
March 27, 2013 15:0 us2012

Unmanned Systems, Vol. 0, No. 0 (2013) 1–39
c© World Scientific Publishing Company

High-level Mission Specification and Planning for
Collaborative Unmanned Aircraft Systems using Delegation

Patrick Dohertya, Fredrik Heintza and Jonas Kvarnströma

aLinköping University, S-581 83 Linköping, Sweden
E-mail: patrick.doherty@liu.se, fredrik.heintz@liu.se, jonas.kvarnstrom@liu.se

Automated specification, generation and execution of high level missions involving one or more heterogeneous unmanned aircraft systems is in
its infancy. Much previous effort has been focused on the development of air vehicle platforms themselves together with the avionics and sensor
subsystems that implement basic navigational skills. In order to increase the degree of autonomy in such systems so they can successfully participate
in more complex mission scenarios such as those considered in emergency rescue that also include ongoing interactions with human operators, new
architectural components and functionalities will be required to aid not only human operators in mission planning, but also the unmanned aircraft
systems themselves in the automatic generation, execution and partial verification of mission plans to achieve mission goals. This article proposes
a formal framework and architecture based on the unifying concept of delegation that can be used for the automated specification, generation and
execution of high-level collaborative missions involving one or more air vehicles platforms and human operators. We describe an agent-based
software architecture, a temporal logic based mission specification language, a distributed temporal planner and a task specification language that
when integrated provide a basis for the generation, instantiation and execution of complex collaborative missions on heterogeneous air vehicle
systems. A prototype of the framework is operational in a number of autonomous unmanned aircraft systems developed in our research lab.

1. Introduction

Much of the recent research activity with Unmanned Aircraft
Systems (UASs) has focused primarily on the air vehicle (AV) it-
self, together with the avionics and sensor sub-systems. Primary
focus has been placed on the navigation subsystem together with
low-level control combined with motion planners that allow a
UAS to operate with limited autonomy. The control kernel im-
plements diverse control modes such as take-off, landing, flying
to waypoints and hovering (in the case of rotor-based systems).
Sensor payloads are then used to gather data after positioning
the AV at salient points of interest.

Development of this type of low-level autonomy has been
impressive, resulting in many AV systems that with the help of
human operators can autonomously execute missions of moder-
ate complexity. Specification of such missions is often based on
the manual or semi-manual construction of a waypoint database,
where waypoints may be annotated with sensor tasks to be
achieved at each of these points. Such a means of specifying
missions is often time consuming and also prone to error due
to the low level of abstraction used and to the lack of automa-
tion in generating such plans in addition to the lack of automatic
verification of the correctness of the mission.

Although these capabilities provide the basic functionality
for autonomous AVs, if one is interested in increasing the com-
plexity of the missions executed and the usefulness of UASs,
much more is required. This ”much more” is very much what

this article will focus on. The collection of functionalities and
capabilities required to automate both the process of specifying
and generating complex missions, instantiating their execution
in the AV, monitoring the execution and repairing mission plans
when things go wrong, commonly goes under the umbrella term
”high autonomy”. Systems with high autonomy require addi-
tional architectural support beyond what one commonly uses to
support the low-level autonomy in such systems. Furthermore,
one has to ensure that each of the architectural components that
support both low and high autonomy are fully integrated in the
resulting system.

There has also been a recent trend in research in the di-
rection of collaborative systems where rather than focusing on
the use of a single AV to complete a mission, several heteroge-
neous UASs are required to participate in a mission together with
one or more human operators with continual interaction between
them during the achievement of mission goals. This added di-
mension increases the complexity of the functionalities required
in the individual AVs in addition to requiring additional architec-
tural support for collaborative UAS missions. Tools for formally
verifying such missions are even more important in this context
due to the increased complexity of the missions.

In this article we will propose a conceptual framework and
architecture to support the specification, generation and execu-
tion of collaborative missions involving heterogeneous UASs
and human operators. The main components that will be de-
scribed are:

1



March 27, 2013 15:0 us2012

2 Doherty, Heintz, Kvarnström

• A high-level mission specification language based on
the use of Temporal Action Logic (TAL) to formally
specify, reason about and verify both single- and multi-
platform mission specifications.
• Task Specification Trees (TSTs), a pragmatically moti-

vated, distributable and extensible structure for defin-
ing single- and multi-platform tasks and missions.
TSTs are executable on robotic systems that support
their executability. A formal semantics of TSTs is pro-
vided by TAL.
• An automated planner called TFPOP, capable of gener-

ating both single- and multi-platform mission specifi-
cations in the high-level mission specification language
that are translatable into executable TSTs.
• A generic multi-agent software architecture based on

the concept of delegation that can be added to and in-
tegrated with existing legacy UAS architectures to sup-
port collaborative missions. Delegation is formalized as
a speech act. The architecture integrates the use of the
high-level mission specification language, the delega-
tion processes, TSTs, and the automated planner.

Most importantly, the conceptual framework and architecture
have been implemented in prototype and integrated with a num-
ber of research Unmanned Aerial Vehicle (UAV) platforms used
in our group and described below.

1.1. Research UAV Platforms

For well over a decade, the UASTech Laba at Linköping Uni-
versity has been involved in the development of autonomous
unmanned aerial vehicles (UAVs). The two platforms described
below have been integrated with the functionalities and architec-
tures described in this article.

The UASTech RMAX UAV platform [1–4] is a slightly
modified Yamaha RMAX helicopter (Figure 1). It has a total
length of 3.6 meters (including main rotor) and is powered by
a 21 hp two-stroke engine with a maximum takeoff weight of
95 kg. The on-board system contains three PC104 embedded
computers. The primary flight control (PFC) system includes a
Pentium III at 700 MHz, a wireless Ethernet bridge, a GPS re-
ceiver, and several additional sensors including a barometric al-
titude sensor. The PFC is connected to the RMAX helicopter
through the Yamaha Attitude Sensor (YAS) and Yamaha Atti-
tude Control System (YACS), as well as to an image processing
computer and a computer responsible for deliberative capabili-
ties. The deliberative/reactive system (DRC) runs on the second
PC104 embedded computer (Pentium-M 1.4 GHz) and executes
all high-end autonomous functionalities such as mission or path
planning. Network communication between computers is phys-
ically realized with serial lines RS232C and Ethernet. The im-
age processing system (IPC) runs on the third PC104 embedded
Pentium III 700 MHz computer.

The camera platform suspended under the UAV fuselage is
vibration isolated by a system of springs. The platform consists

of a Sony FCB-780P CCD block camera and a Thermal-Eye
3600AS miniature infrared camera mounted rigidly on a Pan-
Tilt Unit (PTU) as presented in Figure 2. The video footage from
both cameras is recorded at a full frame rate by two MiniDV
recorders to allow processing after a flight.

Figure 1. Yamaha RMAX.

Figure 2. On-board camera system mounted on a pan-tilt unit.

The UASTech LinkQuad MAV platformb is the newest ad-
dition to our UAV fleet. It is a highly versatile autonomous
quadrotor Micro Aerial Vehicle. The platform’s airframe is char-
acterized by a modular design which allows for easy reconfigu-
ration to adopt to a variety of applications. Due to its compact
design (below 70 centimeters tip-to-tip) the platform is suitable
for both indoor and outdoor use. It is equipped with custom de-
signed optimized propellers which contribute to an endurance of
up to 40 minutes. Depending on the required flight time, one or
two 2.7 Ah batteries can be placed inside an easily swappable
battery module. The maximum take-off weight of the LinkQuad
is 1.4 kilograms with up to 300 grams of payload.

awww.ida.liu.se/divisions/aiics/
bwww.uastech.se



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 3

The LinkQuad is equipped with an in-house designed flight
control board – the LinkBoard. The LinkBoard has a modu-
lar design that allows for adjusting the available computational
power depending on mission requirements. Due to the available
onboard computational power, it has been used for computa-
tionally demanding applications such as the implementation of
an autonomous indoor vision-based navigation system with all
computation performed on-board [5,6]. In the full configuration,
the LinkBoard weighs 30 grams, has very low power consump-
tion and has a footprint smaller than a credit card. The system
is based on two ARM Cortex-M3 microcontrollers running at
72 MHz which implement the core flight functionalities, and op-
tionally, up to two Gumstix Overo boards for user software mod-
ules. The LinkBoard includes a three-axis accelerometer, three
rate gyroscopes, and absolute and differential pressure sensors
for estimation of the altitude and the air speed, respectively. The
LinkBoard features a number of interfaces which allow for easy
extension and integration of additional equipment. It supports
various external modules such as a laser range finder, analogue
and digital cameras on a gimbal, a GPS receiver, and a magne-
tometer.

Figure 3. LinkQuad MAV Platform.

1.2. Motivating Scenarios

Specific target scenarios for the use of autonomous unmanned
aircraft include environmental monitoring, search and rescue
missions, and assisting emergency services in scenarios such as
earthquakes, flooding or forest fires. For example, in November
2011, a powerful earthquake off the coast of Japan triggered a
tsunami with devastating effects, including thousands of dead
and injured as well as extensive damage to cities and villages
through surging water. Similar natural disasters have occurred
in for example Haiti and China as well as off the coast of Suma-
tra, also with catastrophic effects. In each of these disasters, un-
manned aircraft could have been of assistance in a variety of
ways.

As one of many immediate effects of the tsunami in Japan,
a number of villages near the coast were completely isolated
from the rest of the world for as much as twelve days when both
bridges and phone lines were swept away, before debris could
be cleared and temporary bridges could be built. Now suppose

that an emergency response unit had a small fleet of unmanned
aircraft such as the RMAXs at its disposal. Such aircraft could
then have assisted by rapidly delivering medicine, food, water,
or whatever other supplies were needed in an isolated village.
They could also have supported emergency responders in situ-
ation assessment and other tasks such as searching for injured
people in areas that are otherwise inaccessible.

Another effect, which became increasingly apparent over
time, was the extensive damage to the Fukushima Daiichi nu-
clear plant which later resulted in a complete meltdown in three
reactors. The exact level of damage was initially difficult to as-
sess due to the danger in sending human personnel into such
conditions. Here unmanned aircraft could immediately have as-
sisted in monitoring radiation levels and transmitting video feeds
from a considerably closer range, with smaller aircraft such as
the LinkQuad entering buildings to assess damage.

Aspects of these complex scenarios will be used as exam-
ples in the article to show how such missions would be specified,
generated and executed in the proposed framework. Successful
deployment of autonomous air vehicles or other unmanned sys-
tems in scenarios of this complexity requires research and de-
velopment in a variety of areas related to hardware as well as
software systems.

1.3. Mission Specification, Generation and Execution

In this article we focus on the problem of specifying, generat-
ing and executing the collaborative missions that the air vehi-
cles involved would be required to perform in this problem do-
main as well as in others. The ability to do this clearly and con-
cisely is fundamentally important for an unmanned system to be
practically useful, not least when operators are under time pres-
sure, and requires a suitable mission specification language that
should satisfy a variety of requirements and desires. Creating
such a language is a highly non-trivial task in itself.

For example, the language should be comprehensible to hu-
mans and not only useful as an intermediate representation both
generated and received by software. It should therefore provide
clear, succinct language constructs that are easily understood by
operators and implementors, allowing missions to be specified
at a comparatively high level of abstraction. At the same time
intuitions are not sufficient: A strict formal semantics must be
available in order for users, system designers and implementors
to be able to agree upon exactly what a given construct is in-
tended to mean, with no room for alternative interpretations.

Additionally there should be a close connection to how mis-
sions are pragmatically executed in actual robotic systems, al-
lowing the actual semantics of the language to be used and inte-
grated even at the execution level and thereby facilitating the val-
idation of the system as a whole. A principled foundation where
these issues are considered, for single platforms (vehicles) as
well as for fleets of homogeneous or heterogeneous platforms,
is essential for these types of systems to be accepted by aviation
authorities and in society, especially outside the type of emer-
gency scenarios considered above.

Perhaps surprisingly, an essential aspect of a mission spec-
ification language is also what can be left unspecified or incom-



March 27, 2013 15:0 us2012

4 Doherty, Heintz, Kvarnström

pletely specified. For example, one may want to state that a cer-
tain area should be scanned using a color camera at an altitude
of 30 to 50 meters, and that the aircraft is then allowed to land
either at two out of four predefined bases or within a geometri-
cally specified alternate landing area. Allowing these parameters
to be determined at a later time, within given restrictions, can be
essential for the ability to complete the mission in changing cir-
cumstances. Thus, a mission specification language should have
the ability to specify flexible constraints on various forms of
mission parameters, which can for example be spatial or tem-
poral in nature – an ability closely related to the concept of ad-
justable autonomy. Additionally, generic mission patterns often
need to be constrained dynamically and incrementally relative to
environmental and contingent conditions in the field. Constraints
therefore offer a natural way to enhance missions.

Taking this one step further, it would be preferable if parts
of a mission could be specified in terms of declarative goals to be
achieved in addition to the actions to be performed in other parts
of the mission. This combination has the potential of relieving
an operator of a great deal of work involved in defining every
step involved in a mission, while still permitting detailed control
where desired. Support for partly goal-based specifications can
also allow distinct platforms to adapt their part of a mission more
closely to their own abilities. Each unmanned vehicle involved
could then use general techniques such as automated planning
to determine which actions could and should be used to achieve
their goals, potentially even to the extent of enlisting the aid of
others. The resulting actions would then be merged into the final
mission specification.

Given a mission specification there must be a principled
and effective means for an unmanned system to determine
whether it can actually be performed, and if so, how. The most
obvious reason why this can be an interesting and difficult prob-
lem is perhaps the presence of explicitly specified constraints
and goals that can leave a plethora of potential solutions to be
examined by the unmanned system itself. However, the problem
exists even without these complicating factors. For example, a
mission designer may not have full knowledge of the flight en-
velope of each aircraft and therefore cannot directly determine
exactly how much time a certain mission would take or whether
it would be feasible to meet a given deadline. Determining this
can require the use of knowledge and procedures, such as motion
planners, that are only known in detail to the unmanned systems
themselves. For a fleet of unmanned platforms, the exact task al-
location specifying which platform performs which actions can
also be crucial to the feasibility of a complex mission. Further-
more, some platforms may already be assigned tasks from other
missions, in which case potential conflicts must be taken into
account.

1.4. Article Roadmap

We will first discuss the software architecture extensions cur-
rently used on the UASTech unmanned aircraft. In Section 2 we
show how this architecture and its use of delegation as a unifying
and primary concept lends itself to resolving several problems
discussed above. A side effect of using delegation as a unifying

concept is that it provides clear conceptualization of adjustable
autonomy and mixed-initiative interaction. This provides a con-
crete setting in which mission specifications can be considered.
Delegation is formally characterized as a speech act. This for-
mal specification is used as a basis for the implementation of
delegation processes in the architecture.

We then present a mission specification language that pro-
vides a formal semantics for missions specified in terms of tem-
poral composite actions (Section 3). Elementary actions in this
language are specified using Temporal Action Logic (TAL), a
well-established and highly expressive logic for defining and
reasoning about actions and their effects. Constructs such as
sequential composition, parallel composition, conditions, and
loops are introduced to permit more complex action structures, a
process that can be taken to the level of complete multi-platform
missions. The language is specifically designed to allow partial
mission specifications with constraints, including resource re-
quirements and temporal deadlines.

Varying means of generating mission specifications 

Task Specification Tree, delegated and distributed 

Agent 2 

TSTs provide an executable, 
distributable structure for TAL 

TAL provides a formal semantics 
for Task Specification Trees 

Mission specification 
in Temporal Action Logic (TAL) 

Text editor 
Graphical interface for 
specific mission type 

Automated 
planner 

Delegation 

Type: concurrent 
Interface: 𝑃0, 𝑇𝑆0, 𝑇𝐸0  

Type: scan-area 
Interface: 𝑃2, 𝑇𝑆2, 𝑠𝑝𝑒𝑒𝑑2, ... 

Type: scan-area 
Interface: 𝑃3, 𝑇𝑆3, 𝑇𝐸3 , … 

Agent 7 

Type: fly-to 
Interface: 𝑃4, 𝑇𝑆4, 𝑇𝐸4 , 𝑥4, 𝑦4  

Type: sequence 
Interface: 𝑃0, 𝑇𝑆0, 𝑇𝐸0  

E 

Each node associated 
with a platform-
specific executor 

Mission specification 
as Task Specification Tree (TST) 

S 

C 

E 

E 

Figure 4. Mission specification, translation and delegation.

As illustrated in Figure 4, the mission specification lan-
guage is shown to correspond closely to the expressivity of
Task Specification Trees (TSTs), a pragmatically motivated, dis-
tributable and extensible structure for defining single-platform
and multi-platform tasks and missions (Section 4). Missions can
be defined in TAL or as TSTs and can be translated in either
direction. Like composite actions, TSTs themselves are entirely
declarative in nature. At the same time there is a close integra-
tion with execution aspects of actions and action composition
constructs through the coupling of executors to specific types of



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 5

TST nodes. While executors must satisfy the declarative require-
ments of the corresponding nodes, their implementation can be
platform-specific, allowing the exact mode of execution for a
particular task to be platform-dependent as is often necessary
when heterogeneous platforms are used.

An automated planner called TFPOP, capable of generat-
ing distributable mission specifications that are transformable
into task specification trees, is presented (Section 5). We then
show how the high-level concept of delegation can be realized
in practice using TSTs as the concrete task representation, where
the executability of a mission can be verified effectively using
constraint solving techniques (Section 6). Finally, we show how
delegation and planning can be interleaved and integrated in sev-
eral distinct ways (Section 7).

2. A Delegation-Based Framework and Architecture

The mission specification language, task representation and
planning functionalities discussed in this article are realized in
the context of a concrete agent-based software architecture [7].
This architecture is currently used on board all UASTech un-
manned aircraft, but the intention is for the principles and solu-
tions developed in the project to be applicable to a wide variety
of robotic systems. Aircraft are thus only one example of po-
tential robotic platforms, which may also include for example
ground robots.

As we are interested in autonomy and semi-autonomy, we
view the combination of a platform and its associated software
as an agent. Humans interacting with platforms through for ex-
ample ground control stations and other interfaces are also con-
sidered to be agents. Taken together, these agents form a collab-
orative system where all participants can cooperate to perform
missions. One aspect of a collaborative system is that all agents
are conceptually equal and independent in the sense that there
is no predefined control structure, hierarchical or otherwise. A
consequence is that the control structure can be determined on
a mission-to-mission basis and dynamically changed during a
mission.

Delegation

Adjustable
Autonomy

Mixed‐Initiative
Interaction

Figure 5. A conceptual triad of concepts related to collaboration.

Part of the foundation for collaboration in this architecture
is a framework based on a triad of closely interdependent con-
cepts: delegation, adjustable autonomy and mixed-initiative in-
teraction (Figure 5). Among these concepts, delegation is the
key [7, 8], providing a bridge that connects mixed-initiative in-
teraction and adjustable autonomy and clarifies their intended re-
lation in an autonomous system. Each of these concepts also has

the potential of providing insights into desirable properties of
mission specifications, and will therefore be further elucidated
below.

Delegation. When we view an unmanned system as an agent
acting on behalf of humans, it is also natural to view the as-
signment of a complex mission to that system as delegation –
by definition, the act of assigning authority and responsibility to
another person, or in a wider sense an agent, in order to carry
out specific activities. Delegation as used in the current collabo-
ration framework always assigns the overall responsibility for a
mission to one distinct agent, not a groupc. At the same time the
concept is by nature recursive: To ensure that a complex mission
is carried out in its entirety, an agent may have to enlist the aid of
others, which can then be delegated particular parts or aspects of
the mission. This results in a network of responsibilities between
the agents involved and can continue down to the delegation of
elementary, indivisible actions. To avoid having to name even
such actions “missions”, we instead use “task” as the unifying
concept for everything that can be delegated to an autonomous
system.

A request for an agent to take the responsibility for a task
is then abstractly and concisely modeled as a form of delega-
tion where a delegator delegates to a contractor a specific task
to be performed under a set of constraints. Informally, an agent
receiving a delegation request must verify that to the best of its
knowledge, it will be able to perform the associated task under
the given constraints, which may for example concern resource
usage or temporal and spatial aspects of the mission. If this is
the case, it can accept the delegation and is then committed to
doing everything in its power to ensure the task is carried out. If
not, it must refuse. This will be formalized in Section 2.1.

Both the task and the constraints should be represented in
a unified mission specification language. As will be shown in
Sections 3 and 4, the language used in our concrete realization
of the delegation concept allows the use of complex tasks that
can also involve goals to be achieved. If all or part of a task con-
sists of a goal, a task planner is used to generate a suitable plan
that achieves the goal (Sections 5 and 7).

Adjustable Autonomy. An autonomous unmanned system
should support a wide spectrum of autonomy levels, where some
missions require the system to be controlled “from above” at a
very detailed level while others permit it to determine by itself
how a given goal should be achieved. The system should then al-
low the degree of autonomy actually used to achieve a particular
task at any given time to vary within the limitations mandated
by the delegator, which may be a human operator or another
autonomous system. If the task cannot be performed within the
given limitations, the permitted level of autonomy cannot be in-
creased unless a specific agreement is made.

One can develop a principled means of adjusting autonomy
through the use of the task and constraints. A task delegated with
only a goal and no plan, with few constraints, allows the robot to
use much of its potential for autonomy in solving the task. The
exact level of autonomy used could then be varied during execu-
tion depending on the current situation. On the other hand, a task

cThis restriction can be lifted to allow for team to team delegation, but this extension will not be considered in this article.



March 27, 2013 15:0 us2012

6 Doherty, Heintz, Kvarnström

specified as a sequence of actions and many constraints allows
only very limited autonomy. It may even be the case that the
delegator does not allow the contractor to recursively delegate.

Mixed-Initiative Interaction. By mixed-initiative interac-
tion, we mean that negotiation between a human and a robotic
system such as an unmanned aircraft can be initiated by either
agent. This allows a mission to take advantage of each of their
skills, capacities and knowledge in developing and elaborating a
mission specification, executing the specification, and adapting
to contingencies during execution.

Mixed-initiative interaction involves a broad set of theoret-
ical and pragmatic issues. One central aspect is the ability of a
ground operator (GOP) to delegate tasks to an unmanned system
(US), and symmetrically, the ability of a US to delegate tasks
to a GOP. A system can then adjust its level of autonomy dy-
namically during mission execution and can in particular choose
to delegate certain decision making tasks to others if this is ex-
pected to be beneficial. Issues pertaining to safety, security, trust,
etc., have to be dealt with in this interaction process and can be
formalized as particular types of constraints.

2.1. A Formal Specification of Delegation Using
Speech Acts

The concept of delegation requires a formal specification and se-
mantics amenable to pragmatic grounding and implementation
in a software system.

As a starting point, Castelfranchi and Falcone [9, 10] pro-
vide an informal discussion about delegation as a social concept
building on a BDI model, where agents have beliefs, goals, in-
tentions, and plans [11]. This discussion is illuminating but their
specification lacks a formal semantics for the operators used.

Based on intuitions from this work, we have earlier pro-
vided a formal characterization of the concept of strong delega-
tion: The form that is appropriate in delegating aspects of a mis-
sion, where the delegation is explicitly performed, there is mu-
tual awareness of the delegation, and part of the result is a social
commitment between the agents involved. Speech acts [12, 13]
are chosen as a means of formally specifying the concept of del-
egation. The characterization is built on the definition and use of
a newly defined communicative speech act S-Delegate(A,B,τ),
where A is the delegator that wants to delegate a task τ to the
contractor B.

This speech act is a communication command that can be
viewed as a request that does not have to be accepted. In partic-
ular, an agent may not be able to accept as it lacks the required
capabilities for performing a task. If it is accepted, it updates the
belief states of the delegator and contractor [14]. As shown in
Section 6, its concrete realization in the UASTech architecture
is associated with a specific delegation process.

