Linkoping Studies in Science and Technology

Dissertation No. 1240

DyKnow: A Stream-Based Knowledge
Processing Middleware Framework

by

Fredrik Heintz

GS UN,
. Q@S 7] Ve

&

(o)
%
£ >
% Py &
A &
N
% e

Q.

5
NG Uﬂvﬁ)

Linkdping University

INSTITUTE OF TECHNOLOGY

Department of Computer and Information Science
LinkOpings universitet
SE-581 83 Linkoping, Sweden

Linkoping 2009

Copyright © 2009 Fredrik Heintz

ISBN 978-91-7393-696-5
ISSN 0345-7524
Printed by LiU-Tryck, Linkoping, Sweden

Dedicated to the loving memory of
Anneli Dahlstrom (1975-2005)

Abstract

As robotic systems become more and more advanced the need to integrate existing
deliberative functionalities such as chronicle recognition, motion planning, task
planning, and execution monitoring increases. To integrate such functionalities
into a coherent system it is necessary to reconcile the different formalisms used
by the functionalities to represent information and knowledge about the world. To
construct and integrate these representations and maintain a correlation between
them and the environment it is necessary to extract information and knowledge
from data collected by sensors. However, deliberative functionalities tend to as-
sume symbolic and crisp knowledge about the current state of the world while the
information extracted from sensors often is noisy and incomplete quantitative data
on a much lower level of abstraction. There is a wide gap between the informa-
tion about the world normally acquired through sensing and the information that is
assumed to be available for reasoning about the world.

As physical autonomous systems grow in scope and complexity, bridging the
gap in an ad-hoc manner becomes impractical and inefficient. Instead a princi-
pled and systematic approach to closing the sense-reasoning gap is needed. At the
same time, a systematic solution has to be sufficiently flexible to accommodate a
wide range of components with highly varying demands. We therefore introduce
the concept of knowledge processing middleware for a principled and systematic
software framework for bridging the gap between sensing and reasoning in a phys-
ical agent. A set of requirements that all such middleware should satisfy is also
described.

A stream-based knowledge processing middleware framework called DyKnow
is then presented. Due to the need for incremental refinement of information at
different levels of abstraction, computations and processes within the stream-based
knowledge processing framework are modeled as active and sustained knowledge
processes working on and producing streams. DyKnow supports the generation
of partial and context dependent stream-based representations of past, current, and
potential future states at many levels of abstraction in a timely manner.

To show the versatility and utility of DyKnow two symbolic reasoning engines
are integrated into DyKnow. The first reasoning engine is a metric temporal log-
ical progression engine. Its integration is made possible by extending DyKnow
with a state generation mechanism to generate state sequences over which tempo-
ral logical formulas can be progressed. The second reasoning engine is a chronicle

recognition engine for recognizing complex events such as traffic situations. The
integration is facilitated by extending DyKnow with support for anchoring sym-
bolic object identifiers to sensor data in order to collect information about physical
objects using the available sensors. By integrating these reasoning engines into
DyKnow, they can be used by any knowledge processing application. Each inte-
gration therefore extends the capability of DyKnow and increases its applicability.

To show that DyKnow also has a potential for multi-agent knowledge process-
ing, an extension is presented which allows agents to federate parts of their local
DyKnow instances to share information and knowledge.

Finally, it is shown how DyKnow provides support for the functionalities on
the different levels in the JDL Data Fusion Model, which is the de facto standard
functional model for fusion applications. The focus is not on individual fusion
techniques, but rather on an infrastructure that permits the use of many different
fusion techniques in a unified framework.

The main conclusion of this thesis is that the DyKnow knowledge process-
ing middleware framework provides appropriate support for bridging the sense-
reasoning gap in a physical agent. This conclusion is drawn from the fact that
DyKnow has successfully been used to integrate different reasoning engines into
complex unmanned aerial vehicle (UAV) applications and that it satisfies all the
stated requirements for knowledge processing middleware to a significant degree.

Acknowledgment

Writing a PhD thesis is about maturing as a researcher. I was naive and full of my-
self when I started. I thought I had everything it takes to make a quick and glorious
career. | had breezed through my Master’s program, I was ambitious, and I was
ready to work hard. I learned the hard way that research is not a crusade against ig-
norant and narrow minded researchers who intentionally misunderstand your work,
but rather a matter of presenting, motivating, and marketing your ideas and solu-
tions to make smart and well informed researchers understand and accept you. It is
my job to convince them that what I am saying is interesting and important. I hope
this thesis is a step in that direction.

Today, I am still ambitious and ready to work hard, but I have realized that
good research is as much about communication as about solving problems. Finding
and proving the perfect solution to a difficult problem will not be a breakthrough
until the scientific community has understood and accepted the importance of the
problem and the quality of the solution. Each iteration of this thesis has improved
the scientific quality of the content, but more importantly the accessibility of the
ideas and the results. They have transformed the thesis from a Joycean stream of
consciousness to the text it is today.

I am immensely grateful to my supervisor Patrick Doherty not only for provid-
ing a highly stimulating and rewarding research environment, but most importantly
for forcing me to make myself clear. One of the most profound insights I have
gained while writing this thesis is how unaware I was of my own communication.
I did not really reflect over how I said things and how the shaping of a message
affects the result of the message. Thank you Patrick.

I am forever thankful to Jonas Kvarnstrom for his patient, thorough, detailed,
and constructive criticism on all parts of the thesis. Jonas, you deserve all the credit
you can get. Without your help this thesis might not have been at all, and if it had
been it would not have been nearly as good as it is now. Thank you Jonas.

Bjorn Wingman and Tommy Persson have played an important role as research
engineers in the work with this thesis. Bjorn implemented the progression engine
used in the thesis and both Tommy and Bjorn have been very helpful regarding all
aspects of implementing the software used in the thesis.

I would like to thank Patrik Haslum, David Landén, Martin Magnusson, Per
Nyblom, Per-Magnus Olsson and Tommy Persson for fruitful (and sometimes frus-
trating) discussions and for reading and commenting on drafts of the thesis. I would

also like to thank everyone who has been involved in the WITAS project and in the
hard but rewarding work on our different UAV platforms, especially Gianpaolo
Conte, Torsten Merz, Per Olof Pettersson, Piotr Rudol, and Mariusz Wzorek. Fi-
nally I would like to thank Jenny Ljung for making work more fun and everyone
else at AIICS and IDA.

Last, but not least, I thank my parents Lennart and Christina, my grandmother
Ingrid, my sister Maria, my brother Anders, my girlfriend Anne, my friends Michael,
Johan, Jim, Sissel, Mikael, Mattias, Fredrik and Victor, and the rest of my family
for sometimes pushing me and for sometimes not asking about my progress, but
most importantly for your unconditional love and support.

Thank you all!

This thesis is dedicated to the ever loving memory of Anneli Dahlstrém (1975-
2005) who tragically passed away while doing what she loved. Our paths were
intertwined ever since my first visit to HG in Nolle-P 1996 when she enchanted
me with her energy, charm, and wits. She was my strongest supporter in times of
despair and always knew how to live life to the fullest. It makes me sad that she
is not around to see this thesis finished. She would have been the happiest and
proudest person of us all. She was a part of me and when she died that piece of me
was lost forever. However, the piece of her that is a part of me will keep on living.

The work in this thesis has been generously supported by the Wallenberg laboratory
for research on Information Technology and Autonomous Systems (WITAS) funded
by the Wallenberg Foundation, the Swedish Aeronautics Research Council (NFFP),
the Swedish Foundation for Strategic Research (SSF) Strategic Research Center
MOVIII, the Swedish Research Council (VR) grant 2005-3642, and the Swedish
Research Council Linnaeus Center CADICS.

List of Publications

The contributions in this thesis are based on the following publications.

Heintz, F. 2001. Chronicle recognition in the WITAS UAV project — A preliminary
report. In SAIS 2001, Working notes.

Heintz, F., and Doherty, P. 2004. DyKnow: An approach to middleware for knowl-
edge processing. Journal of Intelligent and Fuzzy Systems 15(1):3—13.

Heintz, F., and Doherty, P. 2004. Managing dynamic object structures using hy-
pothesis generation and validation. In Proceedings of the AAAI Workshop on An-
choring Symbols to Sensor Data.

Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Nyblom, P.; Persson, T.; and Wing-
man, B. 2004. A distributed architecture for autonomous unmanned aerial vehi-
cle experimentation. In Proceedings of the 7th International Symposium on Dis-
tributed Autonomous Robotic Systems, 221-230.

Heintz, F., and Doherty, P. 2005. DyKnow: A framework for processing dynamic
knowledge and object structures in autonomous systems. In Dunin-Keplicz, B.;
Jankowski, A.; Skowron, A.; and Szczuka, M., eds., Monitoring, Security, and
Rescue Techniques in Multiagent Systems, Advances in Soft Computing, 479-492.
Springer Verlag.

Heintz, F., and Doherty, P. 2005. A knowledge processing middleware framework
and its relation to the JDL data fusion model. In Blasch, E., ed., Proceedings of the
Eighth International Conference on Information Fusion (Fusion’05).

Heintz, F., and Doherty, P. 2005. A knowledge processing middleware framework
and its relation to the JDL data fusion model. In Ogren, P., ed., Proceedings of the
Swedish Workshop on Autonomous Robotics (SWAR’05).

Heintz, F., and Doherty, P. 2006. DyKnow: A knowledge processing middleware
framework and its relation to the JDL data fusion model. Journal of Intelligent and
Fuzzy Systems 17(4):335-351.

Heintz, F.; Rudol, P.; and Doherty, P. 2007. From images to traffic behavior — A
UAV tracking and monitoring application. In Proceedings of the 10th International
Conference on Information Fusion (Fusion’07).

Heintz, F.; Rudol, P.; and Doherty, P. 2007. Bridging the sense-reasoning gap
using DyKnow: A knowledge processing middleware framework. In Hertzberg,
J.; Beetz, M.; and Englert, R., eds., KI 2007: Advances in Artificial Intelligence,
volume 4667 of LNAI, 460—463. Springer Verlag.

Heintz, F., and Doherty, P. 2008. DyKnow federations: Distributing and merging
information among UAVs. In Proceedings of the 11th International Conference on
Information Fusion (Fusion’08).

Kvarnstrom, J.; Heintz, F.; and Doherty, P. 2008. A temporal logic-based plan-
ning and execution monitoring system. In Proceedings of the 18th International
Conference on Automated Planning and Scheduling (ICAPS).

Heintz, F.; Kvarnstrom, J.; and Doherty, P. 2008. Bridging the sense-reasoning
gap: DyKnow — A middleware component for knowledge processing. In Proceed-
ings of the IROS workshop on Current software frameworks in cognitive robotics
integrating different computational paradigms.

Heintz, F.; Kvarnstrom, J.; and Doherty, P. 2008. Knowledge processing middle-
ware. In Carpin, S.; Noda, L.; Pagello, E.; Reggiani, M.; and von Stryk, O., eds.,
Proceedings of the first international conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), volume 5325 of LNAI, 147-158.
Springer Verlag.

Dobherty, P.; Kvarnstrom, J.; and Heintz, F. 2009. A temporal logic-based planning
and execution monitoring framework for unmanned aircraft systems. Journal of
Automated Agents and Multi-Agent Systems Forthcoming. Springer Verlag.

Contents

I Introduction and Background

1 Introduction
1.1 Motivating Scenarios Lo
1.1.1 A Traffic Monitoring Scenario
1.1.2 An Emergency Service Scenario
1.2 Knowledge Processing Middleware
1.2.1 Design Requirements
1.3 ThesisOutline,

2 Background
2.1 Introduction
22 Middleware
2.2.1 Object-Oriented Middleware
2.2.2 Publish/Subscribe Middleware
2.3 Data Stream Management Systems
24 Summary e e e

II Knowledge Processing Middleware

3 Stream-Based Knowledge Processing Middleware

3.1 Introduction
32 Stream e
321 Policy

3.3 Knowledge Process o
3.3.1 Primitive Process,
3.3.2 RefinementProcess
3.3.3 Configuration Process
3.3.4 MediationProcess
3.3.5 StreamGenerator
34 Summary e e e

X1

(S SN S

o]

11
12

14
14
14
15
16
19
20

CONTENTS

4 DyKnow
4.1 Introduction
42 Ontology
421 Object.
422 PFeature
4.3 Knowledge Processing Domain
431 Value
432 FluentStream
433 Source
43.4 Computational Unit.
44 Syntax
44.1 Vocabulary
442 KPL Specification
4.4.3 Knowledge Process Declaration

4.4.4 Fluent Stream Generator Declaration

4.4.5 Fluent Stream Declaration
45 Semanticso
451 Model
4.5.2 Knowledge Process Declaration

4.5.3 Fluent Stream Generator Declaration

4.5.4 Fluent Stream Declaration
4.6 Summary
5 A DyKnow CORBA Middleware Service
5.1 Imtroduction
52 Overview
5.2.1 DyKnow Service Dependencies
5.3 Knowledge ProcessHost
5.3.1 Knowledge Process Prototype
5.3.2 Stream Generator
5.4 The DyKnow Service
5.4.1 The Knowledge Process Factory
5.4.2 The Stream Generator Manager
543 Streams
5.5 Empirical Evaluation
5.6 Summary

IIT Applications and Extensions

6 The UASTech UAV Platform

6.1 Introduction

6.2 UAV Platforms and Hardware Architecture

6.3 The Software System Architecture
64 Conclusions

Xii

CONTENTS

7 Integrating Planning and Execution Monitoring 88
7.1 Introduction 88
7.1.1 Mission Leg I : Body Identification 89

7.1.2 Mission Leg II: Package Delivery 91

7.2 Task Planning and Execution Monitoring System Overview 94
7.3 Background: Temporal Action Logic 95
7.4 Planning for the UAV Domain 99
7.4.1 Modeling the UAV Logistics Scenarioin TAL 100

7.4.2 Control Formulas in TALplanner 103

7.5 Execution Monitoring 105
7.5.1 Execution Monitor Formulas 107

7.5.2 Checking Monitor Conditions using Formula Progression 110

7.5.3 Recovery fromFailures 112

7.6 Further Integration of Planning and Monitoring 113
7.6.1 Operator-Specific Monitor Formulas 114

7.6.2 ExecutionFlags. 114

7.7 Automatic Generation of Monitor Formulas 115
7.7.1 Pragmatic Generation of Monitor Formulas 117

7.8 State Generation. 117
7.8.1 A Basic State Generation Algorithm 119

7.8.2 AnImproved State Generation Algorithm 123

7.9 Execution Monitoring with Inaccurate Sensors 131
7.10 Empirical Evaluation of the Formula Progressor 133
7.10.1 Experiment: Always Eventually 133
7.10.2 Experiment: Always Not p Implies Eventually Alwaysp . 136

7.11 Related Work 139
7.12 Conclusions and Future Work 141
8 Integrating Object and Chronicle Recognition 143
8.1 Introduction 143
8.2 The Chronicle Formalism 145
8.3 The Chronicle Language 145
83.1 Symbol 146

8.3.2 Attributeand Message 148

83.3 TimeConstraint. 149

83.4 ChronicleModel 150

835 Grammar 153

8.4 On-Line Recognition 155
8.5 Object Recognition and Tracking 158
85.1 Object. 159

8.5.2 Object Linkage Structure 160

86 Anchoring 164
8.7 Implementing the Traffic Monitoring Scenario 168
8.7.1 ImageProcessing 169

872 Anchoring 171

xiii

CONTENTS

8.7.3 Integrating Chronicle Recognition
8.7.4 Intersection Monitoring
8.7.5 Road Segment Monitoring
8.7.6 Experimental Results
877 RelatedWork
88 Summary o

9 DyKnow Federations

9.1 Imtroduction
9.2 Motivating Scenarios
9.2.1 Proximity Monitoring
9.2.2 Traffic Monitoring with Multiple UAVs
9.2.3 Design Requirements
9.3 Sharing Information using DyKnow
9.3.1 DyKnow Federation Overview
9.3.2 The Multi-Agent Framework
9.3.3 DyKnow Federation Components
9.34 DyKnow Federation Functionalities
9.4 Implementing the Proximity Monitoring Scenario . . .
9.4.1 Implementing the AgentLevel
9.4.2 Implementing the Platform Specific Level . . .
9.5 Summary

IV Conclusions

10 Relations to the JDL Data Fusion Model

10.1 Introduction
10.2 The JDL Data Fusion Model
10.3 JDL Level 0 — Sub-Object Data Assessment
10.4 JDL Level 1 — Object Assessment
10.5 JDL Level 2 — Situation Assessment
10.6 JDL Level 3 — Impact Assessment
10.7 JDL Level 4 — Process Refinement
10.8 Summary

11 Related Work

11.1 Introduction
11.2 Distributed Real-Time Databases
11.3 Agent and Robot Control Architectures

11.3.1 The Hierarchical Agent Control Architecture

1132 4D/RCS
11.3.3 Discussion
11.4 Robotics Middleware and Frameworks
114.1 ADE
11.42 CAST/BALT

Xiv

CONTENTS

1143 CLARAty e e e e 214

1144 CoolBOT i 216

1145 GenoM 217

1146 MARIE 217

1147 Miro e e e e 220

1148 Orca. i e e e 221

1149 Orocos i v i i it e e e 222

11.4.10 Player/Stage 223
1T411ROCI e 224

11.4.12 S* Software Framework 225
11413SPQR-RDK 225
1T414YARP e 226
11.4.15Discussion 227

11.5 Summary o 228

12 Conclusions 229
12.1 Summary 229
122 Conclusions e 231
123 Future Work 235
124 FinalWords e 239

V Bibliography 240

XV

CONTENTS

XVi

Part I

Introduction and Background

Chapter 1

Introduction

When developing autonomous agents displaying rational and goal-directed behav-
ior in a dynamic physical environment, we can lean back on decades of research
in artificial intelligence. A great number of deliberative functionalities for reason-
ing about the world have already been developed, including chronicle recognition,
motion planning, task planning, and execution monitoring. However, in order to
integrate these functionalities into a coherent system it is necessary to reconcile
the different formalisms they use to represent information and knowledge about
the world and the environment in which they are supposed to operate.

Furthermore, much of the required information and knowledge must ultimately
originate in physical sensors, but whereas deliberative functionalities tend to as-
sume symbolic and crisp knowledge about the current state of the world, the infor-
mation extracted from sensors often consists of noisy and incomplete quantitative
data on a much lower level of abstraction. Thus, there is a wide gap between the
information about the world normally acquired through sensing and the informa-
tion that deliberative functionalities assume to be available for reasoning about the
world.

Bridging this gap is a challenging problem. It requires constructing suitable
representations of the information that can be extracted from the environment using
sensors and other primitive sources, processing the information to generate infor-
mation at higher levels of abstraction, and continuously maintaining a correlation
between generated information and the environment itself. Doing this in a sin-
gle step, using a single technique, is only possible for the simplest of autonomous
systems. As complexity increases, one typically requires a combination of a wide
variety of methods, including more or less standard functionalities such as various
forms of image processing and information fusion as well as application-specific
and possibly even scenario-specific approaches. Such integration is today mainly
performed in an ad hoc manner, without addressing the principles behind the inte-
gration.

In this thesis, we propose using the term knowledge processing middleware
for a principled and systematic software framework for bridging the gap between

CHAPTER 1. INTRODUCTION

sensing and reasoning in a physical agent. It is called knowledge processing be-
cause the result of processing could be interpreted as knowledge by an agent. We
claim that knowledge processing middleware should provide both a conceptual
framework and an implementation infrastructure for integrating a wide variety of
functionalities and managing the information that needs to flow between them. It
should allow a system to incrementally process low-level sensor data and generate
a coherent view of the environment at increasing levels of abstraction, eventually
providing information and knowledge at a level which is natural to use in symbolic
deliberative functionalities.

Besides defining the concept of knowledge processing middleware, this the-
sis describes one particular instance called DyKnow. DyKnow is a stream-based
knowledge processing middleware framework providing software support for cre-
ating streams representing aspects of the past, current, and future state of a system
and its environment. Input can be provided by a wide range of distributed in-
formation sources on many levels of abstraction. By using DyKnow to develop
knowledge processing systems, conceptual and practical support is provided for
structuring these as a set of streams and computations on streams. The output of
such a system is a set of streams representing objects, attributes, relations, and
events.

The research in this thesis is part of a larger effort to build intelligent autonomous
unmanned aerial vehicles (UAVs) capable of carrying out complex missions. The
research began as part of the Wallenberg Laboratory for Information Technology
and Autonomous Systems (WITAS), a very successful basic research initiative.
The main objective of WITAS was the development and integration of hardware
and software for a vertical take-off and landing platform for fully autonomous mis-
sions (Doherty et al., 2000; Doherty, 2004). An experimental autonomous UAV
platform was developed based on the Yamaha RMAX helicopter and it has been
used to demonstrate several fully autonomous capabilities. The platform has been
tested in applications such as traffic monitoring and surveillance, emergency ser-
vices assistance, and photogrammetry and surveying.

When the project associated with WITAS was completed a new research lab,
the Unmanned Aircraft Systems Technologies (UASTech) Lab, was formed to con-
tinue the research. Our UAV platform is therefore referred to as the UASTech
UAV platform. A picture of the platform is shown in Figure 1.1. Some of the
implemented functionalities are autonomous take off and landing (Merz, Duranti,
and Conte, 2004), trajectory following in three dimensions (Conte, 2007), gen-
eration of collision free trajectories by a probabilistic path planner (Pettersson,
2006; Wzorek and Doherty, 2006), generation of plans to achieve complex goals
using a task planner (Kvarnstrom, 2005), online monitoring of the execution of
plans (Doherty, Kvarnstréom, and Heintz, 2009), finding human bodies using im-
age processing (Rudol and Doherty, 2008), tracking cars using image process-
ing (Heintz, Rudol, and Doherty, 2007b), and recognizing complex events using
a chronicle recognition system (Heintz, Rudol, and Doherty, 2007b). Several of
these functionalities are described in this thesis.

The research methodology used within our group is scenario-based, where very

CHAPTER 1. INTRODUCTION

Figure 1.1: The UASTech UAV platform based on the Yamaha RMAX helicopter.

challenging scenarios out of reach of current systems are specified and serve as
long term goals to drive both theoretical and applied research. Most importantly,
attempts are always made to close the theory/application loop by implementing and
integrating results in our UAVs and deploying them for empirical testing at an early
stage. We then iterate and continually increase the robustness and functionality of
the components.

We therefore start by introducing two challenging example scenarios. The sce-
narios demonstrate the need and use of knowledge processing middleware since
they both require the integration of different sensing and reasoning functionalities
in order to achieve their mission goals. The first example is a traffic monitor-
ing scenario which uses a chronicle recognition functionality to detect complex
traffic patterns (Heintz, Rudol, and Doherty, 2007b). The second example is an
emergency service scenario which uses planning and execution monitoring func-
tionalities to deliver supplies to injured people in a disaster situation (Doherty and
Rudol, 2007; Doherty, Kvarnstrom, and Heintz, 2009). Both scenarios have been
implemented to a large extent using our UAV platform and will be described in
more detail later in the thesis.

1.1 Motivating Scenarios

Unmanned aerial vehicles are becoming commonplace in both civil and military
applications, especially for missions which are considered dull, dirty, or dangerous.
One important application domain for UAVs is surveillance. An example of a
surveillance mission is flying over unknown and potentially hostile areas to build
terrain models, which might be dangerous. Another example is to quickly get

CHAPTER 1. INTRODUCTION

an overview of a disaster area which might be dirty due to chemical or nuclear
contamination. This mission could also include helping rescue services find injured
people and deliver medical supplies. A third example is to help law enforcement
agencies to monitor some area or some people for ongoing or potential criminal
activity. This is often a dull activity, which may cause human pilots or operators to
lose their attention and focus. Therefore it would be beneficial if it could be done
by autonomous UAVs.

To complete these complex missions a UAV must continuously gather infor-
mation from many different sources. Examples of sources are sensors, databases,
other UAVs, and human operators. The UAV must select relevant information for
the ongoing tasks and derive higher-level knowledge about the environment and
the UAV itself to correctly interpret what is happening and to make appropriate
decisions. In other words, the UAV must create and maintain its own situational
awareness and do it in time for the results to be useful. Achieving situational
awareness usually requires information from many sources on different abstraction
levels to be processed and integrated in order to get an accurate understanding of
the environment. This is a task that knowledge processing middleware is designed
to support.

1.1.1 A Traffic Monitoring Scenario

Traffic monitoring is an important application domain for research in autonomous
unmanned aerial vehicles, which provides a plethora of cases demonstrating the
need for knowledge processing middleware. It includes surveillance tasks such as
detecting accidents and traffic violations, finding accessible routes for emergency
vehicles, and collecting statistics about traffic patterns.

Suppose a human operator is trying to maintain situational awareness about
traffic in an area using static and mobile sensors such as surveillance cameras and
our Yamaha RMAX. One approach to solving this problem would be for the sen-
sor platforms to relay videos and other data to the operator for human inspection.
Another, more scalable, approach would be for each sensor platform to monitor
traffic situations which arise and only report back relevant high-level events, such
as reckless overtakes and drunk driving. Only reporting high-level events would
reduce the amount of information sent to the operator and thereby reduce the cog-
nitive load on the operator. This would help the operator to focus her attention
on salient events. At the same time, recognizing high-level events would require
more information and knowledge processing within each sensor platform. This
type of processing can be facilitated by knowledge processing middleware, such as
DyKnow.

In the case of detecting traffic violations, one possible approach relies on using
a formal declarative description of each type of violation. A violation can for
example be represented using a chronicle (Ghallab, 1996). A chronicle defines a
class of complex events as a simple temporal network (Dechter, Meiri, and Pearl,
1991) where nodes correspond to occurrences of high-level qualitative events and
edges correspond to metric temporal constraints between event occurrences. For

CHAPTER 1. INTRODUCTION

—
Chronicle
Recognition

Qualitative spatial m
N

Qualitative Spatial
Reasoning

Car objects
Geographlc Road objects . _%ormula states Temporal Logic
Information Anchoring)
Progression
System Formula events

Vision objects

)
Image Processing
:

Camera state
Legend

Camera State ‘:] Sensor
Estimation
~— Process

Figure 1.2: An overview of how the incremental processing required for the traffic
surveillance task could be organized.

Helicopter state

Helicopter State
Estimation

example, to detect a reckless overtake, events representing changes in qualitative
spatial relations such as beside(cary, car,), close(cary, car,), and on(cary, roady)
might be used. Creating these high-level representations from low-level sensor
data, such as video streams from color and thermal cameras, involves a great deal
of processing at different levels of abstraction, which would benefit from being
separated into distinct and systematically organized tasks.

Figure 1.2 provides an overview of how the incremental processing required
for the traffic surveillance task could be organized. At the lowest level, a heli-
copter state estimation component uses data from an inertial measurement unit
(IMU) and a global positioning system (GPS) to determine the current position and
attitude of the helicopter. The resulting information is fed into a camera state esti-
mation component, together with the current state of the pan-tilt unit on which the
cameras are mounted, to generate information about the current camera state. The
image processing component uses the camera state to determine where the camera
is currently pointing. Video streams from the color and thermal cameras can then
be analyzed in order to extract vision objects representing hypotheses regarding
moving and stationary physical entities, including their approximate positions and
velocities.

To use the symbolic chronicle formalism, each individual car has to be repre-
sented with a symbol. An important problem is therefore to associate vision objects
with car symbols in such a way that both the symbol and the vision object refer to
the same physical object, a process known as anchoring (Coradeschi and Saffiotti,

CHAPTER 1. INTRODUCTION

2003).

It is therefore necessary to further reason about the type and identity of each
vision object. This could for example be done using knowledge about normative
characteristics of cars, such as size, speed, and driving behaviors. One interesting
approach to describing such characteristics relies on the use of formulas in a met-
ric temporal modal logic, which are incrementally progressed through states that
include current estimated car positions, velocities, and other relevant information.
An entity satisfying the conditions can be hypothesized to be a car, a hypothesis
which is subject to being withdrawn if the entity ceases to display the normative
characteristics, thereby causing the formula progression component to signal a vi-
olation.

As an example, cars usually travel on roads. Given that image processing pro-
vides absolute world coordinates for each vision object, the anchoring process can
query a geographic information system to derive higher level predicates such as
on-road(cary) and in-crossing(car;). These would be included in the states sent
to the progressor as well as in the car objects sent to the next stage of process-
ing, which involves deriving qualitative spatial relations between cars such as
beside(cary, car,) and close(cary, cary). These predicates, and the concrete events
corresponding to changes in the predicates, finally provide sufficient information
for the chronicle recognition system to determine when higher-level events such as
reckless overtakes occur.

In this example, we can identify a considerable number of distinct processes in-
volved in bridging the gap between sensing and reasoning and generating the nec-
essary symbolic representations from sensor data. However, in order to fully ap-
preciate the complexity of the system, we have to widen our perspective somewhat.
Looking towards the smaller end of the scale, we can see that what is represented
as a single process in Figure 1.2 is sometimes merely an abstraction of what is
in fact a set of distinct processes. At the other end of the scale, a complete UAV
system also involves numerous other sensors and information sources as well as
services with distinct knowledge requirements, including task planning, path plan-
ning, execution monitoring, and reactive goal achieving procedures.

Consequently, what is seen in Figure 1.2 is merely an abstraction of the full
complexity of a small part of the system. It is clear that a systematic means for
integrating all forms of knowledge processing, and handling the necessary com-
munication between parts of the system, would be of great benefit.

As argued in the remainder of the introduction, knowledge processing middle-
ware should fill this role by providing a standard framework and infrastructure for
integrating image processing, sensor fusion, and other information and knowledge
processing functionalities into a coherent system. Starting in Chapter 3 we intro-
duce a general approach to knowledge processing middleware based on streams.
In Chapter 4 DyKnow, a concrete stream-based knowledge processing middleware
framework, is presented. How DyKnow can be realized and implemented as a
CORBA middleware service is described in Chapter 5. The UAV platform is pre-
sented in Chapter 6 and progression of metric temporal logical formulas in Chap-
ter 7. Finally, in Chapter 8 it is shown how the full scenario can be implemented

CHAPTER 1. INTRODUCTION

by bringing all the different components together.

1.1.2 An Emergency Service Scenario

On December 26, 2004, a devastating earthquake of high magnitude occurred off
the west coast of Sumatra. This resulted in a tsunami which hit the coasts of India,
Sri Lanka, Thailand, Indonesia, and many other islands. Both the earthquake and
the tsunami caused great devastation. During the initial stages of the catastrophe,
there was a great deal of confusion and chaos in setting into motion rescue opera-
tions in such wide geographic areas. The problem was exacerbated by a shortage
of manpower, supplies, and machinery. The highest priorities in the initial stages
of the disaster were searching for survivors in many isolated areas where road sys-
tems had become inaccessible and providing relief in the form of delivery of food,
water, and medical supplies.

Let us assume that one has access to a fleet of autonomous unmanned helicopter
systems with ground operation facilities. How could such a resource be used in the
real-life scenario described?

A prerequisite for the successful operation of this fleet would be the existence
of a multi-agent (UAV platforms, ground operators, etc.) software infrastructure
for assisting emergency services in such a catastrophe situation. At the very least,
one would require the system to allow mixed initiative interaction with multiple
platforms and ground operators in a robust, safe, and dependable manner. As far
as the individual platforms are concerned, one would require a number of different
capabilities, not necessarily shared by each individual platform, but by the fleet in
total. These capabilities would include:

o the ability to scan and search for salient entities such as injured humans,
building structures, or vehicles;

o the ability to monitor or surveil these salient points of interest and contin-
ually collect and communicate information back to ground operators and
other platforms to keep them situationally aware of current conditions; and

o the ability to deliver supplies or resources to these salient points of inter-
est if required. For example, identified injured persons should immediately
receive a relief package containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume there are two
separate legs or parts to the emergency relief scenario in the context sketched pre-
viously.

Leg I In the first part of the scenario, it is essential that for specific geographic ar-
eas, the UAV platforms should cooperatively scan large regions in an attempt
to identify injured persons. The result of such a cooperative scan would be
a saliency map pinpointing potential victims and their geographical coor-
dinates and associating sensory output such as high resolution photos and
thermal images with the potential victims. The saliency map could be then

CHAPTER 1. INTRODUCTION

used directly by emergency services or passed on to other UAVs as a basis
for additional tasks.

Leg IT In the second part of the scenario, the saliency map generated in Leg I
would be used as a basis for generating a logistics plan for the UAVs with the
appropriate capabilities to deliver boxes containing food, water, and medical
supplies to the injured identified in Leg I. This would also be done in a
cooperative manner among the platforms.

For the purpose of this thesis, we will focus on the second leg, which is an
example of a logistics scenario. One approach to solving logistics problems is
to use a task planner to generate a sequence of actions that will transport each
box to its destination. Each action must then be executed by a UAV. By using a
task planner instead of a special purpose solution, more flexibility is gained when
planning to achieve several different goals and a more general solution is obtained.

This scenario provides several examples where knowledge processing middle-
ware could be used to process data originally from sensors to lift it up to a level
were deliberative and reactive functionalities could use it.

Initial state. For a planner to be able to generate a plan which is relevant in the
current situation it must have an accurate and up-to-date domain model. The do-
main model for the logistics scenario must for example state where the UAV is
and where all the boxes and carriers are. In a static environment it is possible to
write a domain model once and for all since the world does not change. In a dy-
namic environment, such as a disaster area, we do not have the luxury of predefined
static domain models. Instead, the UAV must itself generate information about the
current state of the environment and encode this in a domain model.

For example, to collect information about the current position of the boxes it
might be necessary for the UAV to scan parts of the area for them. To detect and
locate a box it might be necessary to take video streams from the onboard cameras
and do image processing and anchoring, like in the traffic monitoring application.
When the locations of the boxes have been established the information can be used
to generate a domain model from which the task planner can generate a logistics
plan.

Execution. Each plan operator in a plan generated by a task planner corresponds
to one or more actions which a UAV has to execute. These actions can be con-
siderably complex and require sophisticated feedback about the environment on
different levels of abstraction. For example, for a UAV to follow a three dimen-
sional path generated by a motion planner it is necessary to continually estimate the
position of the UAV by fusing data from several sensors, such as GPS and IMU.
Another example is when a UAV has lost its GPS signal due to malfunction or
jamming and is forced to land using other techniques such as vision based landing.
In this case, the UAV has to process the video streams from its cameras and for
example look for a landing pattern which can be used to estimate the altitude and

CHAPTER 1. INTRODUCTION

position relative to the pattern. This information would then be used to safely land
the UAV on the pattern.

Monitoring. Classical task planners are built on the fundamental assumption that
the only agent causing changes in the environment is the planner itself, or rather,
the system or systems that will eventually execute the plan that it generates. Fur-
thermore, they assume that all information provided to the planner as part of the
initial state and the operator specifications is accurate. This may in some cases be
a reasonable approximation of reality, but it is not always the case. Other agents
might manipulate the environment of a system in ways that may prevent the suc-
cessful execution of a plan. Sometimes actions can fail to have the effects that were
modeled in a planning domain specification, regardless of the effort spent modeling
all possible contingencies. Consequently, robust performance in a noisy environ-
ment requires some form of supervision, where the execution of a plan is constantly
monitored in order to detect any discrepancies and recover from potential or actual
failures.

For example, a UAV might accidentally drop its cargo. Therefore it must mon-
itor the condition that if a box is attached, it must remain attached until the UAV
reaches its intended destination. This is an example of a safety constraint, a con-
dition that must be maintained during the execution of an action or across the ex-
ecution of multiple actions. A carrier can be too heavy, which means that it must
be possible to detect take off failures where a UAV fails to gain sufficient altitude.
This is called a progress constraint, where instead of maintaining a condition, a
condition must be achieved within a certain period of time.

Describing and evaluating conditions like these based on the actions currently
being executed is an important task for knowledge processing middleware. Chap-
ter 7 describes how to use DyKnow to implement such an execution monitoring
functionality, how to generate the necessary state sequences used as input, and
how to integrate it with a task planner. By using execution monitoring it is possible
to increase the robustness of the execution of plans generated by a classical task
planner.

1.2 Knowledge Processing Middleware

Information and knowledge have traditionally been processed in tightly coupled
architectures on single computers. The current trend towards more heterogeneous,
loosely coupled, and distributed systems necessitates new methods for connecting
sensors, databases, components responsible for fusing and refining information,
components that reason about the system and the environment, and components
that use the processed information. As argued in the introduction, there is a need
for a principled and systematic framework for integrating these components and
bridging the gap between sensing and reasoning in a physical agent. We therefore
introduce the term knowledge processing middleware, defined as follows.

10

CHAPTER 1. INTRODUCTION

Definition 1.2.1 (Knowledge Processing Middleware) Knowledge processing
middleware is a systematic and principled software framework for bridging the
gap between the information about the world available through sensing and the
knowledge needed when reasoning about the world. O

1.2.1 Design Requirements

Any proposed knowledge processing middleware must satisfy a number of require-
ments. The first requirement is that the framework should permit the integration of
information from distributed sources, allowing this information to be processed at
many different levels of abstraction, and finally transformed into suitable forms to
be used by reasoning functionalities. In the traffic monitoring scenario, the primary
inputs will consist of low level sensor data such as images, measurements from a
barometric pressure sensor, coordinates from a GPS, laser range scans, and so on.
However, there might also be high level information available such as geographical
information and declarative specifications of traffic patterns and normative behav-
iors of vehicles. Knowledge processing middleware must be sufficiently flexible
to allow the integration of all these different sources into a coherent processing
system. Since the appropriate structure will vary between applications, a general
framework should be agnostic as to the types of data and information being handled
and should not be limited to specific connection topologies.

To continue with the traffic monitoring scenario, there is a natural abstraction
hierarchy starting with quantitative signals from sensors, through image processing
and anchoring, to representations of objects with both qualitative and quantitative
attributes, to high level events and situations where objects have complex spatial
and temporal relations. Therefore a second requirement is the support of quantita-
tive and qualitative processing as well as a mix of them.

A third requirement is that both bottom-up data processing and top-down model-
based processing should be supported. Different abstraction levels are not indepen-
dent. Each level is dependent on the levels below it to get input for bottom-up data
processing. At the same time, the output from higher levels could be used to guide
processing in a top-down fashion. For example, if a vehicle is detected on a par-
ticular road segment, then a vehicle model could be used to predict possible future
locations, which could be used to direct or constrain the processing on lower lev-
els. Thus, a knowledge processing framework should not impose a strict bottom-up
data flow model nor a strict top-down model.

A fourth requirement is support for management of uncertainty on different lev-
els of abstraction. There are many types of uncertainty, not only at the quantitative
sensor data level but also in the symbolic identity of objects and in temporal and
spatial aspects of events and situations. Therefore it is not realistic to use a single
approach to handling uncertainty throughout a middleware framework. Rather, it
should allow many different approaches to be combined and integrated into a single
processing system in a manner appropriate to the specific application at hand.

Physical agents acting in the world have limited resources, both in terms of
processing power and in terms of sensors, and there may be times when these re-

11

CHAPTER 1. INTRODUCTION

sources are insufficient for satisfying the requests of all currently executing tasks.
In these cases a trade-off is necessary. For example, reducing update frequen-
cies would cause less information to be generated, while increasing the maximum
permitted processing delay would provide more time to complete processing. Sim-
ilarly, an agent might decide to focus its attention on the most important aspects
of its current situation, ignoring events or objects in the periphery, or to focus on
providing information for the highest priority tasks or goals. An alternative could
be to replace a resource hungry calculation with a more efficient but less accurate
one. Each trade-off will have effects on the quality of the information produced
and the resources used. Another reason for changing the processing is that it is
often context dependent and as the context changes the processing needs to change
as well. For example, the processing required to monitor the behavior of vehicles
following roads and vehicles which may drive off-road is very different. In the first
case assumptions can be made as to how vehicles move which improves the predic-
tive capability, while these would be invalid if a vehicle goes off-road. To handle
both cases a system would have to be able to switch between the different process-
ing configurations. A fifth requirement on knowledge processing middleware is
therefore support for flexible configuration and reconfiguration of the processing
that is being performed.

An agent should preferably not have to depend on outside help for reconfigu-
ration. Instead, it should be able to reason about which trade-offs can be made at
any point in time. This requires introspective capabilities. Specifically, the agent
must be able to determine what information is currently being generated as well
as the potential effects of changes it may make to the configuration of the process-
ing. Therefore a sixth requirement is for the framework to provide a declarative
specification of the information being generated and the information processing
functionalities that are available, with sufficient content to make rational trade-off
decisions.

To summarize, knowledge processing middleware should support declarative
specifications for flexible configuration and dynamic reconfiguration of distributed
context dependent processing at many different levels of abstraction.

1.3 Thesis Outline

The thesis consists of four parts. The first part, Chapters 1-2, provides an intro-
duction and a background to the thesis. The second part, Chapters 3-5, describes
the details of our stream-based knowledge processing middleware framework Dy-
Know. The third part, Chapters 6-9, presents applications and extensions of Dy-
Know, which includes how the two example scenarios can be implemented and
how to extend DyKnow to a multi-agent environment. The fourth part, Chapters
10-12, concludes the thesis with a discussion of DyKnow in a broader perspective
as a fusion framework and in relation to other similar frameworks, a summary of
the work presented, and a discussion about future work.

Chapter 2, Background, puts knowledge processing middleware into perspec-
tive by comparing it to existing general purpose middleware for distributed systems

12

CHAPTER 1. INTRODUCTION

and data stream management systems which extend traditional database technol-
ogy with support for streams.

Chapter 3, Stream-Based Knowledge Processing Middleware, proposes a spe-
cific type of knowledge processing middleware based on the processing of asyn-
chronous streams by active and sustained knowledge processes. Parts of this work
have been presented in Heintz, Kvarnstrom, and Doherty (2008a,b).

Chapter 4, DyKnow, provides a formal description of DyKnow, a concrete
stream-based knowledge processing middleware framework with a formal lan-
guage for specifying knowledge processing applications. Earlier versions of this
work have been presented in Heintz and Doherty (2004a, 2005a).

Chapter 5, A DyKnow CORBA Middleware Service, describes how DyKnow
can be implemented as a CORBA middleware service.

Chapter 6, The UASTech UAV Platform, describes our UAV platform in enough
detail to understand the rest of the chapters. This work has been presented in Do-
herty et al. (2004); Doherty, Kvarnstrom, and Heintz (2009).

Chapter 7, Integrating Planning and Execution Monitoring, describes how we
have integrated planning and execution monitoring to implement parts of the emer-
gency service scenario. The chapter shows how DyKnow can support the integra-
tion of sensing, acting, and reasoning by extracting information about the environ-
ment in order to facilitate monitoring the execution of plans. This work has been
presented in Doherty, Kvarnstrém, and Heintz (2009); Kvarnstrom, Heintz, and
Dobherty (2008).

Chapter 8, Integrating Object and Chronicle Recognition, describes how we
have integrated a chronicle recognition system and an object recognition function-
ality for anchoring object symbols to sensor data in order to implement a version
of the traffic monitoring scenario using our UAV platform. This provides another
concrete example of how DyKnow can be used to bridge the sense-reasoning gap.
This work has been presented in Heintz and Doherty (2004b); Heintz, Rudol, and
Doherty (2007a,b); Heintz (2001).

Chapter 9, DyKnow Federations, presents an initial approach to how DyKnow
can be extended to facilitate multi-agent knowledge processing. The extension is
illustrated by a multi-platform proximity monitoring scenario. This work has been
presented in Heintz and Doherty (2008).

Chapter 10, Relations to the JDL Data Fusion Model, describes how DyKnow
can support the functionalities on the different abstraction levels in the JDL Data
Fusion Model, which is the de facto standard functional fusion model used today.
This provides an argument that DyKnow is general enough to support a wide vari-
ety of applications which requires fusion and situational awareness. This work has
been presented in Heintz and Doherty (2005b,c, 2006).

Chapter 11, Related Work, presents a selection of related agent architectures
and robotics frameworks and discusses their support for knowledge processing in
comparison to DyKnow.

Chapter 12, Conclusions, provides a concise summary of the work presented in
the thesis and presents some interesting ideas as to how DyKnow could be further
extended and applied in the future.

13

Chapter 2

Background

2.1 Introduction

In this chapter we put knowledge processing middleware into perspective by com-
paring it to existing general purpose middleware for distributed systems and to data
stream management systems which extend traditional database technology with
support for streams. Object-oriented, publish/subscribe, and event-based middle-
ware approaches will be related to the requirements described in Section 1.2.1 and
we argue that they fail to provide the necessary middleware support for knowledge
processing applications. The same is argued for data stream management systems.

2.2 Middleware

As distributed applications become more common and more complex there is an
increasing need to handle a diversity of components, underlying networks, and
hardware. This requires sophisticated software support (Schantz and Schmidt,
2006). To counter this increasing complexity, a set of software frameworks called
middleware has been developed. According to Emmerich (2000) “[m]iddleware re-
solves heterogeneity, and facilitates communication and coordination of distributed
components.” A classical example is CORBA (Object Management Group, 2008)
which provides a framework for distributing objects between different platforms
and languages, and a programming model where the physical location of an object
is transparent to application programmers.

Middleware is expected to simplify the development of applications by hid-
ing complexities and providing more appropriate interfaces on a higher level of
abstraction. The following list is a quote describing desirable middleware fea-
tures (Object Web, 2003):

e hiding distribution, i.e. the fact that an application is usually made up of
many interconnected parts running in distributed locations;

14

CHAPTER 2. BACKGROUND

e hiding the heterogeneity of the various hardware components, operating sys-
tems, and communication protocols;

e providing uniform, standard, high-level interfaces to the application devel-
opers and integrators, so that applications can be easily composed, reused,
ported, and made to interoperate; and

e supplying a set of common services to perform various general purpose func-
tions, in order to avoid duplicating efforts and to facilitate collaboration be-
tween applications.

There are two aspects of middleware which are relevant for this thesis. The
first is the distribution aspect where middleware hides the complexities of devel-
oping systems consisting of components running on different heterogeneous nodes
in a network. The second aspect is that of providing higher level interfaces with
appropriate support for the applications at hand. Since we are interested in sup-
porting the development of knowledge processing applications it is important that
the middleware provides the appropriate abstractions for working with those.

In general, middleware allows different components to interact by supporting
some form of communication between the components. Middleware can be seen
as the glue which holds a distributed application together.

2.2.1 Object-Oriented Middleware

A common and popular class of middleware frameworks developed for distributed
systems is centered around the concept of an object. The idea is to provide a
common object-oriented programming model disregarding the underlying network
infrastructure, the physical location of objects, and the actual implementation lan-
guage used. This class of middleware, which is the most mature since it has been
around for more than 20 years, consists of for example CORBA (Object Man-
agement Group, 2008), Real-Time CORBA (Object Management Group, 2005),
Ice (Henning, 2004), and Java RMI (Sun, 2000).

One particular category of object-oriented middleware, often called DRE mid-
dleware (Schmidt, 2002a,b), is specifically designed for distributed, real-time, and
embedded environments. These middleware systems focus on issues such as in-
creasing execution time predictability and reducing communication latency and
memory footprint, making them particularly interesting for embedded knowledge
processing applications on board a robotic system. However, pure DRE middle-
ware frameworks do not by themselves satisfy the requirements for knowledge
processing middleware.

Regarding the distribution aspect, the major weakness with object-oriented
middleware is the use of an invocation-based client-server communication model.
This means that each object reference needs to know which server hosts an object
implementation, and each message must be sent directly to this server. Much of
this is however hidden from application developers and taken care of by the object
request broker. The main drawbacks of this design is that a server is a single point

15

CHAPTER 2. BACKGROUND

Middleware

Publisher] Subscriber]

subscriptions I

Figure 2.1: A conceptual overview of a publish/subscribe middleware.

of failure and that one-to-one communication does not scale very well for applica-
tions that need to disseminate the same information to many objects in a distributed
system.

Object-oriented middleware such as CORBA usually provides a flexible way of
creating new objects and sometimes even new interfaces at run-time. The downside
is that all of these operations are procedural which makes it hard to reason about the
current configuration. There is no support provided for declarative specifications
of the required components. Therefore the requirement for flexible configuration
and dynamic reconfiguration is not satisfied.

Finally, and perhaps most importantly, object-oriented middleware is very gen-
eral and provides no specific support for creating representations on different levels
of abstraction. However, it is of course possible to base knowledge processing mid-
dleware on object-oriented middleware. In fact, DyKnow is currently implemented
as a service on top of CORBA.

