
Knowledge-Aware Execution of Programs in IndiGolog
Clemens Mühlbacher and Gerald Steinbauer1

Abstract.
Agents that act in dynamic environments often face situations

where their belief about the world is in contradiction with reality.
The lack of secured knowledge may let the agents perform wrong
or even dangerous actions. In order to deal with this two different
approaches can be used. One approach limits the reasoning to that
knowledge that is secure while the other approach actively diagnose
and repair problems in the knowledge. In this paper we briefly dis-
cuss how the two approaches can be combined in order to improve
the robustness of execution of high-level IndiGolog programs con-
trolling an agent.

1 Introduction
An autonomous agent must deal with the dynamics in its environ-
ment. This is especially challenging as the world often does not
evolve as the agent expects. For example consider a simple robot
which patrol between several rooms in an office environment. Due
to the nature of the office environments the doors can be opened
or closed from humans without notifying the agent. Thus the agent
needs to be capable to deal with a situation that the door is closed but
the agent has detected that the door was open 10 minutes ago. But
the environment can also change in an unexpected way if an action
does not result in the effect the agent is expecting. For example if the
agent wants to pick up an object but the object was too slippy. Thus
the agent does not hold the object in its hand after the pick up action.

Many different approaches where proposed to deal with changes
in the environment; see for example [6], [8] or [12]. Many of those
approaches use a ranking to specify what happens with some likeli-
hood. It is very common in many approaches to specify the ranking
in such a way that the recent sensing outcome is considered to be
correct in the best ranked alternatives. Such an approach seems to
be promising to robustly fulfill a task [18]. But it can result in spuri-
ous results as the approach assume trustworthy sensors. For example
consider an agent which senses if a door is closed every 10 minutes.
If the door is opened after some time the agent can reason that either
someone has opened the door or that the sensing was wrong. If the
agent would just use the newest sensing information the agent would
belief the door is opened even in a case the sensing was wrong. Thus
the agent may raise an alarm without a reason. If the agent track both
hypotheses and try to find the hypothesis which is more likely the
agent can observe the door again. Thus the agent could overcome a
faulty measurement.

To tackle the problems arising from a dynamic world we propose
an extension of the situation calculus [16]. To deal with the unex-
pected changes in the environment the agent performs a diagnosis on
1 The authors are with the Institute for Software Technology,Graz University

of Technology, Graz, Austria, {cmuehlba,steinbauer}@ist.tugraz.at. The
work has been partly funded by the Austrian Science Fund (FWF) by grant
P22690.

the history of performed actions. As a result the diagnosis may end
up in multiple hypothesis. If the diagrement on the agents belief in
the hypothesis is too big to achieve the goal the agent performs ac-
tions to acquire knowledge about the world and to rule out different
hypothesis. This extension of the situation calculus was integrated in
the high-level control language IndiGolog [9]. This makes it possible
to use the extended situation calculus to control an agent to achieve
a task more robustly. We expect that these abilities will result in an
agent high-level control which is more autonomic and robust then
other control approaches.

The remainder of the paper is organized as follows. In Section 2
we will discuss the prerequisites of our approach. In the proceeding
section we will define how the extended situation calculus can be
used within the transition semantics of IndiGolog. In Section 4 we
will show the impact of the changes on IndiGolog transition seman-
tics. Before we conclude the paper we will give a short overview of
related research in Section 5. Finally we will conclude the paper and
point out some future work.