Castelfranchi and Falcone associate an overall goal with
each task being delegated, dividing the task into a tuple τ =
〈α,φ〉 consisting of a plan α specifying which actions should be
executed and a goal φ associated with that plan. For the purpose
of defining a semantics for S-Delegate, we expand this tuple by
introducing an explicit set of constraints according to our previ-
ous characterization of delegation as a general concept, resulting

in a task τ = 〈α,φ ,constraints〉. The exact structure of a plan,
goal or constraint is purposely left general at this high level of
abstraction but will be dealt with in detail in later sections.

We use the KARO formalism (Knowledge, Actions, Re-
sults and Opportunities [15]), an amalgam of dynamic logic
and epistemic/doxastic logic augmented with several additional
modal operators, to characterize the operators used in the defi-
nition of the S-Delegate speech act and to provide a formal se-
mantics. Specifically, for the speech act to succeed, the follow-
ing conditions must be satisfied (a discussion pertaining to the
semantics of all non-KARO modal operators may be found in
Doherty and Meyer [14]):

(1) GoalA(φ) – φ is a goal of the delegator A.
(2) BelACanB(τ) – A believes that B can (is able to) perform the

task τ . This implies that A believes that B itself believes that
it can do the task: BelABelB(CanB(τ)).

(3) BelA(Dependent(A,B,τ)) – A believes it is dependent on B
with respect to the task τ .

(4) BelBCanB(τ) – the potential contractor B believes that it can
do the task.

The following postconditions will be satisfied if the speech act
is successful:

(1) GoalB(φ) and BelBGoalB(φ) – B has φ as its goal and is
aware of this.

(2) CommittedB(τ) – B is committed to performing τ .
(3) BelBGoalA(φ) – B believes that A has the goal φ .
(4) CanB(τ) – B can do the task τ . Hence it also believes it can

do the task, BelBCanB(τ). Furthermore, since it has φ as a
goal and believes it can do the task, it also intends to do the
task, IntendB(τ), which was a separate condition in Castel-
franchi & Falcone’s formalization.

(5) IntendA(doB(〈α,constraints〉)) – A intends that B should
perform 〈α,constraints〉, so we have formalized the notion
of a goal to have an achievement in Castelfranchi & Fal-
cone’s informal theory to an intention to perform a task.

(6) MutualBelAB(”the statements above” ∧ SociallyCommitted
(B,A,τ)) – there is a mutual belief between A and B that
all preconditions and other postconditions mentioned hold,
as well as that there is a contract between A and B, i.e. B is
socially committed to A to achieve τ for A.

The Can predicate used in the speech act operator is a particu-
larly important predicate. It is formally axiomatized in KARO,
but in order to ground it appropriately so it reflects the actual
computational processes used for delegation in the architecture,
an alternative definition is required which is dependent on the
task structure used in the architecture. We will therefore return
to this issue in Section 4.3.

A social commitment (contract) between two agents typically
induces obligations to the partners involved, depending on how
the task is specified in the delegation action. This dimension of
the contract affects the autonomy of the agents, in particular the
contractor’s autonomy. From this perspective the definition of
a task τ = 〈α,φ ,constraints〉 is quite flexible, permitting varia-
tions that capture different levels of adjustable autonomy as well
as levels of trust that can be exchanged between two agents.



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 7

For example, if α is a single elementary action with the
goal φ implicit and correlated with the post-condition of α ,
the contractor has little flexibility as to how the task will be
achieved. This is a form of closed delegation as defined by
Castelfranchi & Falcone. On the other hand, if a goal φ is speci-
fied but α is an extensible and initially empty plan, the contractor
can have a great deal of flexibility in choosing how to concretely
elaborate the delegated task. This would result in a detailed plan
α ′ extending α and satisfying the goal, a form of open delega-
tion where automated planning techniques may aid in determin-
ing how the task can be performed. There are many variations
between these extremes, especially considering the possibility
of providing a set of explicit constraints as part of a task.

It is important to keep in mind that this characterization of
delegation is not completely hierarchical. There is interaction
between the delegators and contractors as to how tasks can best
be achieved given the constraints of the agents involved. This is
implicit in the characterization of open delegation above, though
the process is not made explicit at this level of abstraction.

The pre- and post-conditions to the S-Delegate speech act
are used as the formal semantic specification to the actual pro-
cesses involved in the implementation of delegation in the soft-
ware architecture.

2.2. Collaborative Software Architecture Overview

The delegation-based framework discussed above forms the ba-
sis of a concrete collaborative software architecture [7]. Cur-
rently, this architecture employs an agent layer (Figure 6) which
encapsulates higher-level deliberative functionalities and pro-
vides a common interface for multi-agent collaboration in com-
plex missions, including support for mission specification lan-
guages, delegation, and planning.

Platform / Ground Station 

Agent Layer 

Legacy System 

Gateway 

Interface 

Delegation 
Capability 

Task Exec 
Capability 

… 

Legacy 
Functionalities 

Task Planning 
Capability 

Motion Planning 
Capability 

Resource 
Reasoning Cap. 

Figure 6. Agentified platform or ground control station.

As part of the agent layer, each agent has a set of conceptual
capabilities. For example, an agent needs a delegation capabil-
ity: It must be capable of coordinating delegation requests to and

from other agents such as unmanned aircraft and ground control
stations. The actual implementation of this capability must be
grounded in a concrete task representation (Section 4) and will
be discussed further in Section 6.

The delegation capability must also be able to determine
whether the preconditions of a delegation request are satisfied.
This in turn requires a resource reasoning capability which can
determine whether the agent has the resources and ability to ac-
tually do a task as a contractor, which may require the invo-
cation of schedulers, planners and constraint solvers. After an
agent is delegated a specific task, it must eventually execute that
task relative to the constraints associated with it, necessitating
a task execution capability coordinating this execution process.
Each agent also has a task planning capability in order to be
able to generate or elaborate mission specifications given spe-
cific goals (Sections 5 and 7), which in turn often requires a
motion planning capability [2, 16, 17] Additional capabilities,
such as chronicle recognition to detect complex sequences of
events [18, 19] and anchoring to ground symbolic reasoning in
sensor data [20, 21], can also be present.

The agent layer also provides a common interface through
which agents can communicate with each other, and with ground
operators which can also be viewed as agents. This interface is
the clearinghouse for all forms of inter-agent communication,
and all requests for delegation and other types of communication
pass through the interface. It also provides the external interface
to a specific robotic system or ground control station.

Communication between agents is based on the exchange
of messages representing speech acts encoded in an agent com-
munication language, such as the FIPA ACL [22]. As mentioned
earlier, delegation is one of the forms of communication con-
cretely realized as speech acts. In addition to the formal speech
act, an interaction protocol is required, specifying a pattern of
interaction realized as a sequence of messages sent between two
agents. One such protocol is defined for the messages involved in
delegation, where a call-for-proposals message specifying a task
and its associated constraints is sent to a potential contractor and
the contractor either refuses, due to being unable to satisfy the
request, or replies with a concrete proposal for how the task can
be carried out (Section 6). Additional steps are then required to
accept or refuse the proposal [7].

Legacy Systems. When an agent-based architecture is used to-
gether with an existing platform such as an unmanned aircraft,
there may already be an existing legacy system providing a va-
riety of lower-level functionalities such as platform-specific re-
alizations of elementary tasks and resources. Existing interfaces
to such functionalities can vary widely. The current instantia-
tion of the architecture (Figure 6) directly supports the use of
such legacy functionalities through the use of a gateway. The
gateway must have a platform-specific implementation, but pro-
vides a common platform-independent external interface to the
available legacy functionalities. In essence, this allows newly de-
veloped higher-level functionalities to be seamlessly integrated
with existing systems, without the need to modify either the
agent layer or the existing system. The agent layer can then be
developed independently of the platforms being used.

Legacy control stations and user interfaces that human op-



March 27, 2013 15:0 us2012

8 Doherty, Heintz, Kvarnström

erators use to interact with robotic systems are treated similarly,
through the addition of an agent layer. The result is a collab-
orative human/robot system consisting of a number of human
operators and robotic platforms each having an agent layer and
possibly a legacy system, as shown in Figure 7.

Collaborative Human Robot System 

Platform 1 

Agent 
Layer 

Legacy 
System 

Operator 1 

Agent 
Layer 

Legacy 
System 

Platform n 

Agent 
Layer 

Legacy 
System 

Operator m 

Agent 
Layer 

Legacy 
System 

Figure 7. Overview of the collaborative human/robot system.

2.3. Collaborative Software Architecture
Implementation

The collaborative architecture from the previous section is con-
cretely implemented as a set of distributed processes com-
municating through service calls and transmitting information
through a set of distributed communication channels. In early it-
erations, the underlying infrastructure facilitating the implemen-
tation of these general concepts was based on CORBA, while the
current version is based on ROS, the Robot Operating System.

ROS (www.ros.org) is a convenient open-source frame-
work for robot software development which allows interfaces
and services to be clearly specified [23]. The ROS framework
is multilingual with full support for C++, Lisp and Python,
and each programming language has its associated client library
which provides the tools and functions needed for developing
ROS software.

Software written for ROS is organized into packages which
contain nodes, libraries and configurations. Nodes represent
computational processes in the system and are written using the
client libraries. For example, many of the abstract capabilities
mentioned above, including task planning and motion planning,
are realized as separate ROS nodes. These nodes communicate
in two ways. First, by passing structured messages on topics
using XML-RPC where topics can be seen as named buses to
which nodes can subscribe. Second, by using request/reply com-
munication through services. A collaborative system consists of
a number of platforms which currently share a common ROS
Master, a standard ROS functionality providing registration and
lookup services. For disconnected operation, the ROS Master
will be federated.

Figure 8 gives an overview of some of the processes and
ROS topics that are normally present in our system when applied
to the LinkQuad platform. Black arrows indicate calls between
processes. Each gray rectangle contains processes and topics

that are explicitly associated with a particular agent. Inside this,
each rounded rectangle represents a distinct functionality that is
currently implemented as one or more related ROS services pro-
vided by one or more ROS nodes. Given the fundamental struc-
ture of ROS, functionality can easily be moved between nodes
without affecting the remainder of the system. Therefore an ex-
act specification at the node level is not relevant at this level of
abstraction.

The FIPA Gateway is part of the interface functionality of
each agent, as shown in Figure 6. This gateway listens to FIPA
ACL messages on a ROS topic available to all agents in the sys-
tem (the thick arrow at the top), selects those that are intended
for the current platform, and forwards them to their “internal”
destinations through other ROS topics.

For each agent 
(assuming LinkQuad) 

For each agent 
(assuming LinkQuad) 

For each agent (LinkQuad example) 

FIPA Gateway 

Delegation 
Constraint Server 

(Resource Reasoning) 

TST Factory 
(Declarative TST Nodes) 

TST Executor 
(Agent-specific Info/Exec) 

TFPOP 
(Planning) 

Quad Connect 
(for LinkQuad Platform) 

Motion Planner 

Motion Plan Info 
(Trajectory Queries) 

Local FIPA ACL Msgs 

ROS Topic: FIPA ACL Messages available to all agents 

CommHub 

LinkQuad systems and/or 
QuadSim simulators 

LinkGS 

Figure 8. Overview of the ROS-based implementation.

Delegation handles delegation requests specified as FIPA
speech acts. More details regarding this concrete functionality
will be discussed in Section 6. Delegation also requires reason-
ing about whether and how the agent can satisfy the temporal
and resource-related constraints associated with a task. This is
implemented through the constraint server which is part of the
resource reasoning capability mentioned earlier. The relation be-



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 9

tween constraint reasoning and delegation is also discussed in
Section 6.1.

Tasks are concretely represented as Task Specification
Trees (Section 4). Nodes in such trees, which are general and
declarative specifications of tasks to perform, are both created
by and stored in a TST Factory. The TST Executor functionality
is then responsible for generating platform-specific procedural
executor objects for any node type that a particular agent sup-
ports. Platform-specific constraints on how a certain task can
be performed, such as those related to the flight envelope of the
LinkQuad, are also specified here as opposed to in the more gen-
eral TST Factory.

To execute a flight action, an executor may have to call
a motion planner. This provides the ability to generate motion
plans and flight trajectories using several different motion plan-
ning algorithms [24]. The related Motion Plan Info functionality
provides the ability to estimate flight times for trajectories gen-
erated by the motion planner, which is required for the TST Ex-
ecutor to provide correct constraints on possible execution times
for a flight task.

TFPOP (Sections 5 and 7; [25, 26]) is used as a task plan-
ner. One of its responsibilities is to expand goal nodes in a task
specification tree into detailed task specifications, which is why
it can be called from the TST Executor. TFPOP can also call
the motion planner and Motion Plan Info in order to estimate
whether a given flight action is feasible as part of a plan being
generated, and if so, at what cost.

QuadConnect is a ROS node that converts ROS service
calls to UDP-based communication with the LinkQuad system,
similar to the gateway used for legacy systems. Outside the agent
rectangle, the CommHub multiplexes communication channels
to ensure that multiple programs can communicate with each
LinkQuad platform simultaneously, and can forward UDP mes-
sages across serial links if desired. LinkGS provides a low-level
interface for monitoring and debugging control loops and simi-
lar issues that do not belong at the agent level, and connects to
platforms through the CommHub. Finally, CommHub can con-
nect to the actual low-level LinkQuad system as well as to the
corresponding QuadSim simulation system.

3. Mission Specification Language

Before going into details regarding concrete distributed task rep-
resentation structures, we will now define a language that can
be used to formally define and reason about missions at a high
level of abstraction. The foundation for the language is a well-
established non-monotonic logic for representing and reason-
ing about actions: Temporal Action Logic, TAL [27, 28]. This
logic provides both clear intuitions and a formal semantics for
a highly expressive class of action specifications which includes
explicit support for temporal aspects, concurrent execution, and
incomplete knowledge about the environment and the effects of
an action, making it a suitable basis for describing the elemen-
tary actions used in realistic mission specifications. TAL has also
already proven very flexible in terms of extensibility [29–31],
which can be exploited to extend the logic with new constructs
for composite actions that also capture the high-level structure

of a mission [32].
Composite actions will be characterized recursively

through the introduction of the new general construct
“with VARS do TASK where CONS”: Any composite action con-
sists of a task TASK that should be executed in a context charac-
terized by a set of variables VARS constrained by a set of con-
straints CONS. The TASK, in turn, can be an elementary TAL
action or consist of a combination of composite actions us-
ing constructs such as sequence, concurrency, conditionals, (un-
bounded) loops, while-do, and a concurrent for-each operator.
Composing actions or tasks in this manner results in a hierar-
chical task structure suitable for iterative decomposition during
delegation, where delegation is always applied to a single com-
posite action already existing in the task and there is a clear and
comprehensible assignment of responsibilities. As will be seen
below, tasks can also specify calls to named composite actions,
allowing recursivity in the tasks themselves.

By allowing a set of explicit constraints to be specified lo-
cally in every elementary and composite action, we elaborate
on the general definition of tasks as consisting of separate plans
and goals as discussed in the previous section (the integration of
goals into mission specifications will be discussed in Section 4).
When specifying missions, this yields considerable advantages
in terms of modularity and readability. When delegating mis-
sions in a concrete implementation, it facilitates distributing con-
straints to the agents that are involved in enforcing them. The
ability to specify expressive constraints also permits a flexible
policy of least commitment in terms of the temporal and struc-
tural constraints that are implicit in each task construct, as will
be exemplified below.

At the mission specification level considered here, each
constraint definition can be as general as a logical formula in
TAL, giving it a formal semantics. For pragmatic use in a robotic
architecture, a wide class of formulas can be automatically trans-
formed into constraints processed by a constraint satisfaction
solver, allowing a robotic system to formally verify the con-
sistency of a (distributed) task through the use of (distributed)
constraint satisfaction techniques (see Section 6.1).

3.1. Temporal Action Logic

Temporal Action Logic provides an extensible macro language,
L (ND), that supports the knowledge engineer and allows ac-
tion definitions and other information to be specified at a higher
abstraction level than plain logical formulas. The logic is based
on the specification of scenarios represented as narratives in this
language. Each narrative consists of a set of statements of spe-
cific types. For example, there are statement types for specifying
action types with preconditions and effects, action occurrences
representing the fact that a specific action occurs at a partic-
ular time, domain constraints representing general knowledge
about a domain such as the emergency services domain, depen-
dency constraints representing causal relations such as side ef-
fects specified outside of explicitly invoked actions, and partial
or complete observations regarding the actual state of the world
at various points in time including but not limited to the initial
state.



March 27, 2013 15:0 us2012

10 Doherty, Heintz, Kvarnström

The L (ND) Language. We will now describe a subset of TAL
which is sufficient for elementary actions in the mission exam-
ples that will be presented. The basic ontology includes param-
eterized features f (x) that have values v at specific timepoints t,
denoted by [t] f (x) =̂ v, or over intervals, [t, t ′] f (x) =̂ v. Incom-
plete information can be specified using disjunctions of such
facts. Parameterized actions can occur at specific intervals of
time, denoted by [t1, t2]A(x). To reassign a feature to a new value,
R([t] f (x) =̂ v) is used. Again, disjunction can be used inside R()
to specify incomplete knowledge about the resulting value of
a feature. The value of a feature at a timepoint is denoted by
value(t, f ).

An action type specification declares a named elementary
action. The basic structure, which can be elaborated consider-
ably [28], is as follows:

[t1, t2]A(v) (Γpre(t1,v)→ Γpost(t1, t2,v))∧Γcons(t1, t2,v)

stating that if the action A(v) is executed during the interval
[t1, t2], then given that its preconditions Γpre(t1,v) are satisfied,
its postconditions or effects, Γpost(t1, t2,v), will take place. Ad-
ditionally, Γcons(t1, t2,v) specifies logical constraints associated
with the action during its execution. As an example, the follow-
ing defines the elementary action fly-to that will later be used in
an emergency response scenario: If a UAV should fly to a new
position, it must initially have sufficient fuel. At the next time-
point the UAV will not be hovering, and in the interval between
the start and the end of the action, the UAV will arrive and its fuel
level will decrease. Finally, there is partial information about the
possible flight time.
[t, t ′]fly-to(uav,x′,y′) 
[t] fuel(uav)≥ fuel-usage(uav,x(uav),y(uav),x′,y′)→
R([t +1] hovering(uav) =̂ False)∧
R((t, t ′] x(uav) =̂ x′)∧
R((t, t ′] y(uav) =̂ y′)∧
R((t, t ′] fuel(uav) =̂ value(t, fuel(uav)−

fuel-usage(uav,x(uav),y(uav),x′,y′)))∧
t ′− t ≥ value(t,min-flight-time(uav,x(uav),y(uav),x′,y′))∧
t ′− t ≤ value(t,max-flight-time(uav,x(uav),y(uav),x′,y′))

Elementary actions will be used as the basic building blocks
when we extend L (ND) to support composite actions, and their
syntax and semantics will remain the same as in TAL.

TAL narrative in L(ND) 

1st-order theory T in L(FL) 

1st-order theory T’ in L(FL) 

+ Circ(T) 
+ Foundational Axioms 
+ Quantifier Elimination 

Trans() 

Figure 9. Relation between L (ND) and L (FL).

The L (FL) language, Circumscription, and Reasoning. As
shown in Figure 9, a translation function denoted by Trans

()

translates L (ND) expressions into L (FL), a first-order logical
language [28]. This provides a well-defined formal semantics
for narratives in L (ND). When adding new constructs to the
formalism, the basic idea is to define new expression types in
L (ND) and extend the translation function accordingly. This is
how composite actions have been added.

The L (FL) language is order-sorted, supporting both types
and subtypes for features and values. This is also reflected in
L (ND), where we often assume variable types are correlated to
variable names – for example, uav3 is a variable implicitly rang-
ing over UAVs. There are a number of sorts for values Vi, includ-
ing the Boolean sort B with the constants {true, false}. V is a
supersort of all such value sorts. There are a number of sorts for
features Fi, each one associated with a value sort dom(Fi) =V j
for some j. The sort F is a supersort of all fluent sorts. There
is also an action sort A and a temporal sort T . Generally, t, t ′
will denote temporal variables, while τ,τ ′,τ1, . . . denote tempo-
ral terms. L (FL) currently uses the following predicates, from
which formulas can be defined inductively using the standard
rules, connectives and quantifiers of first-order logic.

• Holds: T ×F×V , where Holds(t, f ,v) expresses that
a feature f has a value v at a timepoint t, corresponding
to [t] f =̂ v in L (ND).

• Occlude :T ×F , where Occlude(t, f ) expresses that a
feature f is permitted to change values at time t. This
is implicit in reassignment, R([t] f =̂ v), in L (ND).

• Occurs: T ×T ×A , where Occurs(ts, te,A) expresses
that a certain action A occurs during the interval [ts, te].
This corresponds to [ts, te]A in L (ND).

When a narrative is translated, Trans
()

first generates the ap-
propriate L (FL) formulas corresponding to each L (ND) state-
ment. Additional foundational axioms that are used in all prob-
lem domains, such as unique names and domain closure axioms,
are appended when required. Logical entailment then allows us
to determine when actions must occur, but the fact that they
cannot occur at other times than explicitly stated is not explic-
itly stated and therefore not logically entailed by the translation.
This problem is handled in a general manner through filtered cir-
cumscription, which also ensures that fluents can change values
only when explicitly affected by an action or dependency con-
straint [28].

Although the filtered circumscription axioms used by TAL
are second-order formulas, the structure of L (ND) statements
ensures that they are reducible to equivalent first-order formulas,
a reduction that can often be performed through predicate com-
pletion. Therefore, classical first-order theorem proving tech-
niques can be used for reasoning about TAL narratives [28]. In
the context of unmanned systems, however, the logic will pri-
marily be used to ensure a correct semantics for the specification
language that is closely correlated to the implementation. Using
this language for delegation and execution will not require theo-
rem proving on board.



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 11

3.2. Composite Actions for Mission Specifications

We now extend L (ND) to support composite action type speci-
fications, which declare named composite actions. This is useful
in order to define a library of meaningful composite actions to be
used in mission specifications. Each specification is of the form

[t, t ′]comp(v̄) A(t, t ′, v̄)
where comp(v̄) is a composite action term such as
monitor-pattern(x,y,dist), consisting of an action name and a
list of parameters, and A(t, t ′, v̄) is a composite action expres-
sion where only variables in {t, t ′}∪ v̄ may occur free. A com-
posite action expression (C-ACT), in turn, allows actions to be
composed at a high level of abstraction using familiar program-
ming language constructs such as sequences (A;B), concurrency
(A || B), conditions and loops. The syntax for composite actions
is defined as follows:

C-ACT ::= [τ,τ ′]with x̄ do TASK where φ

TASK ::= [τ,τ ′]ELEM-ACTION-TERM |
[τ,τ ′]COMP-ACTION-TERM |
(C-ACT; C-ACT) |
(C-ACT || C-ACT) |
if [τ]ψ then C-ACT else C-ACT |
while [τ]ψ do C-ACT |
foreach x̄ where [τ]ψ do conc C-ACT

where x̄ is a potentially empty sequence of variables (where the
empty sequence can be written as ε), φ is a TAL formula repre-
senting a set of constraints, ELEM-ACTION-TERM is an elemen-
tary action term such as fly-to(uav,x,y), COMP-ACTION-TERM
is a composite action term, and [τ]ψ is a TAL formula refer-
ring to facts at a single timepoint τ . For brevity, omitting “with
x̄ do” is considered equivalent to specifying the empty sequence
of variables and omitting “where φ” is equivalent to specifying
“where TRUE”. Note that the ; and || constructs are easily ex-
tended to allow an arbitrary number of actions, as in (A;B;C;D).