2.2.2 Publish/Subscribe Middleware

Another important category of distribution middleware consists of those that use
the publish/subscribe pattern of communication. A publish/subscribe system con-
sists of a set of publishers publishing data and a set of subscribers subscribing to
data (Figure 2.1). The publishers are also known as producers and the subscribers
as consumers. Publish/subscribe middleware allows consumers to describe the data
they are interested in through subscriptions. When a producer publishes new data
the middleware delivers the data to each consumer with a matching subscription.

The purpose of this design is to provide a technology for transporting informa-
tion between many producers and many consumers without them knowing about
each other. Instead they share some common entity, like a communication channel
or a topic of interest, which they interact with. The common entity will know about
the producers and the consumers, but they will not know about each other.

A benefit of publish/subscribe systems is the support for many-to-many com-
munication while decoupling consumers and producers. A consumer can transpar-
ently get information from many different producers over a single communication
channel and a producer can reach many different consumers with a single oper-

16

CHAPTER 2. BACKGROUND

Data Data Data Data Data
Writer Writer Reader Writer Reader

Figure 2.2: An overview of the components of the data distribution service.

ation. Another benefit is the possibility to add quality of service guarantees to
different components in the publish/subscribe architecture.

Differences between implementations are mainly in the subscription specifica-
tion languages they support and the underlying network communication used to do
routing and dispatching. See Carzaniga, Rosenblum, and Wolf (1999) or Pietzuch
(2004) for a survey.

The Data Distribution Service

An interesting version of the publish/subscribe concept is defined in the Object
Management Group (OMG) standard for the data distribution service (DDS) (Ob-
ject Management Group, 2007). It is a data-centric publish/subscribe distribution
and communication infrastructure. Like all other publish/subscribe systems, DDS
is designed to transparently distribute and share information between data produc-
ers and consumers.

Information produced and consumed is collected in fopics, the main concept in
DDS. A domain consists of a set of topics and a set of domain participants that read
and write data to a topic (Figure 2.2). A domain participant can contain publishers
and subscribers. A publisher writes data to a topic by using a data writer which
acts as a proxy to a topic. A subscriber reads data from a topic by using a data
reader which also acts as a proxy to a topic. If a domain participant wants to
interact with more than one topic then a data reader or writer is required for each
one.

What makes DDS special is its fine-grained quality of service policies. The
following are some important examples:

o Deadline indicates the minimum rate at which a producer sends data or how

17

CHAPTER 2. BACKGROUND

long a subscriber is willing to wait for new data.

e Destination order determines how a subscriber handles data that arrives in a
different order than it is sent. It can either read the data in the order it is sent
or in the order it is received.

e Durability specifies whether the data distribution service makes historic data
available to subscribers that are added after the data has been sent.

e Latency budget is an optional guideline to be used by the system to im-
plement optimizations in order to accommodate the subscribers’ maximum
acceptable latency.

e Ownership determines whether more than one publisher can publish data
items to the same topic or not.

o Ownership strength determines which publisher is allowed to publish its data
in the case of an exclusive ownership policy. This can be used to implement
redundancy in a system.

e Reliability specifies whether or not a given subscriber will get the data reli-
ably. If a data item is lost in a reliable channel the middleware will guarantee
that it is resent.

® Resource limits specify how much local memory can be used by the middle-
ware.

o Time-based filter provides a way to set a “minimum separation” period be-
tween data items, i.e. data items should not arrive more often than a certain
period.

e Transportation priority is used to set the relative priority between different
topics.

Since the concept of a many-to-many communication channel or stream is ex-
plicit in the design, the distribution service has a much better communication model
for our purposes compared to object-oriented middleware. However it suffers from
the same lack of suitable abstractions when it comes to knowledge processing. The
available quality of service guarantees are very interesting and share several simi-
larities with the stream policies defined in this thesis. Therefore the data distribu-
tion service is probably a good candidate to base knowledge processing middleware
on. It would still be necessary to significantly raise the abstraction level to support
knowledge processing on a suitable level of abstraction and provide a declarative
specification to support flexible configuration and dynamic reconfiguration.

Event-Based Middleware

A special type of publish/subscribe middleware is event-based middleware where
every piece of published data is seen as an event which subscribers can react
to (Carzaniga, Rosenblum, and Wolf, 2001).

18

CHAPTER 2. BACKGROUND

An important part of an event-based middleware is the capability to filter out
events. There are two main approaches to filtering events, topic-based and content-
based. In topic-based filtering a subscriber will subscribe to all events belonging to
a particular topic. Content-based filtering, on the other hand, looks at the content
of each event, which is often in the form of a set of attribute-value pairs. All
events whose attribute values satisfy the filter are matched by the subscription.
The subscriptions in the data distribution service is a good example of topic-based
filtering. The data distribution service also supports content-based filters, but only
applies these to data within a particular topic.

Two interesting event-based publish/subscribe services are the CORBA real-
time event service (Harrison, Levine, and Schmidt, 1997) and the CORBA real-
time notification service (Gore et al., 2004; Gruber, Krishnamurthy, and Pana-
gos, 2001). These services provide a basic publish/subscribe architecture where
a channel is implemented as a CORBA object which publishers and subscribers
can connect to in order to send and receive events. The real-time event service
subscriptions are topic-based while the notification service also supports content-
based subscriptions. The real-time event service has a very limited vocabulary with
respect to filtering of events, where you can only filter based on the type and the
source of an event as represented by two integers. The notification service on the
other hand has a more complex language for expressing filter constraints called the
extended trader constraint language.

When information is seen as events, it is natural to think about how to spec-
ify and detect complex composite events in a stream of events. This line of re-
search has resulted in several languages for expressing composite events, including
Siena (Carzaniga, Rosenblum, and Wolf, 2001), Jedi (Cugola, Nitto, and Fuggetta,
2001), Gryphon (Banavar et al., 1999), and Elvin (Segall and Arnold, 1997).

Recently the scope of this research has been extended to also include the cre-
ation of new events based on events detected so far. This is often called complex
event processing or event stream processing (Luckham, 2002).

Event-based middleware provides another step in the direction of knowledge
processing middleware since it provides concepts and tools to define and detect
complex events. Event specifications are often made in a declarative language
making it possible to reason about them. However, the abstraction is still limited
to expressing information about events. There are for example no abstractions for
talking about continuous variables or objects. Therefore event-based middleware is
limited to applications which can be expressed in terms of event processing. Even
though this is a large and general class of applications we believe that there are
other abstractions which are essential for knowledge processing applications.

2.3 Data Stream Management Systems

In the nineties, the database community realized the need for managing streaming
data, as opposed to data stored in tables, in order to handle massive amounts of
real-time data. This data can be generated from different types of logs, including
web servers and network surveillance systems, or from sensor networks producing

19

CHAPTER 2. BACKGROUND

data at a high rate. The key observation is that in order to be able to keep up with
the pace, a data management system can not afford to store data in tables but has to
process it on-the-fly as each tuple becomes available (Abadi et al., 2003; Babcock
et al., 2002; Motwani et al., 2003; The STREAM Group, 2003).

From a database perspective, a data stream management system stores and
queries streams of data instead of tables of data. The supported query language
is often based on SQL. The stream-based queries are sometimes called continu-
ous queries since they have to be continuously evaluated as new tuples become
available. The main research issues are continuous query languages and the opti-
mization of continuous queries. A major difference compared to the stream-like
functionality provided by publish/subscribe systems is that a continuous query in
a data stream management systems actually transforms streams as opposed to only
describing what elements are requested.

These data stream management systems are not really middleware since they
are usually not distributed. Some form of middleware is therefore required to trans-
port the streams to and from a data stream management system. The functionality
they provide, however, bears resemblance to the middleware functionality that we
are striving after.

Most data stream management systems at least partially fulfills many of the
requirements for knowledge processing middleware. By providing a declarative
language where the processing of streams are described the sixth requirement is
met. Since all data stream management systems allow queries to be added and
removed at run-time they also support the requirement for flexible configuration
and reconfiguration. However, like the middleware approaches described earlier
no explicit support is provided for lifting the abstraction level. Since most data
stream management systems are monolithic systems hosted on a single computer
they usually do not provide much support for the integration of information from
distributed sources.

2.4 Summary

This chapter has presented some existing middleware approaches and data stream
management systems which could be used to support the implementation of a so-
lution to bridging the sense-reasoning gap. One common feature is that they all are
very general and only consider data, not higher level abstractions which are neces-
sary for knowledge processing applications. The middleware approaches all pro-
vide adequate support for the integration of information from distributed sources
requirement, especially those which are based on the publish/subscribe communi-
cation pattern.

At the same time data stream management systems provide an appropriate data
model where incremental streams of data are continually processed by continuous
queries. As will be shown in the next chapter, we propose to base knowledge
processing middleware on a similar concept of streams.

The conclusion is that even though none of the described middleware approaches
themselves provide the necessary support for knowledge processing middleware

20

CHAPTER 2. BACKGROUND

they could all be used as a foundation providing low-level support for communi-
cation and distribution of processing. As will be seen in Chapter 5, DyKnow is
currently implemented as a CORBA service which uses the notification service to
provide a publish/subscribe communication model.

21

Part 11

Knowledge Processing
Middleware

22

Chapter 3

Stream-Based Knowledge
Processing Middleware

3.1 Introduction

In the first chapter we presented a set of requirements that are necessary or desir-
able for any form of knowledge processing middleware. How these requirements
should be satisfied was intentionally left open. In this chapter we propose the use
of stream-based knowledge processing middleware as one appropriate basis for
satisfying the requirements.

As exemplified by the traffic monitoring scenario (Section 1.1.1 on page 5),
physical agents tend to require a great deal of processing of information and knowl-
edge at different levels of abstraction. This processing is generally separated into
a number of distinct and well-defined functionalities, which we model as active
and sustained knowledge processes. For example, image processing and helicopter
state estimation may be modeled as two distinct knowledge processes with clearly
defined responsibilities as can every other node in Figure 1.2 on page 6.

Most knowledge processes need information generated by other processes, and
in turn generate refined information that may be required by others. In order to
properly model the flow of information, it is essential for a framework to take
into account the dynamic nature of knowledge processing, where information only
becomes available incrementally. For this reason, we model the information flow
in terms of streams of information flowing between knowledge processes. For
example, every arrow in Figure 1.2 could be realized as a stream.

A stream-based knowledge processing application is a network of knowledge
processes connected by streams. Both the input and the output of a knowledge
process is in the form of streams. An object recognition process could for example
take a stream of images as input and provide streams of recognized objects as out-
put. Since many processes might be interested in the information produced by a
knowledge process, output streams are made available through stream generators.
A process that is interested in the output of another process can subscribe to the

23

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

associated stream generator, which creates a new stream connecting the two pro-
cesses. Each subscription is associated with a policy which specifies the desired
properties of the created stream. To satisfy the policy it might be necessary for the
stream generator to filter out elements or even to add new approximated elements
to the stream.

In the remainder of this chapter, we define the concept of stream-based knowl-
edge processing middleware in more detail. The definitions in this chapter are in-
tentionally general to capture the nature of any stream-based knowledge processing
middleware. The exact formal definitions may vary between instantiations. In the
next chapter a specific instantiation called DyKnow is described where the defini-
tions are made formal.

3.2 Stream

As noted above, knowledge processing for a physical agent is fundamentally in-
cremental in nature. A knowledge process that produces information for a given
stream does so one piece at a time, in real time. The receiving process can choose
when to process this piece of information, but this can only be done after the in-
formation has become available. For example, a knowledge process computing
position estimations from GPS readings can not compute a new estimate until it
has received the latest GPS coordinate.

From an implementation point of view, this property will automatically be sat-
isfied. Retrieving information before it is produced is logically impossible. How-
ever, we also require a formal model of streams and knowledge processes. Such a
model should preferably provide a way to completely describe not only a snapshot
of a system but its history over time. This is, for example, essential for the ability
to validate an execution trace relative to a formal system description.

Given this requirement, we choose to view a stream as a structure containing
its own history over time. In other words, for any time-point, it is possible to
determine which elements are available in a stream at that time-point.

Definition 3.2.1 (Stream) A stream is a set of stream elements, where each stream
element is a tuple (,, ...) whose first element, 7,, is a time-point representing the
time when the element is available in the stream. This time-point is called the
available time of a stream element and has to be unique for the stream. O

Since the available time is unique the tuples in a stream can be totally ordered
by their available times and the stream can be seen as a sequence of stream ele-
ments. To guarantee that there is a total order, a < operator must be defined on the
time-point domain. We will see a stream either as a set or as a sequence, which
ever is most appropriate.

Streams provide a useful and natural model of the incremental nature of knowl-
edge processing and of the availability of information. That the content of a stream
becomes incrementally available means that at any time only a prefix of the stream
is available. At time-point ¢ only those elements with an available time less than or

24

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

equal to ¢ are available. This means that at time-point 7 a stream can be seen as the
sequence of those elements with an available time not greater than 7.

In order for a process to access the output of another process it must be able
to refer to a stream generator. Each stream generator is therefore associated with
a label. Though a label could be opaque, it often makes sense to use structured
labels. For example, given that there is a separate position estimator for each car, it
makes sense to provide an identifier i for each car and to denote the (single) stream
generator of each position estimator by position[i]. Then, it is sufficient to know
the car identifier to generate the correct label.

Asynchronicity. In general, streams are asynchronous which means that it is not
possible to predict when the next element will be available in a stream given the
currently available prefix. For example, the information can be inherently asyn-
chronous, such as a stream representing the pressing of a button or the detection of
reckless overtakes. It could also be that even if the information is synchronously
sampled with a certain period, unpredictable delays in a system can cause a stream
to be asynchronous.

Due to the asynchronous nature of streams it is essential that stream-based
knowledge processing middleware implementations have support for notifying the
receiving processes when new elements become available. This means that when
a new element is made available in a stream it should be pushed to the connected
processes as soon as possible. The alternative would be for a process to use polling
to get the elements of a stream. However, polling is inefficient and it risks losing
information if a stream does not buffer enough elements. The more frequent the
polling is, the more inefficient it is. A push-based stream system also lends itself
easily to “on-availability” processing, i.e. processing data as soon as it becomes
available, and to the minimization of processing delays, compared to a query-based
system where polling introduces unnecessary delays in processing.

Decoupling. A benefit of using streams is that they allow knowledge processes to
be decoupled from each other since they easily support a publish/subscribe com-
munication mechanism. Any information generated by a knowledge process is
published using a stream generator. A knowledge process interested in this infor-
mation can subscribe to it, which creates a new stream connecting the two pro-
cesses. Note that it would also be possible to allow many stream generators to
contribute content to a single stream. Streams and stream generators thereby sup-
port many-to-many communication between consumers and producers who do not
need to know about each other. This also means that a knowledge process can
publish new elements when they are computed and then continue its processing
without having to wait for all the subscribers to receive and process the element.
In fact, the delivery of the elements in a stream is completely independent of the
generation of the elements.

Decoupling knowledge processes generating information from consumers of
the information, such as other knowledge processes, has many benefits. Using
a publish/subscribe pattern of communication decouples knowledge processes in

25

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

time, space, and synchronization (Eugster et al., 2003). This separation provides
a very good foundation for supporting distributed knowledge processing applica-
tions.

First, consumers and producers only have to know about the stream generators
they use, they do not have to know about each other. Since each stream generator
is referred to by a label it is enough for a consumer to know the label of the desired
stream generator to access it. Who produces an element for a stream generator is
not important to a consumer and who receives the element is not important to a
producer. This can, for example, be used to add redundancy to a system by having
several producers provide the same information. It also supports the distribution
of processes on different nodes in a distributed system since a consumer does not
need to know where a producer is hosted and vice versa.

Second, the generation of information is separated from its delivery. A knowl-
edge process is therefore not blocked even if one of the subscribers is either tem-
porarily unavailable or takes a long time to process the information. This also
allows the input and output streams of a knowledge process to have different up-
date rates. For example, a knowledge process estimating the position of an agent
can use an input stream with a higher update frequency than its output stream in
order to reduce the uncertainty in the estimated positions.

3.2.1 Policy

A stream can have many different properties including different types of quality
of service guarantees. Different consumers will have different requirements on
the properties of a stream for its content to be useful to them. For example, the
chronicle recognition engine described in Chapter 8 requires that elements arrive in
the order in which they are produced. Another requirement could be that a stream
should only contain elements which constitute a significant change compared to
the previous element in the stream. Other consumers might require updates with
a certain frequency or elements which are not delayed by more than a constant
amount of time.

To specify the desired properties of a stream a policy is used. Examples of
properties are the duration of a stream, the maximum allowed delay, and the sam-
ple period of a stream. A policy can also specify advice for how to generate a
stream that satisfies the properties. An example of advice is how to handle the case
when there is a missing element or when an element whose delay is too high is re-
ceived. When a process subscribes to a stream generator the subscription includes
a policy. Given this policy it is up to the stream generator to generate a stream
which satisfies it. The policy allows the process to specify the desired properties
and also to guide the generation of the stream. For introspection purposes, policies
should be declaratively specified.

Definition 3.2.2 (Policy) A policy is a declarative specification of the desired prop-
erties of a stream which may include advice on how to generate the stream. O

26

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

Knowledge Process)

stream
Stream 7

Generator !
/ stream

Figure 3.1: A knowledge process operates on streams to generate streams accord-
ing to policies.

3.3 Knowledge Process

We model computations and processes within the stream-based knowledge pro-
cessing framework as active and sustained knowledge processes. The complexity
of such processes may vary greatly, ranging from simple adaptation of raw sensor
data to image processing algorithms to potentially reactive and deliberative pro-
cesses.

Definition 3.3.1 (Knowledge process) A knowledge process is an active and sus-
tained process whose inputs and outputs are in the form of streams. O

A knowledge process operates on streams. It can either take streams as input,
produce streams as output, or both. Each input stream to a knowledge process is
specified by a policy. If a knowledge process generates output, then it is made
available through a stream generator since there might be many processes inter-
ested in the output but with different requirements on it. Another process can then
subscribe to the stream generator, which will generate a stream by adapting the out-
put of the knowledge process according to a policy. For example, given a process
estimating the position of an agent every 100 ms, a stream with any sample period
which is a multiple of 100 ms could be provided. The stream generator provides
the functionality to make the necessary adaptation. This separates the generation
from the adaptation of stream content. An abstract view of a knowledge process is
shown in Figure 3.1.

For the purpose of modeling, we find it useful to identify four distinct types
of knowledge processes: Primitive processes, refinement processes, configuration
processes, and mediation processes.

3.3.1 Primitive Process

Primitive processes serve as interfaces to the outside world, connecting to sen-
sors, databases, or other information sources and provide their output in the form
of streams. Such processes have no stream inputs but provide a non-empty set of
stream generators. A conceptual primitive process is shown in Figure 3.2. Often
they tend to be quite simple, mainly adapting data in a multitude of external rep-
resentations to the stream-based framework. For example, one process may use

27

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

Primitive Process A

streams

|

Stream Generators

J

Figure 3.2: A conceptual primitive process.

Refinement Process\

‘m Stream Generators

Figure 3.3: A conceptual refinement process.

streams

|

J

a hardware interface to read a barometric pressure sensor and provide a stream
generator for this information. However, greater complexity is also possible, with
primitive processes being responsible for tasks such as image processing.

Definition 3.3.2 (Primitive process) A primitive process is a knowledge process
which does not take any streams as input but provides output through one or more
stream generators. O

3.3.2 Refinement Process

The main functionality of stream-based knowledge processing middleware is to
process streams to create more refined data, information, and knowledge. This
type of processing is done by a refinement process which takes a set of streams as
input and provides one or more stream generators providing the output as streams.
A conceptual refinement process is shown in Figure 3.3. A refinement process can
basically do any processing imaginable on its input streams. It could for example
implement different kinds of sensor processing such as image processing extracting
objects from a video stream, fusion of sensor data such as Kalman filters estimating
the position of a robot from GPS and IMU data, or reasoning about the qualitative
spatial relations between objects.

Definition 3.3.3 (Refinement process) A refinement process is a process that takes
one or more streams as input and provides output through one or more stream gen-
erators. O

When a refinement process is created it subscribes to its input streams. If a con-
crete realization of stream-based knowledge processing middleware allows a pro-

28

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

cess to change the policies of its inputs during run-time, then a refinement process
can dynamically tailor its subscriptions depending on the streams it is supposed to
create. For example, if a position estimation process is supposed to compute the
position of a robot with 10 Hz then it could either subscribe to its inputs with the
same frequency or choose to subscribe with a higher frequency in order to filter out
more noise. If the subscriptions to the stream generators of a process change, the
process might have to change its subscriptions as well.

In certain cases, a process is first required to collect information over time
before it is able to compute an output. For example, a filter might require a number
of measurements before it is properly initialized. This has consequences for the
policies that a stream generator for the output can support. If it takes 30 seconds
to collect data and to initialize the internal state of the knowledge process then
the stream generator could not accept subscriptions requiring data earlier than 30
seconds after the creation of the knowledge process. This can be remedied if the
process is able to request 30 seconds of historic data when it is created.

3.3.3 Configuration Process

In many cases, it is beneficial to use separate knowledge processes to handle in-
formation related to specific objects. Since we are interested in describing systems
that dynamically create and destroy objects, there is also a need to dynamically add
and remove knowledge processes and streams related to those objects. For exam-
ple, in the traffic monitoring scenario there is a need to process streams containing
information about a varying number of cars. New cars may be detected and old
cars forgotten. Using only refinement processes, a solution is to have a stream con-
taining the information about all cars. Even if this is possible, and sometimes even
desirable, it has several downsides.

For example, instead of containing car states the stream would contain sets
of car states. Now assume that we have observed 100 cars and we are currently
tracking one of them. To track this car we need an updated position estimation
every 100 ms, but for the rest of the cars it is enough with an update every second.
If we have a single stream containing the position of all cars then we either have to
update all cars every 100 ms or introduce a more expressive policy which allows
different cars within a single stream to have different sample rates. This is an
unnecessary complexity which can be avoided by allowing a flexible number of
processes and streams.

To handle these issues and to make the control of the system more fine-grained
a configuration process is introduced. It takes a set of streams as input but does not
have any output streams. Instead, it enables dynamic reconfiguration by adding or
removing streams and processes.

Definition 3.3.4 (Configuration process) A configuration process is aknowledge

process which takes streams as inputs, has no stream generators, and creates and
removes knowledge processes and streams. m}

29

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

car_ids

[Configuration Process}

4

Refinement Process

pos[uav] dist[car2, uav]

Figure 3.4: A configuration process where the current element of car_ids is {car2}.

pos[car2]

= [Conflguratlon Process]

2 R I
poslcar2] " Refinement Process

L ’)

posicars] | " Refinement Process)

N

Figure 3.5: A configuration process where the current element of car.ids is
{car2, carb}.

For example, assume there is a knowledge process which produces a stream
containing the set of identifiers of all cars currently being tracked. Each time the
system starts tracking a new car its identifier is added to the set and each time the
system loses track of a car its identifier is removed from the set. A configuration
process could take this stream of sets of identifiers as input and ensure that for each
identifier in the set there is a knowledge process estimating the distance from the
car to the UAV. When a new identifier is added to the set, a new knowledge pro-
cess is created, and when an identifier is removed from the set, the corresponding
knowledge process is removed. The configuration process would capture a corre-
spondence between the content of its input streams and the knowledge processes
in the system. An instantiation of the example is shown in Figures 3.4 and 3.5.

30

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

cur_car

Mediation Process

_—

Figure 3.6: A mediation process where the current element of cur_car is carb.

cur_car

Mediation Process

s

Figure 3.7: A mediation process where the current element of cur_car is car8.

3.3.4 Mediation Process

Finally, a mediation process generates streams by selecting or collecting informa-
tion from other streams. Here, one or more of the inputs can be a stream of labels
or sets of labels. This allows a different type of dynamic reconfiguration in the case
where not all potential inputs to a process are known in advance or where one does
not want to simultaneously subscribe to all potential inputs due to processing cost.

Definition 3.3.5 (Mediation process) A mediation process is a knowledge pro-
cess that changes its input streams and mediates the content on the varying input
streams to a fixed number of stream generators. O

There are at least three cases when a mediation process is needed.

First, when the set of inputs to a knowledge process changes over time. For
example, if the position of each observed car is provided in a separate stream then
the set of such streams changes over time. To create a stream containing the po-
sitions of all cars we need to merge the content of each of these streams. This
would easily be done with a refinement process if the exact number and identifiers
of the input streams were static and known from the start, but this is not always the
case. Instead we would like to specify a process which takes all streams containing
car positions as input, where the set of cars is given by another stream. Taking a
stream of sets of car identifiers and mediating the content from the position stream
for each of these car identifiers would be an example of a mediation process.

Second, when the inputs are not known at specification time. For example, if
we would like to create a knowledge process which can take inputs from different
sources such as a sensor on a robot, a simulator, or a log file then it might not be
known in advance which source will be used. Instead of making a guess we can add
a mediation process which will switch between the different sources and provide a
single static stream generator independently of the actual source. It would also be
possible to change the source at run-time.

Third, when the content of all input streams is not needed all the time. For
example to create a stream of the position of the currently tracked car. There might

31

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

be many cars in the system, but only one is currently tracked. Instead of subscribing
to all car position streams, it is enough to subscribe to the one stream which is
needed. This is mainly an optimization, but in systems with a large number of
streams this might make a major difference.

It is often useful to describe the inputs to a mediation process using a structured
label where one or more of its arguments are not instantiated but rather determined
by the input on one or more of the input streams to the mediation process. For
example, if there is a stream cur_car which contains the identifier of the car which
is currently being tracked, then a mediation process could take this stream as in-
put and instantiate the structured label position[car], where car is replaced with
the currently tracked car identifier. When the instantiation of this structured label
changes, the inputs to the mediation process are updated accordingly. An example
is given in Figures 3.6 and 3.7.

3.3.5 Stream Generator

A stream generator is used to adapt the output of a knowledge process to create
many different streams. This allows the content generated by, for example, a sen-
sor or a process to be used to create many streams each with different properties.
Assume there is a process estimating the position of an agent every 100 ms. A
stream generator for this process could provide streams with any update period
which is a multiple of 100 ms. It might also be able to generate a stream contain-
ing an element each time the position has changed significantly according to some
measure.

Definition 3.3.6 (Stream generator) A stream generator is a part of a knowledge
process which generates streams according to policies from output generated by
the knowledge process. O

One reason to introduce a stream generator, which also processes streams, is to
separate the creation of content of a stream and the creation of different streams by
adapting this content. For example, in the case where a stream sampled with 1 Hz
should be created from one sampled with 10 Hz, we could have had a knowledge
process taking the stream containing 10 samples a second and producing a stream
of 1 sample a second. However, if a second stream with a sample period of 5 sam-
ples a second were requested then another knowledge process would be required.
Instead of duplicating the knowledge process a special stream adaptation process
is used, the stream generator. By having a single knowledge process with a stream
generator capable of creating both streams the application is simplified.

Another reason to introduce a stream generator is to separate the processing of
streams from the creation of streams. Since a stream generator is only a promise to
create streams, if requested by a subscription, no content has to be produced unless
there is at least one subscription. The stream generator also acts as an interface
to the knowledge process which determines the properties of the processing. This
allows fine-grained control by restricting the processing to what is necessary to
satisfy the current subscriptions. For example, if the only subscription to the stream

32

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

generator is for a stream sampled every second, then the process only has to do
whatever is necessary to provide an output every second. In some cases it would
be enough to actually sample the inputs to the process every second. In other
applications a higher sample frequency might be needed. In any case, the process
can optimize its processing and its inputs based on the current subscriptions.

While it should be noted that not all processing is based on continuous updates,
neither is a stream-based framework limited to being used in this manner. For
example, a path planner or task planner may require an initial state from which
planning should begin and usually cannot take updates into account. Even in this
situation, decoupling and asynchronicity are important, as is the ability for lower
level processing to build on a continuous stream of input before it can generate
the desired snapshot. The stream generator interface to the stream generated by a
knowledge process ought therefore to also support snapshot queries. These queries
would be answered relative to the stream produced by the knowledge process.

A policy should act as a specification for how a stream generator should gen-
erate a stream in order for the content to satisfy the policy. For example, even if a
stream’s elements should be ordered according to some criteria they could be made
available to the stream generator in a different order. If the maximum allowed de-
lay for the stream allows it, then the stream generator could wait for the missing
elements to be available. If that is not an option then the stream generator either
has to find another way to satisfy the policy or the policy will be violated. How to
handle these cases is implementation dependent and allows for a large variation of
solutions.

3.4 Summary

A stream-based knowledge processing application consists of a number of knowl-
edge processes connected by streams. A knowledge process has stream generators
which make the produced output available in the form of streams. A stream gen-
erator can be subscribed to by an arbitrary number of processes. A subscription
can be viewed as a continuous query, which creates a distinct asynchronous stream
connecting the two processes onto which new data is pushed as it is generated. A
subscription includes a policy which specifies the properties of the stream, which
should guide the creation of it. A policy could for example limit the maximum
allowed delay, the time between two elements in the sequence, and the order of the
elements in the stream.

Four different types of knowledge processes are identified. A primitive process
allows a process that provides information to be integrated with a knowledge pro-
cessing application by making the information available in the form of streams. A
refinement process takes streams and computes more refined streams by for exam-
ple merging, filtering, abstracting, and correlating its inputs. A mediation process
mediates content from many streams into a single stream by dynamically changing
its inputs depending on the content of one or more of its input streams. Finally, a
configuration process controls the configuration of the knowledge processing ap-
plication by continually adding and removing processes and streams. Together

33

CHAPTER 3. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

they cover a very wide variety of knowledge processing applications.

Since knowledge processes are active and they are decoupled from each other
through the use of streams, stream-based knowledge processing middleware is very
well suited for distributed applications.

34

Chapter 4

DyKnow

4.1 Introduction

So far, we have talked about stream-based knowledge processing middleware in
general. For example, in the previous chapter we did not exactly define what infor-
mation a stream may contain or the properties of a stream that a policy can specify.
In this chapter we will present one concrete stream-based knowledge processing
middleware framework called DyKnow!.

DyKnow provides both a conceptual framework for modeling knowledge pro-
cessing and an implementation infrastructure for knowledge processing applica-
tions. This chapter focuses on the formal framework while the next chapter de-
scribes the implementation infrastructure. The formal framework can be seen as a
specification of what is expected of the implementation infrastructure. It can also
be used by an agent to reason about its own processing.

We start by presenting the ontology of the formal framework. It defines objects
and features which for example may represent attributes of these objects. These
are the two types of entities that DyKnow can explicitly model knowledge about.
Since we are modeling a dynamic world a feature may change values over time.
Then, the DyKnow knowledge processing domain is presented, which formally de-
fines streams and knowledge processes. A stream that represents an approximation
of the value of a feature over time is called a fluent stream. A fluent stream is
a specialization of the general stream concept introduced in the previous chapter.
Two concrete classes of knowledge processes are introduced: Sources, correspond-
ing to primitive processes, and computational units, corresponding to refinement
processes. A computational unit is parameterized with one or more fluent streams.
Each source or computational unit provides a fluent stream generator which creates
fluent streams from the output of the corresponding knowledge process according

'DyKnow stands for dynamic knowledge processing. Some of our papers state that DyKnow stands
for “dynamic knowledge and object processing”, but it is more appropriate to see objects as one type
of entity to process knowledge about rather than to see "knowledge’ and ’object’ as two distinct entities
on the same level.

35

CHAPTER 4. DYKNOW

source

O computational

unit

Source B

fluent stream
generator

Source C —> fluent stream

i

Figure 4.1: A conceptual DyKnow knowledge processing application consisting of
sources and computational units producing fluent streams.

to policies. A conceptual DyKnow application is shown in Figure 4.1. Finally, we
define the DyKnow knowledge processing language KPL which is the declarative
language used by DyKnow for specifying knowledge processing applications.

4.2 Ontology

An ontology defines the types of entities that make up the world. For modeling
purposes, DyKnow views the world as consisting of two types of entities: Objects
and features. They are used in DyKnow to model the environment of an agent.
We do not claim that these entities actually exist in the world, only that they are
appropriate when describing it.

4.2.1 Object

The world is viewed as consisting of a set of distinct objects. No difference is
made between concrete and abstract objects. In the UAV domain, each UAV may
be viewed as an object as well as each blob found by an image processing system,
and each car hypothesized as existing.

4.2.2 Feature

Properties of the world are called features. A feature could for example be an
attribute of an object, such as the position of a car, or a relation between objects,
such as whether two cars are beside each other or not. A feature has a well-defined
value at every time-point. Since the world is dynamic, this value may change over
time. For example, a car has a well-defined position at each time-point but the
position may change if the car is moving.

36

CHAPTER 4. DYKNOW

4.3 Knowledge Processing Domain

A knowledge processing domain defines the objects, values, and time-points used
in a knowledge processing application. From them the possible fluent streams,
sources, and computational units are defined. The semantics of a DyKnow knowl-
edge processing specification is defined on an interpretation of its symbols to a
knowledge processing domain. The syntax of the knowledge processing specifica-
tion language is described in Section 4.4 and the semantics in Section 4.5.

Definition 4.3.1 (Knowledge processing domain) A knowledge processing domain
is defined by a tuple (O, T, P), where O is a set of objects, T is a set of time-points,
and P is a set of primitive values. The temporal domain 7 must be associated with
a total order (<) and functions for adding (+) and subtracting (—) time-points. O

From a knowledge processing domain D = (O, T, P) the set of all possible
values Vp, the set of all possible samples S p, the set of all possible fluent streams
Fp, the set of all possible sources Rp, and the set of all possible computational
units Cp will be defined. When the domain D is understood from the context, the
subscript D will be left out when referring to these sets.

Example 4.3.1 (Domain) The example knowledge processing domain used in the
rest of this chapter is defined by the tuple ({01, ..., 010}, Z*, P), where P = {py, ...,
pio} U {s1,..., s10} is the set of primitive values (positions and speeds). The set T
of time-points is the set Z* of non-negative integers including zero. O

4.3.1 Value

Values are used to construct all the other derived elements of a domain such as
fluent streams and computational units. A value is either a simple value, the con-
stant no_value, or a tuple of values. This recursive structure is necessary to be
able to represent highly structured values such as states representing the values of
a collection of features. No domain D = (O, T, P) may contain no_value as a
member in the sets O, T, or P. The intended use of no_value is to represent that
a fluent stream has no value at a particular time-point.

Definition 4.3.2 (Simple value) Let D = (O, T, P) be a knowledge processing do-
main. A simple value in D is either an object constant from O, a time-point from
T, or a primitive value from P. The set of all possible simple values in a domain D
is denoted by Wp. O

Definition 4.3.3 (Value) Let D be a knowledge processing domain. A value in D
is recursively defined as follows: A simple value in Wp, is a value, the constant
no_value is a value, and if vq,...,v,, n > 0, are values then (v{,...,v,) is a
value. The set of all possible values in a domain D is denoted by V. O

37

CHAPTER 4. DYKNOW

Example 4.3.2 (Value) Examples of simple values from the domain from Ex-
ample 4.3.1 are p4,03, and s9. An example of a non-simple value is the tuple
(no_value,{0j9)). O

4.3.2 Fluent Stream

Though we would like to have access to the actual value of a feature over time,
these values will usually not be completely known by an agent. There are for
example inherent limitations in the sensing and in the processing which affects the
accuracy of the available information. Instead we have to create approximations.

In DyKnow, an approximation of the value of a feature over time is represented
by a fluent stream. A fluent stream is a stream of samples, where each sample is
a stream element which represents an observation or an estimation of the value of
the feature at a particular time-point called the valid time. The concept of valid
time is similar to the one used in temporal databases, where “[t]he valid time of a
fact is the time when the fact is true in the modeled reality” (Jensen et al., 1998).

Any realistic knowledge processing application must take into account the fact
that both processing and communication takes time, and that delays may vary,
especially in a distributed setting. This means that a sample with a valid time ¢ will
not necessarily be available at time-point . Each sample is therefore tagged with its
available time, which corresponds to the time when the sample is available in the
fluent stream. A sample is available when it has passed through all communication
channels and is ready to be processed by the receiving process.

The available time is essential when determining whether a system behaves
according to specification, which depends on the information actually available as
opposed to information that has not yet arrived. The valid time and the available
time are independent of each other.

There are at least two reasons for separating valid time from available time.

First, several estimations of the value at a specific time-point can be made for
the same feature because we have a non-monotonic system where the best available
information about a time-point may vary. For example, a knowledge process could
very quickly provide a first rough estimate of some feature, after which it would
run a more accurate and time consuming algorithm, and eventually provide a better
estimate. The different estimations would have the same valid time but different
available times.

Second, it allows us to model delays in the availability of the value. The delay
is the difference between the available time and the valid time, the greater the dif-
ference the greater the delay. The delay could for example be caused by processing
of the value. If the value is not delayed then the available and valid times are the
same.

Example 4.3.3 (Valid and available time) If a picture is taken at time-point ¢ and
arrives at a knowledge process at time-point ¢ then the valid time of the picture
is ¢ and the available time is #'. If a blob is then extracted from the picture by the
knowledge process, then the valid time of the blob is still ¢ but the available time is
the time when the extracted blob has been received by a subscribed process. O

38

CHAPTER 4. DYKNOW

Definition 4.3.4 (Sample) A sample in a domain D = (O, T, P) is either the con-
stant no_sample or a stream element (¢, t,, v), where t, € T is the available time
of the sample, #, € T is the valid time of the sample, and v € Vp, is the value of the
sample. The set of all possible samples in a domain D is denoted by S p. O

A sample (,, ,, v) can be used to represent the fact that the estimated value of
a feature at a particular time-point ¢, is v and that this estimation is available to a
process at ¢,.

Example 4.3.4 (Sample) Assume a knowledge process takes a fluent stream g as
input and generates a new fluent stream 4, where g and & represent two different
approximations of a feature f. The knowledge process could for example be a filter
which takes a stream of measurements of f and computes the weighted average of
several samples in order to filter out noise. If g contains a sample s; with valid
time 10 and available time 11 then this would represent that g contains an approx-
imation of f at time-point 10 which is available to the process at time-point 11.
Assume the processing of the sample by the knowledge process takes three time
units and that communicating this sample to the receiving process takes two time
units. The resulting sample s, would then have the valid time 10, since it is still
an approximation of f at time-point 10, while the available time would be 16. The
first sample would be represented by the tuple (11, 10, v) and the second sample by
the tuple (16, 10,V"). O

After having introduced samples we can now define a fluent stream as a stream
containing samples.

Definition 4.3.5 (Fluent stream) A fluent stream in a domain D = (O, T, P) is a
stream where each stream element is a sample from S p \ {no_sample}. The set
of all possible fluent streams in a domain D is denoted by Fp. O

The constant no_samp le can never be part of a fluent stream. Instead it is used
to represent that a query to a fluent stream does not have an answer. For example,
suppose a fluent stream g represents an approximation of the value of the feature
f over time. If g is queried about the value of f at time-point #, and it contains
no sample with valid time ¢, then the query can return no_sample to indicate this
lack of information. For two examples, see Definitions 4.3.8 and 4.3.12 below.

Note that any set of samples having unique available times corresponds to ex-
actly one sequence of samples totally ordered by their available times, and vice
versa. Therefore, any fluent stream {(,,, ty,, V1), . . ., {Za,, tv,» Vn)} Can be written as
a sequence [{ts,,t,, V1), ..., la,, tv,> Vay] Where ¢, < t,,, for each i < n. We will
use both the set and the sequence notation.

Example 4.3.5 (Fluent stream) The sets fi = {(1, 1,v), (3,2, v2), (4,5,v3)} and

= {(2,1,w), (4,1,vs), (5,1,v6)} are fluent streams. A visualization of the two
fluent streams is shown in Figure 4.2. O

39

CHAPTER 4. DYKNOW

f, <1,1,v;> <3,2,v,> <4,5,v5>

f, <2,1,v4> <4,1,vg> <5,1,vg>
| | | | | available
[[[I [time
1 2 3 4 5

Figure 4.2: Two example fluent streams.

To simplify later definitions a number of utility functions will now be defined.

To access the parts of a sample, three functions atime, vtime, and val are intro-
duced.

Definition 4.3.6 Let D be a domain and s = (t,,t,,v) be a sample in Sp. Then,

atime(s) £ t,, viime(s) £ 1, and val(s) £ v. |

Due to the incremental nature of a fluent stream, which is modeled by the avail-
able time, not all samples in a fluent stream are considered available at all times.
That a sample is not available could represent that it has not yet been generated
by the system. For example, in an implemented system a measurement made by a
sensor will not be available to any process until it is actually measured. To refer to
the available samples at a particular time we introduce the function available(f, t).

Definition 4.3.7 (Available samples) The function available(f,t): F x T + 25
defines the set of available samples at time-point ¢ for the fluent stream f:

available(f,1) = {s € f | atime(s) < 1} O

The last available sample in a fluent stream is the sample with the greatest
available time. In order to be able to reason about the past state of the system we
also need to know which sample was the last available one at a given time-point ¢.
We therefore introduce the function last_available(f, 1).

Definition 4.3.8 (Last available sample) The function last_available(f,t):
F xXT — S defines the last available sample at time-point ¢ for the fluent stream f:

no_sample if available(f,t) =0

. def
last-available(f,1) = argmax atime(s) otherwise.

s€available(f,t)
O

Note that the valid time is independent of the available time, so even if the
samples are totally ordered by available time they do not have to be ordered by
valid time.

Example 4.3.6 (Fluent stream cont.) Continuing Example 4.3.5 the last available
sample for f] at time-point 2 is (1, 1, v;) and it is (3, 2, v,) at time-point 3. The last

40

CHAPTER 4. DYKNOW

available sample for f, at time-point 1 is no_sample since it has no sample with
an available time less than or equal to 1. At time-point 3 the last available sample
is (2, 1, v4) and at time-point 4 it is (4, 1, vs). O

We are often interested in querying a fluent stream f to find the value of the
associated feature at a given (valid) time-point #. However, a fluent stream rarely
contains a sample for every possible valid time. One possible approximation would
be to query f for a sample with the highest valid time less than or equal to ¢,
among those samples that are available at the time when the query is asked 7,. A
knowledge process can then make the assumption that this value may persist until
t or use filtering, interpolation, or similar techniques to find a better estimate of the
true value at .

We will define this query function in three steps. First, we define the function
valid_before(f,t,1,), which returns all samples in the fluent stream f that are valid
before or at time ¢ and that are available at the query time .

Definition 4.3.9 (Valid before) The function valid_before(f,t,t,): F XT xT 28
defines the set of samples which are available at ¢, and have a valid time less than
or equal to t.

valid_before(f,t,1,) = {s € available(f,t,) | vtime(s) < t}]

Second, we introduce the function last_valid_before(f,1,t,), which returns
those samples in valid_be fore(f,t,1t,) that have the greatest valid time. Note that
since valid times are not guaranteed to be unique, this function must return a set of
samples rather than a unique sample.

Definition 4.3.10 (Last valid before) The function last_valid_before(f,t,t,):
F x T x T > 25 defines the set of samples which have the highest valid time
less than or equal to t among those samples that are available at 7.

def

last_valid_before(f,t,t;) =

0 if valid_before(f,t,t;) =0
{s € valid_before(f,t,1,;)
| vtime(s) = otherwise.
arg max vtime(s")}
s’evalid_be fore(f,t,t;)

]

Finally, we must select a unique sample among those returned by the function
last_valid_before(f,t,t,). We therefore introduce most_recent_at(f,t,t,). If there
is more than one candidate (all of which have the same valid time), the best choice
is likely to be the one with the highest available time. The knowledge process gen-
erating the stream would not have sent multiple samples with identical valid times
unless the later values were likely to provide approximations of higher quality.

41

CHAPTER 4. DYKNOW

Definition 4.3.11 (Most recent at) The value of the function most_recent_at(f,t, 1)
F X T x T +— S is the sample with the most recent valid time less than or equal
to ¢t among the available samples at ¢,.

most_recent_at(f,1,1,) E last_available(last_valid_before(f,t,1,),1,) |

Given a sample s in a fluent stream f, one would sometimes like to retrieve the
sample that arrived immediately before s at the receiving process, or determine that
s was in fact the first sample in f. We therefore introduce the function prev(f, s),
which makes use of the fact that the temporal domain is associated with a total
order and that samples in a fluent stream are guaranteed to have unique available
times.

Definition 4.3.12 (Previous sample) The function prev(f,s) : F X § +— S
defines the sample previous to s in the fluent stream f:

no_sample if s =no_sample
prev(f, s) o or —ds’ € f.atime(s") < atime(s)
arg max atime(s’) otherwise.

s'€f Aatime(s’)<atime(s)

O

Example 4.3.7 (Fluent stream cont.) Continuing Example 4.3.5 the previous sam-
ple of (3,2, v,) in f; is (1, 1, v;), whose previous sample is no_sample. O

Another function which is required by later definitions is availabletimes(f)
which defines the set of time-points when some sample was made available in a
fluent stream f. The function is easily extended to return the set of available times
for a set of fluent streams.

Definition 4.3.13 (Available times) The function availabletimes(f) : F + 27T
defines the set of available times of a fluent stream f:

availabletimes(f) = {atime(s) | s € f}.

The function availabletimes({fi, ..., fu}) : 2F + 27 gives the set of available
times for a set of fluent streams:

availabletimes({fi, ..., fx}) = availabletimes(f1)
U ... U availabletimes(f,).

m]
Example 4.3.8 (Fluent stream cont.) Continuing Example 4.3.5 the set of avail-

able times for fj is {1, 3,4} and for f it is {2,4,5}. The set of available times for
{fi,f}is{1,2,3,4,5}. o

42

CHAPTER 4. DYKNOW

4.3.3 Source

To model a primitive process a source is introduced. A source can for example
make the output of an external data producer or sensor available as streams. It pro-
vides a stream-based interface to the external producer. A source is represented by
a function from time-points to samples, where the function determines the output
of the source at each time-point. To represent that a source does not produce any
value at a particular time-point the constant no_sample can be used.

Definition 4.3.14 (Source) Let D = (O, T, P) be a domain. A source is a function
T — Sp mapping time-points to samples. The set of all possible sources in a
domain D is denoted by Rp. O

Example 4.3.9 (Source) Some example sources are those providing interfaces to
the GPS, IMU, and cameras on a UAV. Another example source is a process which
reads a GUI where a user can enter observations about the number of cars in a
region. O

4.3.4 Computational Unit

To model a special form of refinement process that has one output and only consid-
ers the most recent sample in each input stream a computational unit is introduced.
A computational unit, which may have an internal state, processes the input from
one or more streams, sample by sample, to compute a new stream. A computa-
tional unit with n > O input streams is associated with a partial function which
takes 1 time-point, n samples, and 1 value representing the internal state as in-
put and computes a pair consisting of a sample and a new internal state as output.
The number 7 is the arity of the computational unit and n + 2 is the arity of the
corresponding function. The initial internal state is no_value. The limitations
on the knowledge processes that can be defined using computational units might
seem restrictive, but for the applications developed so far it has matched the type
of stream processing required. For example, it is possible to create a computational
unit which has more than one output by computing samples with complex values.

Definition 4.3.15 (Computational unit) Let D = (O, T, P) be a domain. A com-
putational unit with arity n > 0, taking n inputs, is associated with a partial function
T x S8 XVp = §pxVp mapping a time-point, n samples, and a value representing
the previous internal state to an output sample and a new internal state. The set of
all possible computational units in a domain D is denoted by Cp. O

Example 4.3.10 (Computational unit) An addition function could be defined as
a computational unit whose input is a time-point, two integer-valued samples, and
an internal state. This computational unit would ignore the time-point and internal
state, returning a new sample whose value is the sum of the values of the input
samples together with a new (arbitrary) internal state. Other examples are Kalman
filters and functions which compute qualitative spatial relations between objects
given their positions. O

43

CHAPTER 4. DYKNOW

A computational unit processes its input streams incrementally. This leads to
the question of when to apply the function associated with the computational unit.
Applying the function requires one sample from each input stream, but there is
no guarantee that all input streams provide new samples with identical available
times. For example, one input stream could be sampled with a period of 100 ms,
another with a period of 60 ms, and a third could send samples asynchronously. In
this case, which combinations of samples should the function be applied to?

One possibility would be to wait until new samples have been produced for
every input stream before applying the function. However, this could lead to dis-
carding a large number of samples from some input streams. Therefore, we choose
to apply the function at every time ¢ where there is a new sample in some input
stream.

