Advanced Algorithmic

Problem Solving
9hp, vt2014

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Research

Delegation
Delegate{A, B, task, constraints)

Adjustable Mixed-Initiative
Autonomy Interaction

Platform Server

High-level

Hierarchical Concurrent State Machines
Low-level

Stream reasoning

Time requirements / Knowledge

Architectures

Temporal logics
always
((notonroad(cart) v vel(cart) < sm/fs) — ETRADAN
eventually [o, 305]

(always [0, 105] onroad(cara) Visual Landing Takeoff Traj Following

novel{cart) > gmfs))

Stream-based Processing

Programming Contest Director

Skolornas Programmeringsolympiad (PO)
IDA-Masterskap i Programmering och Algoritmer (IMPA)

ACM International Collegiate Programming Contest (ICPC)

Nordic Collegiate Programming Contest (NCPC)
North Western European Regional Contest (NWERC)

L e [— u - B
EF-:\'“H Ia .-..E --‘.EEE'\' -
- i< a il g b i
st LnTIZ-Ifgd D7 V% -3 -
E¥o APfAs—mca o B e K&
EdEG e g §e=%%E -
W aE iR = TER AT B i N =
o [e TR - Bo— .
i - "] [= u = e
!u-lu:' 3.&. i = L F B e ekl -
s & 5 R =y E L= = i E 1 e . . 1.
hs & g §23 i - =—=== everl international collegiate
TEh YeE =s g =9 e 2, S EEE BOGMEOF : -
it S b 27 K58 : & EF ===i= P programming contast
E8T g L L

ICPC Analytics

i Mg ™

THNe

Outline

What is algorithmic problem solving?

Why is algorithmic problem solving important?
What will be studied in this course?

A method for algorithmic problem solving
Common algorithmic problem solving approaches
Common data structures and algorithms

Pragmatic algorithmic problem solving using Kattis
Introductory problem solving session

What is Algorithmic Problem Solving?

Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

The problems are normally very well defined and you know
there is a solution, but they can still be very hard.

Algorithms Programming

APS

Problem
Solving

7

industri

Those that really understand
and take advantage of
software technology owns
the future!

. QSwedsoft

Mjukvaran dr
sjdlenisvensk

™

Sy Google

Tl = lﬂrn\-"*"
2012 of W

LINKOPINGS UNIVERSITET

y

ey

—

.
=

A3 ac;m|CpC \ / e
<

international collegiate ;' r
Bpongor programming contest) “;

ICPC Winners 2001-2013

2013 - Saint Petersburg University of ITMO, Russia

2012 - Saint Petersburg University of ITMO, Russia
2011 — Zhejiang, China

2010 - Shanghai Jiao Tong University, China

2009 - Saint Petersburg University of ITMO, Russia
2008 - Saint Petersburg University of ITMO, Russia
2007 - University of Warsaw, Poland

2006 - Saratov State University, Russia

2005 - Shanghai Jiao Tong University, China

2004 - Saint Petersburg University of ITMO, Russia
2003 - University of Warsaw, Poland

2002 - Shanghai Jiao Tong University, China

2001 - Saint Petersburg State University, Russia

2010 - KTH 12t
2009 — KTH 34t
2007 - KTH 26th

2006 - Lund 19t
KTH 19th

2005 - KTH 7th
2004 — KTH 2nd
2003 - KTH 13t
2002 - KTH uth

O
2001 — Umed nth O
O
O

2000 - Link6ping 224
1998 — Umed 4th
1997 — Umea 6t

The 3n + 1 problem

Background

Problems: in Computer Science are aften clazsifisd as belonsine to a cerzin class of problems (e.z, NP, Unschable, Reoursive) In this problem you will be malyzine a property of an
al=znrithen whose clas:ification is not known for all possibls inpots

The Problem
Considar the following alzeritme:
tnpet a
prize a
if n o= 1 zzan 5TOP

4L @m iz odd tham 0 SN-'I-':

wize M — gl

Griven the irgut 32, the following sequence of mmbers nill be printed 22 11 34 1732 26 13400 102168421

It is conjechwred that the alzoeithm abeve will terminate (when 2 1 is printed) for amy intesral input value. Despite the simplicity of the algerithm, i is umimown whether thiz conjechore iz
troz. It has been verified, howewver, for all imezers m swch that 0< a < 1,000,000 (and, m fact, for mamy more mumbers than this.)