Like elementary actions, every composite action C-ACT is
annotated with a temporal execution interval. This also applies
to each “composite sub-action”. For example,

[t1, t2]with uav, t3, t4, t5, t6 do(
[t3, t4]fly-to(uav,x,y); [t5, t6]collect-video(uav,x,y)

)
where [t1]has-camera(uav)

denotes a composite action where one elementary action takes
place within the interval [t3, t4], the other one within the interval
[t5, t6], and the entire sequence within [t1, t2].

The with-do-where construct provides a flexible means of
constraining variables as desired for the task at hand. In essence,
“[t1, t2]with x̄ do TASK where φ” states that there exists an instan-
tiation of the variables in x̄ such that the specified TASK (which
may make use of x̄ as illustrated above) is executed within the
interval [t1, t2] in a manner satisfying φ . The constraint φ may be
a combination of temporal, spatial and other types of constraints.
Above, this constraint is used to ensure the use of a uav that has
a camera rather than an arbitrary uav.

As we aim to maximize temporal flexibility, the sequence
operator (;) does not implicitly constrain the two actions fly-to
and collect-video to cover the entire temporal interval [t1, t2]. In-
stead, the actions it sequentializes are only constrained to occur

somewhere within the execution interval of the composite action,
and gaps are permitted between the actions – but all actions in a
sequence must occur in the specified order without overlapping
in time. This is formally specified in the TransComp function
below. Should stronger temporal constraints be required, they
can be introduced in a where clause. For example, t1 = t3 ∧
t4 = t5∧t6 = t2 would disallow gaps in the sequence above. Also,
variations such as gapless sequences can easily be added to the
language if desired.

Extending L (FL) with Fixpoints. In order to translate com-
posite actions into L (FL), we need the ability to represent loops,
recursion and inductive definitions. Since this is strictly outside
the expressivity of a first-order language, L (FL) is extended
into the language L (FLFP) which allows fixpoint expressions of
the form LFP X(x̄).

[
Γ(X , x̄, z̄)

]
, where all occurrences of X in Γ

must be positive. The corresponding version of TAL is denoted
by TALF. Fixpoint logic [33] strikes a nice balance between
first-order and second-order logic, with an increase in expres-
sivity conservative enough to still allow relatively efficient in-
ference techniques. In particular, Doherty, Kvarnström and Sza-
las [32] present a proof system which is complete relative to a
specific class of arithmetical structures that is useful for robotic
applications. Furthermore, TAL structures that are bounded in
the sense that there is a finite number of fluents and a finite max-
imum timepoint can be represented as deductive databases and
queried in polynomial time.

Intuitively, the fixpoint expression LFP X(x̄).
[
Γ(X , x̄, z̄)

]
represents the predicate that has the smallest extension that
satisfies X(x̄) ↔ Γ(X , x̄, z̄). For example, the expression
LFP path(n1,n2).

[
edge(n1,n2)∨∃n.(path(n1,n)∧ edge(n,n2))

]
represents the transitive closure of an edge predicate, which
cannot be defined using only first-order logic. The formula(
LFP path(n1,n2).

[
edge(n1,n2)∨∃n.(path(n1,n)∧edge(n,n2))

])
(A,B) applies this predicate to determine whether there is a path
between the specific nodes A and B in a graph.

Formally, the meaning of LFP X(x̄).
[
Γ(X , x̄, z̄)

]
is provided

by the following Kleene characterization of fixpoints:

LFP X(x̄).
[
Γ(X , x̄, z̄)

]
≡
∨
i∈ω

Γ
i(false, x̄, z̄), where

Γ
i(false, x̄, z̄) def

=

{
false for i = 0
Γ(Γi−1(false, x̄, z̄), x̄, z̄) for i > 0.

In the finite case this corresponds to an iterative procedure: First
let X(x̄) be false for all x̄, corresponding to i = 0 above. Then re-
peatedly generate a new definition where X(x̄) true iff Γ(X , x̄, z̄)
is true when evaluated with the “old” definition of X generated
in the previous step, corresponding to i > 0 above. Since X only
occurs positively in Γ(X , x̄, z̄), its extension will grow monoton-
ically. Continue updating X in this manner until its definition no
longer changes, at which point a fixpoint has been reached.

Translating Composite Actions into L (FLFP). A formal se-
mantics for composite actions can now be defined by extending
the standard TAL translation function Trans

()
from Doherty and

Kvarnström [28] and using L (FLFP), with a standard logical fix-
point semantics, as the target language. The extended Trans

()



March 27, 2013 15:0 us2012

12 Doherty, Heintz, Kvarnström

function calls TransComp(τ,τ ′,T ) to translate each task T ac-
cording to the intended meaning that T occurs somewhere within
the interval [τ,τ ′].

Trans
(
[τ,τ ′]with x̄ do T where φ

) def
=

∃x̄
[
TransComp(τ,τ ′,T )∧Trans

(
φ
)]

If the task to be translated is a call to a named elementary action
elem(v̄), then TransComp() calls the standard Trans

()
function.

Calls to named composite actions are discussed later.

TransComp(τ,τ ′, [τ1,τ2]elem(v̄)) def
=

Trans
(
[τ1,τ2]elem(v̄)

)
∧ τ ≤ τ1 < τ2 ≤ τ ′

Two potentially concurrent actions are simply constrained to oc-
cur within the given interval [τ,τ ′]. A sequence of two actions
must additionally occur in the stated order. An if/then/else task
is translated into a conjunction of conditionals, where both the
timepoint τc at which the condition is checked and the execution
interval of the selected action (A1 or A2) must be within [τ,τ ′].

TransComp(τ,τ ′,
(
[τ1,τ2]A1 || [τ3,τ4]A2

)
)

def
=

Trans
(
[τ1,τ2]A1

)
∧Trans

(
[τ3,τ4]A2

)
∧

τ≤τ1≤τ2≤τ ′∧ τ≤τ3≤τ4≤τ ′

TransComp(τ,τ ′,
(
[τ1,τ2]A1; [τ3,τ4]A2

)
)

def
=

Trans
(
[τ1,τ2]A1

)
∧Trans

(
[τ3,τ4]A2

)
∧

τ≤τ1≤τ2≤τ3≤τ4≤τ ′

TransComp(τ,τ ′, if [τc]F then [τ1,τ2]A1 else [τ3,τ4]A2)
def
=

(Trans
(
[τc]F

)
→ Trans

(
[τ1,τ2]A1

)
)∧

(Trans
(
[τc]¬F

)
→ Trans

(
[τ3,τ4]A2

)
)∧

τ ≤ τc ≤ τ ′∧ τc≤τ1≤τ2≤τ ′∧ τc≤τ3≤τ4≤τ ′

A concurrent foreach statement allows a variable number of ac-
tions to be executed concurrently. An example is given in the
next section, where all available UAVs with the ability to scan
for injured people should do so in parallel. Below, x̄ is a non-
empty sequence of value variables. For all instantiations of x̄ sat-
isfying [τc]F(x̄), there should be an interval within [τ1,τ2] where
the composite action A(x̄) is executed.

TransComp(τ,τ ′, foreach x̄ where [τc]F(x̄) do conc [τ1,τ2]A(x̄))
def
=

∀x̄[Trans
(
[τc]F(x̄)

)
→ Trans

(
[τ1,τ2]A(x̄)

)
]∧

τ ≤ τc ≤ τ1 ≤ τ2 ≤ τ ′

A while loop is translated into a least fixpoint. Informally, the
LFP parameter u represents the time at which the previous itera-
tion ended, and is initially given the value τ as seen in the final
line below. In each iteration the temporal variable tc is bound to
the timepoint at which the iteration condition F is tested, which
must be at least u and at most τ ′. If the condition holds, the
variables [t1, t2] are bound to an interval where the inner action
A is executed (similarly constrained to be in [tc,τ ′]), the action
occurs, and the next iteration may start no earlier than t2, speci-
fied by X(t2). If the condition does not hold, no new iteration is
implied by the formula and a fixpoint has been reached.

TransComp(τ,τ ′, while [tc]F do [t1, t2]A)
def
=

τ≤τ ′∧LFP X(u).
[
∃tc[

u≤ tc ≤ τ ′∧ (Trans
(
[tc]F

)
→

∃t1, t2[tc≤ t1≤ t2≤ τ ′∧Trans
(
[t1, t2]A

)
∧X(t2)])

]
]
(τ)

Assume a composite action is named using a statement such
as [t, t ′]comp(x̄) A(t, t ′, x̄). A named action can be called in
two places: As part of a composite action expression, where one
composite action calls another, and at the “top level” of a nar-
rative, where one states that a specific composite action occurs.
We therefore extend both Trans and TransComp:

Trans
(
[τ1,τ2]comp(ā)

) def
=

LFP Y (t, t ′, x̄).
[
Trans

(
A′(t, t ′, x̄)

)]
(τ1,τ2, ā)

TransComp(τ,τ ′, [τ1,τ2]comp(ā)) def
=

Trans
(
[τ1,τ2]comp(ā)

)
∧ τ ≤ τ1 ≤ τ2 ≤ τ ′

where A′(t, t ′, x̄) is A(t, t ′, x̄) with all occurrences of comp re-
placed with Y . This use of fixpoint expressions in the translation
of the composite action permits direct recursion: An action may
contain a nested conditional call to itself, which is transformed
into a “call” to Y , leading to another “iteration” in the fixpoint.
To fully support mutually recursive action definitions, simulta-
neous fixpoints are required. We omit this here for brevity and
readability.

As a result of this translation, a composite action is a theory in
L (FLFP). Questions about missions thereby become queries rel-
ative to an inference mechanism, allowing operators to analyze
mission properties both during pre- and post-mission phases.

Possible Extensions. We have now defined a small core of
important composite action constructs. This is not an exhaus-
tive list, and additional constructs can easily be added. For ex-
ample, to wait for a formula φ to become true, we can de-
fine [τ,τ ′]wait-for(φ) as Trans

(
∀u[τ ≤ u < τ ′→ [u]¬φ ]∧ [τ ′]φ ∧

τ ′ ≥ τ
)
: The formula is false at all timepoints in [τ,τ ′) and is

true exactly at τ ′, which cannot be before τ . This ensures that
wait-for terminates at the first timepoint τ ′ ≥ τ where φ is true.

3.3. Composite Actions in the Fukushima Scenario

A mission specification can now be expressed as a composite
action in the extended version of TAL described above. We will
exemplify this concretely using a scenario related to the tsunami
in Japan in 2011. Specifically, we will consider several com-
posite actions that can be useful for the problem of information
gathering near the Fukushima Daiichi nuclear plant, where an
emergency response unit could use a team of unmanned aircraft
to assess the situation, monitor radiation levels, and locate in-
jured people in a regular grid around a damaged reactor. Our fo-
cus is on demonstrating the L (ND) composite action constructs
and some aspects of the composite actions below are simplified
for expository reasons.

We assume the existence of a set of elementary actions
whose meaning will be apparent from their names and from the



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 13

explanations below: hover-at, fly-to, monitor-radiation, collect-
video, and scan-cell. Each elementary action is assumed to be
defined in standard TAL and to provide suitable preconditions,
effects, resource requirements and (completely or incompletely
specified) durations. For example, only a UAV with suitable sen-
sors can execute monitor-radiation.

In the following composite action, a UAV hovers at a location
(xuav,yuav) while using its on-board sensors to monitor radiation
and collect video at (xtarg,ytarg).

[t, t ′]monitor-single(uav,xuav,yuav,xtarg,ytarg) 
[t, t ′]with t1, t2, t3, t4, t5, t6 do (
[t1, t2]hover-at(uav,xuav,yuav) ||
[t3, t4]monitor-radiation(uav,xtarg,ytarg) ||
[t5, t6]collect-video(uav,xtarg,ytarg)

) where [t]surveil-equipped(uav)∧ radiation-hardened(uav)∧
t1 = t3 = t5 = t ∧ t2 = t4 = t6 = t ′

The first part of the constraint specified in the where clause en-
sures that a UAV involved in a monitoring action is equipped for
surveillance. Furthermore, as we are being careful at this point,
we only want to use radiation-hardened aircraft (in addition to
the conditions placed on monitor-radiation, which include the
existence of radiation sensors). The temporal constraints model
a requirement for these particular actions to be synchronized in
time and for the UAV to hover in a stable location throughout the
execution of monitor-single. These constraints could easily be re-
laxed, for example by stating that hovering occurs throughout
the action but monitoring occurs in a sub-interval.

The following action places four UAVs in a diamond pattern to
monitor a given location such as a nuclear reactor at a given
distance, counted in grid cells. The UAVs involved are not
specified as parameters to the monitoring action, but are cho-
sen freely among available UAVs. Note, however, that the con-
straints placed on parameters by sub-actions will apply at this
higher level as well. Thus, as for monitor-single, all UAVs in-
volved in this action must be equipped for surveillance and carry
radiation sensors.

[t, t ′]monitor-pattern(x,y,dist) 
[t, t ′]with s1, . . . ,w4,uav1,uav2,uav3,uav4 do (

([s1,s2] fly-to(uav1,x+dist,y);
[s3,s4] monitor-single(uav1,x+dist,y,x,y)) ||
([u1,u2] fly-to(uav2,x−dist,y);
[u3,u4] monitor-single(uav2,x−dist,y,x,y)) ||
([v1,v2] fly-to(uav3,x,y+dist);
[v3,v4] monitor-single(uav3,x,y+dist,x,y)) ||
([w1,w2] fly-to(uav4,x,y−dist);
[w3,w4] monitor-single(uav4,x,y−dist,x,y)))

where
s3 = u3 = v3 = w3∧ s4 = u4 = v4 = w4∧
s4− s3 ≥ minduration

Four sequences are executed in parallel. Within each sequence,
a specific UAV flies to a suitable location and then monitors the
target. We require the target to be monitored simultaneously by
all four UAVs (s3 = u3 = v3 = w3 and s4 = u4 = v4 = w4), while
s4−s3≥minduration ensures this is done for at least the specified

duration. As flying does not need to be synchronized, the inter-
vals for the fly-to actions are only constrained implicitly through
the definition of a sequence. For example, the translation ensures
that t ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ t ′, so that each fly-to must end before
the corresponding monitor-single.

All grid cells must also be scanned for injured people. The fol-
lowing generic action makes use of all available UAVs with the
proper capabilities, under the assumption that each such UAV
has been assigned a set of grid cells to scan. An assignment
could be generated by another action or provided as part of the
narrative specification. For clarity, we include several clauses
(with ε do, where TRUE) that could easily be omitted.

[t, t ′] scan-with-all-uavs() 
[t, t ′] with ε do

foreach uav where [t]can-scan(uav) do conc
[t, t ′] with u,u′ do

[u,u′] scan-for-people(uav)
where TRUE

where TRUE

As shown below, each UAV involved in this task iterates while
there remains at least one grid cell (x,y) that it has been assigned
(“owns”) and that is not yet scanned. In each iteration the vari-
ables (x′,y′) declared in the nested with clause range over arbi-
trary coordinates, but the associated where clause ensures that
only coordinates that belong to the given UAV and that have not
already been scanned can be selected. Also in each iteration, the
variable tc is bound to the time at which the constraint condition
is tested and u,u′ are bound to the timepoints at which the inner
composite action is performed. The repeated use of u,u′ is inten-
tional: The elementary scan-cell action will occur over exactly
the same interval as the enclosing composite action construct.
Note also that u,u′ are automatically declared by the while state-
ment and do not have to occur in a with clause. This is necessary
as they will have different values in each iteration and must be
declared inside the fixpoint translation of while tasks as specified
earlier.

[t, t ′] scan-for-people(uav) 
[t, t ′] with ε do

while [tc] ∃x,y[owns(uav,x,y)∧¬scanned(x,y)] do
[u,u′] with x′,y′ do

[u,u′]scan-cell(uav,x′,y′)
where [tc]owns(uav,x′,y′)∧¬scanned(x′,y′)

where TRUE

Finally, we can define a small mission to occur within the in-
terval [0,1000], where scanning may utilize the entire interval
while the grid cell (20,25) is monitored at a distance of 3 cells
and must terminate before time 300.

[0,1000]([0,1000]scan-with-all-uavs() ||
[0,300]monitor-pattern(20,25,3))

It should be emphasized that in the expected case, the task of
generating specifications of this kind would be aided by libraries
of predefined domain-related actions as well as by user inter-
faces adapted to the task at hand. The structure and high-level
nature of the language remains important when ensuring that



March 27, 2013 15:0 us2012

14 Doherty, Heintz, Kvarnström

these tools and their output are both correct and comprehensible
to a human operator inpecting a mission definition.

4. Task Specification Trees

The composite action formalism defined in the previous section
allows us to view a mission as a complex multi-agent task that
can be recursively constructed from simpler or smaller tasks.
This results in an abstract, formally grounded and very expres-
sive mission specification language. However, it is equally es-
sential to tightly ground mission specifications into the actual
operations of a robotic system. We would therefore like to be
able to map and compile them into a form of task structure that
is pragmatically usable on board agent-based autonomous un-
manned systems. This structure should be used both in delega-
tion, as a concrete task representation for the S-Delegate speech
act, and for execution.

We have proposed Task Specification Trees (TSTs) for this
purpose and applied them in a number of deployable UAV sys-
tems [34, 35]. Each node in such a tree is a specification of an
action, a control structure, or a goal.

Example 4.1. Consider a small scenario where the mission
is that two UAVs should concurrently scan the areas AreaA
and AreaB, after which the first UAV should fly to Dest4 (Fig-
ure 10). The corresponding Task Specification Tree (Figure 11)
uses three elementary action nodes (marked E), corresponding to
two elementary actions of type scan-area and one of type fly-to.
Furthermore, it requires a concurrent node (marked C) specify-
ing that the scan-area actions can be performed concurrently, as
well as a sequential node (marked S). Further explanations will
be given below.

AreaA 

AreaB 

Dest4 

Figure 10. Map of example mission area.

A task specification tree is in itself purely declarative, defin-
ing what should be achieved and providing parameters and con-
straints for tasks. For example, a sequence node declaratively
specifies that its children should be sequentially executed, while

a fly-to node would specify that an aircraft should fly to a specific
location, possibly with parameters such as speed and altitude. It
is up to each platform to associate each node type with an execu-
tor, an executable procedural representation specifying how the
corresponding task should be performed. This provides a clear
separation between task specifications and platform-specific ex-
ecution details. Note that executors are required even for control
nodes or structural nodes , though such executors may be iden-
tical across platforms. For example, a sequential node requires
an executor that procedurally ensures its children are executed
in sequential order.

Type: fly-to 
Interface: 𝑃4, 𝑇𝑆4, 𝑇𝐸4, 𝑥4, 𝑦4  

… 
… 

Type: scan-area 
Interface: 𝑃2, 𝑇𝑆2, 𝑇𝐸2, 𝑠𝑝𝑒𝑒𝑑2, 𝑎𝑟𝑒𝑎2 

Type: scan-area 
Interface: 𝑃3, 𝑇𝑆3, 𝑇𝐸3, 𝑠𝑝𝑒𝑒𝑑4, 𝑎𝑟𝑒𝑎4 

Type: sequence 
Interface: 𝑃0, 𝑇𝑆0, 𝑇𝐸0 S 

C E 

E 

E 

Figure 11. Example Task Specification Tree.

Since many agents can cooperate in performing a mission,
the task structure used must be both sharable and distributable.
This is achieved by allowing nodes to reside on multiple plat-
forms and edges to cross between platforms. Each node in the
tree therefore represents a task that can be delegated to another
agent, which may be an unmanned platform or (in a mixed-
initiative setting) a human working through an agentified in-
terface. More concretely, the current implementation uses node
identities consisting of a platform ID combined with a platform-
local node ID, together with ROS services allowing TST-related
communication across platforms. For example, when delegating
a tree to another platform, what is transmitted is not the tree
but the node identity. The receiving delegation functionality can
then query the delegator for information about the TST, and if
desired, it can generate its own local copy linked into the origi-
nal tree.

Parameters and Constraints. As illustrated in Figure 11, the
task corresponding to a node is identified through the node type
(such as sequence or fly-to) together with a set of node parame-
ters corresponding directly to “with x” in a composite action. To-
gether, these parameters are called the node interface. The node
interface always contains a platform (agent) assignment parame-
ter, usually denoted by Pi. This identifies the agent that will exe-
cute the action and corresponds to the uav agent parameter used
previously for actions in the high-level mission specification lan-
guage. The interface also always contains two parameters for the
start and end times of the task, usually denoted by TSi and TEi,
respectively.

Additional parameters may also be present, such as a speed
parameter and an area parameter for a scan-area action. Actual
arguments, such as the fact that the areas to scan are AreaA and



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 15

AreaB, are not shown in the figure.
Also not shown explicitly in the figure is the fact that each

node can be associated with a set of constraints, called node
constraints. These constraints correspond directly to the where
clause in a TAL composite action and can be used to constrain
the parameters of the same node as well as all parameters of
ancestor nodes in the tree. Constraints can also express prece-
dence relations and organizational relations between the nodes
in the TST that are not captured by the use of specific control
nodes. Together the constraints form a constraint network where
the node parameters function as constraint variables.

Note that constraining node parameters implicitly con-
strains the degree of autonomy of an agent, as it reduces the
space of possibilities that the agent can choose from. Also, both
human and robotic agents may take the initiative and set the val-
ues of the parameters in a TST before or during execution. This
provides support for one form of mixed-initiative interaction.

TSTs and Goals. Castelfranchi and Falcone [9, 10] permit a
single goal to be associated with a task. To be able to specify
desired goals to be achieved at multiple points in a mission, we
extend this by specifying goal nodes that can be embedded at ar-
bitrary points in a task specification tree. This allows more fine-
grained control over some aspects of a mission while permitting
an agent to call an on-board task planner to determine how to
achieve other aspects of the same mission. Depending on the
constraints that are used, a contractor can be given a great deal
of freedom, thereby increasing its permitted level of autonomy.
It can then satisfy the goals using any means at its disposal.

When a goal node is in the process of being delegated to a
particular agent, the agent cannot accept the delegation until it
has determined that it can find a plan achieving the goal (Sec-
tion 5) and that it can either execute the plan itself or find sub-
contractors that can. Once a plan has been generated it must be
integrated into the task specification tree, implying that the task
representation must be dynamically expandable. Goal nodes are
therefore allowed to add children to themselves, after which they
act as sequence nodes. This is one example of open delegation
where a contractor elaborates a task α into a detailed plan α ′

as discussed earlier. Once the plan has been integrated, the full
TST corresponds to a complete mission specification.

4.1. Syntax: Describing Task Specification Trees

Though TSTs consist of nodes and edges, describing them in
a text-based language is often more convenient. The syntax in
Figure 12 is used for this purpose and was in fact defined for
pragmatic reasons before the TAL-based mission specification
language was developed.

As seen in the figure, there is a close but not perfect corre-
spondence between the TST description language and the mis-
sion specification language. For example, each TST construct
corresponds to a specific parameterized node. All such nodes
must be explicitly named in order to allow name-based refer-
ences, which was not the case for a TAL composite action con-
struct such as a sequence. The parameters, VARS, specify the
node interface which can be accessed from the outside and cor-
respond directly to a combination of the temporal interval and

the with clause of a composite action. As in composite actions,
these can be constrained relative to each other using constraints
in a where clause.

Some node types use conditions (COND), which can be rep-
resented as FIPA ACL queries. The concrete content of such a
query can be realized as an arbitrary TAL formula sent to a the-
orem proving module such as the deductive database-based in-
ference mechanism presented in Doherty, Kvarnström and Sza-
las [32]. It is also possible to retain the same semantics while
syntactically restricting formulas to use subsets of TAL that can
be handled through constraint solving or other efficient querying
techniques.

TST ::= NAME ’(’ VARS ’)’ ’=’
(with VARS)? TASK (where CONS)?