The next question to be answered is which samples the function should be
applied to. Given that the function is applied at time #, there must be a sample
with available time ¢ in at least one input stream, but not necessarily in all. For
those streams that do not provide a sample with an available time ¢, we can identify
two options: Either we use the constant no_sample to represent that there is no
sample, or we use the most recent sample in the input stream.

Since it is common for a computational unit to use the current value of each
input the second option is chosen. Since the time-point ¢ is provided as input
to the computational unit function, it is easy for it to filter out all those samples
which have an available time different from ¢ and get the same result as if the first
option had been chosen. The function join is introduced to provide a mathematical
definition of the sequence of inputs to a computational unit function.

Definition 4.3.16 (Join) Let D = (O, T, P) be a domain. The value of the function
Jjoin(fi,..., fn) : F}, = Fp is the stream which is the result of joining a sequence
of fluent streams fi,..., f,:

def

join(fi, ..., fn) = {{t,t,[s1,...,8.1) | t€ availabletimes({fi,..., fu})
A Vi.s; = last_available(f;, t)}.

O

Example 4.3.11 (Fluent stream cont.) Continuing Example 4.3.5, the result of
joining the fluent streams f; and f; is the stream [(1, 1, [(1, 1,v;),no_sample]),
(2,2, K1, 1,v1), (2, L,va)]), (3,3, [€3,2,v2), (2, L, va)]}, <4, 4, [{4,5,v3), {4, 1, vs)]),
(5,5,[¢4,5,v3),(5,1,v6)])]. A visualization of the result is shown in Figure 4.3. O

When a computational unit takes several inputs it is not always obvious what
the valid time of the computed value should be. If the inputs to a computational
unit have identical valid times then most likely the valid time of the output should
be the same. For example, if we have a computational unit that calculates the dis-
tance between two positions and the two inputs have the same valid times then
the distance sample would also have the same valid time. However, if the positions

44

CHAPTER 4. DYKNOW

f, <11vp> <3,2,v,> <4,5,v;>
f, <2,1,v,> <4,1,vg> <5,1,vg>
join(f, f,) [<1ve> <1, [<3.2v>, [<4,5v5>, [<4,5v5>,
I 172 no_sample] <2,1,v,>] <2,1,v,>] <4,1,vs>] <5,1,v¢>]
| [| | | available
[[[[[time
1 2 3 4 5

Figure 4.3: An example of two fluent streams and the result of joining them.

have different valid times, then what should the valid time of the result be? One op-
tion is to not compute any value unless the valid times are the same, or to estimate
the values of each input at the same valid time. Since this is inherently dependent
on the computation being made the choice has to be part of the computational unit
function.

4.4 Syntax

Stream-based knowledge processing middleware defines four types of processes.
Two of them, primitive and refinement processes, describe the processing made in
a knowledge processing application in the form of a static network of knowledge
processes and streams. The other two, mediation and configuration processes, de-
scribe how to change the network of knowledge processes over time. This section
describes the syntax of the language KPL which is used to specify a static net-
work of primitive and refinement processes, leaving mediation and configuration
processes for future work.

A DyKnow application consists of sources, computational units, stream gener-
ators, and streams. Sources provide an interface to external information producers
and make their output available as streams. This provides input to the application.
Each source is declared by a source declaration “source type name”, where name
is a source symbol.

The set of computational units represents computations that the system can
perform on streams. Compared to a source a computational unit is parameterized,
which allows the application of the same computation to different input streams.
For example, a parameterized speed estimation computational unit can be applied
to any stream of position estimates. Each computational unit is declared with
a computational unit declaration “compunit type name(argument types)’, where
name is a computational unit symbol. This computational unit can then be instan-
tiated with different input streams as many times as necessary.

Every source and every instantiation of a computational unit corresponds to a
knowledge process which has a stream generator. The streams created by a stream
generator often represent approximations of an attribute of an object or a relation
between objects. We therefore introduce structured names, labels, which consist of
a feature symbol and zero or more object symbols. Given a source s it is possible

45

CHAPTER 4. DYKNOW

to declare a stream generator with “strmgen label = s”, and given a computational
unit c it is possible to instantiate it and declare a stream generator with “strmgen
label = c(input stream terms)”. These declarations are called fluent stream genera-
tor declarations.

From a stream generator it is possible to create many streams, where each
stream is associated with its own policy. Every such stream is specified by a stream
term, which has the form “label with policy”. A stream created by a stream gen-
erator can be used either as an input to a computational unit or, in case not all
processes are fully integrated into DyKnow, as an output of the application. In the
first case, the stream term would be used in a stream generator declaration. In the
second case, the stream term would be used in a stream declaration of the form
“stream name = stream term”, where name is a stream symbol.

Example 4.4.1 (KPL Example) To illustrate the use of KPL a small knowledge
processing application where the speed of two cars are estimated will be used
throughout the rest of this chapter. There are two sources, pos_car1 and pos_car2,
providing information about the position of the two different cars and a computa-
tional unit SpeedEst which can estimate the speed of a car from a stream of position
estimations. An overview of the processes, stream generators, and streams related
to the first car is shown in Figure 4.4.

To specify the first source pos_carl and a fluent stream generator pos[cari]
from the source, the following declarations could be used:

source pos pos_cari
strmgen pos|car1] = pos_car1

The first statement declares that the symbol pos_car1 denotes a source which pro-
vides data of the type pos. The second statement declares a fluent stream gener-
ator pos[car1] which belongs to a primitive process instantiated from the source
pos_cari.

To specify the computational unit SpeedEst and a fluent stream generator speed[car1]
defined as SpeedEst applied to a fluent stream generated from pos[car1] by sam-
pling it every 200 time units, the following declaration could be used:

compunit speed SpeedEst(pos)
strmgen speed|[car1] = SpeedEst(pos[cari] with sample every 200)

The first statement declares that SpeedEst is a computational unit of arity 1 that
takes samples of the sort pos and computes samples of the sort speed. The
second statement declares a fluent stream generator speed[car1]. It states that the
fluent stream generator is part of a refinement process which is created by instan-
tiating the computational unit pos[car1]. The input to the refinement process is a
single fluent stream, generated by the stream generator denoted by pos[car1] using
the fluent stream policy “sample every 200”.

To specify that an output of the application is a stream speed_car1 generated by the
fluent stream generator speed[car1] between time-point 300 and time-point 400
the following declaration could be used:

46

CHAPTER 4. DYKNOW

SpeedEst(pos[carl])

pos[carl] speed[carl] speed_carl

Figure 4.4: The processes, stream generators, and streams related to car1 specified
in Example 4.4.1.

stream speed_car1 = speed[car1] with from 300 to 400

The processing of the information related to the second car is done in the same
fashion as for the first car. A source declaration and a fluent stream generator dec-
laration are used to specify a primitive process. Its stream generator makes the
position observations available to the application. Another fluent stream generator
declaration is used to specify a refinement process estimating the speed of the sec-
ond car. To give a second example of a fluent stream policy, the computational unit
is parameterized with a fluent stream whose delay is at most 100 time units and
where the samples are made available ordered by their valid times. Finally, a fluent
stream declaration is used to specify a stream containing the speed estimations as
an output of the application.

source pos pos_car2
strmgen pos|[car2] = pos_car2
strmgen speed|car2] = SpeedEst(pos[car2] with max delay 100,
monotone order)
stream speed_car2 = speed[car2] m]

4.4.1 Vocabulary

The vocabulary of KPL consists of the union of two sets of symbols, the domain
dependent symbols defined by a signature o and the KPL symbols.

Definition 4.4.1 (Signature) A signature o in KPLis atuple (O, 7 ,N,S,C,T,V),
where

e Ois a finite set of object symbols,

e ¥ is afinite set of feature symbols each associated with an arity > 0 defining
how many arguments it takes,

e N is a finite set of stream symbols,

e Sis a finite set of source symbols,

C is a finite set of computational unit symbols each associated with an ar-
ity > 0 defining how many arguments it takes,

47

CHAPTER 4. DYKNOW

e 7 is a set of time-point symbols, and

e V is a finite set of value sort symbols which must include the symbols
object and time.

The symbols are assumed to be unique and the sets of symbols are assumed to be
disjoint. O

Definition 4.4.2 (KPL Symbols) The KPL symbols are comma, equals, left and
right parenthesis, left and right bracket, and the set of KPL keywords {any, approx-
imation, change, compunit, delay, every, from, max, monotone, most, no, oo,
order, recent, sample, source, stream, strict, strmgen, to, update, use, with}. O

Example 4.4.2 (Signature) The signature of the knowledge processing applica-
tion in Example 4.4.1 consists of the following domain dependent symbols: The
two source symbols pos_carl and pos_car2, and the computational unit symbol
SpeedEst of arity 1. The object symbols car1 and car2 which represent the two
cars and the feature symbols pos and speed both of arity 1 which represent the
parameterized position and speed features. The stream symbols speed_car1 and
speed_car2 which represent the two output streams. The set of time-point symbols
which corresponds to the set of standard symbols for the integers in Z*. Finally,
the value sort symbols pos, speed, t ime, and object which represent the sets
of positions, speeds, time-points, and object constants respectively.
In formal notation, the signature o = ({car1, car2}, {pos/1, speed/1},

{speed_car1, speed_car2}, {pos_car1, pos_car2}, {SpeedEst/1}, Z*,

{pos, speed,time,object}).]

4.4.2 KPL Specification

A KPL specification of a knowledge processing application consists of a set of
labeled statements. A source declaration, labeled source, declares a source cor-
responding to a primitive process prototype (Section 4.4.3). A computational unit
declaration, labeled compunit, declares a parameterized computational unit corre-
sponding to a refinement process prototype (Section 4.4.3). A fluent stream gener-
ator declaration, labeled strmgen, declares a specific fluent stream generator cre-
ated from either a source or a computational unit corresponding to a knowledge
process (Section 4.4.4). A fluent stream declaration, labeled stream, declares a
fluent stream which is generated by the application as an output (Section 4.4.5).
These statements will be defined in detail in the following sections.

Definition 4.4.3 (KPL Specification) A KPL specification for a signature o in KPL
is a set of source declarations, computational unit declarations, fluent stream gen-
erator declarations, and fluent stream declarations for o. m]

The formal grammar for a KPL specification is defined as follows:

KPL_SPEC := (SOURCE_DECL

48

CHAPTER 4. DYKNOW

SOURCE_DECL
COMP_UNIT_DECL :

FLUENT_STREAM_GEN_DECL ::

FLUENT_STREAM_DECL

LABEL

FLUENT_STREAM_TERM

FLUENT_STREAM_POLICY :

STREAM_CONSTRAINT ::

APPROXIMATION_CONSTRAINT ::

CHANGE_CONSTRAINT

DELAY_CONSTRAINT :
DURATION_CONSTRAINT ::

ORDER_CONSTRAINT :

| COMP_UNIT_DECL

| FLUENT_STREAM_GEN_DECL

| FLUENT_STREAM_DECL)*
source SORT_SYMBOL SOURCE_SYMBOL
compunit SORT_SYMBOL
COMP_UNIT_SYMBOL

(" SORT_SYMBOL

(', SORT.SYMBOL)* 'Y
strmgen LABEL ' =’
SOURCE_SYMBOL
COMP_UNIT_SYMBOL

(" FLUENT_STREAM_TERM

(') FLUENT_STREAM_TERM)" ')’

stream STREAM_SYMBOL ' =’
FLUENT_STREAM_TERM
FEATURE_SYMBOL

('’ OBJECT_SYMBOL

(', OBJECT_SYMBOL)* ']’)?
LABEL

(with FLUENT_STREAM_POLICY)?
STREAM_CONSTRAINT

(’,) STREAM_CONSTRAINT)*
APPROXIMATION_CONSTRAINT
CHANGE_CONSTRAINT
DELAY_CONSTRAINT
DURATION_CONSTRAINT
ORDER_CONSTRAINT

no approximation

use most recent

any update

any change

sample every TIME_SYMBOL
max delay (TIME_SYMBOL | oo)
from TIME_SYMBOL

(to (TIME_.SYMBOL | 00))?

to (TIME_SYMBOL | 00)

any order

monotone order

strict order

4.4.3 Knowledge Process Declaration

A knowledge process declaration specifies a class of processes, closely related to
the concept of a knowledge process prototype in the DyKnow implementation. This

49

CHAPTER 4. DYKNOW

class can be instantiated to create concrete knowledge processes, as shown in the
following section.

Source Declaration

A source declaration specifies a class of primitive processes providing fluent streams
of a particular value sort. A source is generally only instantiated once, since its
stream generator can provide an arbitrary number of output streams for any pro-
cess interested in its output.

Definition 4.4.4 (Source declaration) A source declaration for a KPL signature
o =(0,F,N,S,C,7,V) has the form source v s, where v is a value sort symbol
in V and s is a source symbol in S. O

Example 4.4.3 (Source declaration) The source pos_car1 from Example 4.4.1 pro-
vides samples of the sort pos representing estimations of the position of car1. This
is specified by a source declaration source pos pos_cart. O

Computational Unit Declaration

A computational unit declaration specifies a class of refinement processes. The
specification includes the value sorts of its inputs and outputs, which implicitly
defines the arity of the computational unit. A computational unit can be instantiated
multiple times with different inputs and the stream generator for each instantiation
can provide an arbitrary number of output streams for any process interested in its
output.

Definition 4.4.5 (Computational unit declaration) A computational unit decla-
ration for a KPL signature o = (O, F,N,S,C,7T,V) has the form compunit vy
c(vi...,v,), where v, ..., v, are value sort symbols in V and c is a computational
unit symbol in C. O

Example 4.4.4 (Computational unit declaration) The SpeedEst computational
unit with arity 1 from Example 4.4.1 takes samples of the sort pos representing
estimations of the position of an object as input and computes a sample of the sort
speed representing an estimation of the speed of the same object. This is speci-
fied by the computational unit declaration compunit speed SpeedEst(pos). O

4.4.4 Fluent Stream Generator Declaration

Each fluent stream generator in a DyKnow application must be explicitly declared
in KPL.

In the current version of KPL, each knowledge process is assumed to have a
single output. Therefore, knowledge processes do not need to be explicitly instan-
tiated through a separate process declaration. Instead a fluent stream generator

50

CHAPTER 4. DYKNOW

declaration can be used to specify both a generator and the knowledge process in-
stance with which it is associated. The name given to the fluent stream generator is
a label consisting of a feature symbol and zero or more object symbols, which can
be used to indicate that the output of the associated process is an approximation of
the value of the given feature instance over time.

Definition 4.4.6 (Label term) A label term for a KPL signature o = (O, ¥, N,
S, C, T, V) has the form f[oy,...,0,], where n > 0, f is a feature symbol in ¥
with arity n, and o4, . .., 0, are object symbols in O. If n = 0 then the brackets are
optional. O

Example 4.4.5 (Label term) Using the object and feature symbols from Exam-
ple 4.4.1, two example labels are pos[car1] and speed[car2]. These labels could
represent that fluent streams generated by the denoted fluent stream generators are
approximations of the position of car 1 and the speed of car 2 respectively. O

A fluent stream generator can be declared in two different ways in KPL. The
first way is to declare a fluent stream generator from a source, which corresponds to
a primitive process. The other way corresponds to declaring a refinement process
by instantiating a computational unit with fluent stream terms.

Definition 4.4.7 (Fluent stream generator declaration) A fluent stream genera-
tor declaration for a KPL signature o = (O, F, N, S, C, T ,V) is any of the follow-
ing:

e strmgen / = s, where [is a label term for o and s is a source symbol in S.

e strmgen [= c(wy,...,w,), where [is a label term for o, n > 0, c is a
computational unit symbol in C with arity n, and wy, ..., w, are fluent stream
terms for o. O

Example 4.4.6 (Primitive process) Continuing Example 4.4.1, a fluent stream gen-
erator pos[car1] of a primitive process instantiated from the source pos_car1 can be
specified as:

strmgen pos|[car1] = pos_cari O

Example 4.4.7 (Refinement process) Continuing Example 4.4.6, the following
statement can be used to specify a fluent stream generator speed|car1] belong-
ing to a refinement process instantiated from the SpeedEst computational unit with
an input fluent stream sampled from pos[car1] every 200 time units:

strmgen speed[car1] = SpeedEst(pos[car1] with sample every 200) O

51

CHAPTER 4. DYKNOW

4.4.5 Fluent Stream Declaration

A fluent stream and its properties are specified by a fluent stream term. Each
fluent stream term specifies the label of the fluent stream generator which provides
the stream with content and a fluent stream policy specifying the constraints on
the stream. A fluent stream can either be an input to a computational unit or an
output of a knowledge processing application. A fluent stream declaration is used
to specify a fluent stream generated as output by an application.

Fluent Stream Policy Specification

A fluent stream policy is a set of fluent stream constraints which specifies the prop-
erties of a fluent stream. A constraint can for example specify a regular sampling
period or the duration of a fluent stream. There are currently five different con-
straint types: Approximation constraints, change constraints, delay constraints,
duration constraints, and order constraints. Each of these is described in detail
below.

Definition 4.4.8 (Fluent stream policy specification) A fluent stream policy spec-
ification for a KPL signature o has the form ¢y, ..., c,, where n > 0 and each ¢; is
either an approximation constraint specification, a change constraint specification,
a delay constraint specification, a duration constraint specification, or an order con-
straint specification for o as defined below. O

Change Constraint Specification

A change constraint restricts the relation between consecutive samples in a fluent
stream. Each sample except the first one must correspond to a change relative to
the previous sample according to the change constraint. This restricts what samples
may be added to a fluent stream. The change constraints defined in KPL are:

e Any update: Either the value or one of the time stamps of a sample must
be different compared to the previous sample. This is trivially true since the
available times must be different.

e Any change: Either the value or the valid time of a sample must be different
compared to the previous sample.

e Sample every ¢ time units: The difference in valid time between each pair
of consecutive samples should be equal to the sample period ¢. This change
constraint is often referred to as a sample change constraint.

Definition 4.4.9 (Change constraint specification) A change constraint specifi-
cation for a XPL signature o = (O,F,N,S,C,7,V) has either the form any
update, the form any change, or the form sample every ¢, where 7 is a time-point
symbol in 7". O

52

CHAPTER 4. DYKNOW

Example 4.4.8 (Change constraint example) A typical example is an applica-
tion that needs a fluent stream where samples are added with a certain sample
period, for example every 100 time units. This would be specified using a sample
change constraint sample every 100. O

If no change constraint is specified then it is the same as specifying the any
update constraint, any update.

Delay Constraint Specification

A delay constraint restricts the difference between the valid time and the available
time of each sample in a fluent stream. This specifies the maximum delay that
can be accepted for a fluent stream. The delay of a sample does not have to be
caused by processing and communication, it could also be intentional to satisfy
other constraints on a fluent stream. For example, it could be caused by waiting for
delayed or missing samples.

Definition 4.4.10 (Delay constraint specification) A delay constraint specifica-
tion for a KPL signature o = (O, F,N,S,C,7,V) has the form max delay 7,
where ¢ is either the keyword oo or a time-point symbol in 7. O

Example 4.4.9 (Delay constraint example) A typical example of a delay con-
straint is to specify that the maximum acceptable delay is 100 time units. This
would be specified by a delay constraint max delay 100. O

Not specifying any delay constraint is equivalent to specifying an infinite delay,
max delay oo.

Duration Constraint Specification

A duration constraint restricts the allowed valid time of samples in a fluent stream.

Definition 4.4.11 (Duration constraint specification) A duration constraint spec-
ification for a KPL signature o = (O, F, N, S,C, 7, V) either has the form from ¢,
to #;, the form from ¢, or the form to f;, where #; is a time-point symbol in 7~ and
t; is either the keyword oo or a time-point symbol in 7. O

Example 4.4.10 (Duration constraint example) A typical example of a duration
constraint is to specify that the interesting valid times of a fluent stream are those
between time-point 300 and time-point 400. This would be specified with a dura-
tion constraint from 300 to 400. O

If the start time or the end time is left out then there is no restriction on it. If 0 is
the first time-point, then to ¢ is equivalent to from O to r and from ¢ is equivalent to
from 7 to oo. If no duration constraint is specified then it is the same as specifying
an infinite duration.

53

CHAPTER 4. DYKNOW

Order Constraint Specification

The definition of a fluent stream requires that the samples are ordered by available
time, but the valid times of the samples may have any order. To specify a restriction
on the relation between the valid times of consecutive samples an order constraint
is introduced. The possible order constraints are:

e Any order: No restriction on the order of samples according to valid times.

e Monotone order: Each sample must have a valid time not less than the valid
time of the sample before it.

e Strict monotone order: Each sample must have a valid time greater than the
valid time of the sample before it.

Definition 4.4.12 (Order constraint specification) An order constraint specifica-
tion for a KPL signature o has either the form any order, the form monotone order,
or the form strict order. O

Example 4.4.11 (Order constraint example) An order constraint which speci-
fies that the samples in a fluent stream should be ordered by their valid times and
that the fluent stream is allowed to contain more than one sample with the same
valid time is written monotone order. m]

If a sample change constraint is specified for a fluent stream then it implies a
strict monotone order constraint. If no order constraint is specified then it is the
same as specifying an any order constraint, any order.

Approximation Constraint Specification

An approximation constraint restricts how a fluent stream may be extended with
new samples in order to satisfy its policy. The idea is that if the fluent stream gen-
erated by a knowledge process does not contain the appropriate samples to satisfy
a policy, then a fluent stream generator could approximate the missing samples
based on the available samples. The approximation constraints defined in KPL are:

e No approximation: No approximated samples are allowed to be added to a
fluent stream.

e Use most recent: Suppose other parts of a fluent stream policy require the
existence of a sample with a particular valid time #, to be made available
at or before #7,. ”Use most recent” means that if no such sample arrives at
the fluent stream generator, it is allowed to generate an approximate sample
having the same value as the sample with the highest valid time less than or
equal to ¢, among the available samples at t,.

In order for the stream generator to be able to determine at what valid time a
sample must be produced, this constraint can only be used in conjunction with a
complete duration constraint specification of the form from ¢, to #, and a change

54

CHAPTER 4. DYKNOW

constraint specification of the form sample every ¢;. In order for the stream gen-
erator to determine at what available time it should stop waiting for a sample and
produce an approximation, this constraint must be used in conjunction with a delay
constraint specification of the form max delay 7;.

Definition 4.4.13 (Approximation constraint specification) An approximation
constraint specification for a KPL signature o has either the form no approximation
or the form use most recent. O

Example 4.4.12 (Approximation constraint example) A typical example is when
a process needs a fluent stream containing samples with a certain sample period and
it would like the fluent stream generator to use the most recent value in case a sam-
ple is missing. This would be specified by an approximation constraint use most
recent combined with a sample change constraint and a delay constraint. O

If a policy does not contain an approximation constraint then it is the same as
specifying the no approximation constraint, no approximation.

Fluent Stream Term

A fluent stream term specifies a single fluent stream. The term consists of a label
denoting the fluent stream generator which generates the stream and a fluent stream
policy specification which specifies the desired properties of the stream.

Definition 4.4.14 (Fluent stream term) A fluent stream term for a KPL signature
o has the form [with p, where [is a label term for o and p is a fluent stream policy
specification for o. If the policy p is the empty string then the keyword with can
be left out. O

Example 4.4.13 (Fluent stream term) A fluent stream generated by the fluent
stream generator labeled pos[car1] having the property of being sampled every
200 time units could be specified by “pos[car1] with sample every 200”. O

Fluent Stream Declaration

A fluent stream declaration specifies a fluent stream that is generated as an output
of a knowledge processing application.

Definition 4.4.15 (Fluent stream declaration) A fluent stream declaration for a
KPL signature o = (O, F, N, S,C, 7, V) has the form stream n = w, where n is a
stream symbol in NV and w is a fluent stream term for o O

Example 4.4.14 (Fluent stream declaration) The fluent stream speed_car1 from
Example 4.4.1 is generated from the fluent stream generator speed[car1] with a
policy stating that the duration of the stream is between time-point 300 and time-
point 400. This can be specified by the following fluent stream declaration:

stream speed_car1 = speed[car1] with from 300 to 400.]

55

CHAPTER 4. DYKNOW

4.5 Semantics

In the preceding sections, we have defined two important entities.

A knowledge processing domain specifies the set of objects, time-points, and
simple values that are available in a particular knowledge processing application.
This indirectly defines the possible complex values, the sources and computational
units that could potentially be defined over these values, and the fluent streams that
they could produce.

A KPL specification defines symbolic names for a set of sources and computa-
tional units. It also specifies how these sources and computational units are instan-
tiated into processes, how the inputs and outputs of the processes are connected
with fluent streams, and what policies are applied to these streams.

What remains is to define an interpretation structure for a KPL specification and
to define which interpretations are models of the specification. However, while the
KPL specification defines a specific symbol for each computational unit available
for use in the application, it does not define the actual function associated with
this symbol. Providing a syntactic characterization of this function in KPL would
be quite unrealistic, as it would require a full description of an arbitrarily complex
functionality such as image processing. We therefore assume that the interpretation
of the computational unit symbols is provided in a knowledge process specification.

Definition 4.5.1 (Interpretation) Let o = (O,F,N,S,C,7,V) be a signature
and D = (O, T, P) be a domain. An interpretation I of the signature o to the
domain D is a tuple {Ip, Ir, Iy, Is, IT, Iy), where:

e [y is a function mapping each object symbol in O to a distinct object in O,

e [is a function mapping each feature symbol with arity n in ¥ to a function
0" — Fp mapping each instantiated feature to a fluent stream in Fp,

e [y is a function mapping each stream symbol in A to a fluent stream in Fp,
e [y is a function mapping each source symbol in S to a function in Rp,

e [is a function mapping each time-point symbol in 7~ to a distinct time-point
in T, and

e [y is a function mapping each value sort symbol in V to a set of simple
values in Wp. O

Time-point symbols in 7 are generally assumed to be interpreted in the stan-
dard manner and associated with an addition operator +, a subtraction operator —,
and a total order <.

Definition 4.5.2 (Knowledge process specification)Let o = (O, F, N, S,C,7,V)
be a signature and D = (O, T, P) be a domain. Then, a knowledge process specifi-
cation K¢ for o and D is a function mapping each computational unit symbol with
arity n in C to a computational unit function in Cp with the arity n + 2. O

56

CHAPTER 4. DYKNOW

Example 4.5.1 (Interpretation and knowledge process specification) An exam-
ple interpretation of the signature oo = (O, 7, N, S,C, 7T, V) from Example 4.4.2
on page 48 to the domain D = (O, T, P) from Example 4.3.1 on page 37 is the tuple
<10, IF, IN, [S 5 IT, Iv>, where

e [p maps carl to 03 and car2 to oy4.

e [maps pos and speed to unary functions. The unary function associ-
ated with pos maps o3 (carl) to the fluent stream f; = [(250,200, p),
(325,300, p2), (430,400, p3), (505,500, ps)], 04 (car2) to the fluent stream
> = [{150, 100, pg), (250, 180, p7), (480,400, ps)], and all other objects to
the empty fluent stream. The unary function associated with speed maps
03 to the fluent stream f3 = [(510,400, s3)], 04 to the fluent stream f; =
[(300, 100, s¢)], and all other objects to the empty fluent stream.

e [y maps speed_car1 to the fluent stream f5 = [(345, 300, p,),{(460, 400, p3)]
and speed_car2 to the fluent stream fz,

e /g maps pos_carl and pos_car2 to unary functions. The function associ-
ated with pos_car1 maps 250 to (250, 200, p;), 325 to (325,300, p,), 430 to
(430, 400, p3), 505 to (505, 500, p4), and all other time-points to no_sample.
The function associated with pos_car2 maps 150 to (150, 100, pes), 250 to
(250, 180, p7), 480 to (480,400, ps), and all other time-points to no_sample.

e The standard interpretation is assumed for the temporal symbols in 7, and

e [y maps pos to {py,..., pio}, speed to {si,..., sy}, object to {oy, ...,
019}, and t ime to Z™.

An example knowledge process specification for the same signature is K¢
which maps SpeedEst to the computational unit ¢ taking a position value p; as
input and computing the speed value s; as output. O

4.5.1 Model

A KPL specification s is a set of source declarations, computational unit decla-
rations, fluent stream generator declarations, and fluent stream declarations. To
define whether an interpretation satisfies a KPL specification given a knowledge
process specification the relation [is introduced. If an interpretation satisfies a
KPL specification given a knowledge process specification then it is said to be a
model of the specification.

Definition 4.5.3 (Model) Let o be a signature, D be a domain, / be an interpreta-
tion of o to D, K¢ be a knowledge process specification for o and D, and s be a
KPL specification for o. Then, I is a model of s given K¢, written I, K¢ [s, if and
only if for every declaration d € 5,1, K¢ = d. O

57

CHAPTER 4. DYKNOW

4.5.2 Knowledge Process Declaration

A knowledge process declaration constrains the value domain of the samples pro-
duced by any instantiated knowledge process. A computational unit declaration
also constrains the value domains of the fluent streams which can be used to in-
stantiate refinement processes from the computational unit. To extract the values
used by a set of samples the function values is introduced.

Definition 4.5.4 Let o be a KPL signature, I = (lp, I, Iy, Is, I, Iy) be an inter-
pretation for o, K¢ a knowledge process specification for o, and d be a knowledge
process declaration for o. Then, I, K¢ = d according to:

I, K¢ E source v s iff values({Is (s)(t) | t € T}) C Iy(v)

I, K¢ E compunit vy c(vy ..., v,) iff
Kc(c)isatotal function T X S| X ... XS, XV SoxV
where {s € Sp | val(s) € Iy(v;)} € S; foreachi e {1,...,n}

and values(S¢) C Iy(vo)

i

Definition 4.5.5 (Values) The function values(s) : 25 +~ 2V defines the set of
values used by a set of samples s.

values(s) = {val(sa) | sa € s A sa # no_sample}]

Example 4.5.2 The source declaration “source pos pos_carl” is satisfied by the
interpretation / from Example 4.5.1 since the set of values of the function associ-
ated with pos_car1 is {pi, p2, p3, p4} which is a subset of Iy(pos) = {pi1, ..., P10}

O

4.5.3 Fluent Stream Generator Declaration

The task of a fluent stream generator is to take the output of a source or a computa-
tional unit and provide a facility where other processes can ask for output streams
adapted to given policies. In the declarative KPL language, we assume that there is
a distinct adapted output stream for each occurrence of a fluent stream term, such
as “pos[car1] with sample every 200”. To improve modularity, the adaptation of
the raw output of a knowledge process will be handled in the semantics of such
fluent stream terms. The semantics of a fluent stream generator declaration there-
fore becomes quite simple, essentially describing how the unadapted input to the
generator depends on the knowledge process which it is a part of.

Each fluent stream generator is associated with a label term consisting of a
feature symbol and possibly a sequence of object symbols. For convenience we
choose to let this label term denote a fluent stream corresponding to the input to the
associated fluent stream generator. We introduce the following shorthand notation
for evaluating a complete label term in an interpretation.

58

CHAPTER 4. DYKNOW

Definition 4.5.6 Let o be a KPL signature, I = (lp, I, Iy, Is, I, Iy) be an inter-
pretation for o, and f[oj,...,0,] be a label term for o. Then,

def
eval_label(l, flo1,...,0n]) = Ir(f)o(01),...,10(0)) m
A fluent stream generator declaration associates a label with the fluent stream
generator for an instance of a source or a computational unit. In the case of a
source, the fluent stream denoted by the label must be equivalent to the function of
time denoted by the source symbol, which can be defined as follows:

Definition 4.5.7 Let o be a KPL signature, [= {lp, I, Iy, Is, IT, Iy) be an interpre-
tation for o, K¢ be a knowledge process specification for o, s be a source symbol
for o, and [be a label term for o-. Then,

I,Kc = strmgenl=s iff evallabel(l,]) =
{sa | At.Is(s)(t) = sa A sa # no_sample}

]

A computational unit calculates a new output sample whenever there is a new
input sample in either of its input streams. This is equivalent to calculating an
output sample for each tuple of samples in the join of its input streams. For the
purpose of modeling, each sample calculation requires as input the current time,
the sequence of input samples, and the previous internal state, generating as output
a tuple containing a new sample and the new internal state. To evaluate a fluent
stream term in a given interpretation the function eval _fsterm is used. It will be
defined in the next section. Since there might be several fluent streams which
satisfies a fluent stream term eval_fsterm returns a set of fluent streams.

Definition 4.5.8 Let o be a KPL signature, I = (I, I, Iy, Is, I, Iy) be an inter-
pretation for o, K¢ be a knowledge process specification for o, [be a label term for
o, ¢ be a computational unit symbol for o, fsterm,, ..., fsterm,, be fluent stream
terms, and iy = no_value be the initial internal state for c. For brevity, we intro-
duce the notation s to denote a sequence of samples of appropriate length for the
context in which it appears. Then,

I, K¢ E strmgen [= c(fsterm,, . .., fsterm,,) iff eval_label(1,]) = {sy, ..., Sp}
where there exists f; € eval_fsterm(l, fsterm,), ..., fu € eval_fsterm(I, fsterm,,,)
such that join(fi,..., fin) = [{t1, 11, S1)s -« s {tus tny Su)]
and for eachj € {1,...,n},(s;,i;) = Kc(c)(#),s},i;-1)

O
Example 4.5.3 (Fluent stream generator) The fluent stream generator declara-
tion “strmgen pos[car1] = pos_car1” is satisfied by the interpretation I from Ex-

ample 4.5.1, since Ir(pos)(Ip(car1)) = f; which contains the same samples as the
function denoted by pos_cart. O

59

CHAPTER 4. DYKNOW

4.5.4 Fluent Stream Declaration

A fluent stream term refers to a stream created by one particular subscription to a
fluent stream generator. Such a stream is generated from the output of a knowledge
process by actively adapting it to a policy, and in certain cases, this can be done
in more than one way. We therefore take care to provide an interpretation of a
fluent stream term as one from a set of possible streams, giving implementations
some freedom in choosing how policies are applied while still ensuring that all
constraints are met.

To define the semantics of a fluent stream term we need to introduce the sub-
stream relation C. It is similar to, but not the same as the subset relation since it
takes the available time into account. The intuition is that if a fluent stream f” is a
substream of f then f’ could be generated from f. A stream f” is a substream of
a fluent stream f iff for every sample in f’, f contains a sample with same value
and valid time but an available time which is equal to or earlier than the valid time
of the sample in f’. The reason for this definition is that a generated fluent stream
might have different available times than the original fluent stream. However, it
may never change the value or the valid time of a sample.

Definition 4.5.9 (Substream relation) A fluent stream f” is a substream of a flu-
ent stream f, written f' C f, iff V(¢ 1,,v) € f* 3t,. [ty < 1, ALy, 1, V) € f]. O

Example 4.5.4 (Substream relation) Using the fluent streams from the interpre-
tation / in Example 4.5.1, the fluent stream f5 = [(345, 300, p,), (460,400, p3)]isa
substream of the fluent stream f; = [(250, 200, p;), (325, 300, p»), (430,400, p3),
(505, 500, p4)] since each of the two samples in f5 have corresponding samples in
J1 where only the available time differs and is earlier in fj. O

A fluent stream term consists of a label term / and a (possibly empty) policy
p. The interpretation of the label term, eval_label(l, 1), is a fluent stream represent-
ing the unadapted output provided to the associated fluent stream generator. The
interpretation of the fluent stream term, eval_fsterm(l,[with p), is defined in two
steps.

First, there are cases where new samples must be added to the stream in order
to approximate missing values. The function extend(f, p) is introduced for this pur-
pose. The intuition is that it computes the valid times when the fluent stream must
have values in order to satisfy the policy and approximates any missing values.

Second, a maximal set of samples which satisfies the policy p must be filtered
out from the stream, leaving only the final adapted stream. We define maximal
in terms of set inclusion. For a stream to be maximal it must not be a subset of
another substream of the extended stream which satisfies the same policy p.

Definition 4.5.10 Let o be a KPL signature, I = (Ip, IF, Iy, Is, IT, Iy) be an inter-
pretation for o, and [with p be a fluent stream term for o. The interpretation of

60

CHAPTER 4. DYKNOW

the fluent stream term, eval_fsterm(I, [with p) is then defined as follows:
eval_fsterm(l, [with p) = {f € satisfying(I, [with p)
| =3f" € satisfying(I,l with p).f C '}
satisfying(I, [with p) = {f € extend(eval_label(1,1),p) | I, f E p}

{{tas v, v) | if use most recent € p
n>08=b+snAnt,<e Ads.sample every s € p
extend(f, p)={ NMa =1, +d Adb,efrombtoe € p

Av = most_recent_at(f,t,,t,)} Add.maxdelayd € p

f otherwise.
O
The policy associated with a fluent stream term is used to filter out all streams

which are not valid according to the policy. This is used to constrain the set of
streams that can be generated by a specified knowledge processing application.

Definition 4.5.11 Let o be a KPL signature, I = (Ip, I, Iy, Is, I, Iy) be an inter-
pretation for o, f be a fluent stream, and p be a fluent stream policy specification
for 0. Then, I, f | p according to:
I,fEc,....ch, iff LLfEciand ... andl,fEc,
I, f E no approximation iff true
I, f E use mostrecent iff true (handled by extend)
I, f = any update iff true
I, f E any change iff Vs,s" € f[s" = prev(f,s)
— viime(s) # vtime(s") V val(s) # val(s")]
I, f E sampleevery ¢ iff Vs,s € f[s" = prev(f,s)
— vtime(s) — vtime(s") = I7(?)]
L fEfromtstor, iff Vse f[Ur(ty) < vtime(s) < Ir(t)]
L fEfromtstooo iff Vse f[Ir(ty) < vtime(s)]
I, f Emaxdelay ¢t iff Vs e f [atime(s) — vtime(s) < I7(1)]
I, f Eanyorder iff true
I, f = monotone order iff Vs,s" € f [s" = prev(f,s) — vtime(s') < vtime(s)]
I, f = strictorder iff Vs,s € f[s" = prev(f, s) — vtime(s") < vtime(s)]

]

Example 4.5.5 (Fluent stream policy) The fluent stream policy specification
“sample every 100" is satisfied by the fluent stream f; in the interpretation / from
Example 4.5.1, since the difference between each pair of valid times is exactly 100
time units. The same fluent stream does not satisfy the policy specification “max
delay 40” since the first sample has a delay of 50 time units. O

61

CHAPTER 4. DYKNOW

Example 4.5.6 (Fluent stream term) Let f = [(280,200, p;), (480,400, p3)] be
a fluent stream. Using the interpretation / from Example 4.5.1, the fluent stream
f is one of the possible streams that can be generated from the fluent stream term
”pos[car1] with sample every 200”. First of all f is a substream of the stream f;
denoted by the label / as shown in Example 4.5.4. Second, f satisfies the policy
p since the difference between each pair of valid times is exactly 200 time units.
Finally, it is not possible to add any more of the samples from f; to f without
violating the policy p. O

Finally, we define the semantics of a stream declaration which is quite trivial
given the previous definitions.

Definition 4.5.12 Let o be a KPL signature, I = (lp, I, Iy, Is, I, Iy) be an in-
terpretation for o, K¢ be a knowledge process specification for o, n be a stream
symbol for o, [be a label term for o, and p be a fluent stream policy specification.
Then,

I,Kc = streamn = [with p iff Iy(n) = eval_fsterm(1, [with p) |

4.6 Summary

This chapter has described a concrete stream-based knowledge processing middle-
ware framework called DyKnow. DyKnow defines two types of entities, objects
and features. Since the value over time of a feature can not be completely known
it is approximated by a fluent stream.

It is important to realize that there is not a single best approximation which
can be used in all situations. Rather, what is an appropriate approximation will
depend on the current task. When executing some tasks it is more important to
have the most current information, even though it might be more uncertain and
might contain occasional errors. This is usually the case for tasks controlling a
piece of equipment by continuously making small corrections. Even if a correction
is wrong once in a while it does not usually have any severe consequences. In other
tasks, for example those involving collecting information which is to be used at a
later date, it is more important that the information is as accurate as possible. In
this case it is better to use potentially computationally expensive algorithms which
correlate the value with other observations in order to estimate the best possible
value. Some applications might even have to switch between tasks having different
characteristics during execution depending on the current situation. Therefore it is
important to be able to create many parallel approximations, to configure these
approximations, and to switch between the approximations during execution.

To describe knowledge processing applications creating approximations in the
form of fluent streams a formal language was introduced. The DyKnow knowledge
processing language KPL is used to write declarative specifications of knowledge
processing applications. The domain, the syntax, and the semantics of KPL was
formally defined and exemplified.

62

Chapter 5

A DyKnow CORBA
Middleware Service

5.1 Introduction

In this chapter we will describe the DyKnow CORBA middleware service, which
supports the implementation of distributed knowledge processing applications ac-
cording to KPL specifications.

As shown in the previous chapter, a knowledge processing application in Dy-
Know conceptually consists of a set of knowledge processes connected by streams
satisfying policies, where each knowledge process is an instantiated source or com-
putational unit (Figure 5.1). The knowledge processes provide stream generators
which create streams. The KPL language, also introduced in the previous chap-
ter, can be used to provide a declarative specification of a DyKnow application.
The DyKnow service, in turn, takes a set of KPL declarations and sets up the re-
quired processing and communication infrastructure to allow knowledge processes

3 Legend

computational
unit

Source B

fluent stream
generator

Source C — fluent stream

HEH

Figure 5.1: A conceptual view of a DyKnow knowledge processing application
consisting of a set of sources and computational units consuming and producing
fluent streams.

63

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

. ; Knowledge
‘ Client <—>| DyKnow Service <—>H Processg

Figure 5.2: A conceptual overview of the DyKnow middleware service.

to work according to specification in a distributed system.

The DyKnow middleware service can take a complete KPL application specifi-
cation as its input, resulting in a DyKnow application where the set of knowledge
processes and the set of streams connecting them are static. It is also possible to
specify an initial set of KPL specifications and then incrementally add new decla-
rations.

To support distributed real-time and embedded systems, such as autonomous
unmanned aerial vehicles, the DyKnow middleware service is implemented as a
service in the Common Object Request Broker Architecture (CORBA) (Object
Management Group, 2005, 2008). CORBA is an object-centric middleware where
object-oriented applications can easily be developed disregarding the fact that ob-
jects can be implemented in any language and hosted on any computer in the net-
work. As will be seen in the following section, another benefit of using CORBA is
that we can build upon existing CORBA services, for example the naming service
and the real-time notification service.

5.2 Overview

The DyKnow service supports the generation of streams from a set of knowledge
processes, where the knowledge processes are not part of the DyKnow service
itself. A process which interacts with a knowledge process through the DyKnow
service is called a client (Figure 5.2). Since many knowledge processes subscribe
to the output of other processes a knowledge process is often also a client.

A client can control a knowledge processing application by creating and de-
stroying knowledge processes and accessing the output of existing knowledge pro-
cesses through their stream generators. Creating and destroying stream generators
corresponds to adding and removing stream generator declarations from an appli-
cation specification.

Sources and parameterized computational units can be registered with the Dy-
Know service as knowledge process prototypes. Each registration corresponds to a
source or computational unit declaration in KPL. A knowledge process prototype
can then be instantiated to create knowledge processes. When a knowledge process
is created it registers its stream generators with the service. It is also possible for
already existing knowledge processes to register their stream generators directly
with the middleware service without having to be instantiated. Each registered
stream generator corresponds to a fluent stream generator declaration in KPL.

Conceptually, a stream is created by a stream generator which is part of a

64

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

DyKnow Service Knowledge Process Host

Client Knowledge Process || Knowledge Process
l Factory Prototype
StreamProxy >
Stream Generator |
Manager Stream Generator

Event Channel

Figure 5.3: A high level overview of the interfaces and components of the DyKnow
middleware service and with whom they interact.

knowledge process. The stream generator is responsible for making sure that the
policy associated with the stream is satisfied, including approximating values if
necessary. In a practical implementation special care has to be taken since values
might be lost during communication over the network and must be approximated
on the receiving side. It is also the case that the available time has to be assigned
on the client side, when the information has been delivered in the potentially dis-
tributed system. This means that at least part of the policy must be implemented
on the client side. We have therefore chosen to implement a stream proxy which
is used on the client side and which ensures that the received stream satisfies the
associated policy. Using a stream proxy makes it possible for a stream generator
to broadcast samples over a CORBA event channel to distribute information to the
clients. This decouples clients from stream generators.

In practice, it is unrealistic that each knowledge process is realized as a sepa-
rate operating system process. DyKnow therefore supports the possibility for an
operating system process to implement many knowledge processes. Such a process
is called a knowledge process host.

A CORBA middleware service is defined by a set of interfaces. Some of these
interfaces describe components of the service itself while the rest are interfaces to
client code. To realize these functionalities the DyKnow service defines five inter-
faces: Stream Generator, Stream Generator Manager, Knowledge Process Factory,
Knowledge Process Prototype, and Stream Proxy. Of these the service implements
the Stream Generator Manager, the Knowledge Process Factory, and the Stream
Proxy interfaces. The other two are used by application programmers to imple-
ment knowledge processes which can be used with the service. An overview of the
different interfaces and components is shown in Figure 5.3.

65

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

5.2.1 DyKnow Service Dependencies

The DyKnow middleware service is dependent on four other services: A nam-
ing service, an event notification service, a time service, and an alarm service.
The naming and the event notification services are provided by the TAO/ACE
CORBA (Object Computing, Inc., 2003) implementation we use while the other
two are designed and implemented by us.

Naming Service

Each CORBA object has a unique identity in the form of an interoperable object
reference (IOR), which acts as a pointer to the object. One issue in an object-
oriented middleware is how a client gets a pointer to a specific object. If the object
is created by the client then it is not a problem, but in a distributed system the object
may be created by anyone, anywhere. For example, a client might want to access
a sensor, which is associated with an object providing an interface to it created by
the program controlling the sensor. A common solution to this problem is to use a
naming service which associates a name with an object IOR. This allows a client
that knows the name of an object to look up the pointer to the object in the naming
service. If no object exists with the desired name, then it either has to wait for the
object to be created by someone else or create it itself. A name is usually a string,
but more elaborate structures are also possible.

Event Notification Service

An event notification service implements an event channel where producers can
publish data in the form of events through a consumer proxy interface and con-
sumers subscribe to data through a supplier proxy interface. The events can be of
any CORBA data type. An event channel supports many-to-many communication
since there can be many producers and many consumers of events. Depending on
the implementation the event channel may support different types of filtering and
quality of service guarantees. DyKnow uses the event channel to deliver samples
to subscribers. By using the filtering functionality the content of several streams
can be distributed through a single event channel.

Time Service

A time service provides a global clock that keeps track of the current time. The
time service is used to time-stamp samples. Since the time-stamps come from the
same global clock they can be compared, which is essential when synchronizing
streams as described in Section 7.8.

Alarm Service

In order to provide a stream generator with regular timeouts, which are needed to
implement support for sample change constraints, an alarm service is used. An

66

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

alarm service supports the creation of timers that go off either at a specific time-
point or with a particular timeout interval. The timeout should be synchronized
with the time service as accurately as possible. This is important for the imple-
mentation of sampled streams.

5.3 Knowledge Process Host

Each knowledge process must be hosted and executed by some operating system
process in the distributed system. This process is called the host of the knowledge
process. From the point of view of the DyKnow service, it does not matter where a
knowledge process is hosted as long as DyKnow can access the stream generators
of the process. From an execution point of view it does make a difference since the
delay before execution and the time to execute the knowledge process depends on
the host. Contributing factors are for example the load on the host machine and the
number of concurrent knowledge processes hosted. The communication delays are
also influenced depending on whether the communicating knowledge processes are
in the same host, in different hosts on the same machine, or in different hosts on
different machines.

To make the hosted knowledge processes available to the DyKnow service each
of them has to register its stream generators in the Stream Generator Manager.
When a stream generator is registered then it is possible for clients to access it
through the DyKnow service.

A knowledge process host can also support the creation of new knowledge
processes by making knowledge process prototypes available. A prototype is made
available by registering it in the Knowledge Process Factory.

A knowledge process host has the opportunity to decide when each of its
knowledge processes should be executed and thus implement support for mak-
ing a trade-off among its knowledge processes. This can be used to give some
knowledge processes a higher priority and execute them before any process with
a lower priority. It could also be used to support optimizations of the execution
such as batch and train processing of samples. Batch processing is when the host
waits for a batch of input samples for a knowledge process to be available before
processing them all. Train processing is when a number of knowledge processes
are connected in a chain and the chain is seen as an atomic operation where each
input sample is processed from start to end of the chain before executing the next
scheduled action.