2 Prerequisites

As a formal base we use the situation calculus [16]. The situa-
tion calculus is a second order language with equality. The situ-
ation calculus use fluents to specify predicates which can change
over time. To specify how the world evolves over the time a situ-
tion term is used. The sitution term is defined through the function
do : action × situation → situation . The function s′ = do(α, s)
specifies that the agent performs an action α in situation s which
result in the situation s′2. The action preconditions are specified
through Poss(α(~x), s) ≡ Πα(~x). The preconditions of all actions
are specifed in the set Dap. Beside the precondition also the effect
of an action needs to be specified. To define the effect on the fluents
successor state axioms are used. The successor state axioms are de-
fined as F (~x, do(α, s)) ≡ ϕ+(α, ~x, s) ∨ F (~x, s) ∧ ¬ϕ−(α, ~x, s),
where F is a fluent. ϕ+ specifies the condition under which an ac-
tion triggers the fluent to hold in the next situation. ϕ− specifies the
condition under which an action trigger the fluent to become false
in the next situation. Each of the successor state axioms is defined
for a fluent and is stored in the set Dssa. Beside the successor state
axioms which model the dynamics of the world the sitution calculus
use also the constant S0 to represent the initial situation and the set
DS0 to specify which fluents holds in the initial situation. To com-
plete the reasoning about the world the situation calculus uses some
foundation axioms Σ and unique name axioms for actions Duna. The
combination of all these axioms define the basic action theory Dap,
Dssa, DS0 , Σ and Duna [19].

2 We will use do([α1, . . . , αn], σ) as an abbreviation for the term
do(αn, do(αn−1, · · · do(α1, σ) · · · )).



To gather information about the world the agent must be able to
perform sensing actions. To specify the effect of a sensing action
the modified situation calculus proposed in [4] is used. The situation
calculus is modified in such a way that the agent stores a history of
actions together with the sensing results instead of a pure situation
term. To reason about this it is spitted in a situation term containing
the executed actions and the set {Sensed} which gather the informa-
tion about the sensing. To specify the information which is a result
of the sensing the predicate SF (α, s)

.
= φ(s) is used. The predicate

specifies the effect the sensing action α can have in the situation s.
If the sensing action return true as a result of the sensor reading φ(s)
is asserted to hold in the situation s. If the sensing action return false
as a result of the sensor reading ¬φ(s) is asserted to hold in the sit-
uation s. Due to the asserting of a formula the situation can become
contradicting if the sensor reading is in contradiction to the effects
the actions have if executed. If an agent repeatedly sense its environ-
ment in a situation already one wrong measurement could result in a
contradicting situation.

To deal with such contradicting situations a diagnosis approach
was proposed in [11]. The diagnosis try to alter the situation in
such a way that the situation becomes consistent with the sen-
sor reading. To alter a situation two predicates are used. The first
predicate Varia(α(x̄), α′(x̄), s′)

.
= Θα′(α, x̄, s′) specifies under

which condition α′ is a valid variation of α3. The second predicate
Insert(α′, s′)

.
= Θ specifies under which condition action α′ is a

valid insertion into the situation s′.
The diagnosis process was further extended in [10] to use back-

ground knowledge BK (s). This background knowledge is used to
state the invariants of the world the agent is acting in. For example
the background knowledge can state that an object is only at one
place at a certain point in time. Using this background knowledge
the agent can detect situation which are not possible in the world.
Thus physical impossible situations can be detected. This is used to
prune the possible variations of a situation to those situation which
are consistent with the constraints of the world.

Furthermore in [10] a ranking was proposed to use only those al-
ternatives which are the most likely one. The ranking ins designed in
such a way that a smaller number of faulty actions is preferred. Thus
the ranking follows the principle of ocam’s razor. The lowest ranked
situation alternations are stored in the so called pool W (s). We will
use this pool to reasoning about what the agent knows for sure.

To use the sensing capabilities together the execution of actions
the high-level control language IndiGolog was proposed in [9].
This high-level control language uses a transition semantic specified
through the predicate Trans(δ, s, δ′, s′) to specify that a program δ
can evolve in situation s into program δ′ with the resulting situation
s′. Additionally a predicate Final(δ, s) is used to specify that the
remaining program can legally terminate in situation s. To perform
reasoning about the predicates Trans and Final an extended basic
action theory is used. The extended basic action theory consist of the
axioms from the basic action theory combined with the axioms in
{Sensed} and the IndiGolog program reefied as terms C. Formally
stated as D∗ = Σ ∪ Dssa ∪ Dap ∪ Duna ∪ DS0 ∪ C ∪ {Sensed}.

