Advanced Algorithmic

Problem Solving
Le 5 — Graphs part

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Outline

Network flow
Max Flow (lab 2.6)
Min Cut (lab 2.7)
Min Cost Max Flow (lab 2.8)

Matching problems
Maximum Cardinality Bipartite Matching (UVA 259)
Maximum Weighted Bipartite Matching
Maximum Cardinality/Weighted Matching

Covering problems
Euler Path (lab 2.9)

Minimum Vertex Cover (Maximum Independent Set)
Minimum Path Cover in DAG

Network Flow

A network is a directed graph G=(V,E) with a source vertex s€V
and a sink vertex t€V. Each edge e=(v,w) from v to w has a
defined capacity, denoted by u(e) or u(v,w). It is useful to also
define capacity for any pair of vertices (v,w)&E with u(v,w)=o.

In a network flow problem, we assign a flow to each edge.

Raw flow is a function r(v,w) that satisfies the following properties:

Conservation: The total flow entering v must equal the total flow leaving v
for all vertices except s and t, YwW€V r(v,w)=o0, for all veV\{s,t}.

Capacity constraint: The flow along any edge must be positive and less than
the capacity of that edge, r(v,w)<u(v,w) for all vw€eV.

Net flow is a function f(v,w) that also satisfies the following conditions:
Skew symmetry: f(v,w)=—f(w,v).

With a raw flow, we can have flows going both from v to w and flow going
from w tov. In a net flow formulation however, we only keep track of the
difference between these two flows f(v,w)=r(v,w)-r(w,v).

The value of a flow f is defined as |f|=).vEV {(s,V).

Residual graph ana—augmenting path

Network Flow — Example Maximum Flow

Network Flow — Example Maximum Flow

A. Initial
Residual
Graph

70

Network Flow — Scaling

We can also improve the running time of the Ford-Fulkerson algorithm by
using a scaling algorithm. The idea is to reduce our max flow problem to the
simple case, where all edge capacities are either o or 1 (Gabow in 1985 and
Dinic in 1973):

Scale the problem down somehow by rounding off lower order bits.

Solve the rounded problem.

Scale the problem back up, add back the bits we rounded off, and fix any errors in our

solution.
In the specific case of the maximum flow problem, the algorithm is:

Start with all capacities in the graph at o.

Shift in the higher-order bit of each capacity. Each capacity is then either o or 1.

Solve this maximum flow problem.

Repeat this process until we have processed all remaining bits.

To scale back up:

Start with some max flow for the scaled-down problem. Shift the bit of each capacity
by 1, doubling all the capacities. If we then double all our flow values, we still have a
maximum flow.

Increment some of the capacities. This restores the lower order bits that we truncated.
Find augmenting paths in the residual network to re-maximize the flow.

Maximum Flow Algorithms

Ford-Fulkerson with DFS O(|f] E)

Edmond-Karp (Ford-Fulkerson with BFS) O(VE?)

Dinic's O(V?E)

Push-relabel O(V3)

Binary blocking flow algorithm O(min(V?3, E/?) E log(V?/E)
log({f1))

Minimum Cut

An s-t cut of network G is a partition of the vertices V into 2
groups: S and S"=V\S such that s€S and teS".

The net flow along cut (S,S7) is defined as f(S)=)YveS YweS™ f(v,w).

The value (or capacity) of a cut is defined as u(S)=)YveS YweS™ u(v,w).
For a flow network, we define a minimum cut to be a cut of the
graph with minimum capacity.

To find the minimum cut, compute the maximum flow and
find the set of vertices reachable from s with positive edges in
the residual graph, this is the set S.

Max-Flow Min-Cut Theorem

In a flow network G, the following conditions are equivalent:
A flow f is a maximum flow.
The residual network G has no augmenting paths.
|f|=u(S) for some cut S.

These conditions imply that the value of the maximum flow is

equal to the value of the minimum s-t cut: max; |f|=ming u(S),
where f is a flow and S is an s-t cut.

Minimum Cost Maximum Flow

Extend the definition of a network flow with a cost per unit of flow
on each edge: c(v,w)€ER, where (v,w)€E.

The cost of a flow f is defined as: c(f)=Y e€E f(e)-c(e)

A minimum cost maximum flow of a network G=(V,E) is a maximum
flow with the smallest possible cost.

Note that costs can be negative.
It's clear that minimum cost maximum flow generalizes max-flow, if assign a
cost of o to every edge.

It also generalizes shortest path, if we set each cost equal to its corresponding
edge length, while assigning the same capacity to every edge.

Note that edges in the residual graph of a network need to have their costs
determined carefully. Consider an edge (v,w) with capacity u(v,w), cost per
unit flow c(v,w). Let f(v,w) be the flow of the edge. Then the residual graph
has two edges corresponding to (v,w). The first edge is (v,w) with capacity
u(v,w)-f(v,w) and cost c(v,w), and second edge is (w,v) with capacity f(v,w)
and cost —c(v,w).

A flow is optimal (min-cost) iff there are no negative cost cycles in
the residual network.

Network Flow Variants

Multi-source, multi-sink max flow

Create a super-source/sink with infinite capacity edges to the
sources/sinks

Vertex capacities

Split each vertex into two vertices and add a bi-directional edge with the
vertex capacity between them. Remember to change the edges to the
vertex.

Min-Cost Circulation

Equivalent to min-cost max-flow (simply disconnect the source and sink)

Maximum Independent and Edge-Disjoint Paths

Euler Path

Hierholzer's algorithm

Choose any starting vertex v, and follow a trail of edges from that vertex until
returning to v. It is not possible to get stuck at any vertex other than v,
because the even degree of all vertices ensures that, when the trail enters
another vertex w there must be an unused edge leaving w. The tour formed in
this way is a closed tour, but may not cover all the vertices and edges of the
initial graph.

As long as there exists a vertex v that belongs to the current tour but that has
adjacent edges not part of the tour, start another trail from v, following
unused edges until returning to v, and join the tour formed in this way to the
previous tour.

By using a data structure such as a doubly linked list to maintain the
set of unused edges incident to each vertex, to maintain the list of
vertices on the current tour that have unused edges, and to maintain
the tour itself, the individual operations of the algorithm (finding
unused edges exiting each vertex, finding a new starting vertex for a
tour, and connecting two tours that share a vertex) may be performed
in constant time each, so the overall algorithm takes linear time.

Summary

Network flow
Max Flow (lab 2.6)
Min Cut (lab 2.7)
Min Cost Max Flow (lab 2.8)

Matching problems
Maximum Cardinality Bipartite Matching (UVA 259)
Maximum Weighted Bipartite Matching
Maximum Cardinality/Weighted Matching

Covering problems
Euler Path (lab 2.9)

Minimum Vertex Cover (Maximum Independent Set)
Minimum Path Cover in DAG