5.3.1 Knowledge Process Prototype

Each knowledge process prototype provided by a host should implement the fol-
lowing interface.

e create_instance(lbl, input_streams, output_policy): Create an instance
of the prototype by instantiating the prototype with input_streams which

67

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

is a sequence of label-policy pairs specifying the input streams. The out-
put_policy parameter can be used to specify properties of the information
provided by this knowledge process to its stream generator, such as a funda-
mental sample period for the entire process. This output can then be adapted
further by the stream generator for every generated stream as described pre-
viously. The stream generator of the new knowledge process should be asso-
ciated with the label /bl in the Stream Generator Manager. The method will
return the stream generator of the new knowledge process.

If the knowledge process does not support the output policy then a PolicyNot-
Supported exception is thrown. If the number of input streams does not
match the input arity of the prototype then a WrongNumberOflnputs excep-
tion is thrown.

Two types of knowledge process prototypes are sources and computational
units. A source prototype corresponds to an external stream producer and an in-
stantiated source provides an interface to a stream generated by this external pro-
ducer. An instantiated source is an example of a primitive knowledge process. A
computational unit prototype corresponds to a stream computation which takes at
least one stream as input and computes a new stream as output. An instantiated
computational unit is an example of a refinement knowledge process.

To make sources and computational units available to the DyKnow middleware
service they have to be registered as knowledge process prototypes in the Knowl-
edge Process Factory (see add_prototype in Section 5.4.1). They can then be
instantiated with policies to create primitive and refinement processes at the host.

5.3.2 Stream Generator

A stream generator provides an interface to one of the outputs of a knowledge pro-
cess. Conceptually, each output of a knowledge process is associated with a stream
generator that can generate multiple output streams, each of which is adapted to
satisfy a specific policy. In practice, as noted previously, some of the necessary
processing must take place at the receiving end of the stream. In the current imple-
mentation, we have chosen to collect all processing at the client side in a stream
proxy. The stream generator pushes all of its output on the CORBA event channel
tagged with its own label, thereby making it available for any number of clients.
When a stream generator is asked for a stream satisfying a given policy, a new
stream proxy for that policy is generated on the client side. The stream proxy au-
tomatically connects to the event channel, subscribes to samples having the correct
label, adapt the samples to its policy, and provides them to the client through a
stream-based interface. From the client’s point of view, the use of proxies and
event channels is transparent.

A stream generator also provides an interface to query the knowledge process
about the content of its output stream. If a stream generator provides a fluent stream
then it is for example possible to ask for a sample in the stream with a particular
valid time or to ask for all samples with a valid time in a certain range. To support

68

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

these queries and to support subscriptions starting in the past a stream generator
may cache the stream created by the knowledge process.
A stream generator should implement the following interface.

get_size(): Return the current number of elements in the cached stream.

get_latest(): Return the latest element in the cached stream. This is the
element with the highest available time among the elements generated so far.
If no elements are cached then throw a ValueNotAvailable exception.

get_nth_latest(n): Return the n:th latest element in the cached stream,
where the 0:th latest element is the element with the highest available time.

get_slice(i, j): Return the sequence of the i:th to the j:th elements of the
cached stream. The elements are numbered starting at 0.

reset(): Reset the stream generator, which means empty the cache and
remove all computed elements.

A fluent stream generator should implement both the general stream generator
interface and the following fluent stream specific interface.

get_latest_vtime(): Return the sample with the highest valid time in
the cached fluent stream. If there is more than one sample with the same
valid time then return the one with the highest available time within this set.
If there are no cached samples then throw a ValueNotAvailable exception.

get_closest_at_or_before(?): Return the sample with the highest valid
time which is less than or equal to 7 in the cached fluent stream. If there is no
such sample then throw a ValueNotAvailable exception. If there is more than
one sample with the same valid time then return the one with the highest
available time within this set.

get_between(from, to): Return a sequence of samples containing all sam-
ples with a valid time in the range [from, to] in the cached fluent stream. If
there are no samples in the range then an empty sequence is returned.

One benefit of only specifying interfaces is that a knowledge process host can
implement knowledge process prototypes and stream generators in the most ap-
propriate way for its purpose. There are for example many ways of satisfying a
declarative policy, especially when there is a need to estimate samples in the face
of incomplete or uncertain information. DyKnow also provides standard imple-
mentations of stream generators.

54

The DyKnow Service

The DyKnow service provides the core knowledge processing functionality: The
creation of new knowledge processes through the instantiation of knowledge pro-
cess prototypes, the management of existing knowledge processes, and the creation

69

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

of streams from the output of knowledge processes. This section describes how
these functionalities are realized.

5.4.1 The Knowledge Process Factory

The purpose of the Knowledge Process Factory is to allow clients to create knowl-
edge processes by instantiating knowledge process prototypes provided by a knowl-
edge process host. The factory has methods allowing a host to add and remove its
knowledge process prototypes and methods allowing clients to create instances of
these prototypes.

When a knowledge process host registers a prototype corresponding to a source
it is the same as adding a source declaration source v s to the knowledge applica-
tion specification. The declaration specifies the data type of the samples, v, and the
name of the source, s. When a prototype corresponding to a computational unit is
registered it is the same as adding a computational unit declaration compunit vy
c(v ..., v,) to the application specification. The declaration specifies the name of
the computational unit, ¢, and the data types of its inputs, v; ... v,, and output, vy.

The knowledge process factory has two responsibilities. First, it should keep
track of all the source and computational unit prototypes in a knowledge processing
application. Second, it should create knowledge processes by instantiating these
prototypes with policies. To perform these duties the knowledge process factory
implements the following interface.

e add_prototype(prototype, name, input_sorts, output_sort): Add proto-
type as a knowledge process prototype associated with the string name. The
arity and sorts of the input are specified by input_sorts which is a sequence
of sorts. The sort of the output is specified by the sort output_sort. If name is
already associated with a prototype then a PrototypeAlreadyExists exception
is thrown.

e remove_prototype(name): Remove the prototype associated with the
string name.

e create_knowledge_process(lbl, name, input_streams, output_policy):
Create a knowledge process with a single stream generator by instantiating
the prototype associated with the string name. The output_policy can be used
to provide a hint to the knowledge process regarding the type of streams that
will be generated from its stream generator, for example by providing a basic
sample rate for a sensor process. The stream generator of the process is asso-
ciated with the label [bl. It can further adapt the output from the knowledge
process when asked for a stream satisfying a specific policy. If the label is
already associated with a stream generator then a LabelAlreadyExists excep-
tion is thrown. If the knowledge process does not support the output policy
then a PolicyNotSupported exception is thrown.

The labels and policies used to create the input streams to the knowledge
process are specified by input_streams which is a sequence of label-policy

70

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

pairs. If the number of input streams does not match the input arity of the
prototype then a WrongNumberOflnputs exception is thrown. The method
returns the stream generator of the newly created knowledge process.

e destroy_knowledge_process(lbl): Destroy the knowledge process of
the stream generator associated with the label /bl. It is only possible to de-
stroy knowledge processes which have been created by the factory. If there
is no stream generator associated with the label /bl then a NoSuchLabel ex-
ception is thrown.

5.4.2 The Stream Generator Manager

To keep track of the stream generators in an application and their associated labels
the Stream Generator Manager is used. The stream generator manager implements
the following interface.

e add_stream_generator(lbl, gen): Add the stream generator gen and
associate it with the label [bl. If a stream generator is already associated
with the label /bl then a LabelAlreadyExists exception is thrown.

e remove_stream_generator(lbl): Remove the stream generator associ-
ated with the label /bl. This does not destroy the stream generator. If no
generator is associated with the label then nothing is done.

e get_stream_generator(/bl): Return the stream generator associated
with the label /bl if it exists, otherwise throw a NoSuchLabel exception.

5.4.3 Streams

When implementing streams an important requirement is that the consumption of
samples should be decoupled from the production of samples in the sense that the
producer should be able to continue producing new samples disregarding how long
a consumer takes to process a sample. It should also be possible to destroy a stream
even if there are clients connected and to replace a stream where the connected
clients will get the content of the new stream without having to reconnect. The
motivation behind these requirements is that we are working in a distributed system
where the different parts should be as decoupled as possible. Clients and hosts
might for example become unavailable either permanently or temporarily which
should not affect the DyKnow service itself or those parts of the application that
do not use these clients or hosts.

To decouple stream generators from clients the DyKnow service uses an event
channel to distribute the content of streams. There are at least two approaches to
implementing streams using an event channel. The first is to follow the conceptual
model closely by letting the stream generator create one new stream for each policy
on the host side, adapting it to the associated policy, and pushing every element in
each stream onto the event channel. This would make it easy for the client since it
only has to give the policy to the stream generator and then listen for the samples

71

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

Knowledge Process)

stream

policy
Stream =

1
Generator i

policyy

stream

Figure 5.4: A conceptual view of how a single stream generator supports many
different subscriptions to the output created by its knowledge process.

Client

Stream Proxy

Knowledge
Process

Stream push
Generator

Client
push Stream Proxy
k [policy |

Figure 5.5: An overview of how several streams are created from a single stream
generator and distributed to the clients using the event channel.

Event Channel

as they arrive. The downside is that the policy would only be satisfied on the
stream generator side of the event channel. If the event channel reorders samples,
introduces delays, or even loses samples then the stream as seen by the client will
be different compared to the stream as generated by the stream generator.

The solution to this issue is to implement the policy on the client side. A stream
generator gets a stream of output from a knowledge process. Each element in
this stream is then pushed, as soon as it is generated, on the event channel tagged
with the label of the stream generator. A client interested in the output of the
knowledge process creates a stream proxy from a label and a policy. The stream
proxy subscribes to all samples with the label pushed on the event channel. The
sequence of samples received by the client is then adapted according to the policy
to generate a local stream which satisfies the policy.

This means that the conceptual view of a stream generator taking policies and
generating a stream for each of them (Figure 5.4) is replaced with a stream gener-
ator pushing stream elements on an event channel and clients subscribing to these
elements and adapting them locally according to their policies (Figure 5.5).

The event channel implementation of streams decouples stream generators from
clients and supports asynchronous push-based delivery of samples.

72

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

Client

strm,

> | strm,,

—

Figure 5.6: The experimental setup when varying the number of fluent streams.

5.5 Empirical Evaluation

To evaluate the performance and the scalability of the current DyKnow imple-
mentation a number of experiments are performed. In a knowledge processing
application most of the time will be spent in the knowledge processes, such as
image processing, fusion of data from IMU and GPS, and chronicle recognition.
These processes are application specific and may vary considerably. Therefore we
choose to measure the time spent in DyKnow generating stream content by stream
generators, sending samples over the CORBA event channel to multiple clients,
and processing them on the client side by stream proxies.

To evaluate the performance of DyKnow, we therefore measure how delays are
influenced when varying the number of concurrent streams and knowledge pro-
cesses in a knowledge processing application. There are two types of delays, total
delays and notification channel delays. The total delay is the difference between
the time when a sample is available at a client and the valid time of the sample.
The notification channel delay is the time spent in the event channel. Three experi-
ments are performed. In the experiments, we vary the number of concurrent fluent
streams, sources, and computational units respectively. These experiments provide
an insight into the scalability of the current implementation. It should be noted
that the implementation is not optimized and it is designed for a distributed system
where sources and computational units can be hosted on different machines.

In all experiments only a single computer is used, one of the computers onboard
our UAV, a PC104 Pentium-M 1.4 GHz embedded computer with 1 GB RAM. The
main reason we keep everything on the same machine is to measure the overhead
introduced by CORBA and DyKnow as opposed to the network. However, since
we use CORBA it is easy to distribute a knowledge processing application over
many machines in order to handle large, complex, and computationally demanding
applications.

Varying the Number of Fluent Streams

The first experiment studies the effect on the delay when varying the number of
fluent streams generated by a source. In each iteration of this experiment there

73

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

120000 T T T T T
delay ——+—
notification delay

100000 j .

80000 | / E
60000 |- / -

40000 < 1

20000 - / g

time (microseconds)

0 1 1 1 1 1
0 10 20 30 40 50

fluent streams

Figure 5.7: The total delay and the notification channel delay when varying the
number of fluent streams generated from a single source.

is a source and a client subscribing to n fluent streams generated from the source
according to the same policy (Figure 5.6). The output provided by the fluent stream
generator of the source contains a new sample every 100 milliseconds. The KPL
specification of the experiment application for a given number of streams 7 is:

source int src
strmgen gen = src
stream strm; = gen with sample every 100

stream strm,, = gen with sample every 100

In the case where n streams are used, each sample produced by the source is
sent once to the event channel, after which the client needs to receive this sample
through n separate streams. Samples are sent every 100 milliseconds during one
minute, for a total of 600 samples. Since only one CPU is available, reception
will necessarily take place in some sequential order. The stream that gets a sample
first will have a very short delay, while the stream that gets the sample last will
have a longer delay. This means that the average delay over the 600 samples for
each stream will vary depending on its place in the sequential order. Since we are
interested in ensuring that all clients receive samples with sufficient speed even in
the worst case we defined the delay for an iteration as the highest average delay
among the n streams. Because the current implementation delivers samples in
a deterministic order, this is equivalent to the average delay for the stream that

74

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

M)

src, Client

| gen, }\ > strm,

AVA

Figure 5.8: The experimental setup when varying the number of sources in the case
where the number of sources is n and the number of streams is 2n.

always receives its samples last.

We repeat this entire experiment 10 times. The final result reported for n
streams is the average of the results from the 10 iterations. The same is done
for the notification channel delay.

The result of varying the number of fluent streams from 5 to 50 with an incre-
ment of 5 streams is shown in Figure 5.7. The graph shows that the total delay
and the notification channel delay linearly increase with the number of streams.
The delay is approximately 2 milliseconds per stream. The graph also shows that
the delay is almost entirely due to the notification channel overhead, which does
not depend on DyKnow but on the particular CORBA event channel implementa-
tion being used. In other words, DyKnow itself appears quite efficient, and any
improvements in overall performance would most likely have to be achieved by
replacing the underlying event channel mechanism.

Varying the Number of Sources

In the second experiment we study the effect on the delay when fixing the number
of streams and varying the number of sources. In each iteration of this experiment
there are n sources and a client subscribing to m fluent streams generated by the
sources (Figure 5.8). If m > n then the same source provides input to more than
one stream. The number of fluent streams m is fixed while the number of sources n
varies. The output provided by the fluent stream generator of each source contains
a new sample every 100 milliseconds. The KPL specification of the experiment
application for n sources and m streams is:

source int src;
strmgen gen; = src;

source int src,

strmgen gen,, = src,
stream strm; = gen; with sample every 100

75

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

100000 T T T
delay ——+—
notification delay
80000]
=
e
//:o:
B =
T 60000 7 b
s =
o ==
[_—
2 =
é — -
) —— -
£ 40000 7
20000 7
0 1 1 1
0 5 10 15 20

sources

Figure 5.9: The total delay and the notification channel delay when fixing the
number of streams and varying the number of sources.

stream strm,, = gen,, with sample every 100
stream strm,,,; = gen; with sample every 100

stream strm,,, = gen(ou—1)modan)+1 With sample every 100

In the case where n sources and m streams are used, each sample produced by
a source is sent once to the event channel, after which the client needs to receive
this sample through at most "m/n™" separate streams. Samples are sent every 100
milliseconds during one minute, for a total of 600 samples. All sources produce
samples at the same valid times in order to measure the worst case delay instead
of the average delay. Like in the previous experiment, we only use a single CPU
and the reception will therefore necessarily take place in some sequential order. To
measure the worst case delay of any of the m streams, the delay for an iteration
is defined as the highest average delay among the streams. Because the current
implementation delivers samples in a deterministic order, this is equivalent to the
average delay for the stream that always receives its samples last.

We repeat this entire experiment 10 times. The final result reported for n
sources is the average of the results from the 10 iterations. The same is done
for the notification channel delay.

The result when fixing the number of streams to 19 and varying the number of
sources from 1 to 19 with an increment of 2 sources is shown in Figure 5.9. As can

76

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

Ccu) Client

a| gen, =\ strm,
;I/ 1
Lgen K 5
AT

Figure 5.10: The experimental setup when varying the number of computational
units in the case when the number of computational units is n and the number of
streams is 3n (n streams are used to provide input to the computational units).

be seen from the graph the maximum delay increase linearly with the number of
sources. The approximated delay per source is 1 millisecond, and the initial delay
introduced by the 19 streams is about 40 milliseconds. As with the previous exper-
iment, the total delay is almost entirely due to the notification channel overhead,
which does not depend on DyKnow but on the particular CORBA event channel
implementation being used.

Varying the Number of Computational Units

In the third experiment we study the effect on the delay when fixing the number of
streams and varying the number of computational units. In each iteration of this
experiment there is a source, n computational units, and a client subscribing to m
fluent streams generated by the computational units (Figure 5.10). The computa-
tional unit takes a single stream as input and provides a copy of each input sample
as output. Of the m fluent streams, n will be used as input to the computational
units. A client will subscribed to the remaining m — n streams. If m — n > n then
the same computational unit provides input to more than one stream subscribed to
by the client. The number of fluent streams m is fixed while the number of com-
putational units n varies. The input fluent streams are all generated from the same
source with the policy “sample every 100”. The output provided by the fluent
stream generator of the source contains a new sample every 100 milliseconds. The
KPL specification of the experiment application for a given number of computa-
tional units n and streams m is:

source int src

compunit int CU(int)

strmgen gen = src

strmgen gen; = CU(gen with sample every 100)

strmgen gen,, = CU(gen with sample every 100)

77

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

90000 : : . I | |
delay —+—

80000 |- |
70000 [7 * |
60000 [. |

50000 - B

40000 - B

time (microseconds)

30000 [E

20000 - B

10000 - E

0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

computational units

Figure 5.11: The total delay when fixing the number of streams and varying the
number of computational units using a single source.

stream strm; = gen; with sample every 100

stream strm,, = gen,, with sample every 100
stream strm,,,; = gen; with sample every 100

stream strm,,,_, = genm-n—1)moan)+1 With sample every 100

In the case where n computational units and m streams are used, each sample
produced by the single source is sent once to the event channel, after which the
n computational units need to receive this sample. When a computational unit
receives a sample it will make a copy of it available to its stream generator. The
stream generator will push the new sample to the event channel where the client
needs to receive it through at most "(m — n)/n™" separate streams.

Samples are sent by the source every 100 milliseconds during one minute, for a
total of 600 samples. All samples produced by the computational units will retain
the valid time from the sample received from the source. It is therefore possible to
measure the worst case delay for every sample originating from the source. Like in
the previous experiment, we only use a single CPU and the reception will therefore
necessarily take place in some sequential order. To measure the worst case delay
of any of the m streams, the delay for an iteration is defined as the highest average
delay among the streams. Because the current implementation delivers samples
in a deterministic order, this is equivalent to the average delay for the stream that

78

CHAPTER 5. A DYKNOW CORBA MIDDLEWARE SERVICE

always receives its samples last.

We repeat this entire experiment 10 times. The final result reported for n com-
putational units is the average of the results from the 10 iterations. We do not
measure the notification channel delay for this experiment since it is hard to single
out from the total delay.

The result when fixing the number of streams to 30 and varying the number
of computational units from 1 to 15 with an increment of 2 computational units is
shown in Figure 5.11. As can be seen from the graph the maximum delay increases
linearly with the number of computational units.

5.6 Summary

This chapter has described a DyKnow middleware service supporting the imple-
mentation of knowledge processing applications specified in KPL. The service is
built as a CORBA service which leverages its support for distributed systems. This
means that applications developed using the DyKnow service can be distributed
over many different computers and programming languages. This is very useful
in network centric systems or advanced autonomous systems where more than one
computer is used.

The core DyKnow service has three components. The first is the event chan-
nel that provides asynchronous many-to-many communication between clients and
knowledge processes in order to decouple them. The second is the Knowledge Pro-
cess Factory that keeps track of the sources and parameterized computational units
available in the application and creates instances of these. This means that a client
does not need to know which host actually creates the knowledge process whose
output it subscribes to. The final component is the Stream Generator Manager
which keeps track of all the stream generators in the application. Each stream gen-
erator is associated with a label which can be used by a client either to request a
query interface to the stream, or to connect to the event channel to incrementally
get samples as they are produced. This means that if a stream generator has already
been created it is enough for a client to know its label to be able to access it. This
is another benefit of decoupling since the creation of a knowledge process can be
done by one node in the distributed system while other nodes only need to know
the label of the stream generator to get its output.

The DyKnow middleware service provides interfaces that can be used by a
host to integrate any knowledge process into a DyKnow knowledge processing
application. The DyKnow service is not dependent on the actual implementation,
as long as the stream generator interface is implemented. This allows application
specific implementations of sources, computational units, and stream generators.

The DyKnow middleware service provides a flexible and capable implementa-
tion of the DyKnow middleware framework suitable for distributed real-time and
embedded systems such as autonomous UAV systems.

79

Part I11

Applications and Extensions

80

Chapter 6

The UASTech UAYV Platform

6.1 Introduction

As stated in the introduction, one important application area for knowledge pro-
cessing is the emerging area of intelligent unmanned aerial vehicle (UAV) research,
which has shown rapid development in recent years and offers a great number of
research challenges. Much previous research has focused on low-level control ca-
pabilities with the goal of developing controllers which support the autonomous
flight of a UAV from one way-point to another. A common type of mission sce-
nario involves placing sensor payloads in position for data collection tasks where
the data is eventually processed off-line or in real-time by ground personnel. The
use of UAVs and mission tasks such as these have become increasingly more im-
portant in recent conflict situations and are predicted to play increasingly more
important roles in any future conflicts. Intelligent UAVs will play an equally im-
portant role in civil applications.

For both military and civil applications, there is a desire to develop more so-
phisticated UAV platforms where the emphasis is placed on the development of
intelligent capabilities and on abilities to interact with human operators and ad-
ditional robotic platforms. The focus in this research has moved from low-level
control towards a combination of low-level and decision-level control integrated in
sophisticated software architectures. These, in turn, should also integrate well with
larger network-centric based C*1? (Command, Control, Communications, Com-
puters, Intelligence, Interoperability) systems. Such platforms are a prerequisite
for supporting the capabilities required for the increasingly more complex mission
tasks on the horizon and provide an ideal testbed for the development and integra-
tion of distributed Al technologies.

For a number of years, The Autonomous Unmanned Aircraft Systems Tech-
nologies Lab! (UASTech Lab) at Linkoping University, Sweden, has pursued a
long term research endeavor related to the development of future aviation systems
in the form of autonomous unmanned aerial vehicles (Doherty et al., 2000; Do-

The UASTech Lab was previously called the UAVTech Lab.

81

CHAPTER 6. THE UASTECH UAV PLATFORM

Figure 6.1: The UASTech Yamaha RMAX helicopter.

herty, 2004, 2005). The focus has been on both high autonomy (Al related func-
tionalities), low level autonomy (traditional control and avionics systems), and
their integration in distributed software architectural frameworks (Doherty et al.,
2004) in order to support robust autonomous operation in complex operational en-
vironments such as those one would face in catastrophe situations. Some existing
application scenarios are traffic monitoring and surveillance, emergency services
assistance, and photogrammetry and surveying where the first two were described
in Sections 1.1.1 and 1.1.2.

Basic and applied research in the project covers a wide range of topics which
include the development of a distributed architecture for autonomous unmanned
aerial vehicles. In developing the architecture, the larger goals of integration with
human operators and other ground and aerial robotics systems in network-centric
C*I? infrastructures have been taken into account and influenced the nature of
the base architecture. In addition to the software architecture and the knowledge
processing middleware component, several Al technologies have been developed
such as path planners (Pettersson, 2006; Wzorek and Doherty, 2009; Wzorek et
al., 2006), a task planner (Kvarnstrom, 2005), and the execution monitoring and
chronicle recognition functionalities described in Chapters 7 and 8.

More recently, our research has moved from single platform scenarios to multi-
platform scenarios where a combination of UAV platforms with different capabil-
ities are used together with human operators in a mixed-initiative context with
adjustable platform autonomy (Doherty and Meyer, 2007).

6.2 UAV Platforms and Hardware Architecture

The UASTech UAV platform (Doherty, 2004) is a slightly modified Yamaha RMAX
helicopter (Figure 6.1). It has a total length of 3.6 m (including the main rotor) and

82

CHAPTER 6. THE UASTECH UAV PLATFORM

DRC PFC
*14GHzP-M | __ | = 700 MHz PIII
= 1 GB RAM 256 MB RAM L ——
=512 MB flash *512MBflash | _ | suite
| |
——— RS232C | \ / I :
—— Ethernet : Ethernet : :
44444444444444 Other media | Switch | |
L/ L
IPC b
= 700 MHz PIlI | -
SENSOF frrerod "256 MBRAM ~— """ ——————— - Yamaha RMAX
suite L __ =512 MBflash (YAS, YACS)

Figure 6.2: Onboard hardware schematic.

is powered by a 21 hp two-stroke engine with a maximum takeoff weight of 95 kg.
Our hardware platform is integrated with the Yamaha platform as shown in Fig-
ure 6.2. It contains three PC104 embedded computers.

The primary flight control (PFC) system runs on a 700 MHz PIII, and includes
a wireless Ethernet bridge, an RTK GPS receiver, and several additional sensors in-
cluding a barometric altitude sensor. The PFC is connected to the Yamaha Attitude
Sensors (YAS), the Yamaha Attitude Control System (YACS), an image processing
computer, and a computer for deliberative capabilities.

The image processing system (IPC) runs on a second PC104 embedded Pen-
tium III 700 MHz computer. The camera platform suspended under the UAV fuse-
lage is vibration isolated by a system of springs. The platform consists of a Sony
FCB-780P CCD block camera and a ThermalEye-3600AS miniature infrared cam-
era mounted rigidly on a pan-tilt unit as shown in Figure 6.3. The video footage
from both cameras is recorded at full frame rate by two MiniDV recorders to allow
postprocessing after flights.

The deliberative/reactive system (DRC) runs on a third PC104 Pentium-M
1.4 GHz embedded computer and executes all high-end autonomous functionality.
Network communication between computers is physically realized with serial line
RS232C and Ethernet. Ethernet is mainly used for CORBA applications, remote
login, and file transfer, while serial lines are used for hard real-time networking.

More recently, we have developed a number of micro aerial vehicles (Duranti
et al., 2007; Rudol et al., 2008) for our experimentation with cooperative UAV sys-
tems. The intent is to use these together with our RMAX systems for cooperative
missions.

6.3 The Software System Architecture

A hybrid deliberative/reactive software architecture has been developed for our
RMAX UAVs. Conceptually, it is a layered, hierarchical system with deliberative,

83

CHAPTER 6. THE UASTECH UAV PLATFORM

Figure 6.3: The UASTech UAV and the onboard camera system mounted on a
pan-tilt unit.

reactive, and control components. Figure 6.4 presents the functional layer structure
of the architecture and emphasizes its reactive-concentric nature.

With respect to timing characteristics, the architecture can be divided into two
layers: (a) the hard real-time part, which mostly deals with hardware and control
laws (also referred to as the Control Kernel) and (b) the non real-time part, which
includes deliberative services of the system (also referred to as the High-Level
System)?.

All three computers in our UAV platform (PFC, IPC, and DRC) have both
hard and soft real-time components but the processor time is assigned to them in
different proportions. On one extreme, the PFC runs mostly hard real-time tasks
with only minimum user space applications (e.g. SSH daemon for remote login).
On the other extreme, the DRC uses the real-time part only for device drivers and
real-time communication. The majority of processor time is spent on running the
deliberative services.

The Control Kernel (CK) is a distributed real-time runtime environment and
is used for accessing the hardware, implementing continuous control laws, and
controlling mode switching. Moreover, the CK coordinates the real-time commu-
nication between all three onboard computers as well as between CKs of other
robotic systems. In our case, we perform multi-platform missions with two identi-
cal RMAX helicopter platforms. The CK is implemented using C code. This part
of the system uses the Real-Time Application Interface (RTAI) (Mantegazza et.
al., 2000) which provides industrial-grade real-time operating system functional-
ity. RTAI is a hard real-time extension to a standard Linux kernel (Debian in our
case) and has been developed at the Department of Aerospace Engineering of Po-
litecnico di Milano.

The real-time performance is achieved by inserting a module into the Linux
kernel space. Since the module takes full control over the processor it is necessary
to suspend it in order to let the user space applications run. The standard Linux

Note that the distinction between the Control Kernel and the High-Level System is conceptual and
based mainly on timing characteristics; it does not exclude, for example, placing deliberative services
(e.g. prediction) in the Control Kernel.

84

CHAPTER 6. THE UASTECH UAV PLATFORM

| Control Layer |

| Reactive Layer |
Control
Kernel

Deliberative Layer

TP = Task Procedure
DS = Deliberative Service

Figure 6.4: The functional structure of the architecture.

distribution is a task with lower priority, which is run preemptively and can be
interrupted at any time. For that reason a locking mechanism is used when both
user- and kernel-space processes communicate through shared memory. It is also
important to mention that the CK is self-contained and only the part running on
the PFC computer is necessary for maintaining flight capabilities. Such separation
enhances safety of the operation of the UAV platform which is especially important
in urban environments.

The Control Kernel has a hybrid flavor. Its components contain continuous
control laws and mode switching is realized using event-driven hierarchical con-
current state machines (HCSMs) (Merz, Rudol, and Wzorek, 2006). HCSMs can
be represented as state transition diagrams and are similar to statecharts (Harel,
1987). In our system, tables describing transitions derived from such diagrams are
passed to the system in the form of text files and are interpreted by a HCSM inter-
preter at run-time on each of the onboard computers. Thanks to its compact and
efficient implementation, the interpreter runs in the real-time part of the system as
a task with high execution rate. It allows coordinating all functional units of the
control system from the lowest level hardware components (e.g. device drivers)
through control laws (e.g. hovering and path following) and communication to the
interface used by the Helicopter Server.

The use of HCSMs also allows implementing complex behaviors consisting of
other lower level ones. For instance, the landing mode includes control laws steer-
ing the helicopter and coordinating camera system/image processing functionali-
ties. When the landing behavior is activated, the CK takes care of searching for
a pre-defined pattern with the camera system, feeding a Kalman filter with image
processing results which fuses them with the helicopter’s inertial measurements.
The CK sends appropriate feedback when the landing procedure is finished or it
has been aborted. For details see Merz, Duranti, and Conte (2004).

For achieving the best performance, a single non-preemptive real-time task is
used which follows a predefined static schedule to run all functional units. Simi-
larly, the real-time communication physically realized using serial lines is statically
scheduled with respect to packet sizes and rates of sending. For a detailed descrip-
tion see Merz (2004).

85

CHAPTER 6. THE UASTECH UAV PLATFORM

GIS Service* —s FathPlanner Other
Service* Services*

I

Task

Procedures* o
Distributed

*- CORBA-based { System

__ DRC
Real-time
communication channel
PFC
Other Modes HCSM Communl-cat|on

Interpreter Handling

. Path Following Hardware

Hovering Mode Mode e

Figure 6.5: The main software components of the navigation subsystem.

The high-level part of the system has reduced timing requirements and is re-
sponsible for coordinating the execution of reactive Task Procedures (TPs). A TP
is a high-level procedural execution component which provides a computational
mechanism for achieving different robotic behaviors by using both deliberative
services and traditional control components in a highly distributed and concurrent
manner. The control and sensing components of the system are accessible for TPs
through the Helicopter Server which in turn uses an interface provided by the Con-
trol Kernel. A TP can initiate one of the autonomous control flight modes available
in the UAV (e.g. take off, vision-based landing, hovering, dynamic path following,
or reactive flight modes for interception and tracking). An overview of the naviga-
tion subsystem is shown in Figure 6.5. Additionally, TPs can control the payload of
the UAV platform which currently consists of video and thermal cameras mounted
on a pan-tilt unit in addition to a stereo camera system. TPs can also receive heli-
copter state delivered by the PFC computer and camera system state delivered by
the IPC computer, including image processing results.

The software implementation of the high-level system is based on CORBA
(Common Object Request Broker Architecture), which is often used as middleware
for object-based distributed systems. It enables different objects or components to
communicate with each other regardless of the programming languages in which
they are written, their location on different processors, or the operating systems
they are running in. A component can act as a client, a server, or as both. The
functional interfaces to components are specified via the use of IDL (Interface

86

CHAPTER 6. THE UASTECH UAV PLATFORM

Chronicle Constraint

Task Planner Path Planner . R Knowledge
. . Recognition Reasoning)
Service Service . . Repository
Service Service
. Task Procedure Execution DyKnow Dynamic
Helicopter . N
Sarer _ Module (TPEM)_ Knowledge Processing ~ — — Object
(TP1ie e eeee(TPn Middleware Repository
Physical |mage Image Geographic Geographical
Camera Contrgller Processing Information —— Data
Controller Module (IPM) System (GIS) Repository

Figure 6.6: Some deliberative, reactive and control services.

Definition Language). The majority of the functionalities which are part of the
architecture can be viewed as CORBA objects or collections of objects, where the
communication infrastructure is provided by CORBA facilities and other services
such as real-time and standard event channels.

This architectural choice provides us with an ideal development environment
and versatile run-time system with built-in scalability, modularity, software relo-
catability on various hardware configurations, performance (real-time event chan-
nels and schedulers), and support for plug-and-play software modules.

Figure 6.6 presents some (not all) of the high-level services used in the UASTech
UAV system including the DyKnow knowledge processing middleware. Those ser-
vices run on the deliberative/reactive computer and interact with the control system
through the Helicopter Server. The Helicopter Server on one side uses CORBA to
be accessible by TPs or other components of the system; on the other side it com-
municates through shared memory with the HCSM based interface running in the
real-time part of the DRC software.

6.4 Conclusions

The UAV platform presented in this chapter provides an appropriate vehicle where
the full potential of DyKnow can be used to develop challenging scenarios which
can be tested in a dynamic environment. In order to attack more complex prob-
lems the platform must provide powerful and sophisticated functionality and have
reached a certain level of maturity. The platform presented has been extensively
tested both in simulation and in live test flights in a small urban area.

87

Chapter 7

Integrating Planning and
Execution Monitoring

This chapter contains an article A Temporal Logic-based Planning and Execution
Monitoring Framework for Unmanned Aircraft Systems which has been extended
with a significantly expanded section on state generation (Section 7.8). The article
is accepted for publication in the Journal of Automated Agents and Multi-Agent
Systems (Doherty, Kvarnstrom, and Heintz, 2009) published by Springer. To make
the article fit the rest of the thesis, Sections 2—4 in the original article have been
removed since the material is already covered mainly in Chapter 6, Section 5 is
incorporated in the modified introduction, and Section 4.2 is lifted up to its own
section. Apart from the restructuring and the greatly extended state generation
section no significant changes have been made.

7.1 Introduction

Now and then, things will go wrong. This is both a fact of life and a funda-
mental problem in any robotic system intended to operate autonomously or semi-
autonomously in the real world. Like humans, robotic systems (or more likely
their designers) must be able to take this into account and recover from failures,
regardless of whether those failures result from mechanical problems, incorrect
assumptions about the world, or interference from other agents.

In this chapter, we present a temporal logic-based task planning and execu-
tion monitoring framework and its integration into the fully deployed rotor-based
unmanned aircraft system described in the previous chapter. In the spirit of cog-
nitive robotics, we make specific use of Temporal Action Logic (TAL (Doherty
and Kvarnstrom, 2008)), a logic for reasoning about action and change. This logic
has already been used as the semantic basis for a task planner called TALplanner
(Kvarnstrom, 2005), which is used to generate mission plans that are carried out
by an execution subsystem.

88

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

We show how knowledge gathered from the appropriate sensors during plan
execution can be used by DyKnow to incrementally create state structures. These
state structures correspond to partial logical models in TAL, representing the ac-
tual development of the system and its environment over time. We then show how
formulas in TAL can be used to specify the desired behavior of the system and its
environment and how violations of such formulas can be detected in a timely man-
ner in an execution monitor subsystem which makes use of a progression algorithm
for prompt failure detection.

The pervasive use of logic throughout the higher level deliberative layers of the
system architecture provides a solid shared declarative semantics that facilitates the
transfer of knowledge between different modules. Given a plan specified in TAL,
for example, it is possible to automatically extract certain necessary conditions that
should be monitored during execution.

Experimentation with the system has been done in the context of the chal-
lenging emergency services scenario introduced in Section 1.1.2, involving body
identification of injured civilians on the ground and logistics missions to deliver
medical and food supplies to the injured (Doherty and Rudol, 2007) using several
UAVs in a cooperative framework (Doherty and Meyer, 2007). A combination of
real missions flown with our platforms and hardware-in-the-loop simulations has
been used to verify the practical feasibility of the proposed systems and techniques.
We will now describe the two parts of the scenario in more detail.

7.1.1 Mission Leg I : Body Identification

The task of the 1st leg of the mission is to scan a large region with one or more
UAVs, identify injured civilians, and output a saliency map which can be used
by emergency services or other UAVs. Our approach (Doherty and Rudol, 2007;
Rudol and Doherty, 2008) uses two video sources (thermal and color) and allows
for high rate human detection at larger distances than in the case of using the video
sources separately with standard techniques. The high processing rate is essential
in case of video collected onboard a UAV in order not to miss potential victims as
a UAV flies over them.

A thermal image is analyzed first to find human body sized silhouettes. Corre-
sponding regions in a color image are subjected to a human body classifier which
is configured to allow weak classifications. This focus of attention allows for main-
taining a body classification at a rate up to 25 Hz. This high processing rate allows
for collecting statistics about classified humans and to prune false classifications of
the “weak” human body classifier. Detected human bodies are geolocalized on a
map which can be used to plan supply delivery. The technique presented has been
tested onboard the UASTech UAV platform and is an important component in our
research with autonomous search and rescue missions.

Experimental setup

A series of flight tests were performed in southern Sweden at an emergency ser-
vices training center used by the Swedish Rescue Services Agency to train fire, po-

89

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Figure 7.1: Mission overview.

lice, and medical personnel. This area consists of a collection of buildings, roads,
and even makeshift car and train accidents. This provides an ideal test area for ex-
perimenting with traffic surveillance, photogrammetric, and surveying scenarios,
in addition to scenarios involving emergency services. We have also constructed
an accurate 3D model for this area which has proven invaluable in simulation ex-
periments and parts of which have been used in the onboard GIS (Geographic
Information System).

Flight tests were performed over varied terrain such as asphalt and gravel roads,
grass, trees, water, and building roof tops which resulted in a variety of textures in
the images. Two UAVs were used over a search area of 290x 185 meters. A total of
eleven bodies (both human and dummies with close to human temperature) were
placed in the area. The goal of the mission was to generate a saliency map. The
general mission plan is shown in Figure 7.1.

Before take-off, one of the UAVs was given an area to scan (dashed line poly-
gon). It then delegated part of the scanning task to another platform, generating
sub-plans for itself and the other platform. The mission started with a simulta-
neous autonomous take-off at positions H; and H, and the UAVs flew to starting
positions S| and S, for scanning. Throughout the flights, saliency maps were in-
crementally constructed until the UAVs reached their ending positions E; and E,.
The UAVs then returned to their respective take-off positions for a simultaneous
landing. The mission took approximately ten minutes to complete and each UAV
traveled a distance of around 1 km.

90

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Figure 7.2: Flight path and geolocated body positions.

Experimental results

The algorithm found all eleven bodies placed in the area. The saliency map gen-
erated by one of the helicopters is shown in Figure 7.2. The images of identified
objects are presented in Figure 7.3 on the next page. Several positions were re-
jected as they were not observed long enough (i.e. 5 seconds). Images 7, 9, and 14
present three falsely identified objects.

7.1.2 Mission Leg II: Package Delivery

After successful completion of leg I of the mission scenario, we can assume that a
saliency map has been generated with geo-located positions of the injured civilians.
In the next phase of the mission, the goal is to deliver configurations of medical,
food, and water supplies to the injured. In order to achieve this leg of the mission,
one would require a task planner to plan for logistics, a motion planner to get one or
more UAVs to supply and delivery points, and an execution monitor to monitor the
execution of highly complex plan operators. Each of these functionalities would
also have to be tightly integrated in the system.

This leg of the mission will be used as a running example for the rest of this
chapter. For these logistics missions, we assume the use of one or more UAVs
with diverse roles and capabilities. Initially, we assume there are n injured body
locations, several supply depots, and several supply carrier depots (see Figure 7.5
on page 93). The logistics mission is comprised of one or more UAVs transport-

91

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

[3 | -m

{
< - |
il
i

I—'"- . cﬂ*ﬁ‘l‘ _t % " il'::' =5

'
[
:.'.. ‘Tw.. 9 [

Figure 7.3: Images of classified bodies — corresponding thermal images are placed
under color images.

-
i." -

ing boxes containing food and medical supplies between different locations (Fig-
ure 7.4).

Achieving the goals of such a logistics mission with full autonomy requires
the ability to pick up and deliver boxes without human assistance; thus, each UAV
has a device for attaching to boxes and carrying them beneath the UAV. The action
of picking up a box involves hovering above the box, lowering the device, attach-
ing to the box, and raising the device, after which the box can be transported to
its destination. There can also be a number of carriers, each of which is able to
carry several boxes. By loading boxes onto such a carrier and then attaching to
the carrier, the transportation capacity of a UAV increases manyfold over longer
distances. The ultimate mission for the UAVs is to transport the food and medical
supplies to their destinations as efficiently as possible using the carriers and boxes
at their disposal.

An attachment device consisting of a winch and an electromagnet is under
development. In the mean time, the logistics scenario has been implemented and
tested in a simulated UAV environment with hardware in-the-loop, where TALplan-
ner generates a detailed mission plan which is then sent to a simulated execution
system using the same helicopter flight control software as the physical UAV. Each
UAV has an execution monitor subsystem which continuously monitors its oper-
ation in order to detect and signal any deviations from the declaratively specified
intended behavior of the system, allowing the main execution system to initiate the
appropriate recovery procedures. The information needed by the execution mon-
itoring system is collected and synchronized by DyKnow. Faults can be injected
through the simulation system, enabling a large variety of deviations to be tested.
Additionally, the simulator makes use of the Open Dynamics Engine', a library
for simulating rigid body dynamics, in order to realistically emulate the physics
of boxes and carriers. This leads to effects such as boxes bouncing and rolling

Uhttp://www.ode.org

92

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Figure 7.4: The UAV logistics simulator.

Figure 7.5: A supply depot (left) and a carrier depot (right).

93

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Plan Executor

status -

« command
sequence

+ execution Task Planner
Command Executor
(TALplanner)

DyKnow

state policies -
« TP request

status events -
cost estimate -

« state
« cost request

|

. . Task Procedure plan request + Path Planner
Execution Monitor e > .
Execution Module « plan solution Service

FCL commands
status events —+

Miscellaneous UAV Services and Controllers
Figure 7.6: Task planning and execution monitoring overview.

away from the impact point should they accidentally be dropped, which is also an
excellent source of unexpected situations that can be used for validating both the
domain model and the execution monitoring system.

The use of TALplanner to generate formulas, the collection and synchroniza-
tion of information using DyKnow, the on-line evaluation of these formulas by the
execution monitoring subsystem, and the recovery of detected formula violations
have been tested in real flight tests using a photogrammetry mission which does
not require a winch system.

7.2 Task Planning and Execution Monitoring Sys-
tem Overview

The main part of the architecture we will focus on for the remainder of the chapter
involves those components associated with task planning, execution of task plans,
and execution monitoring. Figure 7.6 shows the relevant part of the UAV system
architecture associated with these components.

At the top of the center column is the plan executor which given a mission re-
quest calls DyKnow to acquire essential information about the current contextual
state of the world or the UAV’s own internal states. Together with a domain specifi-
cation and a goal specification related to the current mission, this information is fed
to TALplanner (Doherty and Kvarnstrom, 2001, 2008; Kvarnstrom, 2005), a logic-
based task planner which outputs a plan that will achieve the designated goals,
under the assumption that all actions succeed and no failures occur. Such a plan
can also be automatically annotated with global and/or operator-specific conditions
to be monitored during execution of the plan by an execution monitor in order to

94

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

relax the assumption that no failures can occur. Such conditions are expressed as
temporal logical formulas and evaluated on-line using formula progression tech-
niques. The execution monitor notifies the command executor when actions do not
achieve their desired results and one can then move into a plan repair phase.

The plan executor translates operators in the high-level plan returned by
TALplanner into lower level command sequences which are given to the command
executor. The command executor is responsible for controlling the UAYV, either
by directly calling the functionality exposed by its lowest level Flight Command
Language (FCL) interface or by using Task Procedures through the Task Procedure
Execution Module.

Task Procedures can use a path planner to generate collision free trajectories
through the environment. Currently, we use a number of different techniques for
path planning (Wzorek and Doherty, 2009; Wzorek et al., 2006) which include
the use of Probabilistic Roadmaps (Kavraki et al., 1996) and Rapidly Exploring
Random Trees (Kuffner and LaValle, 2000). For the purposes of this chapter, we
will simply assume that our UAVs can automatically generate and fly collision free
trajectories from specified start and end points in operational environments.

During plan execution, the command executor adds formulas to be monitored
to the execution monitor. DyKnow continuously sends information about the de-
velopment of the world in terms of state sequences to the monitor, which uses a
progression algorithm to partially evaluate monitor formulas. If a violation is de-
tected, this is immediately signaled as an event to the command executor, which
can suspend the execution of the current plan, invoke an emergency brake com-
mand if required, optionally execute an initial recovery action, and finally signal
the new status to the plan executor. The plan executor is then responsible for com-
pleting the recovery procedure (Section 7.5.3 on page 112).

The fully integrated system is implemented on our UAVs and can be used on-
board for different configurations of the logistics mission described in Leg II of the
larger mission. The simulated environments used are in urban areas and quite com-
plex. Plans are generated in the millisecond to seconds range using TALplanner
and empirical testing shows that this approach is promising in terms of integrating
high-level deliberative capability with lower-level reactive and control functional-

ity.

7.3 Background: Temporal Action Logic

This section introduces TAL (Temporal Action Logic), a framework used for rea-
soning about action and change. More specifically, this section will focus on the
use of TAL-C (Doherty and Kvarnstrom, 2008; Karlsson and Gustafsson, 1999),
one of the more recent members of the TAL family of logics with support for
concurrent actions. Though no new results will be presented here, a basic under-
standing of TAL will be useful when reading other parts of this chapter. We refer
the reader to Doherty and Kvarnstrom (2008) or Doherty et al. (1998) for further
details.

95

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

An agent using TAL is assumed to be interested in one or more reasoning tasks,
such as prediction or planning, related to a specific world such as the UAV domain.
It is assumed that the world is dynamic, in the sense that the various properties
or features of the world can change over time. TAL-C is an order-sorted logic
where each feature, as well as each of its parameters, is specified to take values
in a specific value domain. The value domain boolean = {true, false} is always
assumed to be present. In addition, the UAV domain could define the two value do-
mains uav = {helil, heli2} for UAVs and box = {bx1, bx2, bx3, bx4} for boxes to
be delivered. The parameterized boolean-valued feature attached(uav, box) could
then represent the fact that uav has picked up box, while the integer-valued feature
capacity(uav) could be used to model the carrying capacity of uav.

TAL offers a modular means of choosing temporal structures depending on the
nature of the world being reasoned about and the reasoning abilities of the agent.
TAL-C is based on the use of a linear (as opposed to branching) discrete non-
negative integer time structure where time O corresponds to the initial state in a
reasoning problem. The temporal sort is assumed to be interpreted, but can be ax-
iomatized in first-order logic as a subset of Presburger arithmetic, natural numbers
with addition (Koubarakis, 1994). Milliseconds will be used as the primary unit of
time throughout this chapter, where, e.g., the time-point 4217 is be interpreted as
“4.217 seconds after the beginning of the current reasoning problem”.

Conceptually, the development of the world over a (possibly infinite) period of
time can be viewed in two different ways: As a sequence of states, where each
state provides a value to each feature (or “state variable”) for a single common
time-point, or as a set of fluents, where each fluent is a function of time specifying
the value of a single feature at each time-point. The terms “feature” and “fluent”
will sometimes be used interchangeably to refer to either a specific property of the
world or the function specifying its value over time.

TAL Narratives. TAL is based on the use of narratives specifying background
knowledge together with information about a specific reasoning problem. Narra-
tives are initially specified in the narrative description language £(ND), which pro-
vides support to a knowledge engineer through a set of high-level macros suitable
for a particular task and may vary considerably between TAL logics. The seman-
tics of the language is defined in terms of a translation into first- and second-order
logical theories in the language £(FL) which remains essentially unmodified.