3 Program Transitions with Knowledge
Management

To perform transitions according to the knoweldge of the agent we
need first to define the knowledge of the agent. As defined in [10]

3 We will omit the parameters in the remaining of the paper for readability.

we define the pool of preferred diagnosis W (s) as those consistent
alternative situation which have the best ranking. The different situ-
ation in the pool are used to describe what is known by the agent for
sure. In order to restrict the decision making to use only that knowl-
edge that is secure we follow an epistemic approach. Like in [7] we
define the knowledge the agent knows for sure as that knowledge
that holds in all possible situations. Therefore we define the predi-
cate Knows(φ, s) ≡ ∀s′ ∈ W (s).φ(s′). If we restrict reasoning to
that knowledge possibly dangerous situations can be avoided. It is
common to use only secured knowledge to progress IndiGolog pro-
gram execution [14, 9]. The advantage of these approaches is that
programs are only progressed if the agent possesses enough secured
knowledge. The drawback is that if not enough knowledge is avail-
able the program is aborted.

In order to deal with this problem we propose to combine the epis-
temic program execution with the diagnosis approach for situations.
Because diagnosis provides evidence about the secure knowledge we
will not stop execution once not enough knowledge is available. In
contrast we suggest to perform an active diagnosis step in order to
obtain an enrichment of the secure knowledge possibly allowing the
agent to continue.

In order to be able to use knowledge management in program tran-
sition we adopt the semantics from IndiGolog in order to reflect the
robot’s secured knowledge. We redefine the predicate Trans which
specifies how a program δ progresses in a situation s. For instance the
robot has to know that an action’s precondition is fulfilled in order to
guarantee safe execution. We will omit those transition predicates
where the old predicate was simply replaced by the new one. The
following list depicts the changed statements:

1. Trans(α, s,nill , do(α, s)) ≡ Knows(Πα, s)
2. Trans(φ?, s,nill , s) ≡ Knows(φ, s)
3. Trans(if φ then δ1 else δ2 endif , s, δ′, s′) ≡ Knows(φ, s) ∧

Trans(δ1, s, δ
′, s′) ∨Knows(¬φ, s) ∧ Trans(δ2, s, δ

′, s′)
4. Trans(while φ do δ endWhile, s, δ′, s′) ≡ ∃γ : δ′ =
γ;while φ do δ endWhile∧Knows(φ, s)∧Trans(δ, s, γ, s′)

The second part of the transition semantics of IndiGolog is the
Final predicate. We will omit those transition predicates where the
old predicate was simply replaced by the new one. The following list
shows the changed statements:

1. Final(if φ then δ1 else δ2 endif , s) ≡ Knows(φ, s) ∧
Final(δ1, s) ∨Knows(¬φ, s) ∧ Final(δ2, s)

2. Final(while φ do δ endWhile, s, δ′, s′) ≡ Knows(¬φ, s) ∨
Final(δ, s)

Unfortunately these definitions are not enough to prevent an agent
from ending up in a situation where due to little knowledge the agent
can’t definitely decide if a transition can be taken or the program is
final. For instance not knowing if an action’s precondition holds does
not necessarily mean that the program composed of just that action
should be aborted. In order to be sure we have to check also if the
agent definitely knows that the precondition does not hold. Otherwise
the agent has not enough knowledge to decide. In order to safely
decide the program execution we use the decision tree depicted in
Figure 1. The tree has three final states (marked by bold solid circles)
where the robot is able to safely decide if the program terminates,
progresses or aborts.

In order to safely decide we define the predicates KTrans(δ, s)
and KFinal(δ, s) that specify if an agent is definitely able to decide
if a transition is possible respectively if the program can terminate
legally. For instance the execution first checks if the agent possesses



FinalFinal?

Trans? Trans

Finish

T

T

T

TF

F

F

F

TransitionAbort

KFinal

KTrans

Figure 1. Decision tree for one step transition of a program. Bold leaves
depict states where the agent possesses enough knowledge to safely decide

program progression. Dashed states are those where no safe program
progression can be done.

enough knowledge to safely decide if the program terminates. If this
is not the case the agent is facing state Final? where no decision
can be made for now. Similar paths exist for the transition as well.
Going that way the agent may end up in the state Trans? where no
transition can be made for now due to lack of knowledge.