(riven am npat #, it iz possible io determine the momber of mumbers printed (meboding the 1). For a given x this is called the cycle-length of m In the example above, the cycle lensth of
12is 14.

For amy twe munbers § and j vou are to determine the mammom cycle lensth over all mombers between §2nd .

The Input

The imput will consist of a series of pedrs of infezers { and J, one pair of infepers per lime All imbezers will be less than 1,000,004 and reater than .
“You should process zll pairs of integers and for each pair determine the mayirmmm cycle length over all intezers batween and inchuding i md J.

You can a:sume that no operation overflons a 32-bit intezer.

The Output

For each pair of impat intezers | and j vou should outpat 1, j, and the mazimom cycle lersth for intzzers between and inchading § and j. Thess thres members shoald be separated by at
least ome space with all three mombers on ons line and with one line of cotput for each line of mput. The integers § and | amust appear in the cofput in the :ame ordar in which they
appeared in the input and shoald be fallowed by the megismm cycle length (on the same lina).

Sample Input

110

i1od 290
201 230
200 19000

Sample Output

110 0

12 290 123
201 210 =8
200 1900 174

Example: The 3n+1 problem

100 The 3n + 1 prohlem

Background

3'| s 3 e — +4r3 sry 3 Tary . .| - sHi F | 1 i 2 S - 1 E . | s .

Froblems= m ¢ |.|__||||||| Scienee are often classitied as belonegineg to a certain cla=ss of problems fee,,
\.3' ..-I . - - | i | 3 T i | y al virrd F arey vt 1 F . e Iy
S Uhsoivabie, qvecuarsive |, 1 |||."- |'||- WL Vo wnid Wl al Vv AInE A |'||-|'| ity ol an -|.L'|-|.||||.. '-'-|||-"-|

classification 1s not koown for all |II:'1.'-._|I_I' s,

The Problem
Clonsider the followine aleorithn:

mput
2 print
3. [then STOF
| c s oddd then o A4

‘1

. el=e 4

Caven the tuput 220 the following sequence of nombers will be printed
22013017 A2 26 130 20 105 Tas 1 21

It s conjectured that the algorithm above will tenminate (when a 1is printed] for any integral inpuat
value, Despite the simplicity of Che algorthon, it s uonkoown whether this conjecture is true, [t hias heen
verified, however, for all integers wosuch that 0 < o< 1,000,000 fand, i Gaet, for many more numbers
Lhan 1his, |

Coiven an dnput v, it s possible to determine the nmmber of nombers printed before and inclhding

the 1= |||'_||||'||_ Fora given w this = called the egele-ie pghle ol v, Lo HITE e alnple abiove, the evele leneth

ol 22 s 1,
For any two mnnbers ¢ oand povon oare Lo determine the maxinom evele leneth over all numbers

between and mncluding both @ and .

Example: The 3n+1 problem

The Input

1 -,||||||| will con=ist of a series of ||:|.,|'-1. ol inteeers ¢ and e ||:|.,|' ol inteeers [per e, Al integers
U be dess than 10000 and greater than (0,
You should process all pairs of tntegers and for each pair determine the masinonn cyvele length over

all mtegers between and melodine © and 7.

The OQutput

Foreach pair olUioput integers ¢ and § ovon shoold ontpot o poand the o evele length for integers
Bietween and mcloding ¢« andd These three numbers shoald be -\|'||:||':|||'|| || al leasl one space w ith all
Lhree nombers on one e awd with one line ol ootput for each line of inpoat, The mtegers @ and §onust
appear m the |:|||||||| m the same order mmowhich ||||'_'- :||l|||':||'|'|| m the .,||||||| and =hould be followed ||

Lhe masimon cvele Tength (oo the same line].

Sample Input

1 1¢

100 200
201 210
200 1000

Sample Output

1 10 20
100 200 1
201 210 g8
200 1000 174

T E
s

Example: The 3n+1 problem

Follow the instructions in the problem!
Memoization to speed it up.