The narrative background specification contains background knowledge asso-
ciated with a reasoning domain. Domain constraint statements in L(ND) represent
facts true in all scenarios associated with a particular reasoning domain, such as the
fact that the altitude of a helicopter will always be greater than zero. Dependency
constraint statements can be used to represent causal theories or assertions which
model intricate dependencies describing how and when features change relative to
each other. Action type specifications specify knowledge about actions, including
preconditions and context-dependent effects. Performing an action changes the
state of the world according to a set of given rules, which are not necessarily deter-
ministic. For example, the action of tossing a coin can be modeled within the TAL

96

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

framework, and there will be two possible result states.

The narrative specification contains information related to a specific problem
instance or reasoning task. Observation statements represent observations made
by an agent; in the context of planning, this may be used to specify information
regarding the initial state. Action occurrence statements state which actions occur
and provide parameters for those actions.

The Logical Base Language L(FL). As noted above, TAL is order-sorted. An
L(FL) vocabulary specifies a number of sorts for values V;, each of which corre-
sponds to a value domain. The sort V is assumed to be a supersort of all value
sorts. There are also a number of sorts F; for (reified) features, each one associated
with a value sort dom(¥;) = V; for some j. The sort # is a supersort of all fluent
sorts. Finally, there is a sort for actions ‘A and a temporal sort 7.

Variables are typed and range over the values belonging to a specific sort. For
convenience, they are usually given the same name as the sort but written in italics,
possibly with a prime and/or an index. For example, the variables box, box’ and
box; would be of the sort box. Similarly, variables named ¢ are normally temporal
variables, and variables named n are normally integer-valued.

L(FL) uses three main predicates. The predicate Holds : 7 X F XV expresses
the fact that a feature takes on a certain value at a certain time-point; for example,
Holds(0, attached(helil, bx3), true) denotes the fact that attached(helil, bx3) has
the value true at time 0. The predicate Occlude : 7 x F will be described in the
discussion of persistence below. Finally, the predicate Occurs : 7 X7 XA specifies
what actions occur, and during what intervals of time. The equality predicate is
also available, together with the < and < relations on the temporal sort 7. We
sometimes write 7 < 7 < 7” to denote the conjunction 7 < 7' A 7' < 7", and
similarly for other combinations of the relation symbols < and <.

The function value(r, f) returns the value of the fluent f at time 7. Formulas in
L(FL) are formed using these predicates and functions together with the standard
connectives and quantifiers in the usual manner.

The High-Level Macro Language £(ND). The following is a small subset of
the L(ND) language which is sufficient for the purpose of this chapter. Fluent
formulas provide a convenient means of expressing complex conditions. Fixed
fluent formulas provide a temporal context specifying when a fluent formula should
hold.

Definition 7.3.1 (Fluent Formulas, Fixed Fluent Formulas) An elementary flu-
ent formula has the form f = w where f is a fluent term of sort F; and w is a
value term of sort dom(%;). This formula denotes the atemporal fact that the fea-
ture f takes on the value w. A fluent formula is an elementary fluent formula or a
combination of fluent formulas formed with the standard logical connectives and
quantification over values. A fixed fluent formula takes the form [1,7'] a, (1, 7] @,
[r,7) a, (1,7") @, [T,) @, (1,00) @ or [T] @, where « is a fluent formula and 7 and

97

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

7’ are temporal terms. This denotes the fact that the formula « holds at the given
time-point or throughout the given temporal interval. O

The elementary fluent formula f = true (f = false) can be abbreviated f (—f).
Note that f = f” means that f and f” refer to the same feature, while f = w denotes
the fact that f takes on the value w at the time-point specified by the temporal
context. The infinity symbol oo is not a temporal term but denotes the lack of an
upper bound; stating [7, o) ¢ is equivalent to stating Vz.t > 7 — [f] ¢.

Persistence and Action Effects. In most cases one would like to make the as-
sumption that a feature is persistent, only changing values when there is a particular
reason, such as an action whose effects explicitly modify the feature. This should
be done in a non-monotonic and defeasible manner allowing the incremental ad-
dition of new reasons why the feature can change. Several of the fundamental
problems in developing logics for reasoning about action and change are related to
finding representationally and computationally efficient ways to encode such as-
sumptions without the need to explicitly specify every feature that an action does
not modify.

The TAL approach uses an occlusion predicate, where Occlude(t, f) means
that f is allowed to, but does not have to, change values at time 7. Action effects are
specified in L(ND) using the R and I reassignment macros. For example, R([7] @)
models an action effect that causes « to hold at time 7, where « is an arbitrary
fluent formula, while I([7,7’]) a forces « to hold over an interval of time. This is
translated into an £(FL) formula where the Holds predicate is used to ensure that
a holds at the specified time-point or interval and the Occlude predicate is used to
ensure that all features occurring in @ are occluded, also at the specified time-point
or interval.

A circumscription axiom is used to ensure that features are only occluded when
explicitly specified to be occluded. The resulting theory is then conjoined with
axioms stating that at any time-point when a persistent feature is not occluded,
it retains its value from the previous time-point (Doherty and Kvarnstrom, 2008;
Doherty et al., 1998; Doherty, 1994).

Since persistence is not suitable for all features, TAL also supports durational
features that revert to a default value when not occluded as well as dynamic flu-
ents where no persistence or default value assumption is made. Feature types are
specified in a fine-grained and flexible manner where the feature type can vary by
instance or vary over time. For the remainder of this chapter, though, all features
will be assumed to be persistent.

Reasoning about TAL narratives. In order to reason about a particular narrative
in L(ND), it is first mechanically translated into the base language £(FL) using the
Trans function as seen in Figure 7.7 on the next page. A circumscription policy is
applied to the Occurs and Occlude predicates in the resulting theory, ensuring that
no actions occur except those explicitly specified in action occurrence statements
and no fluents are permitted to change except when explicitly specified. A set

98

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

L(ND)

TAL narrative

Trans()
L(FL)
1st-order
theory T
+ Circ(T)
+ Foundational Axioms
L(FL) + Quantifier Elimination

1s*-order
theory T’

Figure 7.7: Reasoning in TAL.

of foundational axioms are added, including domain closure axioms and unique
names axioms where appropriate. Finally, due to certain structural constraints on
action type specifications and dependency constraint statements, quantifier elimi-
nation techniques can be used to reduce the resulting circumscribed second order
theory to a first order theory (Doherty, Lukaszewicz, and Szatas, 1995, 1997; Do-
herty, 1994).

7.4 Planning for the UAV Domain

When developing the architecture for a system capable of autonomous action exe-
cution and goal achievement, one can envision a spectrum of possibilities ranging
from each behavior and task being explicitly coded into the system, regardless of
complexity, up to the other extreme where the system itself generates complex so-
Iutions composed from a set of very primitive low-level actions. With the former
end of the spectrum generally leading to more computationally efficient solutions
and the latter end generally being far more flexible in the event of new and po-
tentially unexpected tasks being tackled, the proper choice is usually somewhere
between the two extremes; in fact, several different points along the spectrum might
be appropriate for use in different parts of a complex system. This is also the case
for our UAV system, which provides a set of high-level actions such as “take oft™
and “fly to point A” but also makes use of planning techniques to compose such ac-
tions into plans satisfying a set of declaratively specified goals. The transportation
of medical supplies is only one of many possible scenarios that can be modeled in
this manner.

The planner used for this purpose is TALplanner (Doherty and Kvarnstrom,
1999, 2001; Kvarnstrom and Doherty, 2000; Kvarnstrom, 2005), a forward-chaining
planner where planning domains and problem instances are specified using a ver-
sion of TAL-C extended with new macros for plan operators, resource constraints,
goal specifications, and other issues specific to the planning task. In addition to
providing a declarative first-order semantics for planning domains, thereby serving

99

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

as a specification for the proper behavior of the planning algorithm, TAL is also
used to specify a set of temporal control formulas acting as constraints on the set of
valid plans. Such formulas can be used for specifying temporally extended goals
that must be satisfied over the (predicted) execution of a plan. In addition, they can
be used to constrain the forward-chaining search procedure, guiding the planner
towards those parts of the search space that are more likely to contain plans of high
quality in terms of flight time, delivery delays, or other quality measures.

In the remainder of this section, we will first show how TAL can be used for
modeling the UAV logistics scenario (Section 7.4.1). We then discuss the use of
control formulas in TALplanner and how they constrain the set of valid plans (Sec-
tion 7.4.2). Due to the fine granularity with which operators have been modeled,
the typical plan length for a small example with four boxes, one carrier, and one
UAV is approximately 150 to 250 actions, depending on the initial state and the
goal. Such plans can typically be generated in less than one second on a 1.8 GHz
Pentium 4 machine. Most likely, some optimizations would be possible if neces-
sary: The planning domain definition has currently been written for readability and
ease of modification, not for performance.

See Kvarnstrom and Doherty (2000) or Kvarnstrom (2005) for further details
regarding TALplanner.

7.4.1 Modeling the UAV Logistics Scenario in TAL

Though many traditional benchmark domains for planning are quite simple, and
could be described and formalized in their entirety on a page or two, this is mainly
due to two facts: First, many domains are designed to illustrate a specific point;
second, a large proportion of the domains were defined at a time when planners
could not be expected to handle more complex and detailed domain definitions
due to limitations in computational capacity as well as in planning algorithms. The
UAV domain discussed here, on the other hand, is intended to be used in a complex
real world application where topics such as exact locations, distances and timing
(as opposed to symbolic positions and unit timing for each action) are essential
and cannot be abstracted away without severely compromising the average quality
of a plan, or even the likelihood of it being executable at all. This means that
the complete £(ND) domain description with all associated operator specifications
and control formulas is quite large, therefore a number of representative examples
will be used.

In terms of value domains, we first require a set of domains to represent objects
which have locations. Thus, the top level domain 1ocatable has the subdomains
uav and carryable, the latter of which has the subtypes box and carrier.
Additionally, it may not be possible to place carriers at arbitrary positions due to
terrain constraints, buildings, and other types of obstacles. For simplicity, the do-
main carrier—-position represents intermediate locations where carriers may
be placed when loading and unloading boxes. This may eventually be augmented
with a method for querying the onboard GIS to dynamically find a suitable location
for carrier placement; however, the requirement of predictability in a UAV deploy-

100

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

ment is likely to make the use of predefined carrier positions a legal necessity in
many cases.

Each 1locatable object has a position which may vary over time. The x co-
ordinate of a locatable is represented by the xpos feature, and the y coordinate
by the ypos feature, taking values from a finite domain fp of fixed-point num-
bers (that is, numbers with a fixed number of decimals)?. The current altitude of
each UAV is modeled using the altitude feature, also taking values from the domain
fp. We appeal to the use of semantic attachment (Weyhrauch, 1980) techniques in
the implementation of TAL and TALplanner by liberal use and invocation of built
in mathematical functions and other functions associated with finite integer and
fixed-point value domains.

Unlike some benchmark planning domains, where (for example) an unlimited
number of boxes can be loaded into a single vehicle, our formalization of the UAV
domain must comply with the physics of the real world. Consequently, each UAV
has a limited carrying capacity, and each carrier has limited space available for
boxes. Modeling this is not difficult, but a detailed model of issues involving
weights and shapes would lead to unnecessary complexity in an area which is out-
side the focus of this chapter. Instead, a simpler model is used, where all boxes are
assumed to be of similar shape, carrier capacities are modeled in terms of the num-
ber of boxes that will fit (carrier-capacity(carrier) : £p), and UAV capacities are
modeled in terms of the number of boxes that it can carry (uav-capacity(uav) : £p).

It should also be mentioned that the UAV is only permitted to place boxes on
specific areas on each carrier; boxes placed elsewhere could block the electromag-
net from attaching to the carrier, or could fall off when the carrier is lifted. For
this reason, the on-carrier(box, carrier) fluent is not boolean, but has three val-
ues representing the cases where the box is definitely not on the carrier, definitely
correctly placed on the carrier, and perhaps blocking the carrier, respectively. Cor-
rectly deducing the third case also entails modeling the size of each carryable and
the minimum safety distances between different types of carryables; this has been
done but will not be further discussed here.

The boolean feature attached(uav, carryable) represents the fact that a certain
UAV has attached its electromagnet to a certain carryable. Finally, a number of
features are used for modeling abstract conditions such as whether the UAV is
prepared and ready to fly, the most prominent one being state(uav) taking val-
ues from the domain uavstate = {unprepared, ready-to-fly, ready-to-attach,
ready-to-detach}.

Operators

The UAV system provides a varied and complex set of functionalities that can be
exposed to the planner as operators. Here, we will focus on the functionality that is
the most relevant for the logistics missions used in this chapter: Flying to different

’Infinite domains are currently not allowed in TAL, and floating point numbers have a semantics
which is considerably more difficult to formalize in logic. Since one can choose an arbitrary precision
for a domain of fixed-point numbers, this is not a problem in practice.

101

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

locations, attaching and detaching carryable objects such as boxes and carriers, and
(since we want a reasonably fine-grained model of the domain, in order to support
fine-grained recovery) various forms of preparatory actions such as adjusting the
altitude before attaching a box.

Even if the functionality exposed by the lower layers of the UAV architecture
were seen as fixed and unalterable, there is still a great deal of flexibility in de-
termining how this should be modeled in the planner: Even if there is a single
parameterized fly functionality, for example, one may still choose to model this
as several different operators for the purposes of planning if this has advantages
in terms of readability. This is often the case for a planner such as TALplanner,
which supports operator-specific control formulas that might only be applied in
certain cases. To be more concrete, five different fly operators are used in the TAL
domain specification created for the UAV domain: fly-empty-to-box, fly-empty-to-
carrier, fly-box-to-carrier, fly-box-to-goal, and fly-carrier. Each of these operators has
its own associated set of control formulas, because the action of flying without
cargo to pick up a box is appropriate in different circumstances than flying with a
box to place it on a carrier.

In addition to the flight operators, a UAV can also adjust-for-attach and then
either attach-box or attach-carrier. After a subsequent climb-for-flying-with action,
which reels in the winch and climbs to the standard flight altitude, it can fly the
carryable to another location, adjust-for-detach, and either detach-box or detach-
carrier depending on the type of carryable. After finishing with a climb-for-flying-
empty action, the UAV is free to pursue other goals.

For all of these operators, there are a number of parameters, not all of which
are relevant for the purpose of discussing the integration between planning and
execution monitoring. A couple of examples are in order, though: climb-for-flying-
empty(uav) requires a UAV as its only parameter. The operator fly-empty-to-carrier(uav,
fromx, fromy, carrier, tox, toy) is somewhat more complex, requiring a UAV and its
coordinates, plus a destination carrier and its coordinates, as parameters. (Note that
if one models an area of 10000 meters square at a resolution of 1 centimeter, each
coordinate has 10° possible values, and even with only a single UAV and a single
carrier, the operator has 10>* ground instances. Obviously, TALplanner does not
generate all ground instances of an operator, as some planners do.)

The exact effects and preconditions of these operators cannot be listed here in
their entirety; again, they are not relevant for the purposes of the chapter. How-
ever, we will show one of the simplest operators in the syntax used by TALplanner
together with its translation into £(ND) and £L(FL).

#operator adjust-for-attach(uav, carryable, x, y)
rat start, end
:cost 500
:timeconstraint 0 <= end - start <= 5 % UNITS_PER_SECOND
:precond [start] near (uav, carryable, MAX ATTACH_DIST)
& 'hasCargo (uav)

& xpos (carryable) == x
& ypos (carryable) ==y
reffects [end] state(uav) := ready-to—-attach

102

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

The operator is named adjust-for-attach and takes four parameters, two of which (x
and y) are only used in operator-specific control formulas which are omitted here.
The start and end time-points start and end can also be seen as implicit parameters
and are instantiated by the planner as required during the search process. The :cost
clause specifies a cost for this action, which is used if an optimizing search strategy
is applied by the planner. Here, the cost is constant, but it can also depend on the
arguments of the operator. The :timeconstraint clause provides a constraint on the
timing of the operator, which may not be completely determined in advance. The
:precondition clause makes use of several feature macros (features defined in terms
of logic formulas), the meaning of which should be apparent from their usage. For
example, hasCargo(uav) is defined to hold iff Acarryable.attached(uav, carryable).
The operator is applicable iff the UAV is sufficiently close to the carryable that
should be attached and the UAV is not currently carrying any cargo; the conditions
on x and y serve to bind these variables for use in control formulas. Finally, the only
effect of this operator is that at the end, the state of the UAV is ready-to-attach.
The TAL-C action type specification corresponding to this would be defined as
follows. Cost is omitted since this concept is only used during the planning phase
and is not part of TAL. Free variables are assumed to be universally quantified.
[start, end] adjust-for-attach(uav, carryable, x,y) —
0 < end — start <5 - UNITS_PER_SECOND A
([start] near(uav, carryable, MAX_ATTACH_DIST) A
—hasCargo(uav) A xpos(carryable) = x A ypos(carryable) =y —
R([end] state(uav) = ready-to-attach))
This would be translated into the following L(FL) action type specification:
Occurs(start, end, adjust-for-attach(uav, carryable, x,y)) —
0 < end — start <5 - UNITS_PER_SECOND A
(Holds(start, near(uav, carryable, MAX_ATTACH_DIST), true) A
= Holds(start, hasCargo(uav), true) A
Holds(start, xpos(carryable), x) A Holds(start, ypos(carryable),y) —
Holds(end, state(uav), ready-to-attach) A
Occlude(end, state(uav)))

7.4.2 Control Formulas in TALplanner

Given the operators described above together with an initial state and a set of for-
mulas that must be satisfied in any goal state, the task of the planner is to search
for a valid and executable plan that ends in a goal state. If we (for the sake of
discussion) temporarily restrict ourselves to finding sequential plans, applying a
forward-chaining algorithm to this task entails a search space where the root node
is the empty action sequence and where the children of any node n are exactly
those generated by appending one more applicable action to the end of the action
sequence associated with n.

Clearly, each node n associated with an action sequence p can also be viewed as
corresponding to a finite state sequence [sy, sy, ..., s,;] — the sequence that would
be generated by executing p starting in the initial state. This state sequence, in

103

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

turn, can be seen as corresponding to a TAL interpretation. This leads us directly
to the possibility of specifying constraints on a plan in terms of TAL formulas to
be satisfied by the corresponding interpretation.

Before going into further detail, a small example will be presented.

Example 7.4.1 (Global Control Formula) In the UAV domain, a box should only
be moved if the goal requires it to be elsewhere, or if it is blocking some other
action. The first condition holds if the box is farther away from its ideal goal coor-
dinates than a given (possibly context-specific) threshold. One cannot require the
box to be exactly at a given set of coordinates: If a failure is detected the system
may need to replan, and one does not want to move boxes again merely because
they may be centimeters away from an ideal goal location. The second condition
might hold if the box is too close to a carrier position according to a specified
safety margin. These conditions are simplified and modularized using several fea-
ture macros defined in terms of basic features: close-enough-to-goal(box), need-to-
move-temporarily(box), and is-at(locatable, x, y).
Vt, box, x, y.

[¢] is-at(box, x,y) — [t + 1] is-at(box, x,y) V

[#] —close-enough-to-goal(box) V

[t] need-to-move-temporarily(box) O

Some control formulas are always satisfied by inaction; for example, the empty
plan generates a state sequence where no boxes are moved, which will satisfy the
formula above. Formulas may also require certain changes to take place, however.
For example, one could state that if a UAV takes off, it must begin flying to a
destination within 30 seconds; otherwise it is wasting fuel and might as well have
waited on the ground.

If fluents are assumed to be persistent (not change values) after the final action
in a plan, then a plan consisting of a single takeoff action will permit the conclusion
that the UAV takes off and then remains stationary indefinitely, which violates the
control formula. This is obviously wrong, since the only reason why the UAV
remains stationary is that the plan search algorithm has not yet added a flight action.
Only after the planner has actually added actions predicted to take 30 seconds or
more, without adding a flight action, should the control formula be considered to
be violated.

This is achieved by considering the state sequence [so, S, - ., Sy,] associated
with an intermediate node in the search tree to be a partial state sequence, a prefix
of the final sequence that will eventually be generated. Similarly, the TAL interpre-
tation corresponding to an intermediate node is viewed as a partial interpretation
7, where fluent values up to the time of state s, are completely determined, af-
ter which they are assumed to be completely unknown. If ¢ is a control formula
and 7 | —¢, then both this node and any descendant must necessarily violate the
control formula (because descendant nodes can only add new information after s,
which does not retract any previous conclusions), and the planner can reject the
node and backtrack. How to test this efficiently is discussed in Kvarnstrom (2002;
2005).

104

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

In addition to global control formulas, TALplanner also permits the use of
operator-specific control. Such formulas are similar to preconditions, but whereas
preconditions are intended to model constraints on when it is “physically” possible
to use an operator, operator-specific control is intended to model constraints on
when using the operator is recommended.

Example 7.4.2 (Operator-specific Control) Suppose one wants to express the con-
straint that a UAV should not prepare for attaching to a carrier where there are
potentially misplaced boxes, because such a carrier may not be correctly balanced.
This control formula can be declared locally in the adjust-for-attach operator, which
also gives it access to operator parameters. Specifically, the carryable parameter
indicates the relevant carryable, which may or may not be a carrier. This leads
to the following conditionalized control formula, which is violated by any action
preparing to attach to a carrier where there is a box which is closer than the desig-
nated safety distance and is not correctly placed:
[start] Ycarrier, box.
carrier = carryable A near(box, carrier, safetyDistance(box, carrier)) —
on-carrier(box, carrier) = correctly_placed O

7.5 Execution Monitoring

Classical planners are built on the fundamental assumption that the only agent
causing change in the environment is the planner itself, or rather, the system or
systems that will eventually execute the plan that it generates. Furthermore, they
assume that all information provided to the planner as part of the initial state and
the operator specifications is accurate. Though this may in some cases be a rea-
sonable approximation of reality, it is more often manifestly untrue: Numerous
other agents might manipulate the environment of an autonomous system in ways
that may prevent the successful execution of a plan, and actions can sometimes fail
to have the effects that were modeled in a planning domain specification regard-
less of the effort spent modeling all possible contingencies. Consequently, robust
performance in a noisy environment requires some form of supervision, where the
execution of a plan is constantly monitored in order to detect any discrepancies and
recover from potential or actual failures. For example, a UAV might accidentally
drop its cargo; thus, it must monitor the condition that if a box is attached, it must
remain attached until the UAV reaches its intended destination. This is an example
of a safety constraint, a condition that must be maintained during the execution of
an action or across the execution of multiple actions. The carrier can also be too
heavy, which means that one must be able to detect takeoff failures where the UAV
fails to gain sufficient altitude. This can be called a progress constraint: Instead
of maintaining a condition, a condition must be achieved within a certain period of
time.

The requirement for monitoring leads to the question of what conditions should
be monitored, and how such conditions should be specified. Clearly, there are

105

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

certain contingencies that would best be monitored by the low-level implemen-
tation of an operation or behavior, but universal use of this principle would lead
to excessively complex action implementations with duplication of failure detec-
tion functionalities and a lack of modularity. As an alternative, the monitoring
of failures and the recovery from unintentional situations could be separated from
the execution of actions and plans and lifted into a higher level execution moni-
tor (Ben Lamine and Kabanza, 2002; Bjareland, 2001; De Giacomo, Reiter, and
Soutchanski, 1998; Fernandez and Simmons, 1998; Fichtner, Grossmann, and Thiel-
scher, 2003; Gat et al., 1990), where the constraints to be monitored should prefer-
ably be specified in an expressive declarative formalism. If a constraint is violated,
the execution system should be signaled, after which the UAV can react and attempt
to recover from the failure. This is the approach taken in this thesis.

Our system for monitoring the correct execution of a plan is based on an intu-
ition similar to that underlying the temporal control formulas used in TALplanner.
As a plan is being executed, information about the surrounding environment is
sampled at a given frequency. Each new sampling point generates a new state
which provides information about all fluents used by the current monitor formulas,
thereby providing information about the actual state of the world at that particular
point in time, as opposed to what could be predicted from the domain specification.
Concatenating all states generated by this sampling process yields a state sequence
that corresponds to a partial logical interpretation, where “past” and “present”
states are completely specified whereas “future” states are completely undefined
(Section 7.8 on page 117).

Given that both actual and predicted states are available, one obvious approach
to monitoring would be to simply compare these states and signal a violation as
soon as a discrepancy is found. Unfortunately, the trivial application of this ap-
proach is not sufficient, because not all discrepancies are fatal: If the altitude was
predicted to be 5 meters and the current measurement turns out to be 4.984 meters,
then one most likely does not have to abort the mission. Additionally, some infor-
mation about the environment might be expensive or difficult to sense, in which
case the operator or domain designer should be given more control over when and
where such information is used, rather than forcing the system to gather this infor-
mation continuously in order to provide sufficient information for state generation.
Finally, the richer the domain model is, the more the planner can predict about
the development of the world; this should not necessarily lead to all those condi-
tions being monitored, if they are not relevant to the correct execution of a plan.
Determining which of these predictions are truly important for goal achievement
and which are less relevant, and weighing this importance against the difficulty or
expense involved in sensing, is best done by a human.

For these reasons, most conditions to be monitored are explicitly specified us-
ing a variation of Temporal Action Logic (Section 7.5.1), though many conditions
can be automatically generated within the same framework if so desired (Sec-
tion 7.7 on page 115). For example, a very simple monitor formula might monitor
the constraint that at any time-point, Yuav.altitude(uav) < 50. Through the use of
logic, conditions are given an expressive formal declarative semantics where both

106

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

safety and progress conditions can be defined and monitored.

As each new sensed state arrives into the system, the current set of monitor
formulas is tested against the incrementally constructed partial logical model using
a progression algorithm (Section 7.5.2 on page 110), and any violation is reported
to the execution system which can take the appropriate action (Section 7.5.3 on
page 112).

7.5.1 Execution Monitor Formulas

Having decided that the conditions to be tested by the execution monitor should be
specified in the form of logic formulas, we still retain a great deal of freedom in
choosing exactly which logic should be used. However, there are several important
considerations that can be used for guidance.

First, the logic must be able to express conditions over time. In restricted cases,
the conditions to be tested could consist of simple state constraints specifying re-
quirements that must hold in each individual state throughout the execution of a
plan. In the general case, though, one would need the ability to specify conditions
across states, such as the fact that when a UAV has attached to a box, the box must
remain attached until released.

Second, the logic should be able to express metric constraints on time, in order
to provide support for conditions such as the UAV succeeding in attaching a box
within at most 10 seconds.

These are the most important constraints on expressivity, and had these been the
only constraints on our system, it would have been possible to use an unmodified
version of TAL-C to express monitor formulas. After all, TAL-C has been used
to great success in specifying control formulas for the planning phase, and has
support for temporally extended constraints as well as metric time. However, there
is a third and more pragmatic constraint that must also be satisfied: It must be
possible to test each monitor formula incrementally and efficiently as each new
state arrives from DyKnow into the execution monitor, because violations must be
detected as early as possible, and there may be a large number of monitor formulas
to be tested using the limited computational capabilities of the onboard computers
on a UAV.

For TALplanner, the main strategy for verifying that control formulas are not
violated is based on the use of plain formula evaluation in a partial interpretation.
The efficiency of this strategy is predicated on the use of an extensive pre-planning
analysis phase where the control formulas specified for a given domain are ana-
lyzed relative to the operators available to the planner (Kvarnstrom, 2002). For the
execution monitoring system, the prerequisites for the formula analysis phase are
not satisfied: The very reason for the existence of the system is the potential for
unforeseen and unpredictable events and failures, rendering the analysis relative to
specific operators specifying “what could happen” ineffective. For this reason, a
formula progression algorithm would be more appropriate for this application, and
such algorithms are more easily applied to formulas in a syntax such as that used
in modal tense logics such as LTL (Linear Temporal Logic (Emerson, 1990)) and

107

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

MITL (Metric Interval Temporal Logic (Alur and Henzinger, 1992; Alur, Feder,
and Henzinger, 1991)).

Note again the wording above: Progression is more easily applied to formulas
in a syntax such as that used in modal tense logics. In fact, there is no requirement
for actually using such a logic; instead, it is possible to create a new variation of the
L(ND) surface language for TAL-C containing operators similar to those in MITL
together with a translation into the same base logic £(FL). Doing this has the clear
advantage of providing a common semantic ground for planning and execution
monitoring, regardless of the surface syntax of a formula.? It should be noted that
the ability to adapt the surface language to specific applications is in fact one of
the main reasons behind the use of two different languages in TAL; the £(ND)
language has already been adapted in different ways for planning (Kvarnstrom
and Doherty, 2000; Kvarnstrom, 2005), object-oriented modeling (Gustafsson and
Kvarnstrom, 2004), and other tasks.

Monitor Formulas in TAL

Three new tense operators have been introduced into £(ND) for use in formula
progression: U (until), ¢ (eventually), and O (always). Note that like all expres-
sions in £(ND), these operators are macros on top of the first order base language
L(FL). We also introduce the concept of a monitor formula in TAL.

Definition 7.5.1 (Monitor Formula) A monitor formula is one of the following:
e T<7,7<7,ort =1, wheretand 7’ are temporal terms,
e w = ', where w and «’ are value terms,

e a fluent formula,

¢ Uz ¢, where ¢ and ¢ are monitor formulas and 7 and 7’ are temporal
terms,

Otler1 ¢, Where ¢ is a monitor formula and 7 and 7/ are temporal terms,

O] ¢, Where ¢ is a monitor formula and 7 and 7’ are temporal terms, and

e a combination of monitor formulas using the standard logical connectives
and quantification over values.

The shorthand notation Uy = ¢ Uy ¥, O ¢ = Opo,00) ¢, and O ¢ = Ojg,e0) @ 15
also permitted in monitor formulas. O

Whereas other logic formulas in £(ND) use absolute time (as in the fixed fluent
formula [t] f £ v), monitor formulas use relative time, where each formula is
evaluated relative to a “current” time-point. The semantics of these formulas will
be defined in terms of a translation into £(FL) satisfying the following conditions:

3The use of tense operators in TAL was in fact first introduced in TALplanner, which provides both
the standard TAL syntax and a tense logic syntax for its control formulas.

108

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

e The formula ¢ U, ¢ (“until”) holds at time ¢ iff ¢ holds at some state with
time ' € [#+7,¢+ 7] and ¢ holds until then (at all states in [¢,¢"), which may
be an empty interval).

e The formula O ¢ (“eventually”) is equivalent to t rue U ¢ and holds
at ¢ iff ¢ holds in some state with time ¢’ € [t + 7,7 + T'].

e The formula O ¢ is equivalent to = &) —¢ and holds at ¢ iff ¢ holds in
all states with time ¢’ € [t + 7,t + 7'].

Definition 7.5.2 (Translation of Monitor Formulas) Let 7 be a temporal term and
v be a monitor formula intended to be evaluated at 7. Then, the following proce-
dure returns an equivalent formula in £(ND) without tense operators.

TransMonitor(T, Qx.¢) 2 Qux.TransMonitor(7, ¢), where Q is a quantifier

TransMonitor(T, ¢ ® V) TransMonitor(7, ¢) ® TransMonitor(7, i), where ® is
a binary connective

e

def

TransMonitor(T, —¢) = —TransMonitor(7, ¢)
TransMonitor(7, f = v) ERGRER
TransMonitor(7, y) = v, where y has no tense operators

TransMonitor(T, ¢ Uiz ¥) = T+ <t<T+T A

TransMonitor(f, Y)AVY [T < t' < t — TransMonitor(¢’, ¢)]]
TransMonitor(T, O] ¢) = Vi[Tt + 7 <t < T+ 1 — TransMonitor(¢, ¢)]
TransMonitor(T, Orr.r1 @) £ ¥T+71<1<T+7 A TransMonitor(z,)]

Line 5 handles elementary fluent formulas, which are not full logic formulas in
themselves and require the addition of an explicit temporal context [7]. Other
formulas without occurrences of tense operators, for example value comparisons
of the form v = w, require no temporal context and are handled in line 6.

The Trans translation function is extended for tense monitor formulas by defin-
ing Trans(y) = Trans(TransMonitor(0, y)). O

A few examples may be in order.

Example 7.5.1 Suppose that whenever a UAV is moving, the winch should not be
lowered. In this example, “moving” should not be interpreted as “having a speed
not identical to zero”, since the UAV might not be able to stay perfectly still when
hovering and sensor noise may cause the sensed speed to fluctuate slightly. Instead,
the UAV is considered to be still when its sensed speed is at most sy,,. We assume
the existence of a winch feature representing how far the winch has been extended
and a limit wy,, determining when the winch is considered to be lowered, which
leads to the following monitor formula.

O Yuav.speed(uav) > smin — winch(uav) < wpin O

Note that this does not in itself cause the UAV to behave in the desired manner.
This has to be achieved in the lower level implementations of the helicopter control
software. This monitor formula instead serves as a method for detecting the failure
of the helicopter control software to function according to specifications.

109

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Example 7.5.2 Suppose that a UAV supports a maximum continuous power usage
of M, but can exceed this by a factor of f for up to 7 units of time, if this is followed
by normal power usage for a period of length at least 7’. The following formula
can be used to detect violations of this specification:

O VYuav.(power(uav) > M —
power < f- M Uro,71 Op0.r] power(uav) < M) O

Further examples will be shown in Section 7.6, after the introduction of operator-
specific monitor formulas and a means for formulas to explicitly represent queries
about aspects of the execution state of the autonomous system.

7.5.2 Checking Monitor Conditions using Formula Progression

We now have a syntax and a semantics for conditions to be monitored during exe-
cution. Given the complete state sequence corresponding to the events taking place
during the execution of a plan, a straight-forward implementation of the semantics
can be used to test whether a monitor formula is violated. This is sufficient for
post-execution analysis, but true execution monitoring requires prompt detection
of potential or actual failures during execution.

A formula progression algorithm can be used for this purpose (Bacchus and
Kabanza, 1996, 1998). By definition, a formula ¢ holds in the state sequence
[s0, $15. .., 8,] iff Progress(¢, so) holds in [sy,...,s,]. Thus, a monitor formula
can be incrementally progressed through each new state that arrives from DyKnow,
evaluating only those parts of the formula that refer to the newly received state.

As soon as sufficient information has been received to determine that the moni-
tor formula must be violated regardless of the future development of the world, the
formula L (false) is returned. For example, this will happen as soon as the formula
Ospeed < 50 is progressed through a state where speed > 50. Using progression
thus ensures that failures are detected quickly and without evaluating formulas in
the same state more than once.

The result of progression might also be T (true), in which case the formula
must hold regardless of what happens “in the future”. This will occur if the formula
is of the form ¢ ¢ (eventually, ¢ will hold), and one has reached a state where ¢
indeed does hold. In other cases, the state sequence will comply with the constraint
“so far”, and progression will return a new and potentially modified formula that
should be progressed again as soon as another state is available.

Since states are not first-class objects in TAL, the state-based definition of pro-
gression must be altered slightly. Instead of taking a state as an argument, the
procedure below is provided with an interpretation together with the time-point
corresponding to the state through which the formula should be progressed.

An additional change improves performance and flexibility for the situation
where a single sample period corresponds to multiple discrete TAL time-points.
Specifically, if samples are known to arrive every m time-points and one is pro-
gressing a formula ¢ where the lower temporal bounds of all tense operators are
multiples of m’, it is possible to progress ¢ through n = gcd(m, m’) time-points in a

110

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

single step. The value of n is assumed to be provided to the progression procedure
as defined below. This permits the temporal unit to be completely decoupled from
the sample rate while at the same time retaining the standard TAL-based semantics,
where states exist at every discrete time-point.

For example, suppose a TAL time-point corresponds to 1 ms. If samples arrive
every 50 ms, the formula ¢ 30377 ¢ can be progressed through gcd(50,0) = 50
time-points in a single step, while the formula 403037 ¢ can be progressed
through gcd(50, 40) = 10 time-points. If samples arrive every 100 ms, the formula
01030377 ¢ can be progressed through ged(100,0) = 100 time-points in a single
step, while the formula $a03037; ¢ can be progressed through ged(100,40) = 20
time-points. Thus, formula definitions and sample rates can be altered indepen-
dently (which would not be the case if a TAL time-point was defined to be a single
sample interval), and progression automatically adapts to the current situation.

The progression algorithm below satisfies the following property. Let n be a
progression step measured in time-points, ¢ be a monitor formula where all times
are multiples of n, T a numeric time-point, and 7 a TAL interpretation. Then,
Progress(¢, 7, n, 7)) will hold at 7 + n in 1 iff ¢ holds at 7 in 7. More formally,

I E Trans(TransMonitor(t, ¢)) iff 7 = Trans(TransMonitor(t+n, Progress(¢, 7, n, 1))),

where TransMonitor(t, ¢) is the translation of a monitor formula ¢ into £(FL) rela-
tive to the time-point 7 as described above.

Definition 7.5.3 (Progression of Monitor Formulas) The following algorithm is
used for progression of monitor formulas. Special cases for O and ¢ can also be
introduced for performance.

1 procedure Progress(¢, 7, n, 1)
ifop=rf()=v
if I = Trans([7] ¢) return T else return L
if ¢ = —¢, return —Progress(¢,,7,n, 1)
if ¢ = ¢ ® ¢, return Progress(¢;, 7, n, ') ® Progress(¢,, T, n, 1)
if ¢ = Yx.¢p // where x belongs to the finite domain X
return A .y Progress(¢[x — c],7,n, 1)
if = dx.¢ // where x belongs to the finite domain X
9 return \/ .y Progress(¢[x — cl,7,n,T)
10 if ¢ contains no tense operator
11 if I E Trans(¢) return T else return L
12 if ¢ = ¢1 Uz, o 92
13 if 7, < Oreturn L
14 elsif O € [y, 5] return Progress(¢,, 7,n, 1) V
15 (Progress(¢1, 7,1, 1) A (¢1 Upr,—nry—n] $2))
16 else return Progress(¢y, 7,1, 1) A (¢1 Uir,—ney—n] $2)

0NN N kAW

The result of Progress is simplified using the rules ~L = T, (LAa@) = (@AL) = L,
(LVva)=@vl=a,-T=L(TAe)=(@AT)=a,and(TVa)=(eVT)=
T. Further simplification is possible using identities such as ¢y ¢ A Qo1 ¢ =
C1o,min(z,e)] @- o

111

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

7.5.3 Recovery from Failures

Any monitor formula violation signals a potential or actual failure from which the
system must attempt to recover in order to achieve its designated goals.

Recovery is a complex topic, especially when combined with the stringent
safety regulations associated with flying an autonomous unmanned vehicle and the
possibility of having time-dependent goals as well as time-dependent constraints
on the behavior of the vehicle. For example, a UAV might only be allowed to fly in
certain areas at certain times. There may also be complex temporal dependencies
between operations intended to be carried out by different UAVs, and given that
one UAV has failed, optimal or near-optimal behavior for the aggregated system
might require further modifications to the plan of another UAV. For example, if
helil fails to deliver a box of medicine on time, heli2 might have to be rerouted in
order to meet a goal deadline. For these reasons, our first iteration of the recovery
system has not tackled incremental plan repair and modifications, even though such
properties may be desirable in the long run. Instead, recovery is mainly performed
through replanning, where a single planning domain specification and planning al-
gorithm can be used for both the initial planning phase and the recovery phase.
Given that the planner is sufficiently fast when generating new plans, this does not
adversely affect the execution of a fully autonomous mission.

Thus, having detected a failure, the first action of a UAV is to cancel the current
plan, execute an emergency break if required, and then go into autonomous hover
mode. Currently, we take advantage of the fact that our UAV is rotor-based and
can hover. For fixed-wing platforms, this is not an option and one would have to
go into a loiter mode if the recovery involves time-consuming computation.

This is followed by the execution of a recovery operator, if one is associated
with the violated monitor formula. The recovery operator can serve two purposes:
It can specify emergency recovery procedures that must be initiated immediately
without waiting for replanning, and it can permit the execution system to adjust
its assumptions about what can and cannot be done. For example, if a UAV fails
to take off with a certain carrier, it may have to adjust its assumptions about how
many boxes it is able to lift (or, equivalently, how heavy the boxes on the carrier
are). The associated recovery operator can perform this adjustment, feeding back
information from the failure into the information given to the planner for replan-
ning. The implementation of a recovery operator can also detect the fact that the
UAV has attempted and failed to recover from the same fault too many times and
choose whether to give up, try another method, remove some goals in order to
succeed with the remaining goals, or contact a human for further guidance.

After executing a recovery operator, the UAV must find sufficient information
about its environment to construct a new initial state to be given to the planner.
In the simulated execution system, this information can be extracted by DyKnow
directly from the simulator; even though a box may have bounced and rolled after
having been dropped, the simulator will obviously know exactly where it ended
up. In the real world, locating and identifying objects is a more complex topic
which has not yet been tested in the context of execution monitoring and replan-
ning. Possibly, the next iteration of the recovery system will include some de-

112

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

gree of intervention by a human operator in order to locate objects, or confirm a
UAV’s hypotheses regarding object locations, before we move on to completely
autonomous recovery. For some ideas of how the topic of object identification can
be approached see Chapter 8.

Having constructed a formal representation of the current state, the plan execu-
tor can once again call the planner and replan from this state. This yields a new
plan, which must take into account the new situation as well as any time-related
constraints.

7.6 Further Integration of Planning and Monitoring

Making full use of the execution monitoring system developed in the previous
section requires a higher degree of integration between the planning phase and
the execution monitoring phase. The following example illustrates some of the
difficulties associated with doing execution monitoring without such integration.

Example 7.6.1 Whenever a UAV attaches to a carryable, it should remain attached
until explicitly detached. If only global monitor formulas are available, this condi-
tion must be approximated using knowledge about the behavior of the UAV when
it is in flight and when it attaches or detaches a carryable. Suppose that UAVs
always descend below 4 meters to attach a carryable, always stay (considerably)
above an altitude of 7 meters while in flight, and always descend to below 4 meters
before detaching a carryable. The following condition states that whenever a UAV
is attached to a carryable and has achieved the proper flight altitude, it must remain
attached to the carryable until it is at the proper altitude for detaching it:
O Yuav, carryable.
attached(uav, carryable) A altitude(uav) > 7.0 —
attached(uav, carryable) U altitude(uav) < 4.0

This formula is inefficient, however: It will be tested in all states and for all UAV's
and boxes, regardless of whether an attach action has been performed. It is also
brittle: If the UAV drops the carrier before reaching flight altitude, no failure will
be signaled, because the formula only triggers once the UAV rises above an altitude
of 7 meters. If the margin between the two altitudes is decreased, there will be a
smaller interval in which a carryable might be dropped without detection, but only
at the cost of increasing the risk that the formula is triggered during a proper detach
action. As soon as the UAV descends to below 4 meters for any reason, the monitor
will cease testing whether the carryable remains attached, even if the descent was
temporary and not intended to lead to a detach action. O

In the remainder of this section, we will discuss how monitor formulas can
be associated with individual operators and provided to the execution system as
part of the plan, improving the flexibility and modularity of the system as well as
the expressive power of the formulas (Section 7.6.1). We will also discuss how to
specify monitoring formulas of different longevity, either terminating at the end of

113

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

an action or continuing to monitor conditions across an arbitrary interval of time
(Section 7.6.2).

7.6.1 Operator-Specific Monitor Formulas

The first step in a deeper integration between planning and execution monitor-
ing involves allowing execution monitor formulas to be explicitly associated with
specific operator types. Unlike global monitor formulas, such formulas are not ac-
tivated before plan execution but before the execution of a particular step in the
plan, which provides the ability to contextualize a monitor condition relative to a
particular action. An operator-specific monitor formula can also directly refer to
the arguments of the associated operator. As for global formulas, a recovery action
can be associated with each formula.

We are not yet ready to provide an improved formula for the motivational ex-
ample above. However, to illustrate the principle, consider the following example.

Example 7.6.2 When a UAV attempts to attach to a box, the attempt may fail;
therefore, the success of the action should be monitored. The attach-box operator
takes four arguments: A uav, a box, and the x and y coordinates of the box. Making
use of the first two arguments, the following operator-specific monitor formula may
be suitable:
<O10.50001 00,1000 attached(uav, box)

Within 5000 ms, the box should be attached to the UAV, and it should remain
attached for at least 1000 ms. The latter condition is intended to protect against
problems during the attachment phase, where the electromagnet might attach to the
box during a very short period of time even though the ultimate result is failure. O

When a plan is generated by TALplanner, each action in the plan is annotated
with a set of instantiated operator-specific monitor formulas. Continuing the previ-
ous example, the action [120000, 125000] attach-box(helil, bx7,127.52,5821.23)
would be annotated with the instantiated formula <o 5000) Oj0,1000; attached(helil, bx7).
During execution, this instantiated formula is added to the execution monitor im-
mediately before beginning execution of the attach-box action.

7.6.2 Execution Flags

The power of monitor formulas can be extended further by also giving access to
certain information about the plan execution state, in addition to the world state.
In the motivational example above, one would like to state that once a carrier has
been attached to the UAV, it should remain attached until the UAV intentionally
detaches it, that is, until the corresponding detach action is executed. One may
also want to state that a certain fact should hold during the execution of an action,
or that an effect should be achieved during the execution of an action.

In order to allow monitor formulas to query the execution state of the agent,
we introduce the use of execution flags. An execution flag is a standard parameter-
ized boolean fluent which holds exactly when the corresponding operator is being

114

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

executed with a specific set of arguments. By convention, this fluent will generally
be named by prepending “executing-" to the name of the corresponding operator.
For example, the attach-box action is associated with the executing-attach-box ex-
ecution flag, which takes a subset of the operator’s parameters. The execution
subsystem is responsible for setting this flag when execution starts and clearing it
when execution ends.

Example 7.6.3 Consider the climb-for-flying-empty(uav) operator, which should
cause the UAV to ascend to its designated flight altitude. Here, one may wish
to monitor the fact that the UAV truly ends up at its flight altitude. This can be
achieved using the formula executing-climb-for-flying-empty(zav) U altitude(uav) >
7.0. O

When the operator is clear from context, we will often use the shorthand nota-
tion EXEC to refer to its associated execution flag fluent with default parameters.
Using this notation, the formula above is written as EXEC U altitude(uav) > 7.0.

Example 7.6.4 Whenever a UAV attaches to a box, it should become attached
within 5000 ms and remain attached until explicitly detached. Using execution
flags in an operator-specific monitor formula for the attach-box action, this can be
expressed as follows:

EXEC Ujo,5000](attached(uav, box) U executing-detach-box(uav, box))

Compared to the motivational example, this formula is more efficient, since it is
only tested when an attach action has been performed and only for the relevant
UAV and box. The formula is also more robust, since failures will be signaled even
if the box is dropped before flight altitude and regardless of the flight altitude of
the UAV. O

7.7 Automatic Generation of Monitor Formulas

The use of a single logical formalism for modeling both planning and execution
monitoring provides ample opportunities for the automatic generation of conditions
to be monitored. Not only do actions have preconditions that must hold and effects
that must take place, but it is also possible to analyze a complete plan and generate
a set of links between actions, links where the effects of one action must persist
over time until used as the precondition of one or more later actions. The ability to
extract these conditions from a planning domain and transfer them to an execution
monitor operating within the same formalism eliminates many potential sources of
inconsistencies and inaccuracies.

Preconditions. Any operator is associated with a precondition formula ¢.
Given this formula, the operator-specific monitor condition ¢ can be generated:
The precondition must hold immediately when the operator is invoked.

Prevail conditions. An operator can also be associated with a “prevail con-
dition” formula stating a condition ¢ that must hold throughout the execution of

115

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

the action, as opposed to only holding in the first state. Then, the operator-specific
condition (EXEC A ¢) U —EXEC can be used.

Effects. The condition that the effect ¢ is achieved at some time during the
execution of an action can be expressed using the monitor formula EXEC U ¢. This,
however, does not ensure that the effect still holds at the end of the action: It
can be achieved at an intermediate point and then destroyed. The more elaborate
formula EXEC U(=EXEC A ¢) can be used to ensure that ¢ holds after the transition
from execution to not executing. The formula EXEC U(¢ U —=EXEC) can be used to
express the same condition: The operator must execute until ¢ holds, after which
¢ must hold until the operator is no longer executing.