The predicate KTrans(δ, s) is defined as follows:

1. KTrans(nill , s) ≡ >,
2. KTrans(α, s) ≡ Knows(Πα, s) ∨Knows(¬Πα, s),
3. KTrans(φ?, s) ≡ Knows(φ, s) ∨Knows(¬φ, s),
4. KTrans(δ1; δ2, s) ≡ KTrans(δ1, s) ∨ Final(δ1, s) ∧

KTrans(δ2, s),
5. KTrans(δ1|δ2, s) ≡ KTrans(δ1, s) ∨KTrans(δ2, s),
6. KTrans(πv.δ, s) ≡ ∃xKTrans(δvx, s),
7. KTrans(δ∗, s) ≡ KTrans(δ, s),
8. KTrans(if φ then δ1 else δ2 endif , s) ≡ Knows(φ, s) ∧

KTrans(δ1, s) ∨Knows(¬φ, s) ∧KTrans(δ2, s),
9. KTrans(while φ do δ endWhile, s) ≡ Knows(φ, s) ∧

KTrans(δ, s) ∨Knows(¬φ, s)

Predicate KFinal(δ, s) is defined as follows:

1. KFinal(nill , s) ≡ >,
2. KFinal(α, s) ≡ >,
3. KFinal(φ?, s) ≡ >,
4. KFinal(δ1; δ2, s) ≡ KFinal(δ1, s) ∧KFinal(δ2, s),
5. KFinal(δ1|δ2, s) ≡ KFinal(δ1, s) ∨KFinal(δ2, s),
6. KFinal(πv.δ, s) ≡ ∃xKFinal(δvx, s),
7. KFinal(δ∗, s) ≡ >,
8. KFinal(if φ then δ1 else δ2 endif , s) ≡ Knows(φ, s) ∧

KFinal(δ1, s) ∨Knows(¬φ, s) ∧KFinal(δ2, s),
9. KFinal(while φ do δ endWhile, s) ≡ Knows(φ, s) ∧

KFinal(δ, s) ∨Knows(¬φ, s)

Using KTrans and KFinal we can decide if an agent is in a state
where it is facing a lack of knowledge to decide termination or tran-
sition. In order to allow the agent to deal with such states we perform
active diagnosis. The idea is to execute an action or a sequence of
actions that increases the agent’s knowledge in a way that a decision
about the execution of the original program becomes possible.

To specify active diagnosis program we use the predicate
ActiveDiganosis(δ, s, δ∗). The process generates a program δ∗ that
if executed in situation s gives the agent enough information to safely
decide about the progression of the original program δ. Please note
that for δ∗ the new transition predicates apply as well. This ensures
that the actions can be safely executed as well. If such a program
cannot be found or cannot be safely executed the program execution
is aborted due to lack of secured knowledge.

Basically finding the active diagnosis δ∗ can be formalized as
planning problem. In connection to the history-based diagnosis ap-
proach we follow a different way. The predicate Knows(φ, s) is de-
fined in the way that φ has to hold in all consistent situation alterna-
tions related to s. In general if we reduced the number of consistent
situations the knowledge will increase. This is the result of the defi-
nition of knowledge which is formed by the intersection of the fluent
sets of the different consistent situations. Using a sequence of actions
a = [a1, ..., an] containing at least one sensing action we are able
to prune a possible situation W (s)′ not consistent with a. To deter-
mine which action or sequence of action will maximize the agent’s
knowledge we follow the idea of measurement selection for diag-
nosis presented in [5]. We will select those actions that most likely
reduces the number of potential situations. Please note that the selec-
tion of promising sequences is based on an probabilistic estimation
since sensing results cannot be predicted.

Once the active diagnosis step had been performed the execution
of the original program δ continues. Because the secured knowledge
has most likely increased the chance to securely progress the program
has increased as well.

Putting the predicate for the state transitions Trans ,
ActiveDiganosis and for the state recognition KTrans , KFinal
together we can define the transition of a Indi-Golog program.