TSTS ::= TST | TST ’;’ TSTS
TASK ::= ACTION | GOAL | call NAME ’(’ ARGS ’)’ |

sequence TSTS | concurrent TSTS |
if [TIME] COND then TST else TST |
while [TIME] COND TST |
foreach VARS where [TIME] COND do conc TST

VAR ::= <variable name>
VARS ::= VAR | VAR ’,’ VARS
ARG ::= VAR | VALUE
ARGS ::= ARG | ARG ’,’ ARGS
CONS ::= <constraint> | <constraint> and CONS
VALUE ::= <value>
TIME ::= <temporal expression>
NAME ::= <node name>
COND ::= <FIPA ACL query message

requesting the value of a boolean expression>
GOAL ::= <goal statement name(x)>
ACTION ::= <elementary action call name(x)>

Figure 12. Task Specification Tree syntax

Example. Consider a small scenario where the mission is to
first scan AreaA and AreaB, and then fly to Dest4 (Figure 11).
In the associated TST, nodes marked S and C are sequential and
concurrent nodes, respectively, while nodes marked E are ele-
mentary action nodes. The corresponding TST specification as-
sociates each node with a task name τi. There are two composite
actions, one sequential (τ0) and one concurrent (τ1), and three
elementary actions of type scan-area and fly-to:
τ0(TS0 ,TE0 ) =
with TS1 ,TE1 ,TS4 ,TE4 sequence

τ1(TS1 ,TE1 ) =
with TS2 ,TE2 ,TS3 ,TE3 concurrent

τ2(TS2 ,TE2 ) = scan-area(TS2 ,TE2 ,Speed2,AreaA),
τ3(TS3 ,TE3 ) = scan-area(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ,
τ4(TS4 ,TE4 ) = fly-to(TS4 ,TE4 ,Dest4x, Dest4y)

where consτ0

consτ0 = TS0 ≤ TS1 ≤ TE1 ≤ TS4 ≤ TE4 ≤ TE0
consτ1 = TS1 ≤ TS2 ≤ TE2 ≤ TE1 and TS1 ≤ TS3 ≤ TE3 ≤ TE1



March 27, 2013 15:0 us2012

16 Doherty, Heintz, Kvarnström

4.2. Semantics: Connecting TSTs to TALF

Since task specification trees serve as an executable counterpart
of mission specifications, there must be a close connection be-
tween the semantics of a TALF composite action and the corre-
sponding TST. The semantics of a TST is in fact defined in terms
of this connection using a bidirectional translation function as il-
lustrated in Figure 4.

We will begin by defining the translation in the direction
from TALF composite actions into TSTs. Temporal constraints
implicit in a composite action must then be made explicit and
must be “lifted” into the nearest enclosing with clause in a
TST, to make them explicitly available to a constraint solver.
The TransTST() function therefore relies on a TransTask() func-
tion, corresponding closely to TransComp(), which returns a tu-
ple containing both a TST TASK and a constraint.

TransTask(τ,τ ′, [τ1,τ2]elem(v̄)) def
=

〈elem(τ1,τ2, v̄),τ ≤ τ1 ≤ τ2 ≤ τ ′〉
TransTask(τ,τ ′, [τ1,τ2]comp(v̄)) def

=
〈call comp(τ1,τ2, v̄),τ ≤ τ1 ≤ τ2 ≤ τ ′〉

TransTask(τ,τ ′,
(
[τ1,τ2]A1; [τ3,τ4]A2

)
)

def
=

〈(sequence TransTST([τ1,τ2]A1),TransTST([τ3,τ4]A2)),
τ ≤ τ1 ≤ τ2 ≤ τ3 ≤ τ4 ≤ τ ′〉

TransTask(τ,τ ′,
(
[τ1,τ2]A1 || [τ3,τ4]A2

)
)

def
=

〈(concurrent TransTST([τ1,τ2]A1),TransTST([τ3,τ4]A2)),
τ ≤ τ1 ≤ τ2 ≤ τ ′ ∧ τ ≤ τ3 ≤ τ4 ≤ τ ′〉

TransTask(τ,τ ′, if [τc]F then [τ1,τ2]A1 else [τ3,τ4]A2)
def
=

〈(if [τc]F then TransTST([τ1,τ2]A1)
else TransTST([τ3,τ4]A2)),

τ ≤ τc ≤ τ ′ ∧ τc≤τ1≤τ2≤τ ′ ∧ τc≤τ3≤τ4≤τ ′〉
TransTask(τ,τ ′,while [tc]F do [t1, t2]A)

def
=

〈while [tc] F TransTST([t1, t2]A),τ ≤ tc ≤ t1 ≤ t2 ≤ τ ′〉
TransTask(τ,τ ′, foreach x̄ where [τc]F(x̄) do conc [τ1,τ2]A(x̄))

def
=

〈foreach x̄ where [τc]F(x̄) do conc TransTST([τ1,τ2]A(x̄)),
τ ≤ τc ≤ τ1 ≤ τ2 ≤ τ ′〉

TransTST() should translate a full TALF C-ACT into a TST node.
A composite action type specification is therefore translated as
follows, given that TransTask(τ,τ ′,T ) = 〈T ′,ψ〉:

TransTST([t, t ′]comp(v̄) [t, t ′]with x̄ do T where φ)
def
=

comp(t, t ′, v̄) = with x̄ T ′ where φ and ψ

Finally, a C-ACT can also occur unnamed and nested inside an-
other composite action. Since all TST nodes must be named, a
new name must be automatically generated. Then,

TransTST([τ,τ ′]with x̄ do T where φ)
def
=

name(τ,τ ′) = with x̄ T ′ where φ and ψ

Assuming that GOAL nodes have already been expanded through
planning (Section 5), the translation from a TST back to a TALF
composite action is very similar but slightly simpler, as no new
names need to be generated. This bidirectional translation pro-
vides a formal connection between the two mission representa-
tions and a formal semantics for executable TSTs.

To explore this connection further, note that any compos-
ite action in TALF, together with the additional axioms and the
circumscription policy discussed earlier, is associated with a set
of logical models. Since TALF is a temporal logic, each model
represents one possible evolution of the state of the world over
time under the assumption that the composite action is executed.
Additional information such as what is known about the current
state of the world can also be added. Assuming that the infor-
mation provided in the specification is correct, the actual trace
that results from the execution of the corresponding TST in a
robotic system must correspond directly to a member of that set
of models. This permits formally grounded conclusions to be
drawn about what will happen if a particular TST is executed.

4.3. Semantics: Connecting TSTs to Delegation

In Section 2.1 we defined the high-level semantics of the
S-Delegate speech act, but the alternative pragmatic specifica-
tion of the CanX (τ) predicate had to wait until we had a con-
crete task structure in which it could be grounded. Now that this
structure has been clearly specified, we can provide the missing
information, which is also essential for the concrete realization
of a delegation process in Section 6.

We first note that if an agent accepts the delegation of a
task, it takes on the responsibility for ensuring that the entire
task will be executed in a way that satisfies all associated con-
straints. Given the use of task specification trees, a task can be
composite. Taking the responsibility for such a task should not
necessarily mean that an agent must execute all elementary ac-
tions in the tree by itself or even that it will centrally coordinate
the execution of the tree. However, if it does enlist the help of
other agents, it must verify that those agents will accept the dele-
gation of parts of the TST before it can accept the responsibility
for the entire TST. For task specification trees, delegation will
therefore be a recursive process.

This leads directly to the question of exactly how much of
the task the responsible agent must actually perform itself. Given
a tree-based representation, there is a natural answer: The agent
that is delegated a TST must itself execute (run the executor for)
the root node. Immediately re-delegating the entire tree to an-
other agent would merely introduce an unnecessary middleman,
in which case it would be better to backtrack and delegate to the
other agent directly. This requirement is formally expressed in
the definition of the Can() predicate for structural nodes [7]. On
the other hand, we can permit any subtree rooted in a child node
to be recursively delegated, to the same agent or another. An ex-
ception to the prohibition on re-delegation of the root node is
naturally made at the top level of a mission – otherwise no agent
(including an agentified graphical interface on a ground station)
could ever initiate a mission whose root node must be performed
by another agent.

The intuitive meaning of CanX (τ) for a TST τ is thus that
to the best of its knowledge, agent X is able to execute the root
node of τ and ensure that all child nodes are executed, either
by executing them itself or by delegating them to others. For in-
stance, an agent Can perform the TST corresponding to “with
v1,v2, . . . ,vn sequence α1,α2, . . . ,αm where cons” if it can both



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 17

execute the top-level sequence node (which entails coordinating
the execution of the child nodes in time) and ensure that all child
nodes (the immediate subtasks) are executed in the given order
within the execution interval permitted for the sequence.

Somewhat more formally, we assume that all agents can
execute structural nodes such as sequences, as this is a standard-
ized task that does not require specific hardware and that permits
a standardized definition of Can() that can be built into the ar-
chitecture. For example, the definition of Can() for a sequence
essentially states that for each child node αi, either the same
agent Can() execute αi or there is another agent for which Dele-
gate() succeeds. In the latter case we have recursed back into the
semantics of S-Delegate, a recursion that ends at every elemen-
tary action node.

The definition of Can() must be explicitly specified for
each elementary action type and can be specified separately for
each platform. For example, platform X can specify its own def-
inition of CanX (fly-to(. . .)). It can then associate the definition
with its own constraints on flying, such as its maximum veloc-
ity. Pragmatically, constraints can also be connected to function-
alities such as motion planners to determine flight times, using
semantic attachment [36] to augment the formal semantics used.

In addition to this, the set of constraints involved in each
node must be logically consistent (there must be at least one as-
signment of values to variables that satisfies all constraints). The
complete formal semantics of CanX [7] specifies that constraints
are not only checked in each individual node but are accumu-
lated recursively, thereby verifying that the TST in question is
globally consistent. In the implementation, the time, space and
resource constraints involved can be modeled as a distributed
constraint satisfaction problem (DisCSP). This allows us to ap-
ply existing DisCSP solvers to check the consistency of par-
tial task assignments in the delegation process and to formally
ground the process. Consequently, the Can predicate used in the
precondition to the S-Delegate speech act is not only formally
but also pragmatically grounded in the implementation.

5. Automated Planning for Mission Specifications

Given a specification of the current state of the world together
with a declarative specification of the prerequisites and conse-
quences of the available actions, a task planner can automat-
ically search for a way of combining actions into a plan that
achieves a given goal. For unmanned aircraft, actions may for
example include taking off and landing, flying between way-
points or to a distant destination, hovering, positioning cameras,
taking pictures, and loading or unloading cargo. Goals will vary
depending on the nature of a mission and could involve having
acquired pictures of certain buildings or having delivered crates
of emergency supplies to certain locations after a natural disas-
ter. The final plan can then be viewed as a mission specification
consisting of a single composite action.

In the context of this article, task planners can be used to
generate mission specifications in two distinct ways. First, one
can specify a mission goal to be planned for (perhaps using a

graphical interface), use the planner to generate a plan for the
goal, and convert the plan into a fully specified TST that should
then be delegated and executed (Figure 13). This is the approach
that will be discussed in the current section. Second, one can use
a more integrated approach where goal nodes are integrated into
TSTs, with plan generation taking place incrementally during
delegation. This is discussed in Section 7, after we have detailed
the concrete delegation process as applied to TSTs.

Ground Operator 

Graphical Interface⇓ 1. Problem

Specification

⇑ 4. Mission

Specification

Task Planner

Motion Planner Motion Plan Info

Delegation 

5. TST corresponding

to mission specification

Without goal nodes,

simply a direct call to the planner

Figure 13. Planning before delegation.

5.1. The TFPOP Planner

Previously we have used TALplanner [37, 38] as a basis for the
task planning capability in the UASTech system architecture.
However, while TALplanner is both expressive and efficient, its
plan structure is based on timed schedules. In a multi-agent set-
ting this can sometimes lead to unnecessarily strict constraints
on execution order. More recently we have developed a new
planner, TFPOP [25,26,39], which has to a great extent replaced
TALplanner in the architecture. The focus in developing TFPOP
has been on allowing loose commitment to the precedence be-
tween actions while retaining from TALplanner the high level of
performance generally associated with sequential planning.

Though flexible execution schedules can be achieved by us-
ing partially ordered plans instead of timed schedules, partial-
order planners tend to be considerably slower than sequential or
timed forward-chaining planners. The main reason for this is that
traditional partial-order planning algorithms insert actions at ar-
bitrary and varying points in a plan. This in itself improves the
flexibility of the plan construction procedure, which is beneficial
for performance. On the other hand, it only allows very weak in-
formation to be inferred about the state that will hold after any
given action, which has turned out to be problematic. Forward-
chaining planners, in contrast, can generate complete state in-
formation and take advantage of powerful state-based heuristics
or domain-specific control [37, 40]. This leads to the question
of whether some aspects of forward-chaining could be used in
the generation of partial-order plans, combining the flexibility of
one with the performance of the other – for example through the
generation of stronger state information for partial-order plans.
TFPOP is exactly such a combination: A sound and complete
hybrid of temporal partial order causal link (POCLd) planning,

dWe refer to Weld [41] for an overview of concepts and terminology associated with POCL planning.



March 27, 2013 15:0 us2012

18 Doherty, Heintz, Kvarnström

generating plan structures suitable for concurrent execution, and
forward-chaining, for efficiency.

As in standard partial-order planning, TFPOP retains a par-
tially ordered plan structure at all times and provides a great
deal of flexibility in terms of where new actions can be intro-
duced during search. Creating highly informative states from a
partial-order plan does require some form of additional struc-
tural constraint, though. The key is that for flexible execution in
an unmanned system consisting of multiple agents, partial or-
dering is considerably more important between different agents
than within the subplan assigned to any given agent: Each UAV
can only perform its flight and delivery actions in sequence, as
it cannot be in several places at once. Generating the actions for
each agent in sequential temporal order is a comparatively small
sacrifice, allowing actions belonging to distinct agents to remain
independent to exactly the same extent as in a standard partial-
order plan.

Each agent-specific thread of actions can then be used to
generate informative agent-specific states in a forward-chaining
manner, resulting in a Threaded Forward-chaining Partial Or-
der Planner, or TFPOP for short. In particular, many state vari-
ables are associated with a specific agent and are only affected
by the agent itself. This holds for the location of an agent (un-
less some agents can move others) and for the fact that an agent
is carrying a particular object (unless one agent can “make” an-
other carry something). Complete information about such state
variables can easily be generated at any point along an agent’s
sequential thread and is in fact particularly useful when consid-
ering potential actions for the agent itself. For example, whether
a given UAV can fly to a particular location depends on its own
current location and fuel level, not those of other agents. Addi-
tionally, we have complete information about static facts. Taken
together this usually results in sufficient information to quickly
determine whether a given precondition holds, thus allowing TF-
POP to very efficiently rule out most inapplicable actions. A fall-
back procedure takes care of the comparatively rare cases where
states are too weak.

Planning Problems and Expressivity. The input language to
TFPOP is a restricted form of TAL that can be concisely charac-
terized in planning terms as follows.

Assume a typed finite-domain or fluent (state-variable) rep-
resentation, where loc(crate) could be a location-valued fluent
taking a crate of emergency supplies as its only parameter.

An operator has a list of typed parameters, the first of
which always specifies the executing agent. For example, fly-
ing between two locations may be modeled using the operator
fly(uav, from, to). Each operator o has a precondition formula
pre(o) that may be disjunctive and quantified. We currently as-
sume all effects are conjunctive and unconditional and take place
in a single effect state at the end of an action. An action is a fully
instantiated (grounded) operator. This corresponds directly to a
subset of the full expressivity of TAL actions.

Action durations often depend on circumstances outside
the control of a planner or execution mechanism: The time re-
quired for flying between two locations may depend on wind,
temporary congestion at a supply depot where it wants to land,
and other factors. We therefore model expected action durations

expdur(a)> 0 but never use such durations to infer that two ac-
tions will end in a specific order. Each duration is specified as a
temporal expression that may depend on operator arguments.

Many domains involve mutual exclusion, as when only one
UAV can refuel at a time. To explicitly model this, each operator
is associated with a set of binary parameterized semaphores that
are acquired throughout the execution of an action. For example,
use-of(location) may be a semaphore ensuring exclusive access
to a particular location. The set of semaphores acquired by an
action a is denoted by sem(a).

For any problem instance, the current version of TFPOP
requires an initial state that completely defines the values of all
fluents at time 0. Again, this uses a subset of the expressivity of
TAL, where incomplete information is permitted. Goal formulas,
like preconditions, may be disjunctive and quantified.

Plan Structure. A plan is a tuple π = 〈A,L,O,M〉, where:

(1) A is the set of all action instances occurring in the plan.
(2) L is a set of ground causal links ai

f=v−−→ a j representing the
commitment that ai will achieve the condition f = v for a j.
Causal links are a standard feature of POCL planning and
are used to determine when an action might interfere with
achievement relations between two other actions, in which
case this interference must be corrected through new order-
ing constraints.

(3) O is a set of ordering constraints on A whose transitive clo-
sure is a partial order denoted by �O. The index of � will
be omitted when obvious from context. As usual, ai ≺ a j
iff ai � a j and ai 6= a j. The fact that a ≺ b means that a
ends strictly before b begins. In TAL, such ordering con-
straints can be represented by temporal constraints related
to the start and end timepoints specified for each action.

(4) M is a set of mutex sets, where no two actions belonging
to the same mutex set can be executed concurrently (maybe
due to explicit semaphores or because their effects interfere)
but whose order is not necessarily defined before execution.
This enhances execution flexibility compared to a pure par-
tial order where such actions must be ordered at plan time.
M(a) denotes the possibly empty set of actions with which a
is mutex according to M. In TAL, mutex sets can be repre-
sented by disjunctive temporal constraints related to the start
and end timepoints specified for each action in the set.

Let act(π, t) denotes the set of action instances executed by a
given thread t. We add the structural constraint that such sets
must be totally ordered by O.

Though we may use expected durations to infer approxi-
mately when an action is expected to start, actual durations may
differ. Therefore expected durations cannot be used to infer new
ordering constraints in O or to schedule actions to execute at
specific timepoints. Instead, actions must only be invoked when
notified that all predecessors have finished.

Note that plans with this structure are always dynamically
controllable [42]. Note also that a plan can be directly translated
into a TAL narrative or, as will be exemplified below, a TALF
composite action (from which a TST can be generated).

Executable Plans. To determine whether a plan 〈A,L,O,M〉



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 19

is executable, we must consider all possible orders in which
it permits actions to start and end. During the planning pro-
cess each action a ∈ A is therefore associated with an invoca-
tion node inv(a) where preconditions must hold and semaphores
are acquired, and an effect node eff(a) where effects are guar-
anteed to have taken place and semaphores are released. Action
precedence carries over directly to such nodes: If a ∈ A then
inv(a)≺ eff(a), and if a≺ b then eff(a)≺ inv(b).

The node sequences that may arise from execution are ex-
actly those that are consistent with ≺ and ensure that no two ac-
tions that are mutually exclusive according to M are executed
concurrently. A plan is executable iff all associated node se-
quences [n0,n1, . . . ,nk] satisfy the following constraints. First,
for every pair of distinct actions {ai,a j} ⊆ A whose execution
overlaps in the given node sequence:

(1) sem(ai)∩ sem(a j) =∅: Two concurrently executing actions
cannot require the same semaphore.

(2) affected(ai)∩affected(a j) =∅, where affected(a) is the set
of fluents occurring in the effects of a: Two concurrently
executing actions cannot affect the same fluent.

(3) affected(ai)∩required(a j) =∅, where required(a) is the set
of fluents represented in incoming causal links to a: No ac-
tion can affect a fluent used to support the precondition of
another concurrently executing action.

Second, the effects of any action a ∈ A must be internally con-
sistent. Third, all preconditions must be satisfied: Let s0 be the
initial state and for all 0 < i≤ k, let si+1 be{

si modified with the effects of ni if ni is an effect node,
si otherwise.

Then for every invocation node ni corresponding to an action a,
we must have si |= pre(a).

Solutions. An executable plan is a solution iff every associated
node sequence results in a state s satisfying the goal.

5.2. The TFPOP Planning Algorithm: Overview

We now turn our attention to the problem of finding a solution,
starting with an overview of the TFPOP search space, its use
of partial states and the planner itself. A complete and detailed
description is available in Kvarnström [26].

Search Space. The initial node in the search space is the exe-
cutable plan 〈{a0},∅,∅,∅〉, where a0 is a special initial action
not associated with a specific thread. This action has no precon-
ditions or semaphores and its effects define the initial state, as
is common in POCL planning. For all other ai ∈ A in any plan,
a0 ≺ ai.

A successor is an executable plan π where exactly one new
action has been added to the end of a specific thread t (occur-
ring last in act(π, t)), possibly also constrained to occur before
or after certain actions in other threads.

Partial States. Our intention is to improve performance by
generating informative states to be used in precondition evalu-
ation. Each action in a plan is therefore associated with a state

specifying facts known to be true from the instant the action ends
until the start of the next action in the same thread, or “forever” if
there is no next action yet. The initial action is a special case, be-
longing to no thread and providing an initial state for all threads.

In general, one cannot infer complete information about
any point during the execution of a partially ordered plan. There-
fore, a formula can evaluate to true, false, or unknown.

Also, ensuring states contain all information that can theo-
retically be inferred from a partial order requires comparatively
complex state structures and state update procedures. This tends
to require more time than is saved by rapid evaluation. Formula
evaluation is therefore permitted to return unknown even when
it would be theoretically possible to determine whether a for-
mula holds at a certain point in a plan. The complete fallback
procedure make-true is then used to explicitly search the plan
structure for support [26].

As maximal state information is not required, a partial state
can be a simple structure specifying a finite set of possible val-
ues for each fluent (f ∈ {v1, . . . ,vn}). The partial evaluation pro-
cedure eval(φ ,s) is the natural extension of a standard recur-
sive formula evaluator to three truth values. For example, sup-
pose φ is α ∧β . If eval(α,s) = false or eval(β ,s) = false, then
eval(φ ,s) = false. If both subformulas are true, the conjunction
is true. Otherwise, the conjunction is unknown. This combina-
tion has proven to yield a good balance between information
and speed, representing most of the useful information that can
be inferred but also supporting very efficient state updates and
formula evaluation.

The Planner. We will now outline the operation of the TFPOP
planner at a high level of abstraction. Note that choose refers to
standard non-deterministic choice, in practice implemented by
iteration over possible choices with backtracking.
procedure TFPOP
π ← 〈{a0},∅,∅,∅〉 // Initial plan
repeat

if goal satisfied return π

choose a thread t to which an action should be added
// Use partial state to filter out most potential actions
s← partial state at the end of thread t
choose an action a for t such that eval(pre(a)) 6= false
if effects of a are inconsistent then fail (backtrack)
// Complete check:
// Can the action really be added, and how?
choose precedence constraints C and causal links L

using make-true(), ensuring pre(a) is satisfied,
a does not interfere with existing actions
and no existing action interferes with a

update resource usage
if resource constraints violated then fail (backtrack)
add a, C, L and necessary mutex sets to π

update existing partial states
create new partial state for a

First, the planner tests whether the goal is already satisfied,
which could be the case even for the empty plan if the goal is
trivial. The goal is satisfied iff it holds after all actions in the
plan have finished, which can often be determined by conjoin-
ing information from the final states of all threads but sometimes



March 27, 2013 15:0 us2012

20 Doherty, Heintz, Kvarnström

requires a more complex evaluation procedure. If the goal is sat-
isfied, a solution is returned. If not, a successor must be found.

By definition, any successor of a node adds a single new
action a to the end of an existing thread t. The planner there-
fore begins by determining which thread t it should first attempt
to extend. A variety of policies can be used here, where the de-
fault one aims to minimize makespan by distributing actions as
evenly as possible across available threads. It therefore prefers
to extend threads whose current actions are expected to finish
earlier (calculate-expected-times). The last state associated with
the thread to be extended specifies facts that must hold when a is
invoked and can therefore be used to evaluate the preconditions
of potential candidates.