Temporal Constraints. An operator can be associated with constraints on the
duration of its execution. Such constraints can be viewed in two different ways,
both of which are supported by TALplanner: As a specification of the most likely
behavior of the operator, which can be used to provide a reasonable estimate of the
time required to execute a plan, or as a definite constraint on how much time can
possibly be required if the operator is working as intended. In the latter case, the
constraint can be used to generate a monitor formula constraining the amount of
time that can pass before =EXEC holds.

Causal Links. An effect monitor can ensure that the desired effects of an ac-
tion materializes in the real world after the execution of the action. If this effect
is later used as a precondition of another action, a precondition monitor can be
used to ensure that the effect still holds — but between the effect and the precon-
dition, a considerable amount of time may have passed. For example, helil may
use attach-box to pick up bx3, which gives rise to an effect monitor ensuring that
attached(helil, bx3) holds. Then, it may ascend to flight altitude, fly for several
minutes towards its destination, descend, and use detach-box to put the box down.
Only when detach-box is executed does the associated precondition monitor check
that attached(helil, bx3) is still true. If the UAV dropped the box during flight, it
should have been possible to detect this much earlier.

This can be done by analyzing the complete plan and generating a set of causal
links between different actions. In this example, such an analysis would have de-
tected the fact that attached(helil, bx3) is made true by attach-box, is required by
detach-box, and is not altered by any action in between. Using execution flags,
this global analysis can then attach the formula executing-attach-box(helil, bx3) U
(attached(helil, bx3) U executing-detach-box(helil, bx3)) to this specific instance
of the attach-box operator in the plan.

It should be noted that this is highly dependent on having a sufficiently detailed
description of the intermediate effects of any action: If an operator might change
a value during its execution and then restores it before its end, the domain descrip-
tion must correctly model this in the operator description. In the example above,
this would correspond to an operator which may temporarily put down bx3 but is
guaranteed to pick it up again. This should not be seen as a severe restriction: A
rich and detailed domain model is also required for many other purposes, including
but not limited to concurrent plan generation.

Alternatively, if not all intermediate effects are modeled but one has an upper

116

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

bound 7 on how long an intermediate action may legitimately “destroy” a condition
¢, aformula such as EXEC1 U(¢ A ((EXEC2 A Opo.r1 ¢) U(EXEC2 A ¢))) can be used:
Operator 1 executes until it reaches a state where (a) the desired condition holds,
meaning that the effect did take place, and (b) there is an interval of time where the
operator 2 is not executing and where ¢ is always restored within 7 units of time,
followed by a state where operator 2 does execute and ¢ does hold.

7.7.1 Pragmatic Generation of Monitor Formulas

When one works on the automatic generation of monitor conditions, there is a
strong temptation to generate every condition one can possibly find, without ex-
ception. After all, it would seem that the stronger the conditions one can place
on execution, the better, and exceptions make algorithms more complex and less
elegant. However in a system intended to operate in the real world, pragmatism is
paramount, and one must take into account several reasons why some conditions
should not be monitored: Some violations are not fatal, some information about
the environment may be expensive or difficult to sense, and sensing may require
special actions that interfere with normal mission operations. Additionally, the in-
troduction of a richer and more detailed domain model should not automatically
lead to heavier use of sensors.

For these reasons, our system is mainly built on the selective generation of con-
ditions to be monitored: Each precondition, prevail condition, effect, and temporal
constraint can be annotated with a flag stating whether it should be monitored. This
provides most of the benefits of automatic formula generation while keeping the
control in the hands of the domain designer.

7.8 State Generation

Monitor formulas are defined on TAL interpretations were each feature is associ-
ated with a value for every time-point. One way of viewing a TAL interpretation
is as a sequence of states, where each state assigns a value to each feature. With
this view, monitor formulas are defined on sequences of states, where each state
provides a value for every feature that the formula refers to. Each state is also as-
sociated with a time-point, at which the values in the state are assumed to hold in
the external world. In DyKnow terms, all values contained in a state should have
the same valid time, which is also used as the valid time of the state itself.

DyKnow already has most of the necessary facilities for gathering the required
information from distributed physical and virtual sensors, but so far, this informa-
tion has been presented as a set of separate fluent streams with no synchroniza-
tion between different streams. In this section, DyKnow will be extended with a
state generation functionality that synchronizes a set of streams and generates a
sequence of states satisfying the given constraints on valid times.

Definition 7.8.1 (State) A state in a knowledge processing domain D is a tuple of
values in Vp. O

117

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Definition 7.8.2 (State sample) A state sample in a knowledge processing do-
main D is a sample where the value is a state. O

Note that by this definition, any state is a value according to Definition 4.3.3
on page 37. We still prefer to introduce state as a new term, as there is a significant
conceptual difference. A value is associated with a single feature and generally
provides local information about a small part of a system. A state, on the other
hand, is associated with multiple features. While it may be contextually generated
and does not necessarily have to provide information about the entire system, it
still tends to have a larger scope than a value.

Definition 7.8.3 (State stream) A state stream in a knowledge processing domain
D is a stream where each stream element is a state sample. O

Ideally, all input streams used by the state generation function should generate
values with identical valid times. If one input stream contains a value with valid
time ¢, then every input stream contains a value with valid time 7. If this holds,
the state generator merely has to wait for the desired readings to propagate through
the distributed system, caching feature values as they arrive. As soon as all fluent
streams have generated values with valid time ¢, a complete state with valid time ¢
can be produced.

In practice, one cannot expect all physical and virtual sensors to be fully syn-
chronized, especially if they belong to separate platforms in a distributed system
without central control. Also, communication failures may lead to missing values
in some fluent streams. Any state generation mechanism must be able to take this
into account and generate states for time-points where only partial information is
provided by input streams.

One can define a variety of different policies determining how states are syn-
chronized and reconstructed from partial information. For example, one could
decide to create a new state for each time-point ¢+ where any input fluent stream
has a value and assume that the most recent value is still valid for those fluent
streams without a sample with valid time ¢. Another example would be to wait un-
til new values have arrived in all input streams before creating a new state. Again,
we would have to assume that the most recent value is still valid for those fluent
streams that do not have a sample with valid time . Which approach to generating
states is most suitable depends on the application. We therefore introduce a state
synchronization policy which describes the desired properties of a state stream.

Example 7.8.1 (State stream example)Let us continue Example 7.5.1 on page 109
where we would like to monitor the condition that whenever a UAV is moving, the
winch should not be lowered. To evaluate such a formula we need to create a
stream of states containing the two features speed(uav) and winch(uav) for each
uav. In this example we have a single UAV called uavi. An example state for
these features is (29.7,31.8), where 29.7 is the value of speed(uav1) and 31.8 is
the value of winch(uav1).

118

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

speed(uav1) s1 s2 s3 s4

winch(uav1) w1 w2 w3

| | | | | | | valid

! 1 \ 1 \ | ! time
1000 1050 1100 1150 1200 1250 1300

Figure 7.8: An example of two fluent streams with the same sample period, 100
time units, which are not synchronized. The values are ordered by their valid time.

statestream1 <s1,w1> <s2,w1> <s2,w2> <s3,w2> <s3,w3> <s4 w3>

statestream2 <s1,wi1> <s2,w2> <s3,w3>

| | | | | | | valid

| 1 \ \ | \ T time
1000 1050 1100 1150 1200 1250 1300

Figure 7.9: Two possible state sequences that can be generated from the fluent
streams in Figure 7.8.

In our architecture this is an example where the necessary information comes
from two sensors which are not synchronized. The speed of the UAV is estimated
by the helicopter state estimation functionality on the PFC, while the state of the
winch is provided by another sensor. Even if the two sensors are sampled with the
same frequency, it is not guaranteed that they will be sampled at the exact same
time-points. Therefore we might, for example, get the two fluent streams shown in
Figure 7.8. Both fluent streams have a sample period of 100 time units, but they
are not synchronized since they are sampled at different time-points.

From the fluent streams in Figure 7.8 several possible state sequences can be
generated. Two of these are shown in Figure 7.9. The first state stream is generated
using the first example policy, where a state is created each time at least one of the
input streams has changed values, while the other is generated using the second
example policy by creating a state when all the input streams have changed values.
Other state streams could be conceived of as well. This shows that it is not obvious
how to extract states from two or more fluent streams. Each state stream must
therefore be generated according to a state synchronization policy which states
which of the possible state sequences should be generated. O

7.8.1 A Basic State Generation Algorithm

In this section we describe a basic algorithm for generating a state sequence in the
form of a state stream by synchronizing a set of fluent streams. Fluent stream syn-
chronization can be seen as a function on streams, as shown in Figure 7.10, which
is very much like a computational unit. The synchronization function is speci-
fied by a state synchronization policy, which provides a standardized way for any

119

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

fluent stream

' Synchronize

fluent stream

state stream

Figure 7.10: A conceptual view of synchronizing a set of fluent streams in Dy-
Know.

knowledge process to generate state sequences satisfying a wide variety of differ-
ent criteria. If a particular application requires a synchronization function which is
not supported by the provided state synchronization policies, then a computational
unit can be used as a general mechanism for extracting state streams from fluent
streams.

There are two main types of algorithms for synchronizing streams. The first
type is based on sampling where the input streams are synchronized at periodic
time-points, like a sampled fluent stream. The second type works asynchronously
where a state is generated each time the input streams have changed sufficiently to
count as a new state. The definition of what counts as a sufficient change would
be part of the state synchronization policy. In this thesis we present algorithms for
state synchronization based on sampling according to state synchronization policy
specifications, defined as follows.

Definition 7.8.4 (State synchronization policy specification) A state synchroniza-
tion policy specification for a KPL signature o has the form du, sa,va, dba,de,
where du is a duration constraint specification for o, sa is a sample change con-
straint specification for o, va is an approximation constraint specification for o,
dba is a delay before approximation constraint specification for o, and de is a de-
lay constraint specification for o. O

The duration, change, approximation, and delay constraint specifications are
defined in Section 4.4.5 on page 52. The delay before approximation constraint is
defined as follows.

Definition 7.8.5 (Delay before approximation constraint) A delay before approx-
imation constraint for a KPL signature o = (O, 7, N, S, C, T, V) has the form de-
lay before approximation d, where d is a time-point symbol in 7. O

Basic State Synchronization

A straight-forward way of creating a sampled state stream is to query each fluent
stream for its most recent value at each of the sampling time-points. For example,
we could sample the fluent streams in Figure 7.8 every 100 time units starting at
time-point 1050. However, Figure 7.8 only shows the valid time for each sam-
ple. Due to communication and processing delays, these samples are not instan-

120

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

speed(uavi) winch(uav1)
value valid time available time | value valid time available time
s1 1000 1010 wi 1050 1120
s2 1100 1110 w2 1150 1170
s3 1200 1280 w3 1250 1260
s4 1300 1320

Table 7.1: The valid and available times for each sample in the example
speed(uav1) and winch(uav1) fluent streams.

1000 1050 1100 1150 1200 1250 1300 valid

speed(uav1) 1 S time
winch(uav1) w1 2 w3
available
1010 1110 1170 1260 1320 time
1120 1280

Figure 7.11: The same fluent streams as in Figure 7.8 on page 119 but with both
valid and available times shown.

taneously available to the synchronization algorithm. It is therefore necessary to
take into account the available time of each sample, which is the actual time when
the sample becomes available in the fluent stream.

Table 7.1 extends the example with available times and Figure 7.11 visualizes
the same fluent streams with a dual time line. For example, the value w1 is valid at
time 1050 but only arrives at time 1120. Two crossing arrows in the figure means
that a sample arrives later than the sample whose arrow it crosses even though it
has an earlier valid time.

We now see that if the fluent streams in Figure 7.11 are queried for the latest
available value every 100 time units starting at time-point 1050, we would get a
state stream containing the states (s1, no_value), (s2,w1), (s2,w2), and (s4, w3).
Due to the delays we did not get the expected statestream2 as shown in Figure 7.9.

If a maximum delay d is known in advance, the state generation function can
wait until time 7 + d before sampling the input streams and generating a state with
valid time ¢. This guarantees that all samples have had enough time to arrive, but
still does not give the intended result. Suppose, for example, that the maximum
delay for the streams in Figure 7.11 is 80 time units, which also happens to be the
actual delay for the value s3. In order to generate states with valid times every
100 time units starting at ¢+ = 1050, one would then sample every 100 time units
starting at t + d = 1130. The result would be a state stream containing the states
(s2,w1), (s2,w2), and (s4,w3). The reason we still do not get the expected result
is that we query each fluent stream for its most recent value at t+d. If a value is not
delayed with the maximum delay then a value with a later valid time than 7 might
be available in the fluent stream at ¢ + d. For example, the value s2 with the valid

121

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION

MONITORING
1050 1150 1250 valid
time
statestream <stw1> <s2;w2> <s3;w3>
available
1130 1230 1330 fime

Figure 7.12: The state sequence generated from the fluent streams in Figure 7.11
on the preceding page by the basic state synchronization algorithm.

time 1100 is available at 1110 with only a delay of 10 time units. To handle this
case we need to query a fluent stream for the sample with the greatest valid time
less than or equal to #, among those samples which are available at ¢ + d.

To get the most recent value in a fluent stream f for a particular time-point ¢
among the samples that are available to the fluent stream at time-point 7, we use the
function most_recent_at(f,1,t,) from Definition 4.3.11 on page 42. The function
is defined to return the sample with the highest valid time less than or equal to ¢
among those samples with an available time less than or equal to #,. The time-
point 7, is called the query time. For example, if we query the speed(uav1) fluent
stream at time-point 1130 asking for the last sample whose valid time is at or before
1050, most_recent_at(speed(uav1), 1050, 1130), we get s1.

Using most_recent_at it is possible to query each fluent stream for the most
recent value at each sampling time-point ¢ with the query time ¢ + d. The state at
time-point ¢ for the fluent streams fi, ..., f, is (most_recent_at(fi,t,t + d),. ..,
most_recent_at(f,,t,t + d)). This results in the state stream shown in Figure 7.12,
which is the same as statestream2 in Figure 7.9 on page 119.

It is not enough to know the maximum delay to make the basic algorithm work,
we must also know at what time-points to sample the input fluent streams. To
determine these time-points we will use the policies of the input streams. Assume
we would like to create a state when at least one of the input streams has changed
values using the most recent value approximation strategy.

The first observation is that no state can be computed until each input fluent
stream has at least one sample. This means that the earliest valid time for the state
stream is the latest first valid time of any of the input streams. As long as the input
streams are not removed, new states can be generated until no further samples are
generated by them. This means that the latest valid time for a state stream is the
latest valid time of any of the input streams. The duration constraint of the policy
of a fluent stream specifies both the first valid time, the start time, and the last
valid time, the end time. It is therefore possible to derive the maximal duration
constraint of the state synchronization policy from the duration constraints of the
input streams.

What is more interesting is at what intermediate time-points states should be
computed. To catch all possible state changes we have to compute a state for each
valid time where at least one input fluent stream has changed its value. If all input
streams are sampled, then this is determined by their sample periods as specified
by their policies. To get the desired sample period of the state stream, we compute

122

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

the greatest common divisor of all the sample periods of the input fluent streams.
If they are not sampled, but we still want to use a sampled state synchronization
policy, then we either have to sample at each time-point or use an ad-hoc sample
period which is considered sufficient.

Example 7.8.2 (State stream example (continued)) To synchronize the fluent
streams in Example 7.8.1 on page 118, the state synchronization policy should con-
tain the constraints “sample every 100, from 1050 to 1250, max delay 80”. The
resulting state sequence using this synchronization policy is shown in Figure 7.12.

If the sample period of one of the input fluent streams would have been 75
instead of 100, then the sample period of the resulting state stream would be 25
since this is the greatest common divisor of 75 and 100. O

If the maximum delay and the sample period of each input fluent stream is
known then this approach will generate a state stream which contains all the changes
in any of the input streams. If the maximum delay is not known then a suitable
value has to be chosen by the user in order to make a trade-off between accuracy
and timeliness. However, there is more information available in the fluent stream
constraints that could be used in order to improve the algorithm by reducing the
delays and handling asynchronous streams.

7.8.2 An Improved State Generation Algorithm

To improve the basic state synchronization approach we have to compute the same
states as it does, but earlier. To compute a state at a particular valid time the al-
gorithm needs all the information from the input streams which is relevant for this
time-point. The issue is therefore to determine when all the available information
has been received.

In the general case, samples can arrive in an arbitrary order. Therefore, if a
sample with valid time ¢ arrives it does not say anything about whether more sam-
ples with earlier valid times are going to arrive or not. However, if the input fluent
stream has a monotone order constraint and a sample with valid time ¢ arrives, then
we know that all samples with valid times earlier than ¢ have arrived. With a strict
monotone order constraint we know that all samples with valid times up to and
including ¢ for this input stream have arrived. It should be noted that if a stream
is sampled then it implicitly has a strict monotone order constraint. A state syn-
chronization algorithm only requiring the monotone order constraint for its input
streams is therefore more general than one requiring a sample constraint.

If all input streams have the strict monotone order property and we have re-
ceived samples with valid times at or after ¢ from each of them, then we could
compute the states up to ¢ because we know we have all the information that will
be available. For example, given the fluent streams in Figure 7.11 on page 121 the
three states with valid times 1050, 1150, and 1250 can be computed at time-points
1120, 1170, and 1280, as compared to 1130, 1230, and 1330 using the basic ap-
proach. The higher the maximum delay is compared to the average delay, the more
potential there is to reduce the delay of the synchronized states.

123

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

The improved algorithm used by DyKnow to synchronize states is described in
two steps. First we describe how to synchronize two or more fluent streams at a
specific time-point and then how to generate these synchronization time-points.

Synchronize at a Time-Point

This section describes an algorithm for synchronizing a set of fluent streams at a
particular time-point called the synchronization time. This time-point is not deter-
mined by the algorithm but must be given, for example by a sample constraint as
explained later.

The idea behind this algorithm is to classify each input stream according to the
information which is available about the synchronization time. To classify an input
stream three properties are used. The first property is whether the input stream
contains, among the samples received so far, a sample at the synchronization time,
i.e. a sample with valid time equal to the synchronization time. The second prop-
erty is whether an approximation is available given the samples received so far.
This property depends on the value approximation constraint associated with each
input stream. In the case of a most recent value approximation constraint the input
stream must contain a sample with a valid time before the synchronization time in
order to have an approximation available. If instead a linear approximation con-
straint is used then at least two samples, one with a valid time before and one with a
valid time after the synchronization time, are needed. The third property is whether
more information about the synchronization time might become available. For ex-
ample, if the maximum delay is 100 then at time ¢ + 100 all the information about
t is known, but up to that time more information might become available.

Using these three properties each input stream is classified as being in one of
five categories at every time-point:

e EXACT, exact value available,
e APRXFINAL, approximation available and no further information expected,
o APRXMORE, approximation available and further information may arrive,

e NOAPRXFINAL, no approximation available and no further information ex-
pected, or

o NOAPRXMORE, no approximation available and further information may
arrive.

Using these categories it is possible to determine if a state can be computed at
the synchronization time or not. We will consider four different cases depending
on which set of categories cover the set of input streams: All input streams are in
categories EXACT or APRXFINAL, some input stream is in category APRXMORE
while the rest of them are in categories EXACT or APRXFINAL, no input stream
is in category NOAPRXFINAL while some input stream is in category NOAPRX-
MORE, and some input stream is in category NOAPRXFINAL.

124

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

In the first case, where all input streams are in categories EXACT or APRXFI-
NAL it is possible to compute a state at the synchronization time. Further, if all the
input streams are in category EXACT then we have a state without any approxima-
tion. Since no more information will become available about the synchronization
time-point this is the best possible state.

In the second case, where some input stream is in category APRXMORE while
the rest of them are in categories EXACT or APRXFINAL it is possible to compute
an approximated state at the synchronization time-point. However, since at least
one of these input streams is in category APRXMORE an exact value or a better ap-
proximation might become available later. To handle the trade-off between using
an existing approximation and waiting for a better one, a delay before approxima-
tion parameter is introduced. The parameter determines how long after the syn-
chronization time the algorithm will wait for a better approximation. This means
that the algorithm will wait either until time-point ¢ + delay before approximation
or until all input streams are in categories EXACT and APRXFINAL.

Example 7.8.3 (State stream example (continued)) Consider synchronization at
time-point 1150 of the speed(uav1) and winch(uav1) fluent streams using a most
recent value approximation constraint. When s2 with valid time 1100 is available
in the speed(uav1) fluent stream at time-point 1110 the input stream will be in cat-
egory APRXFINAL, since according to the sample constraint we know that no new
value will become available with a valid time of less than 1150 (the next value will
have a valid time of 1200). When the first sample in the winch(uav1) fluent stream
is available at time-point 1120 with the value w1, we can approximate the value at
1150 to w1 using the most recent value approximation constraint. However, since
we know by the sample constraint that the next sample should have a valid time
of 1150 further information is expected and the second input stream is therefore
in category APRXMORE. If the delay before approximation parameter is set to a
very low value of 10 the algorithm will only wait until time-point 1160 when the
value of winch(uav1) would be approximated to w1. If the parameter is set to 20 or
more, then the next winch(uav1) sample will have time to arrive at 1170, both input
streams will be in category EXACT or APRXFINAL, and the best possible state will
be computed. O

In the third case, no input stream is in category NOAPRXFINAL while some
input stream is in category NOAPRXMORE which means that it is not yet possible
to approximate a state at the synchronization time-point. However, since some
input stream is category NOAPRXMORE more information might become available
later. Since there is no guarantee that more information will become available it is
necessary to introduce a maximum waiting time before accepting that no state can
be computed for this synchronization time-point. This is handled in a similar way
as input streams in category APRXMORE, by using a parameter called maximum
delay. This means that the algorithm will wait at most maximum delay time units
for an approximation to become available for a synchronization time-point, after
which no state can be approximated given the current parameters.

125

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

In the fourth and final case, some input stream is in category NOAPRXFINAL
which means that it is not possible to approximate a state. Further, since no new
information is expected no state can ever be approximated at the time-point with
the current parameters.

The problematic cases are when either some input streams are in category
NOAPRXFINAL or some input streams are in category NOAPRXMORE and the
maximum delay has been waited. In these cases it is not possible to approximate
any state given the current parameters. In this situation there are basically two
choices, either give up and notify the system about the failure to produce a state
at the synchronization time-point or make some kind of approximation of the state
anyway using the available information.

If the state synchronization policy contains a sample change constraint, then
failing to compute a state would result in a violation of the policy. Therefore we
choose to do the best given the current information. In this case we will use the
constant no_value as the value of those input streams where no proper approx-
imation can be made. This means that a state will always be computed for every
synchronization time-point, but it may contain no_value constants.

The reason for a failure to compute a state could for example be due to too
small accepted delays. Since the algorithm will try to minimize the delay it is quite
safe to set a high maximum delay. The only case when this is problematic is when
no information will ever arrive for a particular time-point, since then it will take a
long time before this is detected.

To inform the algorithm when it is time to consider inputs in categories APRX-
MORE and NOAPRXMORE two timers are created. The first timer is set to go off
delay before approximation time units after the synchronization time-point and the
other maximum delay time units after the synchronization time-point. This means
that there are two different events which the state synchronization algorithm has
to react to. The first is when a new sample arrives from one of the input fluent
streams. The second is when one of the timers generates a timeout. The pseudo
code for the top level of the algorithm is as follows:

1 procedure sync_at_time_point(z, delay_be fore_approx, max_delay)
2 sync_time <t
3 set_timeout_at(sync_time + delay_be fore_approx)
4 set_timeout-at(sync_time + max_delay)
5 do
6 wait for input or timeout
7 if received sample s from input stream i at time ¢ then
8 update_after_input(z, i, s)
9 elsif received timeout ¢ then
10 update_after_timeout()
11 while not synchronized(r)
12 compute state at sync_time

Since the synchronization algorithm does not use each sample directly when it
arrives there is a need to buffer samples. Each input fluent stream is associated with
its own buffer. When a new sample is received from one of the input streams the

126

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

corresponding buffer is updated. The buffer is updated by adding the new sample,
throwing away obsolete samples that are no longer useful, and computing its new
category. A sample is no longer useful when it can not be used either as an exact
value or to approximated a value for the input stream. When this happens depends
on how values are approximated. In the case of a most recent value approximation,
then only a single value before the synchronization time-point has to be stored and
all previous samples can be discarded.

1 procedure update_after_input(z, 7, s)

2 add sample s to buffer i

3 remove obsolete samples from buffer i
4 update the category for buffer i

To determine if more information might be available for a specific time-point
the buffer uses the policy of the input stream to determine if there is a maximum
delay or if the samples are ordered by valid time. If the maximum delay is d and the
time now is ¢ then all information up to — d have arrived. If the input fluent stream
has a strict or non-strict monotone order constraint or a sample constraint then
samples are ordered by valid time, and all information up to the valid time of the
last sample has been received. If the input stream neither has a maximum delay nor
is ordered by valid time then the buffer will never be able to conclude that no more
information about a time-point will become available. In this case the algorithm
will always wait delay before approximation time units before approximating a
value.

When a timeout arrives it means that either more than delay before approxi-
mation or maximum delay time units have passed since the synchronization time.
Since the passing of time might affect the category of each of the buffers they have
to be recalculated before checking if a state can be computed or not.

1 procedure update_after_timeout(r)
2 for each buffer i do
3 update the category for buffer i

To check whether it is possible to create a synchronized state at the synchro-
nization time-point given the samples currently in the buffers we need to check
which categories the buffers are in. The following procedure does that and returns
true if a state can be computed at the synchronization time otherwise it will return
false:

1 procedure synchronized(now)
2 for each input stream i in category NOAPRXFINAL do
approximate i{ with no_value
4 set the category of i to APRXFINAL
5 if all input streams are in categories EXACT or APRXFINAL then
6 return true
7 elsif all input streams are in categories EXACT, APRXFINAL, or APRX-
MORE and sync_time + delay_be fore_approx < now then
return true
9 elsif sync_time + max_delay < now then

(O8]

o]

127

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

10 for each input stream i in category NOAPRXMORE do
11 approximate { with no_value

12 set the category of i to APRXFINAL

13 return true

14 else

15 return false

The procedure starts by handling those input streams which are in category
NOAPRXFINAL, which means that they have no approximation at the synchro-
nization time-point and no more information related to that time-point is expected.
Since no proper approximation is possible the input stream is approximated with
the constant no_value. The procedure then checks the three cases when the input
streams are synchronized at the synchronization time-point and a state can be com-
puted. In the first case, we either have an exact observation or an approximation
with no further information available for each input at the synchronization time.
In the second case, the delay before approximation has passed and a state is com-
puted if every input stream has either an exact observation or an approximation at
the synchronization time-point, even though more information might arrive later.
In the third case, the maximum delay has passed and each of the input streams in
category NOAPRXMORE will be approximated with the constant no_value. If
none of the cases apply then no synchronization at the synchronization time-point
has been achieved and the procedure returns false.

Sampled Synchronized State Stream

In order to create a sampled state stream the sync_at_time_point procedure has to
be called with successive time-points, one for each of the time-points to sample.
To generate these time-points, start at the start time and after a state has been
created or rejected update the synchronization time-point by increasing it with the
sample period. To specify a stream generator of such state streams, a state stream
generator declaration is used.

Definition 7.8.6 (State stream generator declaration) A state stream generator

declaration for a KPL signature o has the form strmgen [= state(f}, ..., f,) with
p, where [is a label term for o, fi,..., f, are fluent stream terms for o, and p is a
state synchronization policy specification for o. O

To generate the input to the state stream generator labeled s according to the
state stream generator declaration “strmgen s = state(f, ..., f,) with from start_time
to end_time, sample every sample_period, use most recent, delay before approx-
imation delay_be fore_approx, max delay max_delay” the following algorithm is
used:

1 procedure sampled_synchronized_state_stream(fi, ..., f,, start_time,
end_time, sample_period, delay_be fore_approx, max_delay)

2 for each f; do

3 create a buffer and set up a subscription to f;

128

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

4 sync_time < start_time

5 while sync_time < end_time do

6 sync_at_time_point(sync_time, delay_be fore_approx, max_delay)
7 sync_time « sync_time + sample_period

A State Generation Example

This section continues Example 7.8.1 on page 118 and shows how the synchro-
nization algorithm extracts a state sequence from the speed(uav1) and winch(uav1)
fluent streams as shown in Figure 7.11 on page 121. Both input fluent streams have
the constraints “sample every 100” and “max delay 100”. The state fluent stream
that will be generated has the constraints “from 1050 to 1250, sample every 100,
delay before approximation 100, max delay 100”. To approximate values the most
recent value approximation constraint is used, which means that to approximate the
value at time-point ¢ the sample with the latest valid time before 7 is used.

The internal state and the states generated in each step of the state genera-
tion algorithm as the content of the fluent streams become available are shown in
Table 7.2 on the next page. The first column is the current time when a sample
becomes available. The second column is the current synchronization time-point.
The next four columns show the buffer and the category for the two input streams.
The seventh and final column shows the state generated by the algorithm at the
current step, if any.

The first row in Table 7.2 on the following page shows the initial state of the
synchronization algorithm. The current time is 1000, the initial synchronization
time-point is 1050 as stated by the duration constraint in the state synchronization
policy, and both fluent stream buffers are empty. Since the buffers are empty but
more information is expected they are both in category NOAPRXMORE.

In the second row the internal state of the algorithm at time 1010 is shown,
when the first sample for speed(uav1) with value s1 and valid time 1000 is avail-
able. Since there is a value before the synchronization time of 1050 an approxi-
mated value exists, and since the sample period is 100 the next value is expected to
have a valid time of 1100 which means that no more information related to time-
point 1050 is expected. Therefore speed(uav1) is now in category APRXFINAL.
Since no approximation is available for the second fluent stream no state can be
extracted at time-point 1010.

As can been seen in Figure 7.11 on page 121 the next sample from the speed(uav1)
fluent stream will also arrive before the first sample from winch(uav1) is available.
The third row shows the internal state of the algorithm after this second sample
from speed(uav1) has become available. The situation is almost the same as be-
fore. The only difference is that the buffer now contains two samples.

The fourth row shows the internal state of the synchronization algorithm when
the first sample for winch(uav1) has arrived at 1120. Since the valid time of the
sample is the same as the synchronization time the buffer is placed in category
EXACT and since both input streams now are in either category EXACT or APRX-
FINAL the state (s1,w1) can be extracted.

129

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION

MONITORING

sync speed(uavi) winch(uav1)

now | time buffer category buffer category new state
1000|1050 {} NOAPRXMORE {} NOAPRXMORE -
1010{1050 {(1000, 1010, s1)} APRXFINAL {} NOAPRXMORE -
1110]1050{{¢1000, 1010,s1),¢1100,1110,s2)}| APRXFINAL {} NOAPRXMORE -
1120|1050({(1000,1010,s1),¢(1100,1110,s2)}| APRXFINAL |[{(1050,1120,w1)} EXACT (1050, 1120, (s1,w1))
1120(1150 {(1100, 1110, s2)} APRXFINAL |{(1050,1120,w1)}| APRXMORE -
1170|1150 {(1100, 1110, s2)} APRXFINAL |{(1150, 1170, w2)} EXACT (1150, 1170, (s2, w2))
1170(1250 {(1100, 1110, s2)} APRXMORE |{{1050,1120,w1)}| APRXMORE -
1260{1250 {(1100, 1110, s2)} APRXMORE |{(1250, 1260, w3)} EXACT -
1280(1250 {(1200, 1280, s2)} APRXFINAL |{(1250, 1260, w3)} EXACT (1250, 1280, (s3, w3))

Table 7.2: The internal state of the synchronization algorithm and its output during the generation of a state stream from the speed(uav1)

and winch(uav1) fluent streams as shown in Figure 7.11 on page 121.

130

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

1050 1150 1250 valid
\ \2\ \\ time
statestream <stw1> <s2w2> <s3,w3>
available
1120 1170 1280 time

Figure 7.13: The state stream generated by the improved state synchronization
algorithm from the fluent streams in Figure 7.11 on page 121.

Since a state has been extracted for the current synchronization time-point, the
synchronization time is updated by adding the sample period of 100. The internal
state of the synchronization algorithm with the new synchronization time-point is
shown as the fifth row. The first sample in the speed(uav1) buffer is removed since
it is no longer relevant due to the choice of approximation strategy and the fact that
a sample with a valid time closer to the new synchronization time is available.

The sixth and seventh rows show the state of the synchronization algorithm as
the second state is extracted at time-point 1170 when the second sample becomes
available in winch(uav1).

Finally, rows eight and nine show how the third and final state is extracted when
the last two samples arrive, one for each of the input streams. This is the final state
extracted since the end time of the state stream is 1250.

The state sequence generated using the improved algorithm is shown in Fig-
ure 7.13. It is the optimal state sequence that could be generated from these fluent
streams, i.e. the state sequence which captures all changes where any input fluent
stream has changed values and does it with the minimal delay.

In this example, the algorithm did not have to use any approximated values
because the delay before approximation timer had expired. In fact this can never
happen if the delay before approximation is equal to or greater than the maximum
delay of the input streams, which it was in this case. However, if we change the
delay before approximation to 70 then the third state extracted would have been
(s2, W3), since the third speed(uav1) sample is delayed 80 time units.

7.9 Execution Monitoring with Inaccurate Sensors

The purpose of execution monitoring is the detection of such failures that would
prevent a system from achieving its designated goals, or that would cause other
types of undesirable or potentially dangerous behavior. In this process, one should
not only work to maximize the probability that a failure is detected but also attempt
to minimize the probability of false positives. In other words, a system should
not signal a failure if none has occurred. In some cases this may be even more
important than detecting non-catastrophic failures, because while such failures can
prevent a system from achieving all its subgoals, a persistent false positive could
cause the system to stall entirely, believing it is continuously failing.

There are several different reasons for false positives, and different approaches
may be suitable for dealing with these problems. There is of course always the

131

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

possibility of catastrophic sensor failure, where a sensor begins returning nonsen-
sical information. Though this can perhaps be modeled and detected, we consider
it outside the scope of the thesis. Instead, we focus on the difficulties that are
present even when sensors are functioning nominally. Our architecture being a dis-
tributed system, there is always a possibility of dropouts and delays where sensor
data temporarily disappears due to a communication failure. Similarly, events may
propagate through different paths and arrive out of order. Also, one must always
expect a certain amount of noise in sensor values.

These difficulties can be ameliorated through careful state generation. Tempo-
rary dropouts can be handled through extrapolating historical values. Delays can
be handled by waiting until time n + m before progressing a formula through the
state at time n; sensor values from time n then have an additional m milliseconds to
propagate before the state generator assumes that all values must have arrived. This
obviously has the cost of also delaying failure detection by m milliseconds, which
requires a careful consideration of the compromise to be made between prompt
detection and the probability of false positives. Noise could conceivably be min-
imized through sensor value smoothing techniques and sensor fusion techniques
where the measurements from several sensors are taken into account to provide the
best possible estimation.

Though additional measures could be considered, it follows from the funda-
mental nature of a distributed system with noisy sensors that the possibility of
inaccuracies in the detected state sequence can never be completely eliminated.
Instead, we suggest a two-fold approach to minimizing false positives: Be careful
when generating states, but also be aware that state values may be inaccurate and
take this into consideration when writing monitor formulas.

Consider, as an example, the condition O Yuav.speed(uav) < T. On the sur-
face, the meaning of this formula would seem to be that the speed of a UAV must
never exceed the threshold 7. However, this formula will not be evaluated in the
real world: It will be evaluated in the state sequence approximation generated by
DyKnow, and there, its meaning will be that the sensed and approximated speed of
a UAV must never exceed the threshold 7'. Since a single observation of speed(uav)
above the threshold might be an error or a temporary artifact, a more robust solu-
tion would be to signal a failure if the sensed speed has been above the threshold
during an interval [0, 7] instead of at a single time-point. This can be expressed as
O $po.7) speed(uav) < T It should always be the case that within the interval [0, 7]
from now, the sensed speed returns to being below the threshold.

Since the formula above only requires that a single measurement in every in-
terval of length 7 must be below the threshold, it might be considered too weak
for some purposes. An alternative would be to require that within 7 time units,
there will be an inferval of length 7/ during which the UAV stays within the limits:
Ospeed(uav) > T — Opo Opo, sSpeed(uav) < T.

132

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

7.10 Empirical Evaluation of the Formula Progres-
sor

For our approach to be useful, it must be possible to progress typical monitor for-
mulas through the state sequences generated during a mission using the often lim-
ited computational power available in an autonomous robotic system, such as the
DRC computer on board our mobile UAV platforms. Early testing in our emer-
gency services planning domain, both in flight tests and in hardware-in-the-loop
simulation, indicated that the progression system had more than sufficient perfor-
mance for the formulas we used, requiring only a fraction of the available process-
ing power. If there is a bottleneck, then it lies not in the use of formula progression
but in actually retrieving and processing the necessary sensory data, which is nec-
essary regardless of the specific approach being used for monitoring execution and
is therefore outside the purview of this chapter.

Nevertheless, the processing requirements for the progression of typical moni-
tor formulas should be quantified in some manner. Our evaluations build on exper-
iments with the emergency services planning domain as well as the use of synthetic
tests. For the remainder of this section, we will focus on the synthetic tests, where
we can study highly complex combinations of time and modality. We use the actual
DRC computer on board an RMAX UAV to run progression tests for formulas hav-
ing forms that are typical for monitor formulas in our application. State sequences
are constructed to exercise both the best and the worst cases for these formulas.

Results are reported both in terms of the average time required to progress a
certain number of formulas through each state in a sequence and in terms of how
progression time changes across states in the sequence, due to formula expansion
during progression. This can be directly translated into the number of formulas
that can be progressed on the DRC computer given a specific state sampling rate.
The final objective, of course, is not to progress a vast number of formulas but to
ensure that the required formulas can be progressed using only a small percentage
of the CPU, leaving enough time for other processes and services to run.

Depending on the domain and the execution properties that should be modeled,
the number of formulas that need to be progressed concurrently will vary. In our
work with the emergency services application, we observed the use of from one or
two up to at most a few dozen formulas at any given time in the planning context,
with the average being towards the low end of the scale. Since the execution moni-
tor is a system service, other services may also have monitoring requests, so many
more formulas may need to be progressed concurrently.

In all experiments, states were generated with a sampling period of 100 ms.

7.10.1 Experiment: Always Eventually

In the first experiment, we used a formula of the common form O (. 1000; p, Where p
is a single predicate, corresponding to the fact that p must never remain false for
more than one second. This was progressed through several different state se-
quences, carefully constructed to exercise various progression behaviors. In the

133

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

average time to progress a state

140000 T T T T T
always (eventually [0, 1000] p) p=true ——+—
always (eventually [0, 1000] p) p=(false*1,true*1)
always (eventually [0, 1000] p) p=(false*10,true*1) *:-----:

120000 4

100000
w
=]
c
3 80000
[}
2]
o
S
E 60000 -
[}
£

40000

20000

0 //, 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

formulas

Figure 7.14: Testing: Always Eventually (average progression time).

following, let ¢ = O po,1000) P-

e (true) — p is always true. This is the best case in terms of performance, since
each time O, 1000] p is progressed through a state, it immediately “collapses”
into T. What remains to evaluate in the next state is the original formula ¢.

e (true,false) — p alternates between being true and being false. This is an
intermediate case, where every “false” state results in the formula g 1000) P
being conjoined to the current formula, and where this subformula collapses
into T in every “true” state.

o (false*10,true*1) — p remains false for 10 consecutive sampling periods
(1000 ms), after which it is true in a single sample. The sequence then re-
peats. Had p remained false for 11 consecutive samples, the formula would
have been progressed to L, a violation would have been signaled, and pro-
gression would have stopped. Consequently, this corresponds to the worst
case.

The results shown in Figure 7.14 can be expressed in a number of ways. If the
sample period is 100 ms, all formulas must be progressed within 100 ms or the
progressor will “fall behind” as new states arrive. In this situation, approximately
2500 formulas can be used even with the worst case state sequence. From another
perspective, if there will be a maximum of 10 formulas of this type to progress

134

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

time to progress 1000 formulas

60000 T T T T T T T
always (eventually [0, 1000] p) p=true
always (eventually [0, 1000] p) p=(false*10,true) --------
50000 B
_ 40000 | T e et T e B
[}
=]
=
[=]
o
9] ;
o P il _ B B A
© 30000 - [T S A— — 7
8 i u
£ b
o I
£ f
20000 - | B
3
b
;9’
10000 |- | g
i
[
|
0 [1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

iteration

Figure 7.15: Testing: Always Eventually (development over time).

at any given time, then this will require up to 0.4% of the CPU time on the DRC
computer.

Results will also vary depending on the complexity of the inner formula inside
the tense operators. Though the figure refers to tests run using a single fluent p,
even the most complex inner formulas used in the UAV logistics domain require
only a small constant multiple of the time shown in this graph.

It should be noted that the time required to progress a formula through a state
is not always constant over time. The formulas themselves may vary as they are
progressed through different states, and time requirements for progression vary
accordingly. The average progression time must be sufficiently low, or the pro-
gressor will fall behind permanently. The maximum progression time should also
be sufficiently low, or the progressor will temporarily fall behind. Figure 7.15
shows the precise time requirements for progressing 1000 instances of the for-
mula O $po,1000) p through each numbered state sample, using two different state

sequences.

e In the best case, where p is always true, progression time is constant at
around 30 us per formula for a state sequence where p is always true. This
is exactly what would be expected: The result of progressing the formula
O <$po,1000) p through a state where p is true should always be the formula

itself.

e In the worst case, where p is false for 10 sample periods and then true,

135

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

O <$po.1000) P 18 initially progressed to the somewhat more complex formula
O1=100,900] P A O <Opo.1000) p» indicating that p must become true within 900
ms. In the next state, p remains false, and the formula is further progressed
to Or-100,900] P A <r=200,8001 P A O Oo,1000] P- This formula states that p must
become true within 900 ms and within 800 ms, which can be reduced to the
statement that it must become true within 800 ms: <$1—200,8001 2 AD <10,1000] P-
This creates a plateau of slightly higher progression time, which lasts until
a state is reached where p is true. Then, the formula collapses back to its
original form, at a slightly higher cost which results in a temporary peak in
the diagram.

It should be clear from Figure 7.15 on the previous page that these performance re-
sults are not substantially affected by using other temporal intervals than 1000 ms.
Formulas of the given type do not expand arbitrarily, and changing the sequence of
false and true states provided to the progression algorithm merely changes the bal-
ance between the number of time-points where progression takes approximately
30, 40, and 47 us. In other words, a timeout of one hour (O <$o3600000) P) 1S as
efficiently handled as a timeout of one second.

7.10.2 Experiment: Always Not p Implies Eventually Always p

Let ¢ denote the formula O—p — <po,10001 Ojo,999] P> corresponding to the fact that
if p is false, then within 1000 ms, there must begin a period lasting at least 1000
ms where p is true. In the second experiment, we progressed this formula through
several different state sequences:

e (true) — as the inner formula only needs to be progressed when p is false,
this is the best state sequence in term of performance.

o (false*1,true*10) — p is false during one sample and true during ten samples,
after which the sequence repeats.

As pisinitially false, the formula is initially progressed to (<$10.900] Oj0.999] P)
A ¢, where the first conjunct reflects the fact that 100 ms have already passed,
leaving at most 900 ms until the required interval of length 1000 where p is
true.

Progressing through the next state sample, where p is true, results in
((D[nggg] PV 10,8001 00,9991 p) A ¢. The first COI]jllIlCt of the previous for-
mula was <$p.900] Ojo,999] P> and as p is now true, this can be satisfied in two
ways: Either a sufficiently long interval where p is true begins now, extend-
ing 900 ms from the next state (O g99; p), Of it begins later, within 800 ms
(©10,8001 B10,999] P)-

After simplification, any further progression through a state where p is
true will still result in a formula having the form ((Ojo,;; p) V ©10,j1 O10,999] P) A
¢, up to the point where p has been true for a sufficient period of time and
the formula once again collapses to ¢.

136

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

average time to progress a state

140000 T T T T T T
apeai p true ——+——
apeai p (false*1,true*40)
apeai p (false*1,true*10) :--*---
120000 apeai p (false*10,true*10) & i
100000 [i
o
=]
=
8 80000 - i
7]
n
o
S
E 60000 i
(]
£
40000 - i
20000 - i
0 2 | | | | | |
0 500 1000 1500 2000 2500 3000 3500

formulas

Figure 7.16: Testing: Always Not p Implies Eventually Always p (average pro-
gression time).

o (false*1,true*40) — p is false during one sample and true during forty sam-
ples, after which the sequence repeats.

o (false*10,true*10) — p is false during ten samples and true during ten sam-
ples, after which the sequence repeats.

The results shown in Figure 7.16 shows that 100 ms is sufficient for the progression
of between 1500 and 3000 formulas of this form, depending on the state sequence.

Figure 7.17 on the next page shows the amount of time required to process
1000 instances of the formula O —p — O[0.1000] DOf0.999) p through each individual
state sample.

e In the case where p is always true, progression time is constant after the
first progression step: The antecedent of the implication never holds, and the
progression algorithm always returns the original formula. This is the best
case, requiring approximately 32 us for each progression step.

e Whenever p is false, the antecedent of the implication holds and the conse-
quent o, 10001 Ofo,999 P is progressed and conjoined to the current formula.
Thus, if p alternates between being false for 1 sample and true for 10 sam-
ples, the formula expands only once. This results in a higher but constant
“plateau” followed by a collapse back to the original formula.

137

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION

MONITORING
time to progress a state with 1000 formulas
90000 T T T T T
apeai p true
apeai p (false*1,true*40)
L apeai p (false*1,true*10) -------- _
80000 apeai p (false*10,true*10)
70000 1
_. 60000 [T N i ool A A AN e
M) i \ / | ; N ! | : . !
S . : | ; I
8 W s L o L o
@ 50000 | N S
2] i
2 I
S |
£ 40000 [| i
o |
g j“\ififii e - e
30000 - || 1
I
20000 | | 1
|
10000 |- | 1
|
0 ! 1 1 1 1 1
0 10 20 30 40 50 60

iteration

Figure 7.17: Testing: Always Not p Implies Eventually Always p (development
over time).

e If p is true for more than 10 samples, progression eventually returns to the

lowest plateau, as can be seen in the case where p alternates between being
false for 1 sample and true for 40 samples.

Finally, consider the case where p remains false for as long as possible (10
samples), after which it is true for the minimum period required (10 sam-
ples). In the first state where p is false, the antecedent of the implication
holds and its consequent must be conjoined, just like before. However, this
is now followed by another state where p is false. As the implication is
triggered again, the formula temporarily expands even more. Though the
formula immediately collapses due to subsumption, the additional process-
ing leads to a high plateau where a single progression step may take as much
as 72 us.

Again, the figure indicates upper and lower bounds for progression time require-
ments: A single progression step may take between 32 and 72 us, and altering per-
mitted interval lengths only changes the range of permitted proportions between
these time-points — in other words, the possible lengths of the plateaus. Regardless
of interval lengths, the worst case cannot require more than 72 us per iteration,
which means that more than 1300 formulas can be progressed within a sample
period of 100 ms.

138

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

7.11 Related Work

Many architectures that deal with both planning and execution focus entirely on
recovery from detected problems by plan repair or replanning (Ambros-Ingerson
and Steel, 1988; Finzi, Ingrand, and Muscettola, 2004; Haigh and Veloso, 1998;
Lemai and Ingrand, 2004; Myers, 1999). These architectures usually assume that
state variables are correctly updated and that plan operator implementations detect
any possible failure in some unspecified manner, and thereby do not consider the
full execution monitoring problem. A more elaborate and general approach is taken
by Wilkins, Lee and Berry (2003) where a large set of different types of monitors
are used in two different applications. However, in their approach monitors are
procedurally encoded instead of using a declarative language.

In those architectures that do consider execution monitoring, it is often an
intrinsic part of an execution component rather than integrated with the planner
(Fernandez and Simmons, 1998; Simmons and Apfelbaum, 1998). The most com-
mon approach uses a predictive model to determine what state a robot should be
in, continuously comparing this to the current state as detected by sensors (Chien
et al., 2000; Washington, Golden, and Bresina, 2000). This is a well-studied prob-
lem in control theory, where it is often called fault detection and isolation (FDI)
(Gertler, 1998). Using models derived from first principles it is possible to detect
faulty sensors and other components. The same approach has also been taken in
planning, where the plan itself leads to a prediction of a state sequence that should
occur (Fikes, 1971), as well as in path planning and robot navigation (Fernandez
and Simmons, 1998; Gat et al., 1990). For example, Gat et al. (1990) takes the
output from a path planner and simulates the expected sensor readings the agent
should receive when following the path. From these expectations, one derives for
each sensor reading an interval of time within which the reading is expected to
occur. While following the generated path, readings outside the expected interval
cause the robot to switch to a recovery mode which attempts to handle the unin-
tended situation.