Formally the transition predicate for the belief management is
defined as follows: TransK (δ, s, δ′, s′)

.
= [(¬KFinal(δ, s) ∨

¬KTrans(δ, s)) ∧ ActiveDiganosis(δ, s, δ∗) ∧ δ′ = δ∗.δ ∧ s′ =
s] ∨ [KTrans(δ, s) ∧ Trans(δ, s, δ′, s′)].

The first part of the transition ensures that the active diagnosis
process will be performed if the knowledge of the agent is to lim-
ited to reason if a final state is given or a transition can be taken.
The second part of the transition perform the transition according to
the program semantic if the belief is sufficient to decide which tran-
sition to take. This definition poses some non-deterministic choice
how the transition is performed. The non-determinis comes into play
if ¬KFinal(δ, s) and KTrans(δ, s) holds. This opens up the possi-
bility for an implementation to prefer the transition of the program
over the active diagnosis calculation.

With the predicate KTrans(δ, s) and KFinal(δ, s) we can de-
fine the final predicate for the belief management as follows:
FinalK (δ, s)

.
= KFinal(δ, s) ∧ Final(δ, s).

This definition ensures that the agent only terminates with a given
program if the program is known to be final.

To perform planing in the offline execution of a Indi-Golog pro-
gram we use the predicate Do(δ, s, s′) which was proposed for
Golog [15], ConGolog [2] and Indi-Golog [3]. We use nearly the
same definition of this predicate as in Indi-Golog [3] with the only
difference that we use TransK instead of the Trans of Indi-Golog.
Do(δ, s, s′)

.
= ∃δ′ : TransK ∗(δ, s, δ′, s′) ∧ FinalK (δ′, s′), where

TransK ∗(δ, s, δ′, s′) is defined as follows: TransK ∗(δ, s, δ′, s′) .
=

∀P : [... ⊃ P(δ, s, δ′, s′)]. Where ... stands for the conjunctive uni-



versial closure of the following implications:

> ⊃ P(δ, s, δ, s)

TransK (δ, s, δ′′, s′′) ∧ P(δ′′, s′′, δ′, s′) ⊃ P(δ, s, δ′, s′)

4 Effects of the Program Transitions with
Knowledge Management

Before we discuss some related research we will briefly state the the-
oretical relation between an ordinary Indi-Golog transition semantics
and our transition semantics. Furthermore, we will show the differ-
ence on an illustrative example.

As we propose an alternative transition system for Indi-Golog
we want to show that our transition semantics will always make a
transition if the original Indi-Golog transition semantics augmented
with knowledge would make a transition. To show this we first state
Corolla 1. Corolla 1 states that if the Trans predicate holds also
KTrans holds.

Corolla 1. ∀δ, s, δ′, s′ : Trans(δ, s, δ′, s′)→ KTrans(δ, s)

Proof. Proof by cases over the statements of the program. Most of
the cases are the defined in the same way for Trans and KTrans thus
the corolla holds trivially for those cases. In those cases which are
defined differently Trans is a part of a disjunction with an additional
formula in the definition of KTrans . Thus the corolla also holds.

Corolla 1 can be used to state Lemma 1. The lemma shows that
if a Trans holds also TransK and thus a transition will be made.
Please note that the transitions taken by the agent must not coincide.
Which is a result of the non-determinism in the transition semantic.

Lemma 1. ∀δ, s, δ′, s′ : Trans(δ, s, δ′, s′)→ TransK (δ, s)

Proof. The lemma holds due to a logic consequence of Corolla 1 and
the definition of TransK .

Similar to the trans predicate we can state Corolla 2 for the fi-
nal predicate. Corolla 2 states that if the Final predicate holds also
KFinal holds.

Corolla 2. ∀δ, s : Final(δ, s)→ KFinal(δ, s)

Proof. Proof by cases over the statements of the program. Most of
the cases are the defined in the same way for Final and KFinal thus
the corolla holds trivially for those cases. In those cases which are
defined differently Final is a part of a disjunction with an additional
formula in the definition of KFinal . Thus the corolla also holds.

Corolla 2 can be used to state Lemma 2. The lemma shows that if
a Final holds also FinalK and thus a the program will terminate in
the same state as before.