Table lookup to solve it in constant time.
Gotchas:

j can be smaller than i.
j can equal i.

The order of i and j in output must be the same as the input, even when j
is smaller than i.

Course Goals (15)

The goals of the course are you should be able to:

analyze the efficiency of different approaches to solving a
problem to determine which approaches will be reasonably
efficient in a given situation,

compare different problems in terms of their difficulty,

use algorithm design techniques such as greedy algorithms,
dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

strategies for testing and debugging algorithms and data
structures,

quickly and correctly implement a given specification of an
algorithm or data structure,

communicate and cooperate with other students during
problem solving in groups.

Examination

LAB1 6hp

individually solving the 4 lab assignments, creating a well structured and
reusable code library, and

actively participating in at least 4 problem solving sessions.

UPPGa 3hp,

individually solving the 6 homework exercises:
Data structures
Greedy Problems and Dynamic Programming
Graph Algorithms
Search
Math-related Problems
Computational Geometry.

Steps in solving algorithmic problems

Estimate the difficulty

Theory (size of inputs, known algorithms, known theorems, ...)
Coding (size of program, many cases, complicated data structures, ...)

Have you seen this problem before? Have you solved it before? Do you
have useful code in your code library?

Understand the problem!

What is being asked for? What is given? How large can instances be?
Can you draw a diagram to help you understand the problem?
Can you explain the problem in your own words?

Can you come up with good examples to test your understanding?

Steps in solving algorithmic problems

Determine the right algorithm or algorithmic approach
Can you solve the problem using brute force?
Can you solve the problem using a greedy approach?
Can you solve the problem using dynamic programming?
Can you solve the problem using search?
Can you solve the problem using a known algorithm in your code library?

Can you modify an existing algorithm? Can you modify the problem to
suite an existing algorithm?

Do you have to come up with your own algorithm?

Solve the problem! ©

Time Limits and Computational Complexity

The normal time limit for a program is a few seconds.

You may assume that your program can do about 100M
operations within this time limit.

< [10..11] O(n!), O(n®) Enumerating permutations

< [15..18] O(2" x n?) DP TSP

< [18..22] O(2" x n) DP with bitmask technique

<100 O(n4) DP with 3 dimensions and O(n) loop
< 450 O(n3) Floyd Warshall’s (APSP)

< 2K O(n? log, n) 2-nested loops + tree search

< 10K O(n?) Bubble/Selection/Insertion sort
<1M O(n log, n) Merge Sort, Binary search

< 100M O(n), O(log,), O(1) Simulation, find average

Important Problem Solving Approaches

Simulation/Ad hoc
Do what is stated in the problem
Example: Simulate a robot

Greedy approaches

Find the optimal solution by extending a partial solution by making locally
optimal decisions

Example: Minimal spanning trees, coin change in certain currencies

Divide and conquer
Take a large problem and split it up in smaller parts that are solved individually
Example: Merge sort and Quick sort

Dynamic programming
Find a recursive solution and compute it “backwards” or use memoization

Example: Finding the shortest path in a graph and coin change in all currencies

Search
Create a search space and use a search algorithm to find a solution

Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

Important Data Structures and Algorithms (g3}

Data structures

Standard library data structures
Vector, stack, queue, heap, priority queue, sets, maps

Other data structures

Graph (adjacency list and adjacency matrix), Union/find, Segment tree,
Fenwick tree, Trie

Sorting
Quick sort, Merge sort, Radix sort, Bucket sort
Strings

String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,
trie, suffix trees, suffix arrays, recursive decent parsing

Important Data Structures and Algorithms (g3

Dynamic programming

Longest common subsequence, Longest increasing subsequence, o/1

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

Graphs

Traversal (pre-, in- and post-order), finding cycles, finding connected
components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP - All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST - Minimum spanning tree (Prim, Kruskal (using

Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

Search

Exhaustive search (depth-first, breadth-first search, backtracking),

binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees

Important Data Structures and Algorithms (gxp)

Mathematics

Number theory (prime numbers, greatest common divisor (GCD),
modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

Computational geometry

Representations of points, lines, line segments, polygons, finding
intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms

Kattis (https://liu.kattis.scrool.se/)

