HS histograms are given in Table 5 and Table 6 along with
the interpretations for each case. The numbers in the tables show
the number of detections obtained for each object as the objects are
maintained in the KB. As seen from these results, the robot obtains
wrong detections for the types and the colors of some of the objects.
This is mainly caused by the noise in the acquired data from the
RGB-D camera while the robot is moving in the environment. For ex-
ample, the robot recognizes small balls on the surface of big balls or
on the top of cylindrical boxes. The colors of similar shaped objects
are also confused using LINEMOD&HS histograms due to changing
light conditions from different angles and the noisy camera data. The
most remarkable erroneous detection has been made for the type of
the beach ball. Although the numbers of correct and wrong detec-
tions are the same, the interpreter concludes with the correct type in
the KB for the beach ball as the detections for the type big ball have
higher similarity values. When all these results are examined, it can
be seen that the scene interpreter has concluded the correct type and
color for each of the objects manipulated by the robot in this set of
experiments.

Figure 7. The objects manipulated by our Pioneer 3-AT robot.



Table 5. Success in interpreting types of objects.

cylinder small ball big ball pin interpretation
red cylinder 57 6 0 4 cylinder
green cylinder 64 0 0 0 cylinder
pink ball 0 123 0 0 small ball
purple ball 0 134 0 0 small ball
yellow ball 0 64 0 0 small ball
orange ball 0 9 23 0 big ball
beach ball 0 14 14 0 big ball
red pin 0 0 0 66 pin
green pin 0 0 0 79 pin
blue pin 0 1 0 68 pin

Table 6. Success in interpreting colors of objects.

red green pink purple yellow orange mixed blue interpretation
red cylinder 20 0 0 0 0 0 0 0 red
green cylinder 0 26 0 0 0 0 0 0 green
pink ball 0 0 40 0 11 0 0 0 pink
purple ball 0 0 0 37 9 0 0 0 purple
yellow ball 0 0 0 0 34 0 0 0 yellow
orange ball 0 0 0 0 0 11 0 0 orange
beach ball 0 0 0 0 3 0 8 0 mixed
red pin 26 0 0 0 0 0 0 0 red
green pin 0 22 0 0 0 0 0 0 green
blue pin 0 0 0 0 0 0 0 24 blue

5 Conclusion
The temporal scene interpreter presented in this paper is designed for
automated extraction of the required predicates to be used in our life-
long experimental learning framework based on ILP. Attributes of the
objects and spatial relations among them can be used as the premise
parts of hypotheses to reason about failure situations and to guide the
future decisions of the robot. First, we have presented the attributes
that are considered for hypothesis generation and which of them can
be determined from visual data obtained using an RGB-D sensor.
Then, we have demonstrated how the required attributes are mod-
eled for known objects and how observable attributes of unknown
objects can be derived from the scene in a consistent world modeling
framework. Finally, we have shown how the spatial relations among
the objects in the world model are determined to represent the states
and the execution contexts during runtime. The proposed scene inter-
preter is evaluated on object manipulation experiments in which the
robot is given the task of recognizing objects in the environment and
moving them to a given destination. The results of these experiments
indicate that the presented system can be used to extract the required
predicates from the scene to be used as an input to our lifelong learn-
ing framework based on ILP.
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