Lemma 2. ∀δ, s : Final(δ, s, δ′, s′)↔ FinalK (δ, s)

Proof. The lemma holds due to a logic consequence of Corolla 2 and
the definition of FinalK .

Trough Lemma 1 and 2 we can conclude that our transition seman-
tics incorporates the original transition semantics. Thus the program
will neither terminate nor will it get stuck due to our changes. On the
other hand our transition semantic makes it possible that the program
further progress in some situations. To point out this benefit we show
an illustrative example.

An agent has to pickup an object O at location L1 bring the object
to L2 and finally bring to object to L3. To fulfill this task the agent
performs the following sequence of actions [move(L1), pickup(O),
move(L2), putdown(O), sensObject(O), pickup(O),move(L3),
putdown(O)]. Now consider that the sensing action result in the
conclusion that the object O is not in room L2. There are two
possibilities what could happened. The first explanation (E1) is that
the agent failed to pickup the object. The second explanation (E2)
is that the agent failed to sense the object correctly. Thus the agent
would not know where the object is and could not finish its task.

Now let us consider the agent would only use E1. Thus the agent
would drive back to L1 and try to pickup the object. Afterwards the
agent would transport the object to room L2 and sens again. Inde-
pendent of the explanation this behavior would result in the state that
O is in room L2. But the agent may have spent some time to repair
something which was not faulty. If the agent would only use E2 the
agent would proceed and thus would fail if the object is not in room
L2.

Now let us consider the agent would use the safe knowledge to
decide how to proceed. Due to the two alternative explanations the
agent does not know where the object is. The agent can not make a
transition and can not decide that the task is not finished. Thus the
agent gets stuck during the execution.

If the agent use the proposed transition semantics the agent can
perform an active diagnosis step. This will result in the elimination
of one explanation. Afterwards the agent could proceed its task.

Thus without the usage of safe knowledge the agent could either
fail to finish a task or luckily finish a task but wasts time and energy
through a repetition. With the help of safe knowledge the agent will
not proceed a task which is not safe to assume that it is in the correct
state. Without an active diagnosis step the agent could get stuck. Thus
our transition semantic allows an agent working towards a goal while
increasing the probability to finish its task.

5 Related Research

We start our discussion of related research with [17]. The author in
[17] propose the predicate K(s, s′) to describe that the agent could
be in s or in s′. To be more precise the agent can be in s′ if she thinks
she is in s. Thus we call s′ to be accessible from s. Additionally the
author of [17] defined Knows(φ, s)

.
= ∀s′ : K(s, s′) → φ(s) to

specify if a fluent is known in every accessible world from s.
In [20] this elementary work was incorporated in the situation cal-

culus. Furthermore a successor state axiom was defined which uses
knowledge producing actions to change the relation K(s, s′). As a
consequence within this framework it is possible that the agent starts
with multiple initial situations. During the execution some of the sit-
uation are not longer accessible from s and thus “vanish” from the
possible situations. Thus the agent is able to gather knowledge during
its lifetime. In contrast to our work it is not possible to deal with sit-
uations where agent loses some knoweldge during its lifetime. Thus
faulty actions can not be modeled.

In [21] the authors extend the initial work on knowledge and the
situation calculus with a regression operator of the predicate Knows
and showed some theoretical properties. Within this work the authors
also showed that the knowledge operator they use preserves the con-
dition of reflexive, transitive, euclidean and symmetric specifications
over the execution of actions.

Another track which incorporates knowledge into the situation cal-
culus was proposed in [22]. Instead of the K(s, s′) predicate the
predicateB(s, s′) is used with a similar meaning. The big difference



between the method proposed in [22] and [20] is that the method pro-
posed in [22] use also a ranking over the situations. This ranking for a
situation s is used to specify a plausibility over the situation depend-
ing only on the initial situation of s. The most plausible situations
are used to define the belief of the agent. Thus the agent can change
its knowledge over time but can not to deal with faulty actions.