- O KATTIS - Linképing University - Mozilla Firefox
3 KATTIS - Linkdping University % |52 | v
& a scrool.se ~@ B~ a & £
Solved Tried Submissions Submit Tekchers Statistics Fredrik Heintz - Log out
Courses
AAPS14

| am a student taking this course and | want to register for it on Kattis.

e Course website
» Problem list
» Students

Teachers
= Benjamin Ingberg
» Fredrik Heintz
s Tommy Farngvist
No problems are currently associated with this course

No sessions are currently associated with this course

Other courses

Currently Kattis is used in 4 courses. She is, however, determined to take over the world very soon.

AAPS13
AAPS14
DALG12
DALG13

Page generated: 12:01:27 CET in 0.014 seconds. 0+7 db calls. 2 cache hits, 0 cache misses Powered by Scrool

How Kattis checks a program

. Compilation
? | p
[Complles.) o
For each/test case
Runtime
2 |
[Crashes?] > .
[Too slow?) 5 Time Limit
: J Exceeded
Incorrect W S Wrong
Olltpllt? J Answer

Accepted

UVA Online Judge

UVa

Unline Judge

| Custom Search | Search

Main Menu

My Account

Contact Us

TOOLS on the Old Uva OJ Site
ACM-ICPC Live Archive
Logout

Online Judge
Quick Subrnit
Migrate submissions
My Submissions
My Statistics
My uHunt with Virtual Contest Service

Browse Problems

http://uva.onlinejudge.org/

UVa OJ fundraising campaing

As you may already discovered by the widget shown on the left, we have started a fundraising campaing
to create a whole new UVa Online Judge. Please, take a couple of minutes to read the reasons for this on

the campaing website, by clicking on the widget.

Welcome to the UVa Online Judge

Here you will find hundreds of problems. They are like
the ones used during programming contests, and are
available in HTML and PDF formats. You can submit

wyour sources in a variety of languages, trying to solve
any of the problems available in our database.

See the new Contest Rankings section at the Live
Rankings link.

MNow you can use the new Quick access, info and
search option on the left menu for and easier
navigation. (The tool will be updated next days

Categorized set of problems

This book contains a
collection of relevant data
structures, algorithms,
and programming tips
written for University
students who want to be
mare competitive in the
ACM International
Collegiate Programming
Contest (ICPC), high
school students who are
aspiring to be competitive
in the International
Olympiad in Informatics

Programming languages

Allowed languages are C, C++, Java, and Python.

C++ or Java is strongly recommended, use the language that
you are most familiar with and want to learn more about.

Get to know their standard libraries.

Get to know input and output. Remember that I/O in Java is
very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

Learn to use an appropriate IDE such as eclipse, emacs, or vim

Create a problem template to speed up problem solving and to
create a common format for your problems.

Pragmatic Algorithmic Problem Solving

S —H- Modey L+ - kS

HEK MAME C++ "Approach”

Started:
Finizhed:
Total time:

Submizsion 1
Comments:

Lessons learned:

#include <algorithm:
#include <cassert:
#include <cmath:
#include <cstdick
#include <cetdlibs
#include <cstring:
#include <functional>
#include <iomanip>
#include <iostreams
#include <sstream:
#include <map>
#include <set>
#include <gqueues
#include <stack>
#include <strings
#include <utilitus
#include <vectors

uzing namespace std:
typedef vector<int> wiz

int
main{int argc, char* argw[]1)

0 return 03

Testing and debugging

Always create an example input (.in) and example output (.out) file with
verbatim copies of the example input and output from the problem
statement!

For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out
Create additional tests, such as:

Extreme inputs, i.e. smallest and largest values (o, 1, “”, empty line, 231-1)

Small inputs that you can compute by hand

Potentially tricky cases such as when all inputs are equal, in the case of floating
points numbers when you have to round both up and down

Very large cases, randomly generated to test that your program computes an
answer fast enough (even though you might not know the correct answer).

Use a correct but slow algorithm to compute answers.

Print intermediate information, such as values of relevant variables.
cout << “a="“ << a << “ b=" << b << end];
Remember to remove the debug output before submitting! (or use cerr)

Introductory problem solving session (30)