The result may be false, in which case a candidate action
has efficiently been filtered out. Otherwise, the result must have
been either true or unknown. Regardless, we verify that the ac-
tion’s effects are consistent. If they are, we call make-true to
search for precedence constraints and causal links that can be
added to ensure the precondition will hold (which might fail if
the precondition was unknown) and that there is no interference
between a and existing actions in the plan (fix-interference).

Resource usage is updated and resource constraints are
checked. If no constraints are violated, we determine which ex-
isting actions a′ ∈ A share a semaphore or an affected fluent with
the new action a and update the set M of mutex sets to ensure
such actions cannot be executed in parallel with a. As this cannot
fail, a new successor has been found.

The existing partial states represent facts that hold during
a certain interval of time. If the effects of the new action may
occur within that interval, the state must be updated and “weak-
ened” to remain sound. Suppose for example that the state s as-
sociated with a1 = fly(uav8,depot1,loc12) claims that loc(uav5) ∈
{depot4}: Given the current plan, this fact must hold from the
end of a1. Suppose further that a = fly(uav5,depot4,loc57) is
added, and that its effects may occur within the interval of time
where s should be valid. Then, s must be updated to claim that
throughout its interval, loc(uav5) takes on one of two possible
values: loc(uav5) ∈ {depot4, loc57}.

A new partial state must be generated that is valid from the
end of the new action until infinity. To do this we first copy the
state of the action’s predecessor in the same thread, which must
be valid when the action is invoked. We then strengthen the state
using information gathered from the causal links generated by
make-true. We also apply all effects of the new action, result-
ing in a state valid exactly when a ends. Finally, we weaken this
state using all effects that may possibly occur in other threads
from a until infinity, in a procedure essentially identical to the
state update above. The result is a new sound state for a and a
new executable plan, and the procedure can repeat.

Search Guidance and Performance. TFPOP is currently not
guided by heuristics but by precondition control formulas [43].
Such formulas represent conditions that are required not for exe-
cutability but for an action to be meaningful or useful in a given
context, and have been used to great effect in TLPLAN [40] and
TALplanner [37].

Control formulas often need to refer to the goal of the cur-
rent problem instance. For example, this is needed to determine

where the crates on a carrier should be delivered, so UAVs can
be prevented from flying the carrier to other locations – which
would be possible but pointless. TFPOP therefore supports the
construct goal(φ) [40], which is used in preconditions to test
whether φ is entailed by the goal.

Though any planner supports preconditions, most partially
ordered planners use means-ends techniques where stronger pre-
conditions may generate new subgoals to resolve but provide
no guidance. TFPOP requires immediate support for all pre-
conditions within the current plan and has efficient precondi-
tion evaluation procedures, yielding both efficient and effective
pruning of the search space. Empirical evaluation shows the re-
sulting knowledge-rich planner to be very close to TLPLAN and
TALplanner in performance, while using a considerably more
expressive and flexible plan structure [26].

5.3. The TFPOP Planning Algorithm: Details

We will now discuss certain aspects of TFPOP in more detail.

Selecting a Thread to Extend. As stated above, the planner
aims to minimize makespan by distributing actions evenly across
available threads. It therefore prefers to extend threads whose
current actions are expected to finish earlier given the assump-
tion that each action will start as soon as its explicit predecessors
have finished and it can acquire the required semaphores.

This prioritization can be done by calculating the expected
start time expstart(a) and finish time expfin(a) for every action
a ∈ A using the procedure below. The implementation uses a
variation where times are updated incrementally as new actions
are added. Again, timing cannot be used to infer that one action
must occur before another.
procedure calculate-expected-times(π = 〈A,L,O,M〉)
expstart(a0) = expfin(a0) = 0 // Initial action a0 at time 0
while some action in A remains unhandled

E←{a ∈ A | all parents of a are handled} // Executable now
// We know E 6=∅, since the partial order is non-cyclic.
// Calculate for each a ∈ E when its parents should finish.
// If several actions could start first, break ties arbitrarily.
forall a ∈ E: t(a) = maxp∈parents(e) expfin(p)
a← arbitrary action in E minimizing t(a) // Could start first
expstart(a)← t(a);expfin(a)← expstart(a)+ expdur(a)
forall unhandled a′ ∈M(a): O← O∪{a≺ a′}

The final step temporarily modifies O to ensure that when one
action acquires a particular mutually exclusive resource, it will
strictly precede all other actions that require it but have not yet
acquired it.

Satisfying Preconditions. When a thread t has been selected,
each potential action a for the thread is considered in turn. For a
to be applicable, it must first be possible to satisfy its precondi-
tions.

Let aL be the last action currently in the thread t (with
aL = a0 if t is empty), and let s be the last state in t. If
eval(pre(a),s) = false, then a cannot be applicable and we can
immediately continue to consider the next action.

If unknown is returned, the reason may be that pre(a) re-
quires support from an effect that (given the current precedence



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 21

constraints) may or may not occur before a, that there is potential
interference from other actions, or simply that the state was too
weak to determine whether pre(a) holds. As we do not know, we
must test whether we can introduce new precedence constraints
that ensure pre(a) holds. Even if the precondition was true, guar-
anteeing that support can be found, we must still generate new
causal links to protect the precondition from interference by ac-
tions added later.

A provisional plan π ′ = 〈A∪ {a},L,O∪ {aL ≺ a},M〉 is
created, where a is placed at the end of its thread. Then,
make-true(φ ,a,s,π ′) determines whether it is possible to guar-
antee that φ = pre(a) holds when a is invoked in π ′ in the partial
state s. A set of extended plans is returned, each extending π ′

with links and possibly constraints corresponding to one partic-
ular way of ensuring that φ will hold. If this is impossible, the
empty set of extensions is returned.
procedure make-true(φ ,a,s,π = 〈A,L,O,M〉)
if φ is v1 = v2

if v1 = v2 return {π} else return ∅
else if φ is goal(φ)

if goal state |= φ return {π} else return ∅
else if φ is f = v

if s |= f 6= v return ∅ // Use state for efficiency
// Find potential supporters ai that may be placed before a
X←∅
forall ai ∈ A such that ai assigns f = v and not a≺ ai

// Add supporter, find ways of fixing interference (below)
π ′← 〈A,L∪{ai

f=v−−→ a},O∪{ai ≺ a},M〉
X← X∪fix-interference(f,ai,a,π ′)

return X
else if φ is ¬(f = v) // Handled similarly
else if φ is ¬α

Push negation inwards using standard equivalences
such as ¬(α ∧β ) = ¬α ∨¬β and recurse

else if φ is α ∧β

// For each way of satisfying α , find all ways of also satisf. β

X←∅
forall π ′ ∈ make-true(α,a,s,π)

X← X∪make-true(β ,a,s,π ′)
return X

else if φ is α ∨β

// Find all ways of satisfying either α or β

return make-true(α,a,s,π)∪make-true(β ,a,s,π)
else if φ is quantified

Instantiate with all values of the variable’s finite domain
and handle as a conjunction or disjunction

end if

Avoiding Interference. As shown above, when make-true
finds a possible supporter ai for an atomic formula f = v, it is
placed before a and a causal link is added. The fix-interference
procedure then determines if and how we can guarantee that no
other actions can interfere by also assigning a value to f between
the end of ai and the start of a. It iterates over all potential in-
terferers a′, adding (if permitted by π) constraints that place a′
either before ai or after a. After each iteration, X contains all
minimally constraining ways of avoiding interference from all
actions considered so far (and possibly some that are more con-

straining than necessary, which could be filtered out).
procedure fix-interference(f,ai,a,π = 〈A,L,O,M〉)
X←{π}
forall a′ ∈ A\{a,ai} assigning a value to f

if a′ ≺O ai or a≺O a′ then ai cannot interfere else
X′←∅ // Then, for every solution to the earlier interferers
forall π ′ = 〈A′,L′,O′,M′〉 ∈ X

// Can we place a′ before the supporter ai?
if not ai ≺O′ a′ then

X′← X′∪{〈A′,L′,O′∪{a′ ≺ ai},M′〉}
// Can we place a′ after a?
if not a′ ≺O′ a then

X′← X′∪{〈A′,L′,O′∪{a≺ a′},M′〉}
// Note that both extensions may be impossible,
// leading to a reduction of the size of X!

X← X′
return X
This ensures no actions in π can interfere with the preconditions
of a, but a may also interfere with existing actions in π . That is
handled by identifying all actions a′ ∈ A whose incoming causal
links depend on fluents f affected by a and then preventing in-
terference using fix-interference.

5.4. A Logistics Example

Consider a mission whose objective is to assist emergency ser-
vices personnel in delivering food, water and medical supplies
after a natural disaster where road systems have become inac-
cessible, such as the tsunami disaster in Japan.

To simplify the presentation, we assume a number of UAVs
have already cooperated in scanning a large geographic area and
have detected several injured people in need of supplies. The
scanning functionality is implemented by searching for salient
features in fused video streams from color and thermal cam-
eras [3] and results in a saliency map pinpointing potential vic-
tims and their geographical coordinates, associating them with
sensor input such as high resolution photos and thermal images.
This information has been shown to a ground operator, who has
used an interface specific to this mission type in order to approve
a number of locations where certain amounts of supplies should
be dropped off. Since the operator does not want to manually
specify all details, the next step is then to automatically gener-
ate a plan that efficiently delivers the required supplies using the
resources at hand.

Figure 14. A supply depot (left) and a carrier (right) in simulation.



March 27, 2013 15:0 us2012

22 Doherty, Heintz, Kvarnström

Specifically, there is at least one supply depot (Figure 14)
containing a known number of crates of each type (food,
medicine, water). There are a number of smaller UAVs that can
carry individual crates. A number of larger UAVs can carry car-
riers (Figure 14) containing several crates, which is considerably
more efficient over longer distances. Smaller UAVs can cooper-
ate to place crates on carriers for larger UAVs to deliver.
The mission-specific interface can use this information to gener-
ate a planning problem instance providing relevant information
about the current state of the world, such as where depots are lo-
cated, as well as the goals of the mission. The interface can then
directly call the planner, which generates a plan in the form of a
mission specification.

The following is a small part of the composite action output
generated by TFPOP for an example problem within the given
context. Each thread is by default independent of the others, re-
sulting in a parallel composition of threads. Within each thread
actions are sequential. We see that UAVs small3 and small6
are both involved in loading crates onto carrier0 and carrier2.
UAV heli1 will deliver the carrier, but according to the tempo-
ral constraints encoding a precedence ordering between distinct
threads, this cannot start before the corresponding load-carrier
actions have completed. This output can be converted directly
to a task specification tree that can be delegated to a group of
unmanned aircraft.

with start, end, end11, end13, end15, end17, end1, end5, end7, end9,
start19, . . . do (

with tstart0, tend0 do [tstart0,tend0] (
[start25,end25] load-carrier(small3,carrier0,d0,p0,medicine);
[start65,end65] load-carrier(small3,carrier2,d2,p2,food)

)
||

with tstart2, tend2 do [tstart2,tend2] (
[start23,end23] load-carrier(small2,carrier0,d0,p0,medicine);
[start63,end63] load-carrier(small2,carrier2,d2,p2,food)

)
||

with tstart3, tend3 do [tstart3,tend3] (
[start47,end47] deliver-carrier(heli1,carrier0,d1,depot0,p1);
[start49,end49] deliver-box-from-carrier(heli1,carrier0,p1,medicine);
[start51,end51] deliver-box-from-carrier(heli1,carrier0,p1,medicine);
[start53,end53] deliver-box-from-carrier(heli1,carrier0,p1,medicine);
[start55,end55] deliver-box-from-carrier(heli1,carrier0,p1,food);
[start57,end57] return-carrier(heli1,carrier0,p1,d1)

)
||

. . .
) where

end1 < start19 ∧ end1 < start21 ∧ end1 < start23 ∧
end1 < start25 ∧ . . .∧ end25 < start47 ∧ end23 < start27 ∧ . . .

After discussing the delegation process in more detail, we will
return to planning and show how it can be integrated with dele-
gation in several different ways.

6. Delegation

As illustrated in Figure 4 on page 4, a ground operator can gen-
erate a formal mission specification in TALF in several ways,
including through a graphical user interface adapted to a par-
ticular mission type and through the use of general automated
planners such as TFPOP. Regardless of where a mission specifi-
cation originates, we now know how to translate it into a task
specification tree. We have also seen how to formally define
the conditions required for such a tree to be delegated using the
S-Delegate speech act to one or more agents having the abilities
required for execution. The next step is to provide a realization
of S-Delegate in terms of a concrete delegation process that can
be implemented in a multi-agent system.

Though S-Delegate as a speech act is mainly concerned
with agreements and commitment relative to two given agents,
the delegation process defined below is also responsible for task
allocation, which includes finding agents capable of performing
and being responsible for parts of a complex mission. Integrat-
ing delegation and task allocation in an alternating, incremental
and recursive process is considerably more efficient than allo-
cating agents to a complete complex task at once, especially in
case backtracking is necessary.

6.1. Executability, Constraint Problems and Task
Allocation

To carry out the task allocation aspect of the delegation pro-
cess, we require a means of determining whether a particular
agent can execute a particular TST node. For this to be the
case, the agent in question must have the required capabilities
and resources. This is represented and verified using constraints
linking the required capabilities and resources for each node to
the executing agent’s available capabilities and resources. If the
constraint problem constructed in this way is consistent (has a
solution), then this provides a strong guarantee about validity
and quality which is necessary for safety and reliability.

The available capabilities of an agent and its platform are
generally fixed and can therefore be described using constraint
variables explicitly constrained to take on specific values. For
example, some platforms have cameras and can take pictures,
while others do not. The available resources will vary depend-
ing on the agent’s existing commitments, including the tasks it
has already been allocated. These commitments can also be rep-
resented in the constraint stores and schedulers of the agent in
question, where each resource is modeled as a variable and each
current commitment as a constraint related to that variable.

Constraints related to required capabilities and resources
originate from two distinct sources.

First, each TST node provides a set of constraints origi-
nating in a where clause in a mission specification. These con-
straints represent requirements placed on mission execution by
the delegator, and may ultimately have been defined by a ground
operator. For example, in a certain mission, we may not be per-
mitted to fly at an altitude above 30 meters, and we may not be
permitted to intrude into a certain area during a certain period of
time – a spatio-temporal constraint representing a no-fly-zone.



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 23

Second, each agent provides a specific set of constraints for
each type of node that it can execute. These constraints represent
mission-independent restrictions on how a particular agent and
its platform is physically able to execute the given node type, and
serve as a concrete realization of the conditions formally spec-
ified by the CanX () predicate. For example, flight-capable plat-
forms of different types such as LinkQuads and RMAXes would
have their own specific constraints on their maximum flight ve-
locity and acceleration, which affects whether the aircraft can
fly to a certain location within a temporal interval. Similarly,
there could be constraints related to the maximum resolution of
a picture that can be taken with the on-board camera and on how
closely the camera can zoom in.

P1: scan-area
tS

tE

speed

SpeedMin1 SpeedMax1

pos(tS,P1)

Area

Figure 15. Agent-specific constraint structure for scan-area.

Figure 15 shows the constraint variables involved in such a
“constraint template” for elementary action nodes of type scan-
area for agent/platform P1. Red/dark rectangles represent node
parameters in the node interface, which must be present regard-
less of which agent is involved. Light gray rectangles are local
variables associated with the agent’s own constraint model for
the scan-area action, where other agents could use other val-
ues for SpeedMin1 and SpeedMax1 but could also use completely
different constraint networks. Edges represent the fact that vari-
ables are dependent, occurring in the same constraint.

The actual constraints involved in the network for scan-
area may include SpeedMin1 ≤ speed ≤ SpeedMax1, defining a
range of permitted speeds. Similarly, the constraints for a fly-to
action could include tE = tS+distance(from, to)/speed, defining
the expected duration of the flight in terms of the formal node
parameters. As stated earlier, the latter constraint could also be
connected to a motion planner through semantic attachment [36]
for increased precision in time estimates. Depending on the ex-
pressivity of the constraint solver being used, increasingly so-
phisticated constraints could be defined both by an agent, speci-
fying the conditions under which it can execute certain actions,
and in a mission specification, determining the conditions under
which the ground operator wants the mission to be executed.

To determine whether a particular agent can achieve the
task associated with a specific TST node, all of these constraints
are instantiated and added to a constraint store. Agent-specific
constraints are then connected to mission-specific constraints via
the node parameters in the node interface. Taken together, this
models the general and agent-specific capability and resource
requirements for the node, as well as the availability of capa-
bilities and resources. Figure 16 illustrates the constraint net-
work when node N2 from a small scanning mission has been
allocated to agent P1 and we are determining whether node N3

can be allocated to agent P2. Template variables such as speed
have been instantiated with indexes corresponding to TST nodes
(speed2, speed3) in order to avoid ambiguity, and are constrained
to be equal to the corresponding actual node parameters (dashed
lines). The constraint networks used for scan-area for these
agents happen to be very similar but use distinct upper and lower
bounds on speed.

P2: scan-areaP1: scan-area

tS4 tE4

tE3

tS3

speed3

SpeedMin2 SpeedMax2

pos(tS3,P2)

Area3

N1:C

N0: S

N2:

scan-area

N3: scan-area

N4: fly-to

tE2

tS2

speed2

SpeedMin1 SpeedMax1

pos(tS2,P1)

Area2

tS0 tE0

tS1 tE1

tS3
tS2 tE2 tE3

Figure 16. The combined constraint problem structure after allocating
node N2 to platform P1 and node N3 to platform P2.

When the combined delegation and task allocation proce-
dure detailed below proceeds recursively through a task speci-
fication tree, a constraint problem is incrementally constructed
and extended each time a node is provisionally allocated to an
agent. This yields a constraint problem representing all the con-
straints for this particular (partial) allocation of the TST, making
constraint solving an integral part of the solution to the task allo-
cation problem. If a consistent solution for the constraint prob-
lem is found then a valid allocation has been generated and ver-
ified, and the part of the mission that has been allocated is ex-
ecutable. The delegation procedure can then proceed to find a
contractor for the next unallocated node in the tree and extend
the constraint problem accordingly. If at any point the constraint
problem becomes inconsistent, the current allocation is not valid
and the procedure must backtrack. If all nodes have been suc-
cessfully assigned, the assignment of timepoints to temporal pa-
rameters in each solution to the constraint problem can be seen
as a potential execution schedule for the TST.

Since constraint variables are distributed among the agents,
a distributed constraint satisfaction problem is generated. As
each agent might control more than one resource with poten-
tially complex constraints among them, distributed constraint
reasoning with complex local problems is required [44]. Cur-
rently the constraint problem is represented using MiniZinc
[45, 46]. This representation is translated into a solver-specific
constraint language and solved. We currently use the Minion
[47] constraint solver for local constraint problems, which is a



March 27, 2013 15:0 us2012

24 Doherty, Heintz, Kvarnström

general finite domain constraint solver. For distributed constraint
problems we have used our own implementation of the Asyn-
chronous Weak Commitment Search (AWCS) algorithm [48].

The process of incrementally extending the constraint prob-
lem has a formal basis in a recursive procedure reducing the Can
predicate statements associated with each task node with for-
mally equivalent expressions, beginning with the top node, until
the entire tree has been processed. The reduction of Can for an
elementary action node contains no further Can predicates, since
the ability to perform an elementary action only depends on the
agent itself. Therefore the logical statements can be reduced to a
constraint network, as exemplified in more detail in Doherty et
al. [7].

In summary, a successful delegation and task allocation will
yield a TST where all nodes are allocated to specific agents in
a way that leaves all constraints satisfiable. During the process,
a consistent network of distributed constraints is incrementally
generated which guarantees the validity of the multi-agent so-
lution to the original problem, provided that no additional con-
tingencies unaccounted for in the mission specification or the
definition of the platforms’ capabilities arise when the TST is
actually executed.

When verifying that the network is satisfiable, we may as
a side effect also generate one specific solution to the constraint
problem, where one specific value is assigned to each node pa-
rameter. However, this solution is not necessarily fixed: Unless
specifically forbidden by the delegator, the contracting agents
are allowed to find a new solution to the constraint problem even
after delegation has finished, as long as the original mission-
specific constraints defined by the delegator remain satisfied.
This is important in case of contingencies: If one action takes
longer than expected, we may still be able to satisfy the overall
deadline of the mission by increasing flight velocity in the re-
mainder of the mission, which requires finding a new constraint
solution. It is also important if agents involved in one mission
are also delegated parts of another mission, in which case mod-
ifying the execution parameters of the first mission (while still
satisfying all of the delegator’s constraints) may be required in
order to accommodate the requirements of the second mission.

This approach grounds the original formal specification of
S-Delegate with the actual processes used in the implementation,
while retaining a formal definition in terms of a distributed con-
straint network which is in effect a formal representation.

6.2. The Delegation Process

We now turn our attention to describing the computational del-
egation process that is used to realize the S-Delegate speech act
in a robotic platform. This process takes as input a complex task
or mission represented as a TST and aims to find an appropriate
agent or set of agents capable of achieving the mission through
the use of recursive delegation. More specifically, its input is a
reference to the root node of the TST, from which all other in-
formation can be gathered. If the allocation of agents in the TST
satisfies the associated constraints and is approved by the dele-
gators recursively, then the mission can be executed. Note that
the mission schedule will be distributed among the agents in-

volved and that depending on the temporal constraints used, the
mission may not start immediately. However, commitments to
the mission will have been made in the form of constraints in
the constraint stores and schedulers of the individual platforms.
Note also that the original TST given as input does not have to be
completely specified but may contain goal nodes which require
expansion of the TST with additional nodes.

We will discuss the delegation process on several levels,
beginning with the initial definition of a mission.

6.2.1. Specifying Missions and Initiating Delegation

At the highest level, mission specification and delegation can be
described using the following steps (Figure 17).

Figure 17. Delegation: Starting the delegation process.

Step A1: Generate a mission TST. A TST τ describing a par-
ticular mission is generated, for example through the use of a
graphical interface on an agentified ground station which calls
the agent’s own TST factory to generate the tree.

Step A2: Request delegation. An agent A is requested to dele-
gate the newly generated TST τ . This is normally the same agent
where the TST was generated, in which case the request can be
an internal service call as opposed to a speech act. The delegat-
ing agent does not necessarily have to be involved in actually
executing the mission. Nevertheless, it does initiate the delega-
tion process for τ , causing the entire mission to be recursively
delegated to one or more executing agents. This process will be
described in detail in the next subsection.

Step A3: Indicate failure. If delegation failed, for example due
to lack of available resources or suitable platforms, this is indi-
cated to the ground operator. As all possible alternatives have



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 25

already been tested, the delegation process has finished, though
the operator may choose to modify the mission and try again,
starting at step A1.

Step A4: Response from the ground operator. If delegation
succeeded, the result is that an instantiated TST, with all nodes
allocated to specific agents and with all constraints satisfiable, is
proposed. At this point we have verified some of the precondi-
tions of the S-Delegate speech act. For example, since the con-
tractor B replied with a proposal we know that it believes it can
do the task τ , and given that the delegator A trusts the contractor,
A also believes that B can perform τ . This is discussed in more
detail in step B1 below.

Many of the postconditions of S-Delegate are also provi-
sionally represented in the constraint stores and schedulers of
the agents involved. This is required in order to guarantee that
the task remains feasible until the actual delegation takes place.
Otherwise, there would be a race condition where a contractor
could take on another task that may interfere.

The instantiated TST then has to be approved for execution.
For example, the delegating agent can present the TST to the
ground operator in the shape of a tree, a formal mission specifi-
cation, or a graphical visualization adapted to the mission type.
This step serves as a verification that the mission specification
was correct and complete, so that the delegation process did not
yield unintended results. Depending on the response, we proceed
to step A5, A6 or A7.