Several significant weaknesses can be identified in this approach. The fact
that one can detect a discrepancy between the current state and the predicted state
does not necessarily mean that this discrepancy has a detrimental effect on the plan.
Thus, one must take great care to distinguish essential deviations from unimportant
ones, rendering the advantage of being able to automatically derive problems in
execution from a predictive model considerably less significant. Similarly, that one
can predict a fact does not necessarily mean that this fact must be monitored at all.
Excessive monitoring may be unproblematic in a chemical processing plant where
fixed sensors have been placed at suitable locations in advance and information
gathering is essentially free, but does cause problems when monitoring costs are
not negligible. Specifically, increasing the richness and fidelity of a domain model
should not necessarily cause the costs for monitoring to increase.

The approach used by Fernandez and Simmons (1998) focuses on undesirable
behavior rather than expected situations, explicitly defining a set of hierarchically
organized monitors corresponding to symptoms that can be detected by a robot.

139

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Top level monitors cover many cases, but report problems with a large delay and
provide little information about the cause of a problem. For example, a top level
monitor may detect excessive action execution time, which is of little help if a
problem occurs at the beginning of an action but covers any conceivable reason
for the delay. Leaf monitors are more specific and provide more information, but
may provide less coverage. While the idea of focusing on explicitly specified un-
desirable behavior avoids the problems discussed above, symptoms appear to be
hardcoded rather than declaratively specified. As our approach can monitor both
operator execution time, operator-specific constraints, and global constraints, the
approach taken by Ferndndez and Simmons (1998) can be emulated in our sys-
tem, including checking for special situations such as a robot getting stuck while
spinning around.

While these approaches do cover some important aspects of the execution
monitoring problem, they still generally fail to consider issues related to multiple
agents, the information gathering problem, and the problem of incomplete infor-
mation about the current state. Another major weakness is that only the current
state is considered. Adapting ideas from model checking (Clarke, Grumberg, and
Peled, 2000) to be able to talk about sequences of states, Ben Lamine and Ka-
banza (2002) expressed the desired properties of a system in a temporal logical
formalism. Whereas model checking generally tests such properties against a sys-
tem model, their execution monitor system tests them against an actual execution
trace. Similar ideas have also been developed in the model checking community.
There, the problem of checking whether a single execution trace of a system satis-
fies a property is called path model checking (Finkbeiner and Sipma, 2004; Markey
and Raskin, 2006; Markey and Schnoebelen, 2003), or runtime verification if the
evaluation is done incrementally as the trace develops (Barringer et al., 2004; Bar-
ringer, Rydeheard, and Havelund, 2008; Drusinsky, 2003; Rosu and Havelund,
2005; Thati and Rosu, 2005). These approaches are equivalent to progression of a
formula and have been further extended to more expressive logics.

Though the work by Ben Lamine and Kabanza provided part of the inspira-
tion for this chapter, it focuses on a reactive behavior-based architecture where the
combined effects of a set of interactive behaviors is difficult to predict in advance.
There, monitor formulas generally state global properties that cannot be monitored
by internal behaviors, such as the fact that after three consecutive losses of commu-
nication, a given behavior must be active. A violation triggers an ad-hoc behavior
that attempts to correct the problem. In comparison, our system is based on the
use of planning, with an integrated domain description language. Formulas are not
necessarily global, but can be operator-specific. Our approach provides a selec-
tive mechanism for extracting monitor formulas through automated plan analysis
and supports recovery through replanning. DyKnow also gives us the possibility
to provide attention focused state descriptions, where the execution monitor con-
textually subscribes only to those state variables that are required for progressing
the currently active monitor formulas. Additionally, state sampling rates can be
decided individually for each monitor formula. Combining this with the use of
operator-specific monitor formulas that are only active when specific tasks are be-

140

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

ing performed ensures that state variables are only computed when stricly required,
ensuring minimal usage of resources including sensors and computational power.
This can be particularly beneficial in the case of state variables requiring image
processing or other complex operations.

See Pettersson (2005) for an overview of systems related to execution monitor-
ing.

7.12 Conclusions and Future Work

In this chapter, we have presented an architectural framework for planning and
execution monitoring where conditions to be monitored are specified as formulas
in a temporal logic. A key point in this architecture is the use of the same logic
formalism, TAL, for both planning and monitoring. This allows a higher degree
of integration between these two important topics in several respects, including the
fact that conditions to be monitored can be attached directly to specific actions in
a plan and that a plan can be analyzed to automatically extract conditions to be
monitored.

Another key point is that formulas are evaluated on a sequence of states corre-
sponding to an approximation of the actual development of the world. To construct
this state sequence from sensors and other information sources DyKnow was ex-
tended with a state synchronization mechanism. The generated state sequences can
be seen as partial logical models of the world over which formulas are evaluated.

The framework we presented has been implemented and integrated into our
unmanned aerial vehicle platforms. The system has been deployed and used in
actual missions with the UAVs in a smaller urban environment. Empirical test-
ing has taken several different shapes during the course of the project. While an
early version of this system was tested on board the UAV, the full logistics scenario
cannot be tested until a winch and an electromagnet are available, together with
suitably prepared boxes and carriers. These devices are under development and
will be ready for use in the near future. Until then, only monitor formulas related
to pure flight have been tested on the physical system, and ironically (or fortu-
nately) the UAV system has proved quite stable and few opportunities for failure
detection have presented themselves. Therefore, the most intensive tests have been
performed through simulation.

In terms of testing their adequacy for detecting failures, monitor formulas have
been tested through intentional fault injection, where one may, for example, sim-
ulate dropping a box or failing to take off. Surprisingly often, formulas have also
been tested through unintentional failures. For example, when ordered to detach
a box, the simulator does not simply place them at the designated coordinates; in-
stead, it turns off the simulated electromagnet, after which the box falls from its
current altitude towards the ground. This, in turn, may make the box bounce or roll
away from its intended coordinates. Taken together, the simulated environment is
most likely as good at testing a wide variety of failures as the physical UAV system,
and certainly more efficient.

141

CHAPTER 7. INTEGRATING PLANNING AND EXECUTION
MONITORING

Finally, the computational adequacy of the system is also important. What
matters in this area is not the analytically derived worst case temporal complex-
ity for the most complex monitor formulas, but the actual worst case and average
case performance for those formulas that are actually useful and relevant for a do-
main. Extensive testing has therefore been done by running sets of typical monitor
formulas in parallel using constructed best-case and worst-case state sequences.
Results indicate that while there is a certain cost associated with generating state
sequences, the additional cost for each new formula is very low given the typical
structure of monitor formulas. Thus, given that the appropriate sensor values are
available in DyKnow, execution monitoring does not require significant additional
resources, even if large numbers of monitor formulas are active concurrently.

An interesting topic for future research is that of autonomously determining
the state that results from a failure. For example, given that a UAV detects that
it dropped a box, where did that box end up? In the first stage, a mixed initiative
approach may be appropriate, where the UAV signals a failure to a human opera-
tor which helps the UAV find the box, possibly aided by the camera on board the
UAV. Ideally, the UAV should be able to find the box completely autonomously;
for example, by flying a regular scanning pattern and using its vision subsystem, a
laser scanner, or other remote sensing equipment to find likely candidates. Here,
information about previously performed actions can potentially be of value in de-
termining the most likely location of a box, as well as information from geographic
information systems and other sources of data regarding the environment.

Based on a great deal of experience with our UAV systems, it is our strong be-
lief that using logics as the basis for deliberative functionalities such as planning
and monitoring the expected effects of plans in the environment simplifies the de-
velopment of complex intelligent autonomous systems such as UAVs. Temporal
Action Logic and its tense formula subset are highly expressive languages which
are well suited for describing the UAV domain and for expressing the monitoring
conditions we are interested in. Therefore we believe this approach provides a
viable path towards even more sophisticated and capable autonomous UAV appli-
cations.

142

Chapter 8

Integrating Object and
Chronicle Recognition

8.1 Introduction

Many applications of autonomous aerial and ground vehicles involve surveillance
and monitoring where it is crucial to recognize objects existing in the environment
and events related to these objects. For example, a UAV monitoring traffic must
be able to determine whether a blob detected by image processing is likely to be a
vehicle or a building. It must also be able to recognize events such as a car over-
taking another, a car stopping at an intersection, and a car parking next to a certain
building. These are prime examples of the type of tasks knowledge processing
middleware are intended to facilitate.

We can classify events as being either primitive or complex. A primitive event
is either directly observed or grounded in changes in feature values, while a com-
plex event is defined as a spatio-temporal pattern of other events. The purpose of
an event recognition system is to detect complex events from a set of observed or
previously detected events. In the traffic monitoring domain, for example, the com-
plex event of car A overtaking car B can be defined in terms of a chain of events
where a car A is first behind, then left of, and finally in front of car B.

One formalism to express complex events is the chronicle formalism (Ghallab,
1996) which represents and detects complex events described in terms of tempo-
rally constrained events. We have successfully used chronicles to describe traffic
behavior in a traffic monitoring application. Instances of these chronicles are de-
tected by C.R.S., an implementation of the chronicle recognition algorithm devel-
oped by France Telecom (CRS website). The chronicle formalism is described in
Sections 8.2 — 8.4.

In a similar manner objects can either be observed or inferred from other ob-
servations. Which types of observations are available is very much dependent on
the platforms and sensors being used. If a camera is mounted in the front of a car
then it will have a very limited view of the surroundings and will most likely only

143

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

see parts of the cars around it but with quite a lot of details, such as the brand or
the license plate number. On the other hand, a camera mounted underneath a heli-
copter will have a quite good overview of an area but with less detailed information
about the cars. In both cases it is important to be able to describe different classes
of objects and detect individuals from these classes.

What features are associated with an object depends on the classification: A
vehicle has a current velocity, but a building does not. Classification must also
be flexible over time. For example, if a blob previously thought to be a building
begins to move, it should be reclassified.

Supporting this requires a flexible framework for object classification and re-
classification. We have developed an approach where objects are incrementally
classified as belonging to increasingly strict classes in a hierarchy of types. To
provide the required flexibility, a separate object structure is created for each type
an object is believed to belong to. For example, any object detected by image pro-
cessing may be represented as a vision object structure. If the vision object satisfies
the requirements for being a vehicle, a vehicle object structure is instantiated and a
link is created between the vision object structure and the vehicle object structure.
The vehicle object structure can then include additional features not available in
arbitrary vision objects.

Note that each link and each object structure is only seen as a hypothesis about
the class and the identity of an object. These hypotheses are continually monitored
using the same approach as for execution monitoring. Each hypothesis is associ-
ated with a metric temporal logical formula which is incrementally evaluated using
progression. If a monitor formula is violated the hypothesis is removed. For exam-
ple, if an object believed to be a vehicle violates the expected behavior, the link to
the associated vision object structure is removed, but the vision and vehicle object
structures themselves remain.

A set of linked object structures forms an object linkage structure. This ap-
proach is described in Section 8.5.

One problem that has to be dealt with is connecting a symbolic representation
of a car to a stream of sensor data collected by the UAV in such a way that the
symbol actually represents the car in the world. This is called the anchoring prob-
lem (Coradeschi and Saffiotti, 2003). The goal is to associate symbols with sensor
data in such a way that a symbol and its associated sensor data refers to the same
object. By creating and maintaining this association the symbol can be said to be
anchored or more generally grounded. How we use object linkage structures to
anchor objects is described in Section 8.6.

An equally important functionality is to be able to integrate sensors, such as
cameras, and processing of sensor data, such as image processing, with the detec-
tion of objects and complex events. This integration is a typical use of knowledge
processing middleware. To give a concrete example of how this can be done using
DyKnow, we present in Section 8.7 an implemented and tested traffic monitoring
application which integrates both object and chronicle recognition.

144

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

8.2 The Chronicle Formalism

A chronicle is a description of a complex event representing a generic scenario
whose instances we would like to recognize. A chronicle is represented as a set of
events and a set of metric temporal constraints on these events (Ghallab, 1996). In
this context, an event is often defined as a change in the value of a feature.

The chronicle recognition algorithm takes a stream of time-stamped event oc-
currences and finds all matching chronicle instances online. To do this, the algo-
rithm keeps track of all possible developments (Ghallab calls this prediction) in an
efficient manner by using temporal constraint networks (Dechter, Meiri, and Pearl,
1991). A chronicle instance is matched if instances of all the events in the chronicle
model are present in the stream and the time-stamps of the event instances satisfy
the temporal constraints. Recognized instances of a chronicle can be used as events
in another chronicle.

Example 8.2.1 (Overtake) A typical traffic situation that can be expressed as a
chronicle is an overtake. A chronicle where car A overtakes car B can be described
as a chain of events where a car A is first behind, then left of, and finally in front
of car B while both cars are on the same road during the entire overtake and with
the constraint that the whole overtake should not take more than 1 minute. O

Example 8.2.2 (Reckless overtake) A traffic situation which might be more inter-
esting to detect is reckless overtakes. There are several variations of the overtake
sequence of events which could be seen as a reckless overtake. One classical ex-
ample is an overtake on the wrong side of a car. In a country with right-hand traffic,
an overtake should be made on the left side of the car and not the right. Another
example is when the overtaking car does not have enough distance to a meeting
car. A third example is when a car begins and interrupts an overtake over and over
again. O

Another application area for chronicle recognition, apart from the traffic moni-
toring scenario described in this chapter, is in the surveillance of dynamic systems.
It has for example been used with success to monitor gas turbines (Aguilar et al.,
1994) and telecommunication networks (Bibas et al., 1996).

The following sections give a high level description of the chronicle formalism
as presented in Ghallab (1996), Dousson (2002), and the CRS website. We start
with presenting the chronicle language (Section 8.3) and then the online recogni-
tion algorithm used to detect instances (Section 8.4).

8.3 The Chronicle Language

In Example 8.2.1 we presented an overtake as a typical example of a complex event
that can be expressed as a chronicle. In this section we introduce the chronicle
language, as it is defined by C.R.S. (CRS website), which can be used to describe
such complex events. Let us start with an example.

145

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Example 8.3.1 (Chronicle) To use chronicle recognition to detect overtakes we
need to translate the natural language description of an overtake given in Exam-
ple 8.2.1 to a formal chronicle. To model overtakes four features are used: behind,
left, in_front, and road. The first three features represent qualitative spatial relations
between pairs of cars and the last represents which road a car is on.

Given these four features it is possible to translate the description of an overtake
to a chronicle using changes in these features as primitive events:

chronicle overtake[?carl,?car2]

{
event(behind[?carl, ?car2]:(?, true), t1)
event(left[?carl, ?car2]:(false, true), t2)
event(in_front[?carl, ?car2]:(false, true), t3)
event(road[’carl]:(?, ?road), t4)
noevent(road[?carl]:(?road, ?), (t4,13))
event(road[?car2]:(?, ?road), t5)
noevent(road| ’car2]:(?road, ?), (15,13))
U<t <t 1 <t2
t3 - t2 in [0, 60000]

}

The first three rows state that an overtake consists of three primitive events, where
a car is first behind, then left of, and finally in front of another car. The next four
rows state that the two cars must be on the same road during the whole overtake.
Specifically, cars 1 and 2 must enter the same road ?road at times t4 and t5, respec-
tively, after which there must be no events where the cars leave this road before
time t3. The last two rows state the temporal constraints on the occurrence times
of the primitive events. The time unit is milliseconds. O

We will now present the language in some detail. A formal grammar is pre-
sented in Section 8.3.5 on page 153.

8.3.1 Symbol

Symbols are used for naming chronicle models, event types, time-points, variables,
and their values. A symbol may be any string of alphabetical characters (a-z, A-Z),
the underscore (_), and digits (0-9) with the restriction that the first character must
not be a digit. Some example symbols: overtake and car2.

Some symbols can not be used as names since they are keywords. The follow-
ing are all the reserved keywords: alias and attribute chronicle constraint delay
domain event hold in init instant message noevent not occurs 00 -00 or recog-
nized send variable when ?value.

Variable

Variables are symbols prefixed by a question mark ’?’ or a star **. A variable
whose name begins with a question mark is constrained to taking on the same value

146

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

throughout a chronicle, while a variable whose name begins with a star can take on
different values on each occurrence and therefore serves as a type of placeholder
where the precise value of an argument is not relevant.

Time Constant and Time Interval

All time constants are expressed as integers.

Let #; and 1, be two time constants, and oo and -0o two keywords representing
positive and negative infinity, respectively. Then, the following are the allowed
time intervals:

e [t),r] correspondsto{tr € Z|t; <t < tp},
e [1;,00[corresponds to {t € Z |t <1},
e]-00, 1] corresponds to {t € Z |t < t;}, and

e]-00, 00[corresponds to Z.

Example 8.3.2 (Time constants and time intervals)
The following expressions are examples of valid time constants and time intervals:

e 123456,
e [10,122], and

e]-00,00].

Temporal Expression
A temporal expression is an expression on one of the following forms:

e 11 ®1, where t] and 1, are time constants and ® is one of the binary operators
+ (addition) and — (subtraction),

e i ®ip, where i; and i, are time intervals and ® is one of the binary operators
& (intersection) and | (union), and

e i; ®t;, where i; is a time interval, #; is a time constant, and ® is one of
the binary operators + (addition) and — (subtraction), meaning that the given
time constant is added or subtracted from every finite time constant occurring
in the time interval.

Example 8.3.3 (Temporal expressions)
The following expressions are examples of valid temporal expressions:

e [—12,100] + 22 which is equal to [10, 122],
e [1300, oo[& [0, 10000] which is equal to [1300, 10000], and
e [10,122] | [50, 100] which is equal to [10, 122].

147

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Domain

A domain consists of a set of values that a feature can take on and is specified
using ordinary set notation as a comma-separated list of symbols surrounded by
braces. Three binary operations are defined on domains: union (| or +), intersection
(&), and subtraction (—). Additionally, the unary prefix complement operator (~)
returns the complement of a domain relative to the set of all values occurring in a
chronicle specification.

As will be seen later, domains can be used inline in parameter specifications.
A global domain can also be declared and given a name using a declaration of the
following form: domain name = {valuef, ..., valueN}.

Example 8.3.4 (Domains)
The following expressions are examples of valid domains:

e domain Color = {red, blue, green},
e domain Car = {car3} | {car2} | {car1} which is equal to {car1, car2, car3}, and

e domain All = ~ {} which is the domain of all symbols.

8.3.2 Attribute and Message

Before defining events and chronicle models, the meaning carried by these events
must be defined. In the chronicle formalism, there are two kinds of entities from
which events can be derived:

e attributes which have values over time and where events correspond to changes
of this value, and

e messages which are instantaneous events with no duration, where a message
indicates the occurrence of such an event.

An attribute is similar to a feature whose value may change over time. In DyKnow
the value of an attribute over time is represented by a fluent stream, while in the
chronicle formalism, it is represented by a sequence of events where each event
represents a change in the value. A message corresponds to an event which does
not necessarily represents a change in the value of an attribute.

Message

A message is defined by a block which starts with the keyword message followed
by the name and parameters of the message. The block defines a message type
which can be received by the recognition process.

Each parameter has a domain, which may be declared in the body of the mes-
sage. The default domain is the domain of all symbols. A parameter can either
have an explicit domain or refer to one of the global domains.

148

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Example 8.3.5 (Message) A message can for example be used to represent that a
car is in a crossing:

message in_crossing[’car, ?crossing]
{

?car in Car

?crossing in Crossing

Attribute

An attribute is defined by a block which starts with the keyword attribute followed
by the name and parameters of the attribute. The block defines an attribute which
has a value that can change over time. Its value domain is represented by a prede-
fined variable called ?value. As for messages, the domains for the parameters may
be defined.

Example 8.3.6 (Attribute) An attribute on_road representing the boolean feature
of a car either being on a road or not can be defined as:

attribute on_road[?car]

{
?value in {true, false}
?car in Car

8.3.3 Time Constraint

Time constraints are defined between time-points, also called instants, which are
the temporal variables of a chronicle. These temporal variables are not prefixed
with a question mark or a star. Instants are implicitly declared when they are first
used. However, it is also possible to explicitly declare instants by the keyword
instant. For example: instant t1, t2.

Two instants are always defined for a chronicle, start and end. These are in-
stants with the constraint that start < ¢ < end for any instant ¢ of the chronicle
model. The consistency of all the constraints of a chronicle model is checked at
compile time.

Atomic Constraint

An atomic constraint is a constraint on the form #; ® ¢, or #in I, where #; and
1, are temporal expressions, ® is an operator in {<, <=,=,>=,>}, and [is a time
interval. For representational convenience this syntax is extended to allow chained
expressions such as #; ® f, ®, t3, meaning that t| ®; #, and 1, ®; 3.

149

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Example 8.3.7 (Atomic Constraints)
The following constraints are examples of atomic constraints:

o {1 <12 <=13 =14,
e t3 —12in [0, 250],
e t4 —t1 < 100, which is equal to t4 —t1 in]-00, 100[, and

e 10 <=1t5-11 <= 30.
O

Using the start and end instants it is easy to define the maximum duration of a
chronicle like this: end — start <= 10.

Complex Constraint

A complex constraint is defined by a block which starts with the keyword con-
straint followed by the name and parameters of the constraint. The parameters
must be time instants. The block defines a complex temporal constraint as a con-
junction of atomic constraints. The new constraint can then be used in chronicles
to avoid having to duplicate complex constraints multiple times. This feature is
purely syntactic.

Example 8.3.8 (Complex Constraint)
A sequence of 3 instants with a maximum duration of 5 time units can be defined
as follows:

constraint mySequence(il, t2, t3)

{
1 <=12<=13
t3—-t1 <=5

}

The constraint can then be used in a chronicle like this:

instant begin, middle, finish
mySequence(begin, middle, finish)

8.3.4 Chronicle Model

A chronicle model is defined by a block which starts with the keyword chroni-
cle followed by the name and parameters of the chronicle. The block defines one
chronicle model whose instances may be recognized by the online chronicle recog-
nition engine.

150

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Example 8.3.9 (Chronicle model)

chronicle overtake[?carl,?car2]

{
}

]

A chronicle model may include local variables, event occurrences, and temporal
constraints.

Local Variable

If an expression of the form ?var or *var is used within a chronicle without being
declared, it is implicitly declared as a local variable in that chronicle. It is also
possible to declare local variables explicitly, either to improve clarity or to define a
domain to which the variable should belong. A variable definition has the following
form, where each var; is a variable name beginning with >?” or **:

e variable varl [,var2,...]

e variable varl [,var2,...] in domain

Example 8.3.10 (Local Variables)
The following statements are examples of valid local variable declarations:

e variable 7y, *z

e variable ’c in Car

Occurs Predicate

An occurs predicate declares that a specific number of event instances must occur
within a specific interval for an instance of the chronicle to be recognized. All the
occurs predicates in a chronicle model must be matched in order for a chronicle
instance to be detected. The syntax is occurs(n,ny, TYPE,(t1,1,)), where 0 <
n; < ny are integers, TYPE is an event type, and #; < f, are time-points. The
meaning of the declaration is that at least n; but not more than n, events of the type
TYPE should occur in the interval [#1, #;[. To represent that any number of event
instance may occur 1, can be replaced by the keyword oo.

The type of an event depends on whether it is an instance of a message or
a value change of an attribute. In the first case, the event type has the form
nlai,...,a,], where n is the name of the message and ay, ..., a, are its arguments,
which may be variables or values. In the case of a change in the value of an at-
tribute, the event type has the form n[ay,...,a,] : (v,v"), where n is the name of
the attribute, ay, ..., a, are the arguments of the attribute, v is the previous value,
and v’ is the current value.

151

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Example 8.3.11 (Occurs predicate)

e occurs(1, 1,in_crossing[car1, ?c], (t1,t2)) states that car1 should be in a cross-
ing ?c exactly once in the interval [t1,t2[.

e occurs(1,5,in_crossing[?car2, 7], (13,14)) states that a car, denoted by the
variable ?car2, should enter the same crossing between 1 and 5 times in
the interval [t3, t4[.

e occurs(1,00,on_road[?carl] : (?,false), (15, 6)) states that the attribute on_road
for a car (denoted by ?carl) should change values to false (from any value)
at least once in the interval [t5, t6].
O

Notice that ? can be used instead of a variable to represent that the actual value
matched during recognition is not important. Each ? represents a different variable.

Counting events with different arguments in the same occurs predicate is pos-
sible by the use of universal variables, which are variables prefixed by a star (*)
instead of a question mark (?).

Example 8.3.12 (Occurs predicate, cont.)

e occurs(3, 3, in_crossing[?car, ?c], (11, t2)) states that the same car should be
in the same crossing exactly three time during the interval [t1, t2[.

e occurs(3, 3, in_crossing[*car, ?c], (11, t2)) states that it might be different
cars which should be in the same crossing exactly three times during the
interval [t1,t2][.

]

For compatibility and convenience, it is possible to use the predicates event
(meaning one or more events) and noevent (meaning zero events) in a chronicle
model. The definition of these predicates are:

event(TYPE,t) = occurs(1,00, TYPE, (t,t + 1))

noevent(TYPE, (t,,1,)) = occurs(0,0, TYPE, (11, 1,))
To declare a context assertion stating that an attribute p has a certain value v over
a certain interval (71, ;) an event predicate, a noevent predicate, and a temporal
constraint is used:

event(p : (?,v),1t0)

noevent(p : (v, ?), (10 + 1,12))

0 <= t1
A chronicle model is a conjunction of occurs predicates and temporal constraints
representing the spatio-temporal pattern of a complex event.

Example 8.3.13 (Chronicle model, cont.) We can now describe an overtake as a
chronicle according to the definition in Example 8.2.1.

152

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

chronicle overtake[?carl,?car2]

{
event(behind[?carl, ?car2]:(?, true), t1)
event(left[?carl, ?car2]:(false, true), t2)
event(in_front[?carl, ?car2]:(false, true), t3)
event(road[?carl]:(?, ?road), t4)
noevent(road[’carl]:(?road, ?), (14,13))
event(road[?car2]:(?, ?road), t5)
noevent(road[’car2]:(?road, ?), (15, 13))
t4 <t1;t5 <1
t1 <t2
t3 - t2 in [0, 60000]

O
8.3.5 Grammar
The following is the grammar of C.R.S. according to the CRS website.
ChronicleFile = (DomainDefinition
| ConstraintModel
| TimeConstraintGraph
| Attribute
| Message
| Chronicle)*
DomainDefinition = domain <ID> ‘=’ Domain
Domain = IntersectedDomain
(('’ pomain | '\ Domain))?
IntersectedDomain = BasicDomain
('& 1IntersectedDomain)?
BasicDomain == '(" Domain ')
| "~" BasicDomain
| " (<ID> (') <ID>))? Y
| <ID>
ConstraintModel := constraint Signature
' (Constraint)* "}
Constraint := ConstraintDisjunct
(’'=>' ConstraintDisjunct
| '<=>" ConstraintDisjunct)?
| if ConstraintDisjunct

then ConstraintDisjunct

ConstraintDisjunct

ConstraintConjunct

(else ConstraintDisjunct)?
= ConstraintConjunct

(or ConstraintDisjunct)?
= AtomicConstraint

(and ConstraintConjunct

)?

153

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

AtomicConstraint :

Parameter :

Variable
TimeConstraintGraph :

TimeConstraint :

SymbolicInstantSeq

IncreasingInstantSeq :

DecreasingInstantSeq =

TemporalParameters =
TemporalIndexes =

TimeValue :

TimePoint =

Variable
((not)? in Domain
| ('==" | "'=") Parameter)
not AtomicConstraint
("’ ConstraintDisjunct)
(Variable | '? | '«)
<ID>
('Y | ’¥) <ID>
time constraint <ID>

)?

(TimeConstraint)*

(TemporalParameters

l{/ I}I

TimePoint
SymbolicInstantSeqg
<ID> (- <ID>)?
(in TimeInterval
[C /< |7

| "<=" | ’'>=') TimeValue)
<ID> Temporallndexes
=’ TimePoint
(SymbolicInstantSeq)?
<’ TimePoint
(IncreasingInstantSeq)?
>’ TimePoint
(DecreasingInstantSeq)?
<=’ TimePoint
(IncreasingInstantSeq)?
'>=" TimePoint
(DecreasingInstantSeq)?
(’=' TimePoint
| ‘<’ TimePoint
| "<=" TimePoint)
(IncreasingInstantSeq)?
(’'=’ TimePoint
| />’ TimePoint
| '>=" TimePoint)
(DecreasingInstantSeq)?
" (<ID> (') <ID>)" H? 'Y
‘(" (TimePoint
(/) TimePoint)")? 'Y
('+)? <INTEGER>

r-! <INTEGER>
<ID>
('+ (<INTEGER>

| TimeInterval)
| '~ (<INTEGER>

154

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

TimeInterval :

AtomicTimeInterval :

Attribute =

Message

Chronicle :

ChronicleStatement

Signature =
Parameters =

Predicate =

Type =

| TimeInterval))?
AtomicTimeInterval
(('+ TimelInterval
| =/ TimeInterval))?
(' TimeValue
| " -00) 7/
(oo " | TimevValue '])
'—" AtomicTimelInterval
attribute Signature
("’ (Constraint)* 7})?
message Signature
(" (Constraint)* "})?
chronicle Signature
(TemporalParameters)?
"I (ChronicleStatement)* '}
Predicate
Constraint
TimeConstraint
chronicle Signature
(TemporalLabeledIndexes)?
<ID> (Parameters)?
' (Parameter
(/) Parameter)*)? 'V

77

event ' Type '/ TimePoint 7Y

I

noevent ("’ Type '/,
' TimePoint '/
TimePoint ') ')

occurs ("’ <INTEGER> '/
(<INTEGER> | o0) '/
Type ')/ /(" TimePoint '/
TimePoint /) /Y
Signature

(' ' parameter 7/

Parameter '))?

8.4 On-Line Recognition

Given a chronicle model and a stream of events, the chronicle recognition system
should as soon as possible detect any instance of the given chronicle model that
occurs in the event stream. A complete match for a chronicle model associates
every parameterized event in the chronicle with a corresponding concrete event in
the event stream, in a way that is consistent with the chronicle constraints. A partial
match is similar, but only requires a non-empty subset of the events required by a
chronicle to be matched in a way that is consistent with the constraints.

155

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Time is considered a linearly ordered discrete set of instants, whose resolution
is sufficient to represent the changes in the environment. Time is represented by
time-points and all the interval constraints permitted by the restricted interval alge-
bra (Nebel and Burckert, 1995; Vilain and Kautz, 1986) are allowed. This means
that it is possible to represent relations such as before, after, equal, and metric
distances between time-points but not their disjunctions.

If a chronicle definition only contains event predicates and does not contain
noevent or occurs predicates, either directly or indirectly through inclusion of
other chronicle definitions, then it cannot depend on the non-existence of events
or on the exact number of times an event occurs. To detect instances of such a
chronicle it is first compiled into a simple temporal constraint network (Dechter,
Meiri, and Pearl, 1991) where each event is a node and each temporal constraint
is an edge between two nodes. A temporal constraint network is a directed acyclic
graph where the nodes represent occurrences of events and each edge is associated
with a set of disjunctive temporal constraints on the time of occurrence of the two
connected events. A simple temporal constraint network is a temporal constraint
network where each edge is only associated with a single temporal constraint.

A temporal constraint network corresponds to a temporal constraint satisfaction
problem (TCSP) where a set of variables, one for each node, should be assigned
a time-point in such a way that the binary constraints defined by the edges are
satisfied. If it possible to find such an assignment then the temporal constraint net-
work is consistent. Determining if a TCSP is consistent is NP-complete. However,
if we restrict the problem to only allow a single temporal constraint on each of
the edges in the temporal constraint network then we get a simple temporal con-
straint network whose corresponding simple TCSP can be solved in polynomial
time (Dechter, Meiri, and Pearl, 1991).

When compiling a chronicle model, a complete temporal constraint network is
created by propagating all the constraints in the model using an incremental path
consistency algorithm (Ghallab, 1996). The result of this propagation is the least
constrained complete graph equivalent to the constraints in the chronicle model.
The compilation of a chronicle model also checks to make sure that the constraints
are consistent. Since no disjunctive metric constraints are allowed the resulting
network will be simple.

To detect chronicle instances, the algorithm keeps track of all partially instan-
tiated chronicle models. To begin with each chronicle model is associated with a
completely uninstantiated instance. Each time a new event is received it is checked
against all the partial instances to see if it matches any previously unmatched event.
If that is the case, then a copy of the instance is created and the new event is in-
tegrated into the temporal constraint network by instantiating the appropriate vari-
ables and propagating all constraints (Ghallab, 1996). It is necessary to keep the
original partial chronicle instance to match a chronicle model against all subsets
of event occurrences. If all the events have been matched then a complete instance
has been found.

For example, assume we have a chronicle model that requires three events A, B,
and C to be matched together with a temporal constraint stating that C must occur

156

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

at most 5 time units after B. Also assume we have an event stream containing four
event occurrences (4, A), (5, B), (8, B), and (12, C), where the integer is the time
of the occurrence. The following will happen when the events occur:

o First, there is only the original instance [] where no events have been matched
so far.

e (4, A) occurs. The only existing chronicle instance requires a match for
the event A, but modifying it to add the fact that A is matched at time 4
would make it impossible to match A at a later time. Therefore, the existing
chronicle is left intact and a copy is made in which A is matched at time 4.
The new copy is consistent, and the result is two partial chronicles: [] and

[(4, A)].

e (5,B) occurs. Both of the existing partial chronicle instances can be extended
consistently with this event, resulting in four partial chronicles: [], [(4, A)],
[(5,B)], and [(4, A), (5, B)].

e (8, B) occurs. Since chronicles are not destructively modified, we retain the
ability to match this event against the original instance as well as the par-
tial instance [(4, A)]. The remaining two chronicle instances already contain
matches for B and cannot be extended with the new event. This results in six
partial chronicles: [], [(4, A)], [(5, B)], [(8, B)I, [(4, A), (5, B)], and [(4, A),
(8, B)].

e The clock turns to 11. Recall that the chronicle constrains event C to happen
within 5 time units after B. This is still possible for the partial instances
where B is not matched or where B was matched at time 8. However, the
partial instances where B was matched at time 5 can no longer be extended
to complete instances and can be removed. This results in four active partial
chronicles: [], [(4, A)], [(8, B)], and [(4, A), (8, B)].

e (12, C) occurs. This event can be added to all of the partial instances and
results in one completely instantiated chronicle. Result: [], [(4, A)], [(8, B)],
[(12, O, [(4, A), (12, O), [(8, B), (12, C)], [(4, A), (8, B)], and [(4, A), (8,
B), (12, C)].

Translating a chronicle to a simple temporal constraint network only works for
those chronicle models which consist of event predicates and temporal constraints.
If a chronicle model contains noevent predicates or occurs predicates then a more
elaborate evaluation mechanism is required (Dousson, 2002).

The occurs(ny, ny, e, (11, t;)) predicate can be handled by translating it to a node
in the temporal constraint network which is extended with an event counter n. For
each event that matches the node and satisfies the constraints, the counter n is
increased. A tree of partially instantiated chronicles is used to efficiently match
incoming events and to keep track of the current state of the recognition process.

If n < nj, then one has not yet received a sufficient number of events of the
specified type. If additionally the current time is greater than #,, then the deadline

157

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

has passed and the current chronicle instance cannot be matched regardless of what
happens in the future.

If n > n,, then too many events of the specified type have been received and
the chronicle instance cannot be matched.

If n;y < n < n, for all event counters then the chronicle instance is said to be
ready to be recognized. However, if the current time is less than #, for some occurs
predicate, then there is still a possibility that the upper limits will be exceeded
before the deadline. To handle this each partial instance must also be updated
when the clock is updated. The occurs predicate will be satisfied as soon as the
interval (#;, #;) has passed and event counters are in their specified intervals.

The chronicle recognition algorithm is complete as long as the observed event
stream is complete, i.e. any change of a value of an attribute is captured by an
event. The recognition process must be initialized with an attribute change event
for each attribute with an occurrence date equal to —co.

8.5 Object Recognition and Tracking

Recognizing, tracking, and reasoning about various types of objects is an important
problem when bridging the gap between sensing and reasoning. Therefore, knowl-
edge processing middleware should provide support for managing these tasks.
Throughout this section we will use traffic monitoring as a motivating example.
In this problem domain, we are primarily interested in being able to recognize and
track cars and other vehicles using thermal and color cameras mounted on a UAV.

For a UAV to be able to recognize a car it has to take a picture of the area where
the car is and correctly identify that it actually is a car. To further be able to track
the car as it moves through a road network the UAV has to continually take pictures
in order to keep its information up to date. To do this the UAV has to be able to
determine if a car found in a picture is actually the same car as it has seen before
or if it is a previously unseen car.

Ideally, we would like to know the exact position, speed, and other attributes
of every car in a monitored area at every time-point. However, the UAV may be
given a large area to monitor, and since the cameras only can cover a small area at
any time we can not expect to see all the cars in the area all the time. A UAV can
therefore only track a subset of the cars, namely those cars that are observable by
its cameras. Noise, lack of detail, and ambiguities in the images makes recognizing
and tracking cars a challenging task.

In this section we will present an extension of DyKnow called object linkage
structures which can be used to incrementally classify potential cars found by an
image processing system and anchor those that are classified as cars to symbolic
identifiers in order to support car recognition and tracking. How these object link-
age structures can be used to anchor object symbols is described in Section 8.6.

158

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

8.5.1 Object

Most knowledge processing applications are possible to describe in terms of flu-
ent streams approximating features. However, many of the features and their as-
sociated fluent streams are related to the same object. These applications could
therefore be simplified by introducing support for processing objects consisting of
bundles of related features. This is especially true if the set of objects is not fixed,
but may change at run-time.

We consider an object to be an entity which has attributes and can have relations
to other objects. Example objects in the traffic domain are cars, buildings, and
roads. The attributes and the relations of an object are represented by features
whose values over time are approximated using fluent streams.

To get all the information about a single object a client has to subscribe to
each fluent stream approximating an attribute of the object. If a client needs to
synchronize the information, then the state extraction mechanism of Chapter 7 can
be used. However, in many cases a single process approximates more than one
attribute of an object, maybe even all the attributes of an object. An improvement
would be to allow a single process to approximate object states, i.e. snapshots of
a collection of attributes about a single object. A knowledge process creating a
stream of such object states would conceptually be seen as creating a bundle of
related streams and an implementation could very well allow each stream to be
accessed individually.

To manage such collections of streams we introduce object states as a special-
ization of a state as defined in Section 7.8. An object state represents a snapshot
of the state of a particular object. Formally an object state is a state where the first
value is the identifier of the object. A stream of object states is called an object
state stream.

Throughout the rest of the chapter, we will assume the use of the knowledge
processing domain D = (O, T, P), where R C P to allow real valued attributes.

Definition 8.5.1 (Object state) An object state in a knowledge processing domain
D =(0,T, P)isastate{o,vy,...,v,), where o € Ois anobject,and vy,...,v, € Vp
are the current values of the attributes of the object. O

Definition 8.5.2 (Object state stream) An object state stream in a knowledge pro-
cessing domain D is a state stream in D where each state is an object state. O

Example 8.5.1 (Object) To model the traffic domain we introduce car objects to
represent cars. Each car object would have its own object identifier, such as car72,
bil, or a. If cars have the attributes position, speed, and size, then a snapshot of car72
could be represented by an object state (car72, (201,75, 88), (20,0, 0), (4,2, 1.5))
stating that car72 is a car object with the xyz-position (201,75, 88), driving 20 m/s
in the x-direction, being 4 meters long, 2 meters wide, and 1.5 meters high. A
stream of such object states would be an example of an object state stream. O

159

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

color images

Monolithic Object Recognition

car object states

thermal images
—_—

Figure 8.1: A knowledge process doing both object recognition and tracking.

_colrimages (" |mage Processing Object Recognition

thermal images car object states

Figure 8.2: Two knowledge processes doing object recognition and tracking to-
gether.

[vision object states

8.5.2 Object Linkage Structure

As described in the introduction we would like to recognize and track cars and
extract information such as the position, speed, and size of the tracked cars. For
our UAV to acquire this information it has to process the video sequences from
its onboard thermal and color cameras to recognize objects which could be cars
and filter out those that are not classified as cars. Using knowledge processing
middleware, this problem could be structured by introducing a knowledge process
which takes a stream of images from the color camera and a stream of images from
the thermal camera and produces a stream of object states where each object state
represents the current state of a tracked car (Figure 8.1).

An alternative to having a single opaque knowledge process is to divide the
problem into parts. Since there already exist numerous approaches to recognizing
and tracking objects in video sequences the image processing is suitable for being a
separate knowledge process. The concrete image processing system we use, takes
as input streams of color and thermal images and outputs a stream of vision object
states representing the potential cars found in the video streams (Section 8.7.1).

However, since image processing is not perfect and usually only does limited
reasoning about the identity of the potential cars more processing is needed to
increase the quality of the output. Therefore, a second knowledge process is intro-
duced which further reasons about the type and identity of the potential cars found
in the video streams. The input to this knowledge process is the stream of vision
object states representing potential cars tracked by the image processing system
and the output is a stream of car object states representing the current state of the
tracked cars. An overview of the two knowledge processes is shown in Figure 8.2.

The task of the second knowledge process is to determine for each vision object
representing a potential car if it actually is a car and in that case whether it is a
known or a new car. One way of doing this reasoning is to use the temporal logic
described in Chapter 7 to express an establish condition that holds when a new
vision object represents a new car object and a reestablish condition that holds
when it represents a known car. If one of these conditions holds, a /ink is created,

160

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

representing an association between the vision object and a new or existing car
object, respectively. While a vision object is linked to a car object the attributes
of the car object are computed from the attributes of the vision object. If neither
condition holds, the vision object is not associated with any car object.

Since the observations about the environment are uncertain and the classifica-
tion is not perfect each link is only treated as a hypothesis that the vision object
and the associated car object represent the same physical object. To continually
validate the hypothesis a maintain condition is introduced. The maintain condition
is a condition which should be valid as long as the two objects are associated. If
the maintain condition is violated then the link is removed to represent that the hy-
pothesis is withdrawn and that the two objects are no longer associated. However,
this does not remove the car object, only the link.

Example 8.5.2 (Link) Assume that the image processing system is currently track-
ing a potential car represented by the vision object vo1 and that no previous car
objects have been created. Since there is a vision object but not any known car
objects it is enough to evaluate the establish condition on vo1.

- establish?)
]

Assume that the condition is satisfied. Then a new car object c1 is created
which is associated with vo1. As long as c1 is associated with vo1 its state will be
computed from the state of the vision object vo1. To monitor the hypothesis that
c1 is a car the maintain condition is monitored.

ot | |

Assume the image processing system loses track of the potential car after a
while. Then vo1 is removed together with the link to c1. Even though the link is
removed the car object c1 still remains.

H—<—

Assume further that the image processing system later recognizes a new poten-
tial car represented by the vision object vo2. Since there exists a known car, c1, the
knowledge process has to evaluate whether vo2 is a new car, the known car c1, or
not a car at all. This is done by evaluating the establish condition on vo2 and the
reestablish condition between vo2 and c1.

. reestablish? -

=zIZ
.....
.....

Assume that after a while the establish condition is progressed to false and the
reestablish condition is progressed to true. Then a new link is created from vo2 to

161

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

c1 and the attributes of c1 can be computed from the attributes of vo2. To check
the new hypothesis a maintain condition between c1 and vo2 is monitored.

oz el |

O

In the previous example the vision objects created by image processing were
directly linked to car objects. This can easily be generalized to introduce a hierar-
chy of intermediary objects between vision objects and car objects. For example,
vision objects can first be linked to world objects, where each world object repre-
sents a physical object in the world. These world objects could then be linked to on
road objects representing physical objects that move along roads. Finally, these on
road objects could be linked to car objects if they have the characteristics of cars
instead of motorcycles or trucks. A set of objects linked together is called an object
linkage structure. Not only does this support the easy integration of different object
recognition and tracking approaches, it also provides an explicit representation of
all the abstraction levels used to represent an object.

A specification of links from objects of type A to objects of type B consists of three
conditions, the establish, reestablish, and maintain conditions, and a computational
unit for computing B object states from A object states. A link is specified by a
link declaration according to definition 8.5.3. From a link declaration a knowledge
process is defined that does the object recognition and classification according to
the specification.

Definition 8.5.3 (Link declaration) A link declaration has the form strmgen b =
link(a, cu, e, r, m), where b and a are label terms, cu is a computational unit symbol,
and e, r, and m are monitor formulas.]

A link specification “strmgen b = link(a, cu, e,r,m)” describes a knowledge
process that subscribes to the stream generator labeled a and links the objects in
the resulting stream according to the establish condition e, the reestablish condition
r, and the maintain condition m. The formulas may contain the special variables
from and to which refer to the object symbol of the linked from object and the
linked to object respectively. To compute the object states of the linked to objects
the computational unit cu is used. All the generated object states will be made
available from a stream generator labeled b. The types of the objects in the streams
denoted by the labels a and b are implicit but will be referred to as type A and type
B. An example link process is shown in Figure 8.3 where vision objects are linked
to car objects. Which car object a vision object is linked to depends on the three
link conditions.

The establish condition describes when a new instance of type B should be
created and linked to an instance of type A. In the traffic domain, for example,
type A could correspond to world objects and type B could correspond to on road
objects. When a new world object is found, the establish condition could trigger

162

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

a Link Process I
compute car object
from vision object
partition on
vision object id Generator
compute car object
\ from vision object j

Figure 8.3: A knowledge process linking vision objects from the object state stream
vision_objects to car objects provided by a stream generator labeled car_objects.

vision objects Stream car objects
———— #

when the world object has been on the road for at least 30 seconds. If it triggers,
a new on road object is created and linked to the world object. An on road object
could contain more abstract and qualitative attributes such as which road segment it
is on, which makes it possible to reason qualitatively about its position in the world
relative to the road, other cars on the road, and building structures in the vicinity of
the road. At this point, streams of data are being generated and computed for the
attributes in the linked object structures at many levels of abstraction as the UAV
tracks the on road objects.

The reestablish condition describes when two existing objects of the appropri-
ate types which are not already linked should be linked. This is used when the
tracking of an on road object is lost and the image processing system finds a new
world object which may or may not be the same on road object as before. If the
reestablish condition is satisfied then it is hypothesized that the new world object
is in fact the same on road object as was previously tracked.

Since links only represent hypotheses, they are always subject to becoming in-
valid given additional data, so the UAV continually has to verify the validity of
the links. This is done by monitoring that a maintain condition is not violated. A
maintain condition could compare the behavior of the object with the normative
behavior of this type of object and, if available, the predicted behavior of the pre-
vious object. In the on road object example the condition could be that the world
object should remain continually on the road, maybe with occasional shorter peri-
ods off the road. If this condition is violated then the link is removed and the on
road object is no longer updated since the hypothesis can not be maintained. The
link is also removed if one of the objects are removed.

A link process is responsible for creating and maintaining links according to
these three conditions. This is done individually for each object found in the input
stream to the link process. To evaluate the conditions a link process could use the
progression mechanism described in Section 7.5.2. A finite state machine describ-
ing how to link vision objects to car objects is shown in Figure 8.4 on the following
page. The description is general and applies to all link processes.

For each object o found in the input stream a state machine is created which
keeps track of the state for that object. When o is linked to another object o,

163

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

@try start evaluating establish condih
and for each car object ¢

start evaluating reestablish condition(c)

start

if unlinked car object c is added
then start evaluating reestablish condition(c)

if car object c is removed
or car object c is linked to a vision object
then stop evaluating reestablish condition(c)

if establish condition is evaluated to false
then nothing

if establish condition is evaluated to true
then create new car object ¢

and link the vision object to ¢

and start evaluating the maintain condition(c) / \

and goto state 2

if reestablish condition(c) is evaluated to false
then nothing N - .
if maintain condition(c) is evaluated to false

if reestablish condition(c) is evaluated to true then remove link from vision object to ¢
then link the vision object to ¢ and goto state 1

and start evaluating the maintain condition

and goto state 2 2

1 /A —

Figure 8.4: A finite state machine describing how a vision object is linked to car
objects.

then an instance of the computational unit cu is created which takes the stream of
object states for o as input and computes a stream of object states for o’ as output.
The output of a link process is the union of all the object state streams created by
instances of cu. An overview of the link process which creates car objects from
vision objects is shown in Figure 8.5 on the next page.