One of the newest insights on knowledge in the situation calcu-
lus was proposed in [6]. The method proposed by the authors us the
predicate B(s′, n, σ, s) to denote that in situation s the agent could
be also in situation s′ with the plausibility of n. Additionally the term
σ is used to define the actions which where triggered by the agent.
Thus this work is very similar to our work. There are some differ-
ences. The first difference to our work is how the ranking is calcu-
lated. The authors of [6] propose to calculate the ranking in such a
way that situations which are not in contradiction with the newest
sensing information have the lowest ranking. Instead our approach
use a ranking which depends one the number of faulty action oc-
currences. Please note that the method proposed in [6] as well as in
this paper could be changed in such a way that the ranking of both
approaches are equal. The second main difference is that the focus
of [6] was to prove certain properties of belief revision within the
framework where as our paper focus on the integration of the belief
management into the Indi-Golog programming execution.

The method proposed in [12] adopt the belief into the framework
of the fluent calculus. The main difference between the fluent cal-
culus and the situation calculus is that the fluent calculus is state
based using the fluent which hold (or not hold) in a current situation.
Instead the situation calculus use a situation term to represent the
fluents. To represent the belief of an agent different states are used
which are ranked with the help of a ranking function. The function
also prefer the latest sensor reading and must reason about all states
and there values. Thus this method differs how the ranking is calcu-
lated. Furthermore no method was shown to deal with faulty action
outcomes.

Another method which uses actions and sensing for diagnosis was
proposed in [1]. The method uses the sensing results to check if sys-
tem components are faulty. Furthermore, actions can be performed
to change the system. Thus the method is capable to deal with a
dynamic system which needs to be diagnosed. To deal with multi-
ple diagnosis actions are triggered to find a single diagnosis. Thus
this work have the same general idea as the method proposed in this
paper. The difference is that in this paper the diagnosis is not used
to find a faulty component in a system instead to find what actions
where performed in a faulty way. This makes it possible that our ap-
proach can model every diagnosis problem suitable for the approach
proposed in [1]. This is achieved with the help of exegenious events
which are the faulty injection events and the background knowledge
describing the system. Additionally our approach can also model a
faulty transition of the system. For example the switching action of a
circuit went wrong. Thus the circuit is not in the expected state and
behave different. This is an essential difference as a dynamic system
not only could have faulty components but can also perform transi-
tions in a faulty way.

Finally the method proposed in [13] have the same general idea
of diagnosis and sensing. The method diagnose a printing system
through its outcome and use a planing unit to use different compo-
nents of the printer for the next jobs to find a small set of possible
faulty components. Beside the goal to find the faulty components
the method also try to fulfill the current production goals. Thus the
method makes it possible that the impact on the production through
a faulty component is as small as possible. The main difference to

the method proposed in this paper is the focus on diagnosis a faulty
system instead of diagnosing a faulty action outcome. Furthermore
the sensing action can always been performed which is in contrast to
our approach which have to deal with a changing world which may
prevent the agent from performing a sensing action.

6 Conclusion and Future work

In this paper we briefly discuss how the epistemic program execution
of the well-known IndiGolog interpreter can be improved by using
active diagnosis for situations. The main idea is to not abort the pro-
gram execution once the needed knowledge is not secured. If a state
is reached where neither transition nor termination can be safely de-
cided an active diagnosis step is performed to increase the secured
knowledge available for program execution. Moreover, a connection
between the semantics of the possible situations obtained by diag-
nosis and the big corpus of research on epistemic approaches was
made.

In particular the latter connection seems promising to investigate
in more detail. Besides, problems with the runtime in particular of the
active diagnosis step (pruning of situations) there are also other open
issues. In particular there are issues in the semantics of the changed
program transition. For instance should program transition be given
a chance once the agent is not able to decide termination?

REFERENCES

[1] Chitta Baral, Sheila McIlraith, and Tran Cao Son, ‘Formulating diag-
nostic problem solving using an action language with narratives and
sensing’, in KR, pp. 311–322, (2000).

[2] Giuseppe De Giacomo, Yves Lespérance, and Hector J Levesque,
‘Congolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121(1), 109–169, (2000).