Step A5: Accept the proposal. If the ground operator accepts
the current proposal in step A4, the delegating agent signals this
to the delegation process. This causes accept-proposal messages
to be recursively sent to all contractors involved in the proposal
(step B3i below), informing them that their proposals have been
accepted. In a sense, this step constitutes the actual execution
of S-Delegate and causes the postconditions of the speech act to
occur definitely, not only provisionally.

Step A6: Terminate delegation. If the ground operator rejects
the proposal and wants to terminate delegation of the mission
as currently specified, the delegating agent signals this to the
delegation process. This causes reject-proposal messages to be
recursively sent to all contractors involved in the proposal (step
B3j below). One effect of this is that all provisional constraints
added during the process are retracted.

Step A7: Request an alternative proposal. If the ground oper-
ator rejects the current proposal but requests an alternative, the
delegating agent signals this to the delegation process. The dele-
gation process continues searching for solutions where it left off.
If an alternative proposal is found, it may involve different allo-
cations of tasks to agents and/or alternative expansions of goal
nodes and other expandable nodes. The process again verifies
success and returns to step A3 or A4.

Execution. Once an accept-proposal message has been received
by a contractor for a particular node in the TST, the actual del-
egation process has finished. The contractor’s execution subsys-
tem is then permitted to start the executor for this node. This
executor must ensure that all related timing and precedence con-
straints are satisfied before the actual execution begins. This may

involve waiting for a specific timepoint or until certain other
nodes have been executed.

While the mission is being executed, the contractors are
committed to the constraints agreed upon during the approval
of the tasks. These constraints should be monitored continually,
which can be facilitated by an execution monitoring framework
such as the one in Doherty, Kvarnström and Heintz [31]. Should
constraints be violated, a repair process must be initiated. This
process can then find alternative ways of achieving tasks.

For example, the contractors have a degree of autonomy
during execution in the sense that they can modify internal pa-
rameters associated with tasks as long as they do not violate
those constraints externally agreed upon in the delegation pro-
cess. These parameters may be changed on the fly in order to
avoid constraint violations. For example, if an aircraft is delayed,
it may increase its target speed parameter for the remainder of
its task as long as this does not violate speed constraints posed
by the delegating agent.

Depending on the degree of autonomy permitted, more ex-
tensive repairs could be performed. For example, this might
involve locally modifying a TST in order to achieve a sim-
ple or complex task using different elementary actions. Goal
nodes could also be re-expanded given new information about
the world gathered during execution, if that information contra-
dicts what was predicted earlier. This would result in a new plan
adapted to current circumstances. If such changes violate the
mandated degree of autonomy, a contractor must receive con-
firmation from its delegator before proceeding with the modifi-
cation.

6.2.2. Initiating Delegation for the Root Node

Recall that an agent that delegates the root node of a TST does
not have to be actively involved in its execution. The delega-
tion process for the root node is therefore somewhat different
(and simpler) than delegation for inner nodes in a TST. We will
therefore describe this aspect of delegation now, under the as-
sumption that delegation is requested as described in step A2
above. See also Figure 18, where thick arrows indicate speech
acts being sent or received.

Step B1: Find potential contractors. When the delegation ca-
pability is asked to delegate a task τ (step A2), both the delegat-
ing agent A and the task τ are fixed. It is also possible for the
contractor B to be determined in advance through a constraint
on the platform parameter of the root node of τ , for example
by specifying a particular agent as the only possible contrac-
tor for the node or by specifying that its contractor must be the
same as for another node that will be allocated to an agent earlier
in the delegation process. In general this is not the case, which
is why task allocation is integrated into allocation. Delegation
must then find an agent B that satisfies the four preconditions
of S-Delegate(A,B,τ = 〈α,φ ,constraints〉) as described in Sec-
tion 2.1.



March 27, 2013 15:0 us2012

26 Doherty, Heintz, Kvarnström

Figure 18. Delegation: Root node.

Precondition (1) was GoalA(φ). We assume implicitly that
this is satisfied, since an agent should never request the delega-
tion of a task whose execution it does not desire.

Precondition (3) was BelA(Dependent(A,B,τ)). To satisfy
this, the delegation process can prioritize attempting to delegate
tasks back to the delegating agent (A = B) in the next step (B2).
If this turns out not to be possible, but another agent B is found
that can perform the task, then A is dependent on B for τ .

Finally, preconditions (2) and (4) were that BelACanB(τ)
and BelBCanB(τ): Both the delegator and the contractor must
believe that the contractor can perform the task. This could be
verified in at least two ways. Agent A could have a knowledge

base encoding complete knowledge about what all other agents
can do, and what they believe they can do. This could be used
to determine which agents satisfy the preconditions, but is prob-
lematic because it would be difficult to keep such a knowledge
base up-to-date and it would be quite complex given the hetero-
geneous nature of the platforms involved. Additionally, the pool
of platforms accessible for any given delegation at a given time
is not known since platforms come and go. Instead, contractors
will be found in a more distributed manner through communica-
tion among agents as a part of the delegation process.

To improve performance when the contractor B is not predeter-
mined, we note that the definition of Can() entails that B will
not be allowed to recursively delegate the root node n to some-
one else, even though it can recursively delegate n’s children:
This would leave B as an unnecessary middleman. This restric-
tion allows the delegation process to filter out irrelevant agents
at an early stage, as it can broadcast a query for agents capa-
ble of executing nodes with the same type as the root node n
and limit delegation attempts to such agents. The ability to ex-
ecute a node of a particular type is for the time being consid-
ered to be static and atemporal, which allows capabilities to be
checked very rapidly. The delegator should thus attempt to del-
egate the task only to those potential contractors that have the
necessary static capabilities. More complex or time-dependent
abilities such as the ability to fly from one specific location to
another at a given speed during a particular interval of time are
then tested through general resource reasoning when a call for
proposals is sent.

Step B2: Prioritize potential contractors. The result of the
broadcast for capabilities contains no information about the use-
fulness or cost of allocating the node to particular candidate con-
tractors. At the same time, blindly testing candidates for a node
is an obvious source of inefficiency, even when some candidates
have been filtered out. In the context of the recursive delega-
tion process, this leads to a multi-robot task allocation (MRTA)
problem, an important research issue in the multi-agent commu-
nity [49–54].

This problem is currently approached by using a heuristic
function based on auctions [55, 56] to determine the order in
which platforms are tested. The delegator therefore broadcasts
to the candidates a request for bids for the top node n. Each bid
can reflect a potential contractor’s estimated cost or suitability
for accepting the task. To estimate the cost for a potential task,
an agent might have to solve a constraint problem in order to
find out the extra resources needed to take on the task relative
to the current partial allocation. The cost could for example be
related to the total time required to execute all tasks allocated
to the platform. This increases the chance of finding a suitable
platform early in the search.

Step B3: Find a contractor that can perform the task. The
delegation capability can now iterate over the list of potential
contractors in the order determined by the auction.

If the end of the list has already been reached, delegation
fails (B3a), causing step A2 in the previous subsection to return
failure. This failure is then shown to the operator in step A3.

Otherwise (B3bstep) the next candidate contractor B is cho-
sen from the list and the delegating agent A initiates a delegation



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 27

protocol that extends the FIPA Contract Net protocol [57, 58].
On the initiating side, this protocol is handled by a delegation
protocol initiator. As indicated in the figure, a new initiator is
created for every candidate contractor.

The initiator sends a call-for-proposal (CFP) message to
the delegation capability of the potential contractor (B3c), which
in turn causes a delegation protocol participant to be created by
agent B. The initiator and participant then communicate using
additional speech act messages. The participant evaluates the re-
quest as described in the next section and replies (to B3d) with
a propose or refuse message.

A refuse message (B3e) indicates that the potential con-
tractor cannot perform the task, despite having bid on the task
earlier. This can be due to changing circumstances between the
auction and the call for proposal, or due to the fact that auctions
must be performed quickly and should not necessarily entail a
complete verification of the feasibility of a task. Regardless of
the reason, delegation will continue by trying to delegate the
task to the “next best” agent in the list according to the previous
auction (back to step B3a).

A propose message (B3f) indicates success: The participant
has ensured that each node in the tree being delegated has been
provisionally assigned to an agent, which has provisionally re-
served the necessary resources for performing the task in a way
that satisfies the associated constraints. Given the assumption
that we are delegating the root node, the entire TST now has a
valid allocation, so the delegation system can signal success to
the caller (B3g) by returning a complete proposal. Since we are
at the topmost level, this is done by another mechanism than a
speech act. The caller could for example be the user interface, in
which case step A2 in the previous subsection would now return
success and a proposal could be presented to the ground operator
in step A4.

The ground operator would eventually respond, causing
step A5, A6 or A7 to provide information to step B3h. If the
proposal was accepted, the initiator that was created in step B3b
sends an accept-proposal message to the corresponding partici-
pant on the current potential contractor (B3i), and the delegation
protocol has finished. Similarly, if the proposal was rejected, the
initiator sends a reject-proposal message (B3j) and the delega-
tion protocol has finished. Otherwise, we return to step B3c to
ask the participant on agent B for an alternative proposal. Note
that in this case no new initiator is created. Instead a new call-
for-proposal message is sent to by the same initiator to the same
participant within the same conversation, informing it that an al-
ternative proposal is desired.

6.2.3. Delegation in the Potential Contractor

As indicated above (step B3c), a delegation protocol initiator
for a delegating agent A can send a call-for-proposal (CFP) to
an agent B asking whether it can be the contractor for a specific
delegation S-Delegate(A,B,τ). When the CFP is received, the
first step B takes is to create a delegation protocol participant
that handles all communication with the initiator. Figure 19. Delegation: Accepting delegation of a node.



March 27, 2013 15:0 us2012

28 Doherty, Heintz, Kvarnström

The procedure followed by this participant on the contract-
ing agent is illustrated in Figure 19, where speech act-based
communication with the delegator’s initiator is shown on the
left hand side of each box, while such communication between
the contractor and a sub-contracting agent is shown on the right
hand side. Briefly, the participant must determine whether it be-
lieves it can execute the top node n of τ , and if this is the case,
reserve the associated resources and verify that all constraints
remain satisfiable. Each child of a node must also be recursively
delegated to an agent – possibly the same one (B), possibly an-
other. Delegating the children of a node has strong similarities
to the delegation process for the root node and will also result
in new initiators being created and call-for-proposal speech acts
being sent to sub-contractors (step C6c below). However, there
is a certain degree of added complexity due to the fact that there
can be multiple children as opposed to a single root node.

Step C1: Check static capabilities. Though no agent should
attempt to delegate a tree or subtree to an agent that lacks the
required static capabilities for its root node (ensured in step B1
above), it is nevertheless necessary for the participant to verify
this as well, to be certain that it does not agree to a task it can-
not perform. If any required capability is missing, the participant
immediately refuses the delegation by sending a refuse message
back to its associated participant (received in step B3d or C6d).
This causes the overall delegation process to backtrack, and the
caller must attempt to find another agent to which the task can
be allocated.

Step C2: Check constraints. The root node n of the tree or
subtree being delegated must be integrated with a potentially
platform-specific set of constraints related to the type of n, as
shown for a scan-area action in Section 6.1. If the resulting set
of constraints cannot be satisfied for the current task allocation,
agent B cannot perform the task (¬CanB(τ)), and a refuse mes-
sage is sent. Note that constraints added here are retained in the
constraint store for the remainder of the delegation process, until
and unless they are actively removed due to backtracking.

Step C3: Expand the node. Since an agent must not accept the
delegation of a TST as a contractor unless it has verified that
it can actually complete the corresponding simple or complex
task, certain additional computations may have to be done dur-
ing delegation as opposed to execution.

In particular, if n is a goal node, B generally cannot verify
from the goal formula alone that the goal is achievable or that
the actions required to achieve the goal can be performed in a
way that satisfies the associated constraints. Therefore it must
not accept the delegation until it has called a planner to gen-
erated a plan that does achieve the goal, expanded the TST by
adding these actions as children of the goal node, and success-
fully delegated all actions to suitable contractors (which may
include itself).

Similarly, some mission-specific node types can require
other forms of tree expansion before delegation can be accepted,
and are considered to be expandable nodes. For example, the
task of relaying information from a surveillance aircraft to a
base station could be expressed as a single node from the point
of view of the delegator. A contractor could then choose to

view this node as expandable, calling a relay positioning algo-
rithm [59] to generate new flight and relaying actions that would
be added to the TST as children to the expandable node.

A node may have multiple expansions – for example, there
may exist multiple plans to achieve a particular goal. If delega-
tion returns to step C3 after having tested one or more expan-
sions, the next expansion will be generated.

The process of expanding a node can fail, for example if
no (further) solution exists to the planning problem inherent in a
goal node. If this happens, the participant retracts the constraints
that were added in step C2 and refuses the delegation.

Steps C4, C5: Find and prioritize contractors. These steps are
identical to the process followed in steps B1 and B2, but are per-
formed for all child nodes as opposed to a single node. After this
has been done, we select the first child in the list of children: The
leftmost child of node n in the tree, which is the first child we
will attempt to delegate.

Steps C6a–C6f: Try one candidate for the current child.
These steps are very similar to the process followed in steps
B3a–B3f: The participant iterates over the remaining untested
candidate subcontractors for the current child node being pro-
cessed (C6a). For each candidate subcontractor we create an ini-
tiator (C6b), ask for a proposal (C6c) and wait for a response
(C6d). A refuse message (C6e) indicates that the potential sub-
contractor cannot perform the task. Delegation will then con-
tinue by trying to delegate the task to the “next best” agent in
the list. A propose message (C6f) instead indicates success, in
which case we also have to take care of any remaining children
as discussed below.

Step C7: Handle remaining children. If the response from a
subcontractor’s participant in step C6d was propose, we have
found a feasible delegation for the current child. Unlike the sit-
uation for the root node in step B3f, this does not necessarily
mean that we are done: There may be additional child nodes to
delegate. If this is the case we step to the next child in the list.
We also reset the current position in that child’s contractor list,
so that we will begin with its first potential contractor. This is im-
portant in the case where the child had already been delegated
previously, but where we had then backtracked over that dele-
gation as discussed in step C8. We then return to step C6a for
another iteration.

Step C8: Backtrack to the previous child. If we have pro-
cessed the entire list of candidates for a particular child node
without finding one to which the node can be delegated, the pro-
cess does not necessarily fail in step C6a: There may be a pos-
sibility to backtrack and find other delegations for the previous
children of the same node, which may in turn allow this child to
be delegated successfully.

If there exists a previous child, we know we have already
received a proposal for that child at an earlier stage in the dele-
gation process. We go back one step in the list of children and
select it, and then continue to step C6c. This will send a new
call-for-proposal to the same subcontractor as before, ensuring
that this subcontractor has a chance to generate a new proposal
if possible. Only if no alternative proposal exists (C6e) do we
return to step C6a to test another candidate for the same child.



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 29

If there is no previous child, there are two possibilities.
First, we may have processed the entire list of potential subcon-
tractors for the first child of the current node without receiving
a proposal. Second, we might have found a subcontractor, con-
tinued delegating, failed to find subcontractors for later children,
and backtracked all the way to the first child. In either case, there
are no more delegation alternatives to be explored for the cur-
rent children of n. The participant therefore returns to step C3
in order to determine whether alternative expansions exist. If n
is an expandable node, all generated children are removed and
the participant determines whether there is an alternative expan-
sion, in which case the process continues as described earlier.
If n is not an expandable node, all locally added constraints are
retracted and delegation is refused.

Step C9: Send a proposal. If all children have been delegated,
the participant can reply to the initiator with a propose message
referring to the consistently instantiated TST that has been gen-
erated. This is very similar to step B3g, the main differences
being that communication takes place using a speech act and
that we may only be proposing a solution for a subtree of the
complete mission. The recipient of the proposal is either step
B3d, if we were delegated the root node, or step C6d, if we were
delegated a non-root node.

Step C10: Wait for and handle the response. Recall that the
fact that we have proposed a solution does not mean that the tree
rooted in node n has been completely delegated. The final del-
egation cannot take place until it has been verified that suitable
contractors have been found for the entire tree that a ground op-
erator wants to be delegated – and even though the subtree being
handled here could be successfully allocated to a certain set of
agents (causing us to send back a proposal), this particular as-
signment of agents and this solution to the constraint problem
can in fact cause the remainder of the tree to become impossi-
ble. For example, assigning a long flight action to a slow aircraft
early in the delegation process can make it impossible to find a
solution for the entire mission that satisfies all associated tem-
poral deadlines.

Therefore delegation may have to backtrack or backjump
even over proposals, asking an agent to generate a new proposal
involving a different task allocation or a different solution to the
constraint problem. Additionally, even a complete and consis-
tent proposal for an entire mission might not be accepted by the
ground operator. Therefore we must now wait for a response to
the proposed solution from the initiator, like we did in step B3h.
There are three possible responses.

(1) If the response is accept, the delegation participant can for-
ward this acceptance to all child nodes (similar to B3i). Then
delegation has completed for this tree or subtree and the par-
ticipant can terminate.

(2) If the response is reject, the participant can also forward this
message to all child nodes (similar to B3j). Again, delega-
tion has completed and the participant can terminate.

(3) We may also find out that we have to backtrack the delega-
tion process for this node despite having generated a com-
plete proposal. This can be because other parts of the pro-
cess did not find contractors for later nodes in the tree given

the current expansion and task allocation for this subtree, or
due to the ground operator rejecting the current proposal.
In this case the response from the parent initiator will be
another call-for-proposal message within the same conver-
sation, which is interpreted as a request for an alternative
proposal.
The participant returns to step C8. If the node does have
children, it steps back from its current position after the end
of the child list to the last child, and attempts to find a new
delegation for that child. This ensures that all alternatives
for child nodes are explored correctly. If the node does not
have children, or if all alternatives for the children have al-
ready been explored, step C8 returns to step C3 where we
may instead attempt to generate an alternative expansion.

Delegation, backtracking and backjumping. As the delega-
tion process is described above, chronological backtracking is
used. We have also extended this process to use backjumping,
which can skip over multiple nodes in a single step [60]. This
process is exemplified informally below.

6.3. Delegation Process Example

We will now consider the delegation process in the context of the
supply delivery scenario discussed in Section 5. The assump-
tion is that several survivors have been located after a natural
disaster, and that a mission of delivering emergency supplies to
these survivors has been specified, resulting in the unallocated
and undelegated TST shown in Figure 20. This TST contains a
sub-TST (N1–N12) for loading a carrier with four boxes (N2–N6),
flying the carrier to a location close to several survivors (N7), and
unloading the packages from the carrier in order to deliver them
(N8–N12). A single box must also be delivered to a lone survivor
in another region, far away from where most of the survivors
were found (N13). These two aspects of the mission are com-
paratively independent and can take place concurrently given a
sufficient number of platforms. Several packages on a carrier can
also be both loaded and unloaded concurrently, but the loading,
moving, and unloading of the carrier is a sequential operation.

We assume that we have a single carrier at our disposal
and that there are six agents in the vicinity: Four UAV plat-
forms/agents (P1–P4) and two agentified ground stations (GS1
and GS2). Another ground operator is already using GS2 to per-
form a mission with the platforms P3 and P4 in an area nearby.
We are therefore using the ground station GS1 and will mainly
use the platforms P1 and P2 to achieve our mission. We may also
be able to borrow P3, which is currently idle, but this is associ-
ated with an additional cost.

Using the graphical interface on GS1, we indicate that we
want the TST to be delegated. The ground station is thus the
agent assigned as responsible for delegating the TST, and it asks
its own delegation capability to initiate delegation for the TST
(step A2 above).



March 27, 2013 15:0 us2012

30 Doherty, Heintz, Kvarnström

Figure 20. A TST for supply delivery.

The delegation capability on GS1 searches for a platform
to which it can delegate the TST (step B1). It starts by finding
all agents that have the required static capabilities for the top
node N0, which would include all agents. It then auctions out N0
to find the best initial choice (step B3). In this case, the speci-
fied marginal cost is the lowest for P1 and P2 (which are free),
somewhat higher for the ground stations (which are normally not
involved in executing such nodes) and even higher for P3 and P4
as they are assigned to another ground operator. The first plat-
form, P1, is chosen as the winner (steps B3a and B3b) and is sent
a call-for-proposal message for N0 (step B3c).

The delegation capability of P1 receives a request to be the
contractor for N0 (Figure 19). It verifies that it can execute con-
currency nodes (C1), adds the appropriate constraints to its con-
straint store (C2), and verifies that they are satisfiable. Concur-
rency nodes cannot be expanded (C3). It must then attempt to
recursively delegate all child nodes.

Candidate contractors are found and prioritized (steps C4
and C5). Delegation of child nodes then occurs in left-to-right
order. P1 therefore asks its own delegation capability to initiate
delegation for the first child node, N1. In this case, P1 is again
chosen as the best contractor as it is one of the agents having
the lowest marginal cost and we prioritize executing child nodes
on the same agent. In step C6c, P1 therefore sends a call-for-
proposal for N1 to itself. A new instance of the delegation proto-
col results, where node N1 is the target – essentially, one instance
of Figure 19 is now communicating with another instance of the
same figure. The new participant verifies that it has the static ca-
pabilities for N1 (C1), extends the constraint network (C2) and
verifies that it remains satisfiable. This must be the case, because
the nodes added so far only contain temporal constraints and be-
cause there are no elementary actions requiring time for their
execution. After verifying that this node is not expandable (C3),
P1 once more has to delegate all child nodes.

The treatment of N1’s first child N2 is identical, resulting in
another level of recursion. Thereafter, the first child N3 is an el-
ementary action node, where the choice of platform is the key to
a successful allocation due to each platform’s unique state, con-
straint model for the action, and available resources. The candi-
dates for node N3 are platforms P1–P4. At this point P1 happens

to be the closest to the package depot and therefore gives the
best bid for the node. A call-for-proposal is again sent from P1
to itself. Upon receiving the call-for-proposal, it verifies that it
can execute the node and replies with a propose message.

We have now returned to the delegation of N2, where the
second child, N4, has to be delegated. For this node, P1 is still
the best choice, and it is allocated to N4. Given the new posi-
tion of P1 after being allocated N3 and N4, P2 is now closest to
the depot resulting in the lowest bid for N5 and N6. The sched-
ule initially defined by nodes N0–N2 is now also constrained by
how long it takes for P1 and P2 to carry out action nodes N3–N6,
and the constraints involved are distributed among platforms P1
and P2.

We have now returned to the delegation of N1, where the
next child for P1 to delegate is the carrier delivery node N7. The
only platform that has the capabilities for this task is P1, and it is
delegated the node. Continuing with nodes N8–N12, the platform
with the lowest bid for each node is platform P1, since it is in the
area after delivering the carrier. P1 is therefore delegated all the
nodes N8–N12.

The final node, N13, is delegated to platform P2 and the del-
egation is complete. The total mission time is 58 minutes, which
is much longer than the operator expected. Since the constraint
problem defined by the allocation of the TST is distributed be-
tween the platforms, it is possible for the operator to modify the
constraint problem by adding more constraints, and in this way
modify the resulting task allocation. The operator puts a time
constraint on the mission, restricting the total time to 30 min-
utes.

To re-allocate the TST with the added constraint, GS1 sends
a reject-proposal to platform P1. The added time constraint
makes the current allocation inconsistent, so simply finding a
new constraint solution is not possible. The last allocated node
must therefore be re-allocated. However, no platform for N13 can
make the allocation consistent, not even the unused platform P3.
Backtracking starts [7]. Platform P1 is in charge, since it is re-
sponsible for allocating node N13. The N1 sub-network is dis-
connected. Trying different platforms for node N13, P1 discovers
that N13 can be allocated to P2. P1 sends a backjump-search mes-
sage to the platform in charge of the sub-TST with top-node N1,
which happens to be P1. When receiving the message, P1 contin-
ues the search for the backjump point. Since removing all con-
straints due to the allocation of node N1 and its children made
the problem consistent, the backjump point is in the sub-TST
rooted in N1. Removing the allocations for sub-tree N8 does not
make the problem consistent so further backjumping is neces-
sary. Notice that with a single consistency check the algorithm
could deduce that no possible allocation of N8 and its children
can lead to a consistent allocation of N13. Removing the allo-
cation for node N7 does not make a difference either. However,
removing the allocations for the sub-TST N2 makes the problem
consistent. When finding an allocation of N13 after removing the
constraints from N6 the allocation process continues from N6 and
tries the next platform for the node, P1.

When the allocation reaches node N11 it is discovered that
since P1 has taken on nodes N3–N8, there is not enough time left
for P1 to unload the last two packages from the carrier. Instead
P3, even though it makes a higher bid for N11–N12, is allocated



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 31

to both nodes. Finally platform P2 is allocated to node N13. It
turns out that since platform P2 helped P1 loading the carrier, it
does not have enough time to deliver the final package. Instead,
a new backjump point search starts, finding node N5. The search
continues from N5. This time, nodes N3–N9 are allocated to plat-
form P1, platform P3 is allocated to node N10–N12, and platform
P2 is allocated to node N13. This allocation is consistent. The
delegation algorithm finishes on platform P1, by sending another
propose message back to the operator. The operator can then ap-
prove the allocation and starts the mission. An accept-proposal
message is sent to P1, and similar messages are recursively sent
down throughout the tree, after which execution can start.

7. Delegation, Planning, and Distributed Planning

When discussing an example logistics mission in Section 5.4, we
described one way in which a ground operator can receive assis-
tance from an automated planner: The mission-specific ground
operator interface generates a planning problem corresponding
to the mission at hand, makes a direct call to the planning capa-
bility on board the ground station, receives a complete plan in
the shape of a mission specification, converts the entire plan to a
TST, and then delegates this TST to one or more contractors that
will carry it out. We will now demonstrate in three distinct steps
how we can benefit from a closer integration between planning
and delegation.

7.1. Planning for Goal Nodes

The most straight-forward way to achieve integration is through
goal nodes. Instead of calling the planner itself, the mission-
specific ground operator interface calls the TST Factory to gen-
erate a TST consisting of a single goal node, which refers to
the problem instance specification. It then asks the delegation
capability to initiate delegation for the root node of this small
TST (Section 6.2.2). As part of step B1, delegation broadcasts
a query for agents having a general planning capability, which
is a requirement for taking on the responsibility for a goal node.
Since the ground station on which the ground operator interface
is running is in itself an agent, it may reply to its own request.
This allows all types of delegation to be handled coherently and
consistently, without special cases.

After an auction (step B2), one of the responding agents
will be sent a call-for-proposal message (step B3c). This poten-
tial contractor must determine whether it can perform the task
inherent in the goal node. This does not merely mean that the
agent has a planner and can make an attempt to generate a plan
(static capabilities, step C1) – it means that the agent can succeed
in finding a plan and can ensure that the plan is executed. There-
fore the delegation request cannot immediately be accepted. In-
stead the agent must call its own on-board task planner and de-
termine what an appropriate plan for the given goal node would
be (part of the node expansion in step C3).

Once a plan is generated, the node expansion procedure
converts it to a TST and attaches this plan TST as a child be-
neath the goal node. Delegation automatically continues to en-
sure that the newly generated plan nodes are recursively dele-

gated (steps C4–C8). If this fails, one can consider generating
an alternative plan (back to step C3). If the planner finds no al-
ternative plans, or is configured to only generate a single plan,
delegation will be refuse:d. Only if a plan has been both gener-
ated and successfully provisionally delegated does the contractor
reply with a propose message (step C9).

When considered in the context of a trivial tree consisting
of a single goal node, the benefit of this procedure may not be
immediately obvious. There is however a significant advantage
in the ability to place one or more goal nodes at any point in a
TST, allowing a flexible mix between mission aspects that are
specified in detail and those where a great deal of freedom is
given to contractors.

7.2. Interleaving Planning and Delegation

In the procedure described above, planning and delegation are
interleaved in a comparatively coarse-grained manner: Every
time a goal node is encountered, a complete plan is generated
before delegation resumes. If resources are tight and the first
solution plan is not feasible, a new complete alternative plan is
generated, after which delegation is restarted from the beginning
of the new plan. We can benefit significantly from instead inte-
grating these two processes at a fine-grained level where the del-
egation process actively “drives” the planning process forward
one step at a time, choosing when and where an attempt should
be made to provisionally delegate the current partially generated
plan.

First, if such a partial delegation attempt succeeds, all re-
sources involved will be provisionally booked for the remainder
of the plan generation phase, avoiding a race condition where a
plan could be feasible during its generation but become infeasi-
ble before it is delegated.

Second, if the partial delegation attempt fails, the planner
can be informed. This results in early and frequent feedback to
the planning algorithm, allowing it to immediately detect where
its search results in an infeasible partial plan and to backtrack
and find alternative solutions. Problems are then detected for
each action instead of only for an entire solution plan, which can
significantly improve performance. This use of delegation can be
seen as providing indirect access to information that is difficult
or impossible to integrate in a planning problem description, in-
formation that includes but is not limited to the following:

(1) When can a particular agent schedule a new action? Note
that the answer is not necessarily a set of fixed intervals in
time: The schedule of an agent could correspond to a flexi-
ble temporal network where already contracted tasks can be
adjusted somewhat in time in order to allow new tasks to be
accepted.

(2) Where will the agents be at specific points in time according
to the tasks they have already contracted? This is important
in order to determine how much time is required for a fly-to
action, for example.

(3) Exactly how much time will an agent require in order to
execute an action? The time requirements for a fly-to ac-
tion are not only dependent on the distance but also on how
the platform in question generates flight paths using motion



March 27, 2013 15:0 us2012

32 Doherty, Heintz, Kvarnström

planning and on the flight envelope of the platform, which
a planner on another platform does not necessarily have ac-
cess to.

(4) Which other platform-specific and node-specific constraints
must be satisfied for delegation to succeed?

To simplify the presentation we will assume the planner is ini-
tially provided with identities for all potential contractors, so
that one action thread can be generated for each contractor. As
there is no requirement for all of these contractors to be avail-
able throughout the planning process, this is a very minor re-
striction. Interleaving planning with delegation then requires a
modified planning and delegation procedure that essentially in-
tegrates steps C3 (generate the next expansion) and C4–C8 (del-
egate child nodes) in Figure 19. This procedure can be described
as follows.
procedure TFPOP-delegation

π ← 〈{a0},∅,∅,∅〉 // Initial plan
→generate skeleton TST
→delegate skeleton TST
→if delegation of skeleton TST fails then fail

repeat
→ if goal satisfied then
→ propose (step C9)
→ wait for response (step C10)
→ if response is accept-proposal then success

choose a thread t to which an action should be added
// Use partial state to filter out most potential actions
s← partial state at the end of thread t
choose an action a for t such that eval(pre(a)) 6= false
if effects of a are inconsistent then fail (backtrack)
// Complete check:
// Can the action really be added, and how?
choose precedence constraints C and causal links L

using make-true(), ensuring pre(a) is satisfied,
a does not interfere with existing actions
and no existing action interferes with a

update resource usage
if resource constraints violated then fail (backtrack)
add a, C, L and necessary mutex sets to π

update existing partial states
create new partial state for a

→ add TST node corresponding to a
→ foreach c ∈C: Add corresponding constraint in TST
→ delegate newly generated nodes
→ if delegation fails then fail (backtrack)

As in Section 5.2, choose denotes standard non-deterministic
choice and is implemented through backtracking. Every time the
procedure backtracks over the addition of an action a and a set of
constraints C, the existing delegation of the corresponding TST
node is rejected, causing the associated participant to retract the
corresponding constraints from the TST.

The following modifications can be noted compared to the
original TFPOP planner, marked with arrows above.

First, before the search process begins, the planner must use
the TST factory to generate an initial skeleton TST. In sequen-
tial planning this would consist of a single sequence node under

which all actions can be added. For TFPOP, there is a single con-
currency node under which there is one sequence node for each
thread (potential contractor). This initial TST must be provision-
ally delegated to appropriate agents. If delegation fails, which is
unlikely given that the tree only consists of control nodes, the
entire planning process fails. This corresponds to failure in step
C3 (Figure 19) and causes the participant for the goal node to
refuse the delegation.

Second, if the planner determines that its current plan can-
didate satisfies the specified goals, then all actions involved in
achieving those goals (as well as all required control structures
such as sequence nodes) have already been provisionally dele-
gated and distributed to one or more executing agents. Therefore
no plan has to be returned. Instead, this corresponds directly to
the case where no more children remain in step C7. The planner
asks the goal node’s participant to send a proposal to the par-
ent initiator (step C9). It then waits for a response (C10). If the
proposal was accepted, the planner has succeeded and can ter-
minate, allowing the participant to forward the accept-proposal
message to the nodes generated by the planner. Otherwise, the
planner can continue to generate an alternative proposal.

Third, each time an action is added to the plan, the plan-
ner must call the TST factory to generate a corresponding el-
ementary action node and attach it under the agent’s sequence
node. The associated new precedence constraints must also be
added to the TST. The new elementary action is then provision-
ally delegated. Since an executing agent has already been chosen
by TFPOP, there is no need to iterate over potential contractors.
Furthermore, there is only one new child to delegate. Delega-
tion therefore only requires creating one new initiator, as in step
C6b in Figure 19. The initiator then sends a call-for-proposal
message to the intended agent (C6c), which creates a participant
that verifies the executability of the action and the satisfiability
of the extended constraint problem. Eventually a response ar-
rives (C6d).

If delegation succeeded, the contractor has added the ap-
propriate constraints to its constraint store and ensured that the
required capabilities and resources are available and provision-
ally reserved. Otherwise the planner can immediately backtrack,
trying another action to extend the plan.

Given this considerably tighter integration between planning and
delegation, the action preconditions that are included in a plan-
ning domain description can be limited to those that are the most
useful in pruning the search tree, which greatly simplifies the
work of the knowledge engineer. The delegation functionality
can then verify the stronger and potentially platform-specific
conditions associated with each TST node, resulting in a divi-
sion of responsibilities where planning and delegation processes
work in concert to efficiently determine executability.

7.3. Distributed Planning through Delegation

The integrated process described above can be viewed as lead-
ing to a specific form of distributed planning, where different
goal nodes specified within a single TST can be expanded into
plans by different agents on board different platforms. This form
of distribution is applicable when an overall mission is naturally



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 33

separable into several specific planning problems. It also forms
an extensible foundation on which we can now easily construct
a truly distributed planner, where several agents can cooperate
in elaborating a single goal node into a task specification tree
grounded in the elementary actions available on each platform
involved in its execution.

To this effect, we extend the integration one step further
(Figure 21). Assume a ground operator has specified a mission
using a TST containing one or more goal nodes (D1). For exam-
ple, let us assume there is only a single goal node specifying the
goal for an emergency services logistics mission where crates of
supplies should be transported to injured people. The goal TST
arrives at the delegation subsystem (D2) of agent A, which even-
tually extracts a goal formula from the goal node and sends it to
the integrated TFPOP task planner (D3).

Figure 21. Delegation and planning.

TFPOP begins as described in the previous subsection, gen-
erating one action at a time and delegating it to an appropriate
agent. One of the generated actions loads an entire carrier with a
set of suitable supply crates. To the planner of agent A, this is an
ordinary single-agent action with ordinary effects. The planner
therefore generates a TST node for the action and asks the dele-
gation subsystem to delegate it (D4). The delegation subsystem
communicates with agent B through its interface (D5), sending
a call-for-proposal speech act (D6) for the newly generated ac-
tion node. The interface on agent B receives this speech act and
forwards it to its own delegation subsystem (D7, D8).

Here, agent B decides that it would like to use its own on-
board planner to elaborate the task into what it considers to be
elementary actions. It therefore views the node not as an ele-
mentary action but as a goal to be achieved, generates a suitable
planning problem specification, and calls TFPOP. Agent B can
then use its more detailed knowledge about its own capabilities
and its own schedule to elaborate the task into a concrete tree of
elementary action nodes.

This procedure can of course be applied in more than one
level: To achieve its “second-level” goal, agent B may gener-
ate an action that is delegated to agent C, which views it as a
third-level goal to be achieved. The result is a distributed plan-
ner based on delegation, which has certain hierarchical aspects
but does not require the specification of a hierarchy in advance.
Indeed, there is no predefined direction in which actions may be
delegated, and agent B or C may end up delegating actions back
to agent A.

8. Related Work

Due to the multi-disciplinary nature of the work considered here,
there is a vast amount of related work too numerous to mention
in complete detail. In addition to the work referenced in the ar-
ticle, we instead consider a number of representative references
from the relevant research areas.

In terms of formal mission specification languages, logics
of action and change have been studied extensively [61–66], yet
there has been relatively less research which focuses specifically
on composite actions in all their generality. An early precursor
is the use of strategies in the situation calculus [67]. A more ex-
tensive and recent study of composite actions is the Golog [68]
framework which is also based on a dialect of the situation cal-
culus [64,69]. Davis and Morgenstern [70] also propose a formal
logical theory that has some relation to ours in the sense that they
use speech acts for communication in the context of multi-agent
planning.

Specifying delegation as a speech act as we do in this arti-
cle is novel. Castelfranchi and colleagues have previously stud-
ied the concept of delegation from the social science perspec-
tive [71]. In terms of formal specification, besides the work here,
Lorini et al [72] propose a logical formalism that models the
intentions and beliefs of a delegating agent based on Castel-
franchi’s work.

The concept of autonomy has a long and active history in
multi-agent systems [73, 74]. One early driving force was space
missions that focused on the problem of interaction with au-
tonomous agents and the adjustability of this autonomy [75,76].
Later, Hexmoor and McLaughlan argue that reasoning about au-
tonomy is an integral component of collaboration among com-
putational units [77]. Hexmoor also argues that trust is essen-
tial for autonomy [78]. According to his definition, the auton-
omy of an agent A with respect to a task t is the degree of self-
determination the agent possesses to perform the task. This is
similar to the view on autonomy in our approach, where the level
of autonomy for an agent is dependent on the strictness of the
constraints on the tasks that are delegated to the agent.

Cooperative multi-robot systems have a long history in
robotics, multi-agent systems and AI in general. One early study
presented a generic scheme based on a distributed plan merging
process [79], where robots share plans and coordinates their own
plans to produce coordinated plans. In our approach, coordina-
tion is achieved by finding solutions to a distributed constraint
problem representing the complex task. Another early work is
ALLIANCE [80], which is a behavior-based framework for in-
stantaneous task assignment of loosely coupled subtasks with or-



March 27, 2013 15:0 us2012

34 Doherty, Heintz, Kvarnström

dering dependencies. Each agent decides on its own what tasks
to do based on its observations of the world and the other agents.
Compared to our approach, this is a more reactive approach
which does not consider what will happen in the future.

M+ [81] integrates mission planning, task refinement and
cooperative task allocation. It uses a task allocation protocol
based on the Contract Net protocol with explicit, pre-defined ca-
pabilities and task costs. A major difference to our approach is
that in M+ there is no temporally extended allocation. Instead,
robots make incremental choices of tasks to perform from the set
of executable tasks, which are tasks whose prerequisite tasks are
achieved or underway. The M+CTA framework [82] is an exten-
sion of M+, where a mission is decomposed into a partially or-
dered set of high-level tasks. Each task is defined as a set of goals
to be achieved. The plan is distributed to each robot and task al-
location is done incrementally as in M+. When a robot is allo-
cated a task, it creates an individual plan for achieving the task’s
goals independently of the other agents. After the planning step,
robots negotiate with each other to adapt their plans in the multi-
robot context. Like most negotiation-based approaches, M+CTA
first allocates the tasks and then negotiates to handle coordina-
tion. This is different from our approach which finds a valid al-
location of all the tasks before committing to the allocation.

ASyMTRe [83], uses a reconfigurable schema abstraction
for collaborative task execution providing sensor sharing among
robots, where connections among the schemas are dynamically
formed at runtime. The properties of inputs and outputs of each
schema is defined and by determining a valid information flow
through a combination of schemas within, and across, robot
team members a coalition for solving a particular task can be
formed. Like ALLIANCE, this is basically a reactive approach
which considers the current task, rather than a set of related tasks
as in our approach. IQ-ASyMTRe [84] is a recent extension of
ASyMTRe that handles tightly coupled multirobot tasks involv-
ing close robot coordinations. Other Contract-Net and auction-
based systems similar to those described above are COMETS
[51], MURDOCH system [49], Hoplites [85] and TAEMS [86].

Many task allocation algorithms are, as mentioned above,
auction-based [49, 52–54, 85, 87, 88]. There, tasks are auctioned
out and allocated to the agent that makes the best bid. Bids are
determined by a utility function. The auction concept decentral-
izes the task allocation process which is very useful especially
in multi-robot systems, where centralized solutions are impracti-
cal. For tasks that have unrelated utilities, this approach has been
very successful. The reason is that unrelated utilities guarantee
that each task can be treated as an independent entity, and can
be auctioned out without affecting other parts of the allocation.
This means that a robot does not have to take other tasks into
consideration when making a bid.

More advanced auction protocols have been developed to
handle dependencies between tasks. These are constructed to
deal with complementarities. Examples are sequential single
item auctions [89] and combinatorial auctions [90]. These auc-
tions typically handle the situation where different combinations
of tasks have different bids, which can be compared to our model
where different sets of allocations result in different restrictions
to the constraint network between the platforms.

The sequential single item (SSI) auction [89] is of special

interest since it is similar to our approach. In SSI auctions, as
in our task allocation approach, tasks are auctioned out in se-
quence, one at a time to make sure the new task fits with the
previous allocations. The difference is what happens when there
is no agent that can accept the next task. In SSI auctions com-
mon strategies are to return a task in exchange for a new task
or to start exchanging tasks with other agents. This is basically
a greedy approach which is incomplete. Our approach on the
other hand uses backtracking which is a complete search pro-
cedure. Normally SSI auctions are applied to problems where it
is easy to find a solution but it is hard to find a good solution.
When allocating the tasks in a TST it is often hard to find any
solution and SSI auctions are therefore not appropriate.

Combinatorial auctions deal with complementarities by
bidding on bundles containing multiple items. Each bidder
places bids on all the bundles that are of interest, which could be
exponentially many. The auctioneer must then select the best set
of bids, called the winner determination problem, which is NP-
hard [90]. Since all agents have to bid on all bundles (in our case
tasks) they could accept in one round, it means that even in the
best case there is a very high computational cost involved in us-
ing combinatorial auctions. Another weakness is that they do not
easily lend themselves to a recursive process where tasks are re-
cursively decomposed and allocated. Our approach, on the other
hand, is suitable for recursive allocation and by using heuristic
search tries the most likely allocations first which should result
in much better average case performance.

Automated planning is also an essential aspect of missions
as described in this article. Whereas a single-agent planner has
to decide what actions to perform to achieve a given goal, a
multi-agent planning system must also determine how to dis-
tribute actions and subtasks across a set of homogeneous or het-
erogeneous agents in order to make the best possible use of all
available resources.

Many approaches rely on the simplifying assumption that
a specialized coordinator has detailed knowledge about which
agents are available, what actions they can perform and what
resources are available, as well as complete authority to assign
detailed plans to arbitrary agents. All agents are also assumed
to share a common execution architecture supporting a partic-
ular plan structure. Under these very strong assumptions, one
can create a global planning model incorporating all available
agents, reducing the problem of distributing subtasks and coor-
dinating resource usage into a standard planning problem. The
planning process is then completely centralized and performed
by the coordinator, after which suitable subplans are extracted
and distributed to each agent.

Depending on the desired plan structure, a wide vari-
ety of planning techniques may be used, including classical
planners with support for concurrency [91–95], planners using
rich domain information for guidance [37, 96–98], specialized
techniques for centralized multi-agent planning [99, 100], and
planners based on policy generation using MDPs, Multi-agent
MDPs, POMDPs, and decentralized (PO)MDPs [101–107]. As
a variation on this theme, the central coordinator may distribute
high-level abstract actions to perform, which can then be elabo-
rated into detailed plans by individual agents [108]. Common to
these approaches is the lack of any explicit notion of delegation,



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 35

negotiation or adjustable autonomy. Additionally, the fact that
all information about the feasibility of a given action for a given
action must be available centrally can be problematic in many
situations.

In an alternative approach, planning can be completely dis-
tributed among a set of cooperating agents, all of which are
considered to be equals. Coordination among agents may be
interleaved with planning [109–112], or may take place after
each agent has constructed a complete plan for its own goal
[113–115]. Research in this area often focuses on techniques
for successive refinement of the local plans generated by each
individual agent as it incrementally receives information about
plans generated by other agents. The final result is a set of in-
dividual plans, each taking care to avoid interference with other
agents. Again, distributed planners tend to lack explicit support
for delegation or adjustable autonomy, though certain forms of
negotiation are occasionally used.

One of the earliest detailed accounts of issues involving
mixed-inititive planning is [116]. More recently, a number of
attempts have been made to develop mixed-initiative planning
systems. Two representative examples are Rationale [117] and
MapGen [118]. The latter is particularly interesting since it was
developed by NASA and used in the Mars Rover Project. In-
terfaces used with mixed-initiative planning systems are another
active area of research. Horvitz [119] provides an overview of
principles and Finzi [120] proposes mixed-initiative techniques
for human robot interaction in rescue scenarios. The framework
described in this article is unique in that it attempts to combine
a mixed-initiative mission planning system with a delegation
framework.

9. Conclusions

Developing robust, pragmatically useful software systems that
can be integrated with existing UASs and that support the spec-
ification of high-level collaborative missions, the generation of
distributed plans associated with such missions and their execu-
tion on teams of UASs, is a highly complex endeavour. Due to
this complexity, using formal specifications to guide the devel-
opment of both the architectural components and the functional-
ities that are included in the architecture is a necessity.

In this article, we have shown how this can be done. Each of
the fundamental components in the framework we propose be-
gins with formal specifications in temporal and modal logics. In
the case of mission specifications, we use TAL, a highly expres-
sive temporal logic of action and change. In the case of TFPOP,
the automated planner, the semantic characterization of a plan
uses TAL and the output of the planner is a TAL narrative. In
the case of the specification of task specification trees, we show
how they are formally related to composite actions in TAL and
how one can map back and forth between them. In the case of
the delegation concept itself, we use a multi-modal logic KARO
to specify a new speech act. Tasks themselves are extended to
be contextual in nature by associating a set of constraints with
each. These constraints can be characterized using TAL or using
any other logical formalism.

Since TSTs and constraints are used as a basis for execution

of plans in the actual UAS system architectures, in some sense,
the formal verifiability of not only the mission plans but of their
execution is built into the actual processes associated with the
delegation architecture. This is done purposely. New tools and
techniques have to be found to be able to provide verification
and validation tools for the complex types of functionality re-
quired to integrate high autonomy features into robotic archi-
tectures such as the components investigated in this paper. We
believe the approach described in this article is a viable means
of doing this.

In this manner, not only can we build complex systems such
as that described here, but we can control the complexity of the
implementation process through the use of these formal tech-
niques. This mix of pragmatics with formal specification has re-
sulted in the collaborative UAS system architecture described in
this paper. The system is deployed in prototype and is opera-
tional on several of our UAS platforms.

The framework, system and functionalities described here
are generic in nature. They can be used on different types of
robotic platforms due to the separation of the architectural exten-
sions described here and legacy systems associated with exist-
ing robotic systems. Additionally, the mission specification and
planning techniques can be instantiated to different application
areas through the specific choice of plan operators and primitive
actions one might want to associate with the individual hetero-
geneous robotic systems participating in the application.