[3] Giuseppe De Giacomo, Yves Lespérance, Hector J Levesque, and Se-
bastian Sardina, ‘Indigolog: A high-level programming language for
embedded reasoning agents’, in Multi-Agent Programming:, 31–72,
Springer, (2009).

[4] Giuseppe De Giacomo and Hector J Levesque, ‘An incremental inter-
preter for high-level programs with sensing’, in Logical Foundations
for Cognitive Agents, 86–102, Springer, (1999).

[5] Johan De Kleer and Brian C Williams, ‘Diagnosing multiple faults’,
Artificial intelligence, 32(1), 97–130, (1987).

[6] James P Delgrande and Hector J Levesque, ‘Belief revision with sens-
ing and fallible actions.’, in KR, (2012).

[7] Robert Demolombe and Maria Pilar Pozos Parra, ‘A simple and
tractable extension of situation calculus to epistemic logic’, in Founda-
tions of Intelligent Systems, eds., ZbigniewW. Ra and Setsuo Ohsuga,
volume 1932 of Lecture Notes in Computer Science, 515–524, Springer
Berlin Heidelberg, (2000).

[8] Thomas Eiter, Michael Fink, and Ján Senko, ‘Kmonitor–a tool for mon-
itoring plan execution in action theories’, in Logic Programming and
Nonmonotonic Reasoning, 416–421, Springer, (2005).

[9] G. De Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardina, Multi-
Agent Programming: Languages, Tools and Applications, chapter In-
diGolog: A High-Level Programming Language for Embedded Rea-
soning Agents, 31–72, Springer, 2009.

[10] Stephan Gspandl, Ingo Pill, Michael Reip, Gerald Steinbauer, and
Alexander Ferrein, ‘Belief Management for High-Level Robot Pro-
grams’, in The 22nd International Joint Conference on Artificial In-
telligence (IJCAI), pp. 900–905, Barcelona, Spain, (2011).

[11] G. Iwan, ‘History-based diagnosis templates in the framework of the
situation calculus’, AI Communications, 15(1), 31–45, (2002).

[12] Yi Jin and Michael Thielscher, ‘Representing beliefs in the fluent cal-
culus’, in ECAI, volume 16, p. 823, (2004).

[13] Lukas Kuhn, Bob Price, Johan de Kleer, Minh Do, and Rong Zhou,
‘Pervasive diagnosis: Integration of active diagnosis into production
plans’, in proceedings of AAAI, (2008).



[14] Hector J. Levesque, ‘Planning with loops’, in Proceedings of the 19th
International Joint Conference on Artificial Intelligence, IJCAI’05, pp.
509–515, San Francisco, CA, USA, (2005). Morgan Kaufmann Pub-
lishers Inc.

[15] Hector J Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin,
and Richard B Scherl, ‘Golog: A logic programming language for dy-
namic domains’, The Journal of Logic Programming, 31(1), 59–83,
(1997).

[16] J. McCarthy, ‘Situations, Actions and Causal Laws’, Technical report,
Stanford University, (1963).

[17] Robert C Moore, ‘A formal theory of knowledge and action’, Technical
report, DTIC Document, (1984).

[18] Bernhard Nebel, Christian Dornhege, and Andreas Hertle, ‘How much
does a household robot need to know in order to tidy up?’, in Proceed-
ings of the AAAI Workshop on Intelligent Robotic Systems, Bellevue,
WA, (2013).

[19] R. Reiter, Knowledge in Action. Logical Foundations for Specifying and
Implementing Dynamical Systems, MIT Press, 2001.

[20] Richard B Scherl and Hector J Levesque, ‘The frame problem and
knowledge-producing actions’, in AAAI, volume 93, pp. 689–695. Cite-
seer, (1993).

[21] Richard B Scherl and Hector J Levesque, ‘Knowledge, action, and the
frame problem’, Artificial Intelligence, 144(1), 1–39, (2003).

[22] Steven Shapiro, Maurice Pagnucco, Yves Lespérance, and Hector J
Levesque, ‘Iterated belief change in the situation calculus’, in KR, pp.
527–538, (2000).