Acknowledgments

This work is partially supported by the Swedish Research Coun-
cil (VR) Linnaeus Center for Control, Autonomy, and Decision-
making in Complex Systems (CADICS), the ELLIIT network
organization for Information and Communication Technology,
the Swedish National Aviation Engineering Research Program
NFFP5, SSF – the Swedish Foundation for Strategic Research
(CUAS Project), the EU FP7 project SHERPA, grant agree-
ment 600958, and CENIIT, the Center for Industrial Information
Technology.

Bibliography

[1] P. Doherty, P. Haslum, F. Heintz, T. Merz, T. Persson
and B. Wingman, A distributed architecture for intelli-
gent unmanned aerial vehicle experimentation, Proceed-
ings of the 7th International Symposium on Distributed
Autonomous Robotic Systems, (2004).

[2] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti and
P. Doherty, From motion planning to control – a naviga-
tion framework for an unmanned aerial vehicle, Proceed-
ings of the 21st Bristol International Conference on UAV
Systems, (2006).

[3] P. Rudol and P. Doherty, Human body detection and ge-
olocalization for UAV search and rescue missions us-
ing color and thermal imagery, Proceedings of the IEEE
Aerospace Conference, (2008), pp. 1–8.

[4] G. Conte and P. Doherty, Vision-based unmanned aerial
vehicle navigation using geo-referenced information,



March 27, 2013 15:0 us2012

36 Doherty, Heintz, Kvarnström

EURASIP Journal of Advances in Signal Processing
2009(1) (2009).

[5] P. Rudol, M. Wzorek and P. Doherty, Vision-based pose
estimation for autonomous indoor navigation of micro-
scale unmanned aircraft systems, Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA), (May 2010), pp. 1913–1920.

[6] P. Rudol, Increasing autonomy of unmanned aircraft sys-
tems through the use of imaging sensors, licentiate the-
sis, Department of Computer and Information Science,
Linköpings universitet (2011). Linköping studies in sci-
ence and technology. Thesis: 1510.

[7] P. Doherty, F. Heintz and D. Landén, A delegation-based
architecture for collaborative robotics, Agent-Oriented
Software Engineering XI: Revised Selected Papers, eds.
D. Weyns and M.-P. Gleizes, Lecture Notes in Computer
Science 6788 (Springer-Verlag, Berlin Heidelberg, 2011),
pp. 205–247.

[8] P. Doherty and J.-J. C. Meyer, On the logic of delegation:
Relating theory and practice, The Goals of Cognition. Es-
says in Honor of Cristiano Castelfranchi, eds. F. Paglieri,
L. Tummolini and R. Falcone (College Publications, Lon-
don, 2012).

[9] C. Castelfranchi and R. Falcone, Toward a theory of
delegation for agent-based systems, Robotics and Au-
tonomous Systems, 24 (1998), pp. 141–157.

[10] R. Falcone and C. Castelfranchi, The human in the
loop of a delegated agent: The theory of adjustable so-
cial autonomy, IEEE Transactions on Systems, Man and
Cybernetics–Part A: Systems and Humans 31(5) (2001)
406–418.

[11] P. Cohen and H. Levesque, Intention is choice with com-
mitment, Artificial Intelligence 42(3) (1990) 213–261.

[12] J. L. Austin, How to do things with words (Harvard Uni-
versity Press, 1975).

[13] J. R. Searle, Speech acts: An essay in the philosophy of
language (Cambridge university press, 1969).

[14] P. Doherty and J.-J. C. Meyer, Towards a delegation
framework for aerial robotic mission scenarios, Proceed-
ings of the 11th International Workshop on Cooperative
Information Agents (CIA), (2007).

[15] W. van der Hoek, B. van Linder and J.-J. C. Meyer, An in-
tegrated modal approach to rational agents, Foundations
of Foundations of Rational Agency, eds. M. Wooldridge
and A. Rao, Applied Logic Series 14 1998.

[16] M. Wzorek and P. Doherty, Reconfigurable path planning
for an autonomous unmanned aerial vehicle, Proceedings
of the 16th International Conference on Automated Plan-
ning and Scheduling (ICAPS), (2006), pp. 438–441.

[17] M. Wzorek, J. Kvarnström and P. Doherty, Choosing path
replanning strategies for unmanned aircraft systems, Pro-
ceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), (2010).

[18] M. Ghallab, On chronicles: Representation, on-line
recognition and learning, Proceedings of the 5th Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), (1996), pp. 597–607.

[19] F. Heintz and P. Doherty, Chronicle Recognition in the

WITAS UAV Project: A Preliminary Report, Proceedings
of the Swedish AI Society Workshop (SAIS), (2001).

[20] F. Heintz, J. Kvarnström and P. Doherty, A Stream-
Based Hierarchical Anchoring Framework, Proceedings
of the IEEE/RSJ International Conference on Intelligent
RObots and Systems (IROS), (IEEE conference proceed-
ings, 2009), pp. 5254–.

[21] F. Heintz, J. Kvarnström and P. Doherty, Stream-Based
Hierarchical Anchoring, Künstliche Intelligenz (2013).

[22] FIPA-ACL, FIPA Communicative Act Library Specifica-
tion. Foundation for Intelligent Physical Agents, (2002).

[23] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler and A. Ng, Ros: An open-
source robot operating system, ICRA workshop on open
source software, (2009).

[24] M. Wzorek, Selected Aspects of Navigation and Path
Planning in Unmanned Aircraft Systems, licentiate the-
sis, Linköpings universitet (2011).

[25] J. Kvarnström and P. Doherty, Automated planning for
collaborative systems, Proceedings of the International
Conference on Control, Automation, Robotics and Vision
(ICARCV), (2010).

[26] J. Kvarnström, Planning for loosely coupled agents us-
ing partial order forward-chaining, Proceedings of the
21st International Conference on Automated Planning
and Scheduling (ICAPS), eds. F. Bacchus, C. Domshlak,
S. Edelkamp and M. Helmert (2011).

[27] P. Doherty, J. Gustafsson, L. Karlsson and J. Kvarn-
ström, (TAL) temporal action logics: Language specifi-
cation and tutorial, Electronic Transactions on Artifical
Intelligence 2(3-4) (1998) 273–306.

[28] P. Doherty and J. Kvarnström, Temporal action logics,
The Handbook of Knowledge Representation, eds. V. Lif-
schitz, F. van Harmelen and F. Porter (Elsevier, 2008), pp.
709–757.

[29] P. Doherty and J. Kvarnström, Tackling the qualification
problem using fluent dependency constraints, Computa-
tional Intelligence 16(2) (2000) 169–209.

[30] J. Gustafsson and J. Kvarnström, Elaboration tolerance
through object-orientation, Artificial Intelligence 153(1-
2) (2004) 239–285.

[31] P. Doherty, J. Kvarnström and F. Heintz, A Temporal
Logic-based Planning and Execution Monitoring Frame-
work for Unmanned Aircraft Systems, Autonomous
Agents and Multi-Agent Systems 19(3) (2009) 332–377.

[32] P. Doherty, J. Kvarnström and A. Szalas, Temporal Com-
posite Actions with Constraints, Proceedings of the 13th
International Conference on Principles of Knowledge
Representation and Reasoning (KR), (2012), pp. 478–
488.

[33] A. Arnold and D. Niwiński, Rudiments of µ-calculus,
Studies in logic and the foundations of mathematics,,
Vol. 146 (Elsevier, 2001).

[34] P. Doherty, D. Landén and F. Heintz, A distributed
task specification language for mixed-initiative dele-
gation, Proceedings of the 13th International Confer-
ence on Principles and Practice of Multi-Agent Systems
(PRIMA), (2010).



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 37

[35] D. Landén, F. Heintz and P. Doherty, Complex task allo-
cation in mixed-initiative delegation: A UAV case study
(early innovation), Proceedings of the 13th International
Conference on Principles and Practice of Multi-Agent
Systems (PRIMA), (2010).

[36] R. W. Weyhrauch, Prolegomena to a theory of mech-
anized formal reasoning, Artificial Intelligence 13(1–2)
(1980) 133–170.

[37] J. Kvarnström and P. Doherty, TALplanner: A temporal
logic based forward chaining planner, Annals of Math-
ematics and Artificial Intelligence 30 (June 2000) 119–
169.

[38] P. Doherty and J. Kvarnström, TALplanner: A temporal
logic based planner, Artificial Intelligence Magazine 3
(2001).

[39] J. Kvarnström, Planning for loosely coupled agents using
partial order forward-chaining, Proc. SAIS, (May 2010).

[40] F. Bacchus and F. Kabanza, Using temporal logics to ex-
press search control knowledge for planning, Artificial
Intelligence 116(1-2) (2000) 123–191.

[41] D. S. Weld, An introduction to least commitment plan-
ning, AI magazine 15(4) (1994) p. 27.

[42] P. Morris, N. Muscettola and T. Vidal, Dynamic control
of plans with temporal uncertainty, Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), (2001), pp. 494–502.

[43] F. Bacchus and M. Ady, Precondition control, http:
//www.cs.toronto.edu/∼fbacchus/
Papers/BApre.pdf (1999).

[44] M. Yokoo and K. Hirayama, Distributed constraint satis-
faction algorithm for complex local problems, Proceed-
ings of the International Conference on Multi Agent Sys-
tems (ICMAS), (1998), pp. 372–379.

[45] K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M. G.
de la Banda, and M. Wallace, The design of the Zinc mod-
elling language, Constraints 13(3) (2008) 229–267.

[46] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck
and G. Tack, Minizinc: Towards a standard CP modelling
language, Proceedings of the 13th International Confer-
ence on Principles and Practice of Constraint Program-
ming, (2007).

[47] I. P. Gent, C. Jefferson and I. Miguel, Minion: A fast
scalable constraint solver, Proceedings of the European
Conference on Artificial Intelligence (ECAI), (IOS Press,
2006), pp. 98–102.

[48] M. Yokoo, Asynchronous Weak-commitment Search for
Solving Distributed Constraint Satisfaction Problems,
Proceedings of the International Conference on Prin-
ciples and Practice of Constraint Programming (CP),
(Springer-Verlag, London, UK, 1995), pp. 88–102.

[49] B. Gerkey and M. Mataric, Sold!: Auction methods for
multi-robot coordination, IEEE Transactions on Robotics
and Automation 18(5) (2002) 758–768.

[50] B. Gerkey, On multi-robot task allocation, PhD thesis,
University of Southern California (2003).

[51] T. Lemaire, R. Alami and S. Lacroix, A distributed tasks
allocation scheme in multi-UAV context, Proceedings of
the IEEE International Conference on Robotics and Au-

tomation (ICRA), (2004), pp. 3622–3627.
[52] R. Zlot and A. Stentz, Complex task allocation for mul-

tiple robots, Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), (2005), pp.
1515–1522.

[53] R. Zlot, An auction-based approach to complex task allo-
cation for multirobot teams, PhD thesis, Carnegie Mellon
University (2006).

[54] A. Viguria, I. Maza and A. Ollero, Distributed service-
based cooperation in aerial/ground robot teams applied
to fire detection and extinguishing missions, Advanced
Robotics 24 (2010) 1–23.

[55] S. Parsons, J. A. Rodrı́guez-Aguilar and M. Klein, Auc-
tions and bidding: A guide for computer scientists, ACM
Computing Surveys 43(2) (2011) p. 10.

[56] M. J. Atallah and M. Blanton, Algorithms and Theory of
Computation Handbook (Chapman & Hall/CRC, 2009),
ch. Auction Protocols, 2nd edn.

[57] R. Smith, The contract net protocol, IEEE Transactions
on Computers C-29(12) (1980).

[58] Foundation for Intelligent Physical Agents, FIPA Con-
tract Net Interaction Protocol Specification http://
www.fipa.org, (2002).

[59] O. Burdakov, P. Doherty, K. Holmberg, J. Kvarnström
and P.-M. Olsson, Relay Positioning for Unmanned
Aerial Vehicle Surveillance, The International Journal of
Robotics Research 29(8) (2010) 1069–1087.

[60] D. Landén, Complex Task Allocation for Delegation:
From Theory to Practice, licentiate thesis, Linköpings
universitet (2011).

[61] M. Gelfond and V. Lifschitz, Representing action and
change by logic programs, Journal of Logic Program-
ming 17 (1993) 301–321.

[62] E. Sandewall, Features and Fluents. The Representation
of Knowledge about Dynamical Systems (Oxford Univer-
sity Press, 1994).

[63] M. Shanahan, Solving the Frame Problem: A Mathemat-
ical Investigation of the Common Sense Law of Inertia.
(MIT Press, 1997).

[64] R. Reiter, Knowledge in Action – Logical Foundations for
specifying and Implementing Dynamical Systems (MIT
Press, 2001).

[65] M. Thielscher, Reasoning Robots – The Art and Science
of Programming Robotic Agents (Springer, 2005).

[66] P. Doherty and J. Kvarnström, Temporal action logics,
The Handbook of Knowledge Representation, eds. V. Lif-
schitz, F. van Harmelen and F. Porter (Elsevier, 2008).

[67] J. McCarthy and P. Hayes, Some philosophical problems
from the standpoint of artificial intelligence, Machine In-
telligence, Vol. 4 (Edinburgh U. Press, 1969), pp. 463–
502.

[68] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin and R. B.
Scherl, GOLOG: A logic programming language for dy-
namic domains, Journal of Logic Programming 31(1-3)
(1997) 59 – 83.

[69] J. McCarthy, Situations and actions and causal laws, tech.
rep., Stanford University, CA. (1963).

[70] E. Davis and L. Morgenstern, A first-order theory of



March 27, 2013 15:0 us2012

38 Doherty, Heintz, Kvarnström

communication and multi-agent plans, Journal Logic and
Computation 15(5) (2005) 701–749.

[71] C. Castelfranchi and R. Falcone, Towards a theory of
delegation for agent-based systems, Robotics and Au-
tonomous Systems 24 (1998) 141–157.

[72] E. Lorini, N. Troquard, A. Herzig and C. Castelfranchi,
Delegation and mental states, Proceedings of the 6th in-
ternational joint conference on Autonomous agents and
multiagent systems, ACM (2007), p. 153.

[73] H. Hexmoor, C. Castelfranchi and R. Falcone (eds.),
Agent Autonomy, Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations,, Vol. 7 (Springer Ver-
lag, 2003).

[74] H. Hexmoor and D. Kortenkamp, Autonomy control soft-
ware, An introductory article and special issue of Journal
of Experimental and Theoretical Artificial Intelligence
12(2) (2000).

[75] G. Dorais, R. Bonasso, D. Kortenkamp, B. Pell and
D. Schreckenghost, Adjustable autonomy for human-
centered autonomous systems on Mars, Proceedings of
the Mars Society Conference, (1998).

[76] J. Bradshaw, M. Sierhuis, A. Acquisti, Y. Gawdiak,
R. Jeffers, N. Suri and M. Greaves, Adjustable autonomy
and teamwork for the personal satellite assistant, Pro-
ceedings of the IJCAI Workshop on Autonomy, Delega-
tion, and Control: Interacting with Autonomous Agents,
(2001).

[77] H. Hexmoor and B. McLaughlan, Computationally ad-
justable autonomy, Journal of Scalable Computing:
Practive and Experience 8(1) (2007) 41–48.

[78] H. Hexmoor, S. Rahimi and R. Chandran, Delegations
guided by trust and autonomy, Web Intelligence and
Agent Systems 6(2) (2008) 137–155.

[79] R. Alami, F. Ingrand and S. Qutub, A scheme for coordi-
nating multirobot planning activities and plans execution,
Proceedings of the Thirteenth European Conference on
Artificial Intelligence (ECAI), (1998).

[80] L. E. Parker, Alliance: An architecture for fault tolerant
multi-robot cooperation, IEEE Transactions on Robotics
and Automation 14(2) (1998) 220–240.

[81] S. Botelho and R. Alami, M+: A scheme for multi-
robot cooperation through negotiated task allocation and
achievement, Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), (1999).

[82] R. Alami and S. C. Botelho, Plan-based multi-robot co-
operation, Revised Papers from the International Seminar
on Advances in Plan-Based Control of Robotic Agents,,
Lecture Notes in Computer Science 2466, (Springer-
Verlag, London, UK, 2001), pp. 1–20.

[83] L. E. Parker and F. Tang, Building multi-robot coalitions
through automated task solution synthesis, Proceeding of
the IEEE, Special Issue on Multi-Robot Systems 94(7)
(2006) 1289–1305.

[84] Y. Zhang and L. E. Parker, IQ-ASyMTRe: Forming ex-
ecutable coalitions for tightly-coupled multi-robot tasks,
IEEE Transactions on Robotics ?? (2012) Early Access
Article, https://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=

6381528.
[85] N. Kaldra, D. Ferguson and A. Stentz, Hoplites: A

market-based framework for planned tight coordination
in multirobot teams, Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
(2005), pp. 1170–1177.

[86] K. Decker, TAEMS: A framework for environment cen-
tered analysis and design of coordination mechanisms,
Foundations of Distributed Artificial Intelligence, eds.
G. O’Hare and N. Jennings (Wiley Inter-Science, 1996).

[87] M. Dias, R. Zlot, N. Kalra and A. Stentz, Market-based
multirobot coordination: a survey and analysis, Proceed-
ings of IEEE 94(1) (2006) 1257 – 1270.

[88] Y. Zhang and L. E. Parker, Considering inter-task re-
source constraints in task allocation, Journal of Au-
tonomous Agents and Multi-Agent Systems 26 (2013)
389–419.

[89] S. Koenig, P. Keskinocak and C. Tovey, Progress on agent
coordination with cooperative auctions, Proceedings of
the AAAI Conference on Artificial Intelligence, (2010).

[90] S. de Vries and R. Vohra, Combinatorial auctions: A sur-
vey, Journal on Computing 15(3) (2003) 284–309.

[91] A. Gerevini and I. Serina, LPG: A planner based on lo-
cal search for planning graphs, Proceedings of the Sixth
International Conference on Artificial Intelligence Plan-
ning and Scheduling, (2002).

[92] S. Edelkamp and M. Helmert, The model checking inte-
grated planning system, AI Magazine 22(3) (2001).

[93] H. Younes and R. Simmons, VHPOP: Versatile heuris-
tic partial order planner, Journal of Artificial Intelligence
Research 20 (2003).

[94] Y. X. Chen, B. W. Wah and C. W. Hsu, Temporal plan-
ning using subgoal partitioning and resolution in SGPlan,
Journal of Artificial Intelligence Research 26 (2006)
323–369.

[95] V. Vidal and H. Geffner, Branching and pruning: an op-
timal temporal POCL planner based on constraint pro-
gramming, Artificial Intelligence 170(3) (2006) 298–335.

[96] J. Kvarnström, TALplanner and other extensions to Tem-
poral Action Logic, PhD thesis, Linköpings universitet
(2005).

[97] F. Bacchus and F. Kabanza, Using temporal logics to ex-
press search control knowledge for planning, Artificial
Intelligence 116(1–2) (2000) 123–191.

[98] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wo
and F. Yaman, SHOP2: An HTN planning system, Jour-
nal of Artificial Intelligence Research 20 (December
2003) 379–404.

[99] R. Brafman and C. Domshlak, From one to many: Plan-
ning for loosely coupled multi-agent systems, Proceed-
ings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), (2008).

[100] W. Van Der Hoek and M. Wooldridge, Tractable multia-
gent planning for epistemic goals, Proceedings of the 1st
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), ACM New York, NY,
USA (2002), pp. 1167–1174.

[101] C. Guestrin, D. Koller and R. Parr, Multiagent planning



March 27, 2013 15:0 us2012

High-level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems using Delegation 39

with factored MDPs, Advances in Neural Information
Processing Systems 2 (1998) 1523–1530.

[102] C. Boutilier, Sequential optimality and coordination in
multiagent systems, Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
Lawrence Erlbaum Associates (1999), pp. 478–485.

[103] C. Boutilier, Planning, learning and coordination in mul-
tiagent decision processes, Proceedings of the Confer-
ence on Theoretical aspects of rationality and knowledge,
Morgan Kaufmann Publishers (1996), pp. 195–210.

[104] P. Gmytrasiewicz and P. Doshi, A framework for sequen-
tial planning in multi-agent settings, Journal of Artificial
Intelligence Research 24 (2005) 49–79.

[105] D. Bernstein, R. Givan, N. Immerman and S. Zilberstein,
The complexity of decentralized control of Markov de-
cision processes, Mathematics of Operations Research
27(4) (2002) 819–840.

[106] C. Guestrin, S. Venkataraman and D. Koller, Context-
specific multiagent coordination and planning with fac-
tored MDPs, Proceedings of the 18th National Confer-
ence on Artificial Intelligence (AAAI), (2002), pp. 253–
259.

[107] R. Becker, S. Zilberstein, V. Lesser and C. Goldman,
Solving transition independent decentralized Markov de-
cision processes, Journal of Artificial Intelligence Re-
search 22 (2004) 423–455.

[108] R. Alami, S. Fleury, M. Herrb, F. Ingrand and F. Robert,
Multi-robot cooperation in the MARTHA project, IEEE
Robotics & Automation Magazine 5(1) (1998) 36–47.

[109] D. D. Corkill, Hierarchical planning in a distributed envi-
ronment, Proceedings of the 6th International Joint Con-
ference on Artificial Intelligence (IJCAI), (1979).

[110] C. Guestrin and G. Gordon, Distributed planning in hier-
archical factored MDPs, Proceedings of the 18th Con-
ference on Uncertainty in Artificial Intelligence (UAI),
(2002).

[111] M. DesJardins, E. Durfee, C. Ortiz and M. Wolverton, A
survey of research in distributed, continual planning, AI
Magazine 20(4) (1999) 13–22.

[112] M. Desjardins and M. Wolverton, Coordinating planning
activity and information flow in a distributed planning
system, Proceedings of the AAAI Fall Symposium on Dis-
tributed Continual Planning, (1998).

[113] M. P. Georgeff, Communication and interaction in multi-
agent planning, Proceedings of the National Conference
on Artificial Intelligence (AAAI), (1983).

[114] J. S. Cox, E. H. Durfee and T. Bartold, A distributed
framework for solving the multiagent plan coordination
problem, Proceedings of the 4th International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS), (2005).

[115] R. Alami and S. S. da Costa Bothelho, Plan-based multi-
robot cooperation, Advances in Plan-Based Control of
Robotic Agents, eds. M. Beetz, J. Hertzberg, M. Ghallab
and M. Pollack, Lecture Notes in Computer Science 2466
(Springer Berlin Heidelberg, 2002), pp. 1–20.

[116] M. H. Burstein and D. V. McDermott, Issues in the de-
velopment of human-computer mixed-initiative planning,
Advances in Psychology 113 (1996) 285–303.

[117] M. M. Veloso, A. M. Mulvehill and M. T. Cox, Rationale-
supported mixed-initiative case-based planning, Proceed-
ings of the National Conference on Artificial Intelligence,
(John Wiley & Sons Ltd, 1997), pp. 1072–1077.

[118] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J.-J. Hsu,
A. Jonsson, B. Kanefsky, P. Morris, K. Rajan, J. Yglesias
et al., Mapgen: Mixed-initiative planning and scheduling
for the Mars exploration rover mission, Intelligent Sys-
tems, IEEE 19(1) (2004) 8–12.

[119] E. Horvitz, Principles of mixed-initiative user interfaces,
Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit, ACM (1999),
pp. 159–166.

[120] A. Finzi and A. Orlandini, A mixed-initiative approach
to human-robot interaction in rescue scenarios, Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS), Printed Notes of Workshop on Mixed-
Initiative Planning and Scheduling, (2005), pp. 36–43.