Object linkage structures are related to inheritance hierarchies in object oriented
programming. A vision object is a world object which is an on road object which
is a car. However, the difference is that in object oriented programming objects are
created in a top-down fashion while in object linkage structures they are created
bottom-up. For example, in object oriented programming if a car object is created,
this object is also unavoidably an on road object and a world object. With object
linkage structures, on the other hand, a vision object is first created and if certain
conditions are met then a world object is created, if further conditions are met then
an on road object is created, and so on.

8.6 Anchoring

We will now show how the object linkage structures introduced in the previous
section can be used to anchor symbols representing objects in the world to sensor
data, in such a way that the symbol is consistently associated with information
about a specific physical object.

164

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

/ Link Process \
compute car object
from vision object

partition on

vision object id
compute car object

from vision object

for each link (v,c) compute
the car object ¢ from

the vision object v

for each

vision object

keep track of
{slinkage state /

[Progression Engine]

Stream
Generator

vision objects car objects
——————— #

Figure 8.5: An overview of the link process which creates car objects from vision
objects.

As mentioned in the introduction to this chapter, anchoring is a special case
of the more general symbol grounding problem (Harnad, 1990). A definition of
anchoring by Coradeschi and Saffiotti (2003) is: “We call anchoring the process
of creating and maintaining the correspondence between symbols and sensor data
that refer to the same physical objects. The anchoring problem is the problem of
how to perform anchoring in an artificial system.”

The concept of “sensor data” is very broad. Examples of sensor data are a
temperature measurement from a thermometer, an image or a sequence of images
from a frame grabber, a point-cloud collected by a laser range scanner or a sonar,
and so on. In our approach each instance of a type of sensor data is represented by
an object called a percept. We have already seen an example in the form of vision
objects created by an image processing system. Another example could be a laser
range finder that creates a point-cloud object which is updated with each scan.

In our approach, anchoring an object o is the same as creating an object linkage
structure, directly or indirectly, connecting o to an object representing sensor data.
As long as the object o is linked to a percept it is considered to be anchored. For
example, to anchor car objects to sensor data collected by cameras in the form
of vision objects, a link process connecting vision objects and car objects could
be used. It is also possible to create a chain of link processes, for example first
linking vision objects to on road objects and then link these on road objects to car
objects. In either case, a car object would be considered anchored as long as it was
connected to a vision object.

165

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

The anchoring framework suggested by Coradeschi and Saffiotti (2003) defines
three anchoring functionalities: Find, Track, and Reacquire. These functionalities
cover the life cycle of an anchor. The Find functionality takes a symbolic descrip-
tion of an object and tries to anchor it in sensor data. The Track functionality con-
tinually maintains the anchor based on the current sensor data. In case the tracking
fails, the anchor is removed. The Reacquire functionality then tries to find new
sensor data which corresponds to the same object that was anchored previously.
The difference between Find and Reacquire is that Reacquire can use the infor-
mation gathered while the anchor was being tracked. For example, the Reacquire
functionality may refer to the position of an object collected while the object was
anchored.

Using object linkage structures to anchor objects, these functionalities mainly
correspond to evaluating the establish, reestablish, and maintain conditions associ-
ated with each link process. There is a specific link process for each type of object
that can be anchored, testing conditions related to that specific object type. When
a new percept p appears, there are three distinct cases.

First, the percept may be related to a new object of the given type. Therefore,
DyKnow immediately begins evaluating the establish condition. If this condition
eventually progresses to true, a new object o of the desired type is created and
linked to the percept p. This corresponds to the Find functionality.

Second, the percept may be related to an existing but currently unlinked object
of the given type. This is determined by the reestablish condition. For example, if
a link process connecting vision objects to car objects has one vision object vo and
two car objects ¢; and ¢, which are not linked to anything, then it would evaluate
the reestablish condition on the two pairs (vo, ci) and (vo, ¢;). If one of them is
evaluated to true then a link is created between the two objects, and an anchor
would have been reacquired.

Third, the percept may not match the given type at all, in which case the estab-
lish condition and any reestablish conditions will eventually evaluate to false and
no links will be created.

While a percept p is linked to an object o a maintain condition is being eval-
uated. As long as the maintain condition is not violated, p and o are linked and
the current state of o is computed by a computational unit. This corresponds to the
Track functionality. If the maintain condition is violated then the link between p
and o is removed, but not the two objects themselves.

There are several differences between our approach of using object linkage
structures and the anchoring framework proposed by Coradeschi and Saffiotti (2003).
First, we do anchoring mainly bottom-up while they do it top-down. In their Find
functionality a symbolic description of an object is given while our establish con-
dition rather describes the conditions for when sensor data can be considered to
refer to a particular type of object. For example, instead of describing a particular
car object we use an establish constraint to describe when a vision object can be
considered to be an image of a car. Second, by using a metric temporal logic to
describe the conditions for anchoring time is explicitly taken into account. A third
difference is that object linkage structures allow the anchoring process to be done

166

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

incrementally through several intermediary steps. This makes the anchoring prob-
lem easier to handle since sensor data, such as images, does not have to be directly
connected to a car object but can be anchored and transformed in several smaller
steps. Another benefit is that an object linkage structure maintains an explicit rep-
resentation of all the levels of abstraction used to represent an object.

Related Work

In this section, we compare two alternative approaches to anchoring symbols which
use techniques having some similarities to the DyKnow anchoring approach.

The first related approach is Fritsch et al. (2003) where they propose a method
for anchoring symbols denoting composite objects through anchoring the symbols
of their corresponding component objects. They extend the framework presented
by Coradeschi and Saffiotti (2003) with the concept of a composite anchor which
is an anchor without a direct perceptual counterpart. Instead the composite an-
chor computes its own perceptual signature from the perceptual signatures of its
component objects. The benefit is that each sensor can anchor its sensor data to
symbols which can be used to build composite objects fusing information from
several sensors. The same functionality can be provided by DyKnow since objects
do not have to have direct perceptual counterparts, but can be computed from other
objects which may or may not acquire their input directly from sensors.

This particular functionality is important to emphasize since in complex hybrid
robotic architectures, different components and functionalities in the architecture
require access to representations of dynamic objects in the external environment
at different levels of abstraction and with different guaranteed upper bounds on
latencies in data. By modeling dynamic objects as structured objects with different
types of features, any functionality in the architecture can access an object at the
proper level of abstraction and acquire data from the object in a timely manner.

A second related approach is that of Bonarini, Matteucci, and Restelli (2001),
where they use concepts with properties to model objects. They introduce a model
which is the set of all concepts linked by relationships. The relationships can repre-
sent constraints that must be satisfied, functions which generate property values for
a concept from property values of another concept, or structural constraints which
can be used to guide anchoring (such as the fact that two concepts are a total and
exclusive specialization of another concept).

In DyKnow such functions are called computational units and the constraints
used are partitioned into several types depending on their function. Although we
do not have direct support for structural constraints, we can use existing DyKnow
functionality to represent facts such that a moving object is either an off-road object
or an on-road object but not both.

Another difference between the approaches is that Bonarini et al. compute the
degree of matching for each concept in order to handle uncertain and incomplete
information. Similarity measurements between objects are an essential function-
ality for anchoring objects to sensor data and comparing them to each other. One
possibility could be to use a general theory for measuring similarity based on the

167

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

J

Chronicle
Recognition

-

-
Qualitative spatial relations L

Qualitative Spatial
Reasoning

Car objects

- \ Y
Geographic] |
€ p(Road objects . M Temporal Logic
Information Anchoring)
Progression
System) Formula events |

\ J .

Vision objects

P

(N
Color camera
Image Processing
Thermal camera
- 000

Camera state
S N Legend

Helicopter State | Helicopter state Camera State ‘:| Sensor
Estimation Estimation

o N ‘ Process
IMU GPS ——> Data flow

Figure 8.6: An overview of how the incremental processing for the traffic monitor-
ing application is organized.

use of rough set techniques (Doherty and Szatas, 2004; Doherty, Lukaszewicz, and
Szatas, 2003). To integrate this functionality into DyKnow is part of our ongoing
activity in this area.

8.7 Implementing the Traffic Monitoring Scenario

This section provides a use case of how DyKnow can be used to implement a com-
plete traffic monitoring application from image processing, through anchoring, to
chronicle recognition of traffic situations. The inputs are images taken by the color
and thermal cameras on our UAV which are fused and geolocated to a single world
position. This stream of positions is then correlated with a geographical infor-
mation system (GIS) in order to know where in a road system an object is located.
Based on this information, high level behaviors such as turning in intersections and
overtaking are recognized in real time as they develop using a chronicle recognition
system. All of these functionalities are integrated using DyKnow.

An overview of all the components and the incremental processing required
for the traffic surveillance task is given in Figure 8.6. All the components except
the helicopter state estimation and camera state estimation are presented either in
this section or in a previous chapter. Details about helicopter and camera state
estimation can be found in Conte (2007).

168

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

8.7.1 Image Processing

The task of image processing in this work is to find and track cars in video se-
quences and calculate their world coordinates. First, an object tracker is used to
find pixel coordinates of the car of interest based on color and thermal input im-
ages. Second, the geographical location of the object is calculated and expressed
as world coordinates.

The object tracker can be initialized automatically or manually. The automatic
mode chooses the warmest object on a road segment within the thermal camera
view and within a certain distance from the UAV. The process of calculating the
distance to a tracked object is explained below. The area around the initial point
is checked for homogeneity in thermal and color images. The object is used to
initialize the tracker if its area is consistent with the size of a car signature. This
method of initialization works with satisfactory results for distances up to around
50 meters from the tracked object. If the tracker is initialized incorrectly the user
can choose the object of interest manually by clicking on a frame in the color or
thermal video.

The corresponding pixel position, for color and thermal images, is calculated
based on the parameters of the cameras, the UAV’s position and attitude, and the
model of the ground elevation. After initialization tracking of an object is per-
formed independently in the color and thermal video streams. Tracking in the
thermal image is achieved by finding the extreme value (warmest or coldest spot)
within a small (5 percent of the image size) window around the previous result.

Object tracking in color video sequences is also performed within such a small
window and is done by finding the center of mass of a color blob in the hue, sat-
uration, and intensity (HSI) color space. The thresholding parameters are updated
to compensate for illumination changes. Tracking in both images is performed at
full frame rate (25 Hz) which allows for compensating for moderate illumination
changes and moderate speeds of relative motion between the UAV and the tracked
object. The problem of automatic reinitialization in case of loss of tracking, as
well as more sophisticated interplay between both trackers, is not addressed in this
work. The result from the thermal image tracking is preferred if the trackers do not
agree on the tracking solution.

In order to find the distance to the tracked object as well as corresponding re-
gions in both images, the cameras have been calibrated to find their intrinsic and
extrinsic parameters. The color camera has been calibrated using the Matlab Cam-
era Calibration Toolkit (Bouguet, 2000). The thermal camera has been calibrated
using a custom calibration pattern and a different calibration method (Wengert et
al., 2006) because it was infeasible to obtain sharp images of the standard chess-
board calibration pattern. The extrinsic parameters of the cameras were found by
minimizing the error between calculated corresponding pixel positions for several
video sequences.

Finding pixel correspondences between the two cameras can not be achieved
by feature matching commonly used in stereovision algorithms since objects gen-
erally appear differently in color and infrared images. Because of this fact, the
distance to an object whose projection lies in a given pixel must be determined.

169

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Figure 8.7: A. Two frames from a video sequence with the UAV hovering close to
a road segment observing two cars performing an overtaking maneuver. B. Three
frames from a video sequence with the UAV following a driving car passing road
crossings. The top row contains color images and the bottom row contains corre-
sponding thermal images.

Given the camera parameters, helicopter pose, and the ground elevation model the
distance to an object can be calculated. It is the distance from the camera center to
the intersection between the ground model and the ray going through the pixel be-
longing to the object of interest. For the environment in which the flight tests were
performed the error introduced by a flat world assumption (i.e. ground elevation
model simplified to a plane) is negligible. Finally, calculating pixel correspon-
dences between the two cameras can be achieved by performing pixel geolocali-
sation using intrinsic and extrinsic parameters of one of the cameras followed by
applying an inverse procedure (i.e. projection of geographical location) using the
other camera parameters.

Using the described object tracker, several data series of world coordinates
of tracked cars were generated. Two kinds of video sequences were used as data
sources. In the first kind (Figure 8.7A) the UAV is stationary at an altitude between
50 and 60 meters and observes two cars as they drive on a nearby road. In the
other kind (Figure 8.7B) both the car and the UAV are moving. The ground car
drives several hundred meters on the road system passing through two crossings
and the UAV follows the car at an altitude between 25 and 50 meters. For sequences
containing two cars, the tracker was executed twice to track each car independently.

A precise measure of the error of the computed world location of the tracked
object is not known because the true location of the cars was not registered during
the flight tests. The accuracy of the computation is influenced by several factors,
such as the error in the UAV position and the springs in the camera platform sus-
pension, but the tracker in general delivers world coordinates with enough accuracy
to determine which side of the road a car is driving on. Thus the maximum error
can be estimated to be below 5 meters for distances to the object of around 80
meters. For example results of car tracking see Figure 8.9 and Figure 8.13.

170

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

8.7.2 Anchoring

The anchoring component of the traffic monitoring application takes the stream of
potential cars from the image processing system and tries to determine which of
these objects actually are cars.

In the implemented approach, the image processing system produces vision
objects representing those entities (called blobs) found in an image that have visual
and thermal properties similar to a car. A vision object state contains an estimation
of the size of the blob (length and width), its position in absolute world coordinates
(pos), and a predicate stating whether this position is on the road system according
to the GIS or not (on_roadsystem). When a new vision object has been found it
is given a unique object identifier and it is tracked for as long as possible by the
image processing system. Each time the tracker finds the same object in an image,
a new vision object state with the same object identifier is pushed on a stream
called vision_objects.

To anchor these vision objects to car objects a link process is defined by the
following link specification:

strmgen cars = link(vision_objects,
ComputeCarObiject,
< Ojo, 1000] ON-_roadsystem(from),
1,
0 <10,30000] 2(0,5000] on_roadsystem(from)

)

The specified link process takes the output stream from the image processing, vi-
sion_objects, and provides a stream generator called cars containing the car objects
computed from these vision objects. The computational unit which transforms a vi-
sion object into a car object is called ComputeCarObject. The establish constraint,
< Opo,1000 ON-_roadsystem(from), states that a vision object must be observed on
the road system for at least 1000 milliseconds before assuming that it is a car. In
the current implementation we do not reacquire anchors so the reestablish condi-
tion is L. The maintain condition, O <o 30000; Ofo,5000 ON-roadsystem(from), states
that it is always the case that within 30 seconds an interval of at least 5 seconds
starts where the vision object is observed on the road all the time.

8.7.3 Integrating Chronicle Recognition

In order to use chronicle recognition to recognize event occurrences the event must
be expressed in the chronicle formalism and a suitable stream of primitive events
must be generated. Since a primitive event is defined as a change in the value of
an attribute, it is enough to subscribe to the appropriate fluent stream and create a
primitive event each time the value changes. The only requirement on the fluent
stream is that the samples arrive ordered by valid time. The reason is that all the
information for a specific time-point has to be available before the chronicle can be
updated with this new information. This means that whenever a new sample arrives
with the valid time ¢ the chronicle is propagated up to the time-point 7 — 1 and then

171

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

the new information is added. If a sample arrives out of order it will be ignored.
The integration is done in two steps, integration of chronicles and integration of
events.

The first step is when a chronicle is registered for recognition. To integrate a
new chronicle DyKnow goes through each of the attributes in the chronicle and
subscribes to the corresponding fluent stream. Each attribute is considered a la-
bel for a fluent stream generator producing discrete values. To make sure that
the chronicle recognition engine gets all the intended changes in the fluent stream
ordered by valid time a policy with a monotone order constraint is used when sub-
scribing.

The second step is when a sample arrives to the chronicle recognition engine.
To integrate a sample it must be transformed into an event, i.e. a change in an
attribute. To do this, the recognition engine keeps track of the last value for each of
the attributes and creates an event when the attribute changes values. The first value
is a special case where the value changes from an unknown value to the first value.
Since it is assumed that the events arrive in order the recognition engine updates its
internal clock to the time-point before the valid time of each new sample. In this
manner the chronicle engine can prune all partial chronicles which can no longer
be recognized.

8.7.4 Intersection Monitoring

The first part of the traffic monitoring application is to monitor activities in an
intersection. In this case the UAV stays close to an intersection and monitors the
cars going through. Each car should be tracked and it should be recorded how it
travelled in the intersection to create a stream of observations such as “car ¢ came
from road a to crossing x and turned left onto road b”. The cars are tracked by the
vision system on the UAV and the information about the road system comes from
a GIS. This section describes how this information is fused and how it is used to
recognize the behavior of the cars in real-time as the situation develops.

The road system is represented in the GIS as a number of areas which cover
the road system. Each area is classified as either being a crossing or a road (in
Figure 8.8 and Figure 8.9 the green areas are the crossings and the yellow are
roads). There are different areas representing the different lanes of a road. To
represent a road connecting two crossings an abstraction called a /ink is introduced.
All road areas between two crossings are part of the link. The separation of areas
and links is made in order to be able to reason both about the geometry and other
low level properties of the roads and higher level road network properties. The
geometry is for example needed in order to simulate cars driving on roads and
to find the road segment given a position. The network structure is for example
needed when reasoning about possible routes to a destination.

To represent the possible turns that can be made from a link a class of objects
called Link is used. All Link objects have the four attributes, left, right, straight,
and uturn. Since it is possible to turn for example left in many different ways the
value of the attribute is a sets of triples (link1, crossing, link2) where each triple

172

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

represents that a car going from link1 through crossing to link2 has made a left
turn. The link object states are made available by a stream generator called links.

These relations are somewhat clumsily represented by attributes in a link ob-
ject. Each relation is a sequence of sequences of strings, which represents a set
of tuples where each tuple contains the identifiers of the last two objects in the
triple described above. The first object in the triple is always the link identifier.
For example, a link 128 with the attribute left with the value ({ x1, 112), { x5, 184))
represents the triples ((128, x1, 112), (128, x5, 184)).

The information about the cars observed by the UAV will be provided by the
link process doing the anchoring. Each car object produced by this link process
has the attributes pos, link, crossing, and drive_along_road. The attribute pos is the
position from the vision object linked to the car object. The attribute link is the
identifier of the link the car is on according to the GIS. If the position is not on a
link then the value is no_11ink. The attribute crossing is similar to the link attribute
but has a value if the area is a crossing, otherwise the value is no_crossing. This
means that the car is not on the road system if the link attribute is no_1ink and
the crossing attribute is no_crossing at the same time. The drive_along_road
attribute will be explained in the next section.

The information about the world is thus provided as two object state streams,
one containing information about links and one about cars. In order to detect the
intersection behavior of the cars these streams must be further analyzed. In this
application chronicle recognition is used to describe and recognize behaviors. The
chronicle for detecting left turns is shown below.

chronicle turn_left_in_crossing[7c,?l1,?x,?12]

{
occurs(1,1,cars.link[?c]:(?11,no_11ink),(t2,t3))
occurs(1,1,cars.crossing[’c]:(no_crossing,?x),(t2,t3))

event(cars.crossing[’c]:(?x,no_crossing),t4)
event(cars.link[?c]:(no_11ink,?2),t5)

noevent(cars.link[?c]:(?l], no_1ink), (t3+1, t5-1))
noevent(cars.crossing[’c]:(no_crossing, 2x), (t3+1, t5-1))
noevent(cars.crossing[?c]:(?x, no_crossing), (12, t4-1))
noevent(cars.link[?c]:(no_1ink, ?12), (12, t4-1))

event(links.left[?11,?x,?12]:(?,true),t1)
noevent(links.left[711, ?x, ?12]:(?, true), (t1+1, t5-1))
noevent(links.left[711, ?x, ?[2]:(true, false), (t1+1, t5-1))

t1 <t2

t3-t2 in [-1000, 1000]
t4-t3 in [0, 10000]
t5-t4 in [-1000, 1000]

173

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

The chronicle states that a car makes a left turn if it is on link ?//, enters crossing
?x, leaves on link ?/2, and the triple { ?/1, ?x, ?I2) constitutes a left turn according
to the GIS. The label cars.link[car1] refers to the link attribute of a Car object with
the object identifier car1 found in the cars stream. The temporal constraints at the
end assert that the car should be observed to be in the crossing within 1 second
before or after it has been observed not to be on any link and that the turn should
not take more than 10 seconds to make. The chronicle also contains a number of
noevent statements to make sure that no changes occur between the entering of the
crossing and the leaving of the crossing.

Since the link attribute is quite coarse it is possible to manage the uncertainty in
the position of the car which causes it to be on the correct link but not in the correct
lane. It is also possible to define a chronicle to detect turns which are made from
the correct lane, but this will often fail due to noise. For example, see Figure 8.9,
where the trajectory of a tracked car is shown as it drives through an intersection.

The chronicle will fail if no observation is made of the car in the crossing,
which can happen when the speed of the car is too high or the time between obser-
vations is too long. To predict that a car actually turned in the crossing even though
it was only observed on a link before the crossing and on a link after the crossing
the following chronicle is used:

chronicle turn_left_in_crossing_predicted|[?c,?l1,?x,?12]
{
event(cars.link[?c]:(?, ?11), t2)
event(cars.link[?c]:(?l1, ?12), t3)
noevent(cars.link[?c]:(?l1, ?), (12+1, t3-1))

event(links.left[211, ?x, ?12]:(?, true), t1)
noevent(links.left[?/1, ?x, ?12]:

(?, true), (t1+1, t3-1))
noevent(links.left[?/1, ?x, ?12]:

(true, false), (t1+1, t3-1))

1 <12
2 < t3

}

This chronicle is much simpler than the one before since it only checks that the
car passed from one link to another and that according to the GIS this transition
indicates that the car must have passed a crossing and actually made a left turn.
This is an example of where qualitative information about the road system can be
used to deduce that a car must have passed through the crossing even though this
was never observed.

There is still one issue which is illustrated by Figure 8.8. Due to noise in the
position of the tracked car, it looks like the car enters the crossing, leaves the cross-
ing, and then comes back. These types of oscillating attributes are very common
in the transition between two values of an attribute.

174

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Figure 8.8: An example where noise makes it look like a car enters a crossing
twice. Each red dot is an observed car position.

Figure 8.9: An example intersection situation recorded during a test flight.

A solution is to introduce a filter which only changes the value of an attribute
if it has been stable for a fixed amount of time, in our case 500 milliseconds. Since
a car is not expected to change links very often (a link is usually several hundred
meters long even though shorter links may exist in urban areas) it is reasonable to
say that the value of the link attribute must be stable for half a second. One possible
issue is when a car is not in a crossing for more than 500 milliseconds, but this case
will be detected by the predicted turn chronicle so the turn will be detected in any
case.

Several other solutions could be thought of, for example to use fuzzy logic
to represent the uncertainty in the value of an attribute. However, since we are
interested in building an integrated traffic monitoring application each particular
solution is not that important. What is important is to get a working application.

Using the setup and the chronicles described above it is possible to detect all the
turns made by one or more cars driving in an urban area using either simulated cars
or cars tracked by our UAV platform during test flights. One particular trajectory
from a test flight where two left turns are recognized is shown in Figure 8.9.

8.7.5 Road Segment Monitoring

The second monitoring task involves the UAV observing a road segment and col-
lecting information about the behavior of the cars passing by. Here, the focus is
on recognizing overtakes. However, this is just an example, other behaviors could
be detected in the same way. To recognize overtakes a stream of qualitative spatial
relations between pairs of cars, such as behind and beside, is computed and used
as input to the chronicle recognition system.

175

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

cars car_pairs

partition

Figure 8.10: The synchronization of car pairs.

This might sound like a very simple task, but does in fact require a number of
steps. First, the set of cars that are actually being tracked must be extracted from
the stream of car observations and then the set of pairs of active cars can be com-
puted from those. Second, for each pair of car identifiers a stream of synchronized
pairs of car object states has to be created. Since they are synchronized both car
states in the pair are valid at the same time-point, which is required to compute the
relation between two cars. Third, from this stream of car pairs the qualitative spa-
tial relations must be computed. Finally, this stream of car relations can be used to
detect overtakes and other driving patterns using the chronicle recognition engine.
All these functions are implemented as computational units.

To extract the active cars a computational unit is created which keeps track
of all car identifiers which have been updated the last minute. This means that
if no observation of a car has been made in more than 60 seconds it will be re-
moved from the set of active cars. For example, assuming the stream of car object
states looks like ({t{,{car1,...)), ..., (tp,{car2,...)), ..., {t3,{car3,...)), ...) and
t3 — t; < 60 seconds, then the stream of sets of active cars would be ({#;, {car1}),
(tr, {carl1,car2}), (t;, {carl, car2, car3})).

Since the qualitative relations that are computed are symmetric and irreflex-
ive the computational unit that extracts pairs of car identifiers only computes one
pair for each combination of distinct car identifiers. To continue the example,
the stream of sets of pairs would be ({1, {}), {2, {{car1, car2)}), (t;,{(carl, car2),
(cari, car3), (car2,car3)})). The stream of sets of pairs is called CarPairs and is
updated when a car is added or removed from the set of active car identifiers, called
Cars. This stream of car identifier pairs is then used as input to a state extraction
computational unit which for each pair synchronizes the corresponding streams of
car object states as shown in Figure 8.10.

Finally the car pair object states are used as input in the car relation computa-
tional unit which computes the qualitative spatial relations between the two cars.
Since the spatial relation between the cars should be relative to the road network

176

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

i
in frqm of

behind

Figure 8.11: The qualitative spatial relations used.

|cars| Extract Car |Cars_| Extract Car |CarPairs_|Synchronize| car_pairs |Compute Car|car_relations
Anchoring ——>| . R t . =P 2 . —>
Domain Relations Car Pairs Relations

|

Figure 8.12: The DyKnow setup used in the overtake monitoring application.

we can not compare the driving directions of the two cars directly. Instead we com-
pare the forward direction of car1 with the direction from car2 to car1, as shown in
Figure 8.11, to determine the spatial relation between car1 and car2. In the exam-
ple car1 is in front of car2. The forward direction of the car is assumed to be either
along the current road segment or against it. To compute which, the current direc-
tion of the car as estimated by the derivative of the position of the car, is compared
to the forward direction of the road segment.

The chronicle that is used to detect overtakes is shown below. It detects that
carl is first behind car2 and then in front of car2. A requirement that they are
beside each other could be added to strengthen the definition.

chronicle overtake[?carl, ?car2]

{
event(car_relations.behind[?carl, ?car2].(?, true), t1)
event(car_relations.behind[?carl, ?car2]:(true, false), t2)
event(car_relations.in_front[?carl, ?car2]:(false, true), t3)
noevent(car_relations.behind[?carl, ?car2]:(true, false), (11,t2 — 1))
noevent(car_relations.behind[?carl, ?car2]:(false, true), (12 + 1,t3 — 1))
noevent(car_relations.in_front[?carl, ?car2]:(false, true), (11,13 — 1))
t1 <13
t1 <t2

}

The complete setup is shown in Figure 8.12. The recognition has been tested on
both simulated cars driving in a road system and on real data captured during flight
tests. One example of the latter is shown in Figure 8.13.

8.7.6 Experimental Results

The traffic monitoring application has been tested both in simulation and on images
collected during flight tests, an example of which was shown in Figure 8.13. The

177

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

Figure 8.13: An example overtake situation recorded during a test flight.

Speed |Sample 0m (2m |(3m |[4m |(Sm |7m

period |error |error |error |error |error |error
15m/s | 200ms | 100% | 70% | 60% | 50% | 40% | 20%
20m/s | 200ms | 100% | 60% | 70% | 50% | 50% | 20%
25m/s | 200ms | 100% | 100% | 50% | 40% | 10% | 0%
15m/s | 100 ms | 100% | 60% | 90% | 60% | 90% | 0%
20m/s | 100 ms | 100% | 90% | 90% | 90% | 80% | 20%
25m/s | 100ms | 100% | 90% | 80% | 70% | 80% | 0%

Table 8.2: The results when varying the car speed and the sample period.

only difference between the two cases is who creates the world objects.

The robustness to noise in the position estimation was tested in simulation by
adding random errors to the true position of the cars. The error has a uniform
distribution with a known maximum value e and is added independently to the
x and y coordinates, i.e. the observed position is within an e X e meter square
centered on the true position. Two variables were varied, the speed of the car
and the sample period of the position. For each combination 10 simulations were
run where a car overtook another. If the overtake was recognized the run was
considered successful. The results are shown in Table 8.2.

The conclusions from these experiments are that the speed of the car is not sig-
nificant but the sample period is. The more noise in the position the more samples
are needed in order to detect the overtake. Since the estimated error from the image
processing is at most 4-5 meters the system should reliably detect overtakes when
using a 100 millisecond sample period.

8.7.7 Related Work

There is a great amount of related work which is relevant for each of the compo-
nents, but in the spirit of the thesis the focus will be on integrated systems. There
are a number of systems for monitoring traffic by interpreting video sequences, for
example Ghanem et al. (2004), Nagel, Gerber, and Schreiber (2002), Medioni et al.
(2001), Fernyhough, Cohn, and Hogg (1998), Chaudron et al. (1997), and Huang
et al. (1994). Of these, almost all operate on sequences collected by static surveil-
lance cameras. The exception is Medioni et al. (2001) which analyses sequences
collected by a Predator UAV. Of these none combine the input from both color and
thermal images.

178

CHAPTER 8. INTEGRATING OBJECT AND CHRONICLE RECOGNITION

A second major difference is how the scenarios are described and recognized.
The approaches used include fuzzy metric-temporal logic (Nagel, Gerber, and
Schreiber, 2002), state transition networks (Fernyhough, Cohn, and Hogg, 1998),
belief networks (Huang et al., 1994), and Petri-nets (Chaudron et al., 1997; Ghanem
et al., 2004), none of which have the same expressivity when it comes to temporal
constraints as the chronicle recognition approach we use.

A third difference is the ad-hoc nature of how the components of the system and
the data flow are connected. In our solution the basis is a declarative description of
the properties of the different data streams which is then implemented by DyKnow.
This makes it very easy to change the application to e.g. add new features or to
change the parameters. The declarative specification could also be used to reason
about the system itself and even modify it at run-time.

8.8 Summary

This chapter has provided a detailed account of how to recognize objects and
chronicles in an implemented traffic monitoring application. The system imple-
mented takes as input sequences of color and thermal images used to construct
and maintain qualitative object structures and recognize the traffic behavior of the
tracked cars in real time. The system is tested both in simulation and on data col-
lected during test flights.

We believe that this type of system where streams of data are generated at
many levels of abstraction using both top-down and bottom-up reasoning handles
many of the issues related to closing the sense reasoning gap. A reason is that the
information derived at each level is available for inspection and use. This means
that the subsystems have access to the appropriate abstraction while it is being
continually updated with new information and used to derived even more abstract
structures. High level information, such as the type of car, can then be used to
constrain and refine the processing of lower level information. The result is a
very powerful and flexible system capable of achieving and maintaining high level
situation awareness.

179

Chapter 9

DyKnow Federations

9.1 Introduction

In many robotic applications, it is not enough to only have one agent executing a
mission. In a UAV application for example, there is sometimes no single UAV that
has the capability or the information to perform all the required tasks. In many
cases, it is also more efficient to use multiple UAVs to complete a mission. There-
fore it would be beneficial for groups of UAVs to accomplish complex missions in
a cooperative manner. Since the UAVs have their own limited fields of view and
spheres of influence they must share and merge information among themselves to
cooperatively complete missions. The information could include plans, observa-
tions, and partial world models.

Conventional approaches to merging and fusing information have focused on
collecting information from distributed sources and processing them at a central
location. Our goal is to allow each platform to be autonomous and to do as much
processing as possible locally even when they have agreed that they will need to
cooperate to solve a particular task. This will make the processing more decentral-
ized and remove the dependence on a central node with global information. This
goal can be divided into four separate subproblems:

1. How to find and share information among nodes,
2. how to merge information from multiple sources,
3. how to jointly decide that cooperation is necessary, and

4. how to divide the information processing among the multiple nodes given a
joint goal.

In Chapter 10 we will show how DyKnow can be used to implement most of
the JDL Data Fusion Model, which is the de facto standard functional fusion model
(Llinas et al., 2004; Steinberg and Bowman, 2001; White, 1988). This shows that

180

CHAPTER 9. DYKNOW FEDERATIONS

DyKnow has the necessary functionality to support fusing and merging informa-
tion. Since the main topic of this thesis is knowledge processing the focus of this
chapter is to show how DyKnow can be extended to support finding and sharing in-
formation among multiple UAVs. The problems of how to reach a common agree-
ment about joint goals and how to cooperate to achieve these goals are interesting
issues but outside the scope of this thesis.

The rest of the chapter is structured as follows. Section 9.2 describes two
motivating scenarios and some specific use cases where sharing and merging in-
formation is required. Section 9.3 describes the distributing infrastructure where
DyKnow instances from participating platforms are connected in a DyKnow fed-
eration. The federation is created and controlled using a FIPA (Foundation for
Intelligent Physical Agents) compliant multi-agent framework. Section 9.4 de-
scribes an implementation of a multi-UAV proximity monitoring functionality to
show how the DyKnow federation can be used. Section 9.5 concludes the chapter
with a summary.

9.2 Motivating Scenarios

Before describing the details of the DyKnow federation framework, two motivating
scenarios are presented. The first scenario is a proximity monitoring scenario and
the second is a multiple platform traffic monitoring scenario.

9.2.1 Proximity Monitoring

For a UAV to operate safely there are many conditions that need to be monitored.
For example, it must have enough fuel and battery power to complete its mission
and the airspace around it must be free from obstacles. Since our UAV is currently
not equipped with a physical proximity sensor it is necessary to have a virtual
proximity sensor which monitors the distance between a UAV and all other UAVs
in the vicinity. This is a good example where UAVs need to share information in
order to monitor a safety constraint.

To start the proximity monitoring, a UAV called uav1, is given the goal to mon-
itor that no pair of UAVs are getting too close to each other. To achieve this goal
one possibility is to collect position information from all UAVs to a central moni-
toring agent. Another approach is to delegate to each UAV the goal of monitoring
its own proximity to other UAVs. In this case, each UAV will monitor that it does
not get too close to any other UAV. For this the UAV needs periodic information
about the current position of all other UAVs in the area. To collect this information
uav1 will delegate the goal of broadcasting the current position with a certain pe-
riod to each of the other UAVs. To achieve the goal of periodically broadcasting its
current position a UAV sets up a DyKnow federation with the other UAVs where
the position is pushed to them with the desired sample period. The position of a
UAV is estimated by merging local information from sensors such as GPS (Global
Positioning System) and IMU (Inertial Measurement Unit) using fusion techniques
such as Kalman filters (Kalman, 1960).

181

CHAPTER 9. DYKNOW FEDERATIONS

Using the DyKnow federation framework each UAV will periodically get the
current position of all the other UAVs. This information is then used to construct a
partial temporal logical model of the environment. This incrementally constructed
model is used by a temporal logic progression engine to evaluate a temporal logical
formula which captures the safety constraint, as described in Chapter 7. If two
UAVs come too close to each other a proximity violation alarm is raised and the
UAVs have to react accordingly to avoid a potential collision.

9.2.2 Traffic Monitoring with Multiple UAVs

Assume that two or more UAVs are given the task of monitoring an urban area for
traffic violations. Each UAV is equipped with the appropriate sensors and reason-
ing mechanisms for detecting traffic violations. This means that each UAV could
monitor and detect traffic violations by itself, if it sees the whole situation. This
could for example be done as described in Chapter 8.

To increase the size of the monitored area or to monitor several different po-
tential traffic violations at the same time, several UAVs can be used. Even a simple
approach to cooperation like dividing the area between the UAVs introduces issues
related to sharing and merging information. For example, different characteristics
of the UAVs could be used to decide how to divide the area, such as their speed,
flying altitude, sensors, and available fuel. If one UAV is responsible for dividing
the area it will need to collect this information from all platforms.

Another issue is the possibility of a traffic violation beginning in one sub-area
and ending in another. In this situation, neither of the UAVs will see the whole
event. To handle this situation the UAVs need to cooperate and share information
in such a way that they can detect the traffic violation together. One approach is
to let the UAV that detected the beginning of the potential violation request the
appropriate information from the UAV responsible for the area where the vehicles
are headed. What is appropriate will depend on how traffic violations are detected,
one approach could be to share the position information about the tracked vehicles.
This information would have to be seen as a stream since it is not a single piece
of information but rather an evolving description of the development of a complex
situation. Merging such a stream with local information would allow the first UAV
to detect the traffic violation even if it takes place in two different areas.

This traffic monitoring scenario is an instance of a class of scenarios where
multiple platforms must cooperate to complete complex missions. To succeed they
need to collect, share, and merge information. A solution which handles the issues
introduced in this scenario will also provide a solution for many other interest-
ing scenarios. For example, instead of having homogeneous platforms covering
different parts of an area there could be heterogeneous platforms with comple-
menting sensors each providing different types of information. Another example is
to increase the accuracy in the monitoring by having several homogeneous or het-
erogeneous platforms covering the same area. It is also possible to replace traffic
monitoring with scanning an area for injured people to do a rescue mission or to
look for troops and military equipment to do a military surveillance mission.

182

CHAPTER 9. DYKNOW FEDERATIONS

9.2.3 Design Requirements

When designing a framework for sharing information among multiple nodes there
are several important issues that need to be considered.

First, how to refer to a piece of information when communicating with other
nodes, i.e. how to handle naming issues. This is the problem of how to agree on a
common ontology among a group of nodes. The ontology is required for a node to
be able to refer to a particular piece of information when talking to other nodes.

Second, how to discover information among a group of nodes. When a node
needs a specific piece of information that it does not have, then it needs to find
another node which is able to deliver it. Such a mechanism should be able both to
find a node who either has or can produce a particular piece of information and to
announce to interested nodes when a particular piece of information is available.

Third, how to negotiate with other nodes to make them generate desired infor-
mation. In the simplest form this mechanism would request the production of a
piece of information from a node. In the general case a node could refuse to per-
form the request due to limited resources or conflicting commitments. There might
also be several nodes that could produce the same information but with different
quality and costs. In this case a node would have to reason about the different
options and negotiate with the nodes to find a node who is willing to produce the
information with good enough quality while limiting the cost.

Fourth, how to deliver information from one node to one or more other nodes
interested in the information. The mechanism should allow for a robust and ef-
ficient transfer of information between nodes while taking the properties of the
communication medium into account, such as the risk of losing or corrupting mes-
sages, low bandwidth, or a single shared channel.

To make these requirements more explicit three different use cases are pre-
sented. Together they cover most of the functionality required for the proximity
monitoring and multi-platform traffic monitoring scenarios. The DyKnow feder-
ation framework provides an integrated framework with basic support for imple-
menting these use cases.

Explicit Ask and Tell to Divide the Monitoring Area

To divide an area to be monitored among a group of UAVs they need to negotiate.
One approach would be to appoint one of them the leader. This leader then has
to find out which UAVs are available and collect information about them. The
information could for example be available sensors and the maximum speed and
flying altitude. Using this information the leader can partition the area among the
UAVs and inform them about their responsibilities.

This use case gives an example where a node needs to find which other nodes
are available, ask for specific pieces of information from each of the nodes, com-
pute the result, and then inform the other UAVs about the result.

183

CHAPTER 9. DYKNOW FEDERATIONS

Continuous Information Streaming to Detect Traffic Violations

When monitoring a traffic violation occurring in two adjacent areas covered by
different UAVs there will be an interval where none of the UAVs has a complete
picture of the situation. This means that they have to cooperate with each other in
order to observe the whole development.

A concrete use case is when a UAV has detected the beginning of a potential
traffic violation involving two cars and one of the cars leaves the view field of UAV
A, entering the view field of UAV B. Now, UAV A has to continuously get relevant
updates from UAV B about the car it can no longer see.

The information provided by UAV B could be on many different abstraction
levels. A high abstraction level in this case could be to send a stream of car states
with the best current estimation of the position of the car. UAV A can then merge
the information received from UAV B with the information gathered by its own
sensors in order to monitor the potential traffic violation. It is important to notice
that this is an ongoing activity where each new car state should be transmitted to
UAV A to be merged with each car state it produces locally.

Another example is to merge information on a lower level. Instead of letting
UAV B produce car states it could share more primitive information. The lowest
possible level would be to send the raw sensor data, such as images. This will in
most cases not be appropriate since communication bandwidth is limited.

Note that in this example, both UAVs were assumed to have identical abilities.
In the general case, however, heterogeneous processing capabilities may affect the
abstraction level of data being shared.

To find an appropriate abstraction level for the communication many factors
must be taken into account. The most important ones are the processing capability
of the involved platforms, the available bandwidth, and the current commitments of
the involved platforms. In general we believe that the higher the abstraction level
the less information needs to be shared and the easier it is to merge it with existing
information.

Merging Information to Get a Global Picture

A slightly different use case is if an operator would like to have all the information
about all the tracked vehicles in an area. In this use case a number of UAVs are
looking for and tracking vehicles. Each UAV creates its own local identifiers for
the vehicles it has found. When a UAV detects a vehicle it has not seen before,
it should be reported to the operator. As long as the UAV is tracking the car the
operator should receive continuous updates about the estimated car state.

One question is now whether the vehicle found by the UAV is the same as one
of the vehicles the operator already has information about. To merge the infor-
mation from all the available nodes it is therefore necessary to reason about the
identities of the tracked vehicles. Which are the same? If two identifiers refer to
the same vehicle then the information related to these identifiers should be merged.

This use case can be made more interesting by adding and removing nodes.
Each time a new node is added then any vehicle which is tracked by that node

184

CHAPTER 9. DYKNOW FEDERATIONS

should be reported back to the operator. If a node is removed then the operator
should be notified that the information from that UAV is no longer available.

9.3 Sharing Information using DyKnow

From the point of view of DyKnow, multiple physical platforms could be viewed as
sharing a single instance of DyKnow, since DyKnow is designed for a distributed
environment and does not differentiate between streams based on where they are
hosted or generated. However, much of the information processed by DyKnow will
be local to a single platform. It would therefore incur an overhead to communicate
with a single central DyKnow instance. With multiple DyKnow instances, one for
each platform, this overhead is avoided.

Each DyKnow instance requires a single specification with unique names for
sources, computational units, stream generators, and streams. In a distributed sys-
tem without global control it is non-trivial but doable to support unique names,
for example, by relying on a common naming schema or a common service for
creating new names. By having a DyKnow instance for each platform the cou-
pling between the nodes is looser and it becomes easier to add new nodes and to
implement the different nodes independently.

Another benefit with many DyKnow instances is that only relevant information
needs to be shared among the instances. This is appropriate since the internal
structures and representations used by one node should not necessarily be public
to all other nodes. Most of each local specification will be irrelevant to other nodes
and some should even be kept secret. By only sharing the relevant information, the
communication overhead is further reduced and the robustness is increased since
the system does not require reliable and stable communication all the time.

We will therefore extend DyKnow to allow different DyKnow instances to
be developed and used independently and then connected in a federation on de-
mand. When nodes are connected, parts of their local DyKnow instances are shared
among them.

9.3.1 DyKnow Federation Overview

To fulfill the requirements introduced in Section 9.2.3 we propose to connect nodes
having local DyKnow instances in a DyKnow federation, similar to the concept of
federated databases (Heimbigner and Mcleod, 1985; Sheth and Larson, 1990). The
federation is used to find other DyKnow instances which can provide a particular
piece of information and to ask queries about information available at other nodes.
To support efficient continuous streaming of information between nodes we pro-
pose to create direct communication channels on-demand between pairs of nodes.
These channels are set up through the federation framework but are then under the
control of the participating nodes. From the perspective of a local DyKnow in-
stance information from remote nodes is treated as if it were local. A high level
overview of a DyKnow federation is shown in Figure 9.1.

185

CHAPTER 9. DYKNOW FEDERATIONS

/ DyKnow Federation \

DyKnow
Instance

DyKnow
Instance

DyKnow
Instance

N /

Figure 9.1: A high level overview of a DyKnow federation.

The DyKnow federation framework uses an existing multi-agent framework (Do-
herty and Meyer, 2007), where each DyKnow instance becomes a service. A Dy-
Know federation is managed through speech act-based interactions between these
services.

9.3.2 The Multi-Agent Framework

To support cooperative goal achievement among a group of agents a delegation
framework has been developed (Doherty and Meyer, 2007). It provides a formal
approach to describing and reasoning about what it means for an agent to delegate
an objective, which can be either a goal or a plan, to another agent. The concept
of delegation allows for studying not only cooperation but also mixed-initiative
problem-solving and adjustable autonomy.

By delegating a partially specified objective the delegee is given the autonomy
to complete the specification itself. By making the objective more specific the au-
tonomy is limited. If the delegated objective is completely specified then the agent
has no autonomy when it comes to achieving the objective. By allowing agents and
human operators to partially specify an objective mixed-initiative problem-solving
is supported.

An agent is a reactive, proactive, and social entity with its own thread of con-
trol (Bellifemine, Caire, and Greenwood, 2007). Agents communicate with each
other using the standardized agent communication language FIPA ACL (FIPA,
2002), which is based on speech acts. An agent provides a set of services. A
service encapsulates a set of tasks that an agent can do in the form of speech acts
that the service supports. A physical platform, such as a UAV, often hosts many
different agents. Each agent is FIPA compliant and is implemented using the Java
agent development framework JADE (Bellifemine, Caire, and Greenwood, 2007).

186

CHAPTER 9. DYKNOW FEDERATIONS

Platform

Hl Service |

Agent

FIPA ACL

Agent level

Platform

@ic level

Figure 9.2: An overview of a platform in the delegation framework.

Each UAV platform has an agent layer consisting of a set of agents commu-
nicating using FIPA ACL and a layer with the platform specific functionalities
(Figure 9.2). The interface between the two layers is the Gateway Agent, which
provides a FIPA ACL interface to the platform specific level. In our UAV platform,
where the platform specific software is implemented using CORBA, this involves
invoking methods on different CORBA objects.

All communication between a platform and agents external to the platform goes
through a single agent called the Inferface Agent. The Interface Agent provides
a single entry point to the platform which makes it possible to keep track of all
communication, authenticate incoming messages, and perform access control to
the platform.

A service can either be public, protected, or private. A public service can be
used by any agent on any platform, while a protected service can be used directly
within a platform but only indirectly through the Interface Agent by an agent on
another platform. A private services can only be used by agents on the same plat-
form.

To find services in the agent framework a Directory Facilitator (DF) is used.
It is a database containing information about the available services such as what
agent provides the service. There is a local Directory Facilitator on each platform
which keeps track of the protected and private services of the platform and a global
Directory Facilitator for keeping track of the public services in the multi-agent
system.

9.3.3 DyKnow Federation Components

A platform taking part in a DyKnow federation should have three components: A
DyKnow federation service, an export proxy, and an import proxy. A DyKnow
federation service is a protected service which allows a local DyKnow instance to

187

CHAPTER 9. DYKNOW FEDERATIONS

/ Platform 1

DyKnow
federation
agent

Agent level (Gateway
agent

Platform

FIPA ACL

Set up streaming
using speech acts

DyKnow
federation

Platform 2

Agel
P

~

nt level

latform

specific level specific level
)\ /4
© £ Direct £ £
8.% Pylt(now 8.5 communication 8.% PV'é“OW 8_?
55 (EETIELS IS g_ Efficient streaming SIS nstance S g_
= j with low latency = /

Figure 9.3: An overview of the components of a DyKnow federation.

take part in a DyKnow federation. It is protected to make all external requests go
through the Interface Agent, which should be the single point of communication
with other agents. The export and import proxies are used to mediate streams
through direct communication between two DyKnow instances. Apart from these
DyKnow federation specific components, the federation framework also uses the
Interface and Gateway Agents from the agent framework. The Interface Agent is
used to communicate with other platforms and the Gateway Agent is used to access
the local DyKnow instance. Agents communicate using the FIPA ACL while two
DyKnow instances communicate directly through the export and import proxies
after setting up a stream through the DyKnow federation service (Figure 9.3).

To make a DyKnow instance available to other platforms it must be integrated
in the agent framework. This is done in three steps:

1. By implementing the DyKnow federation service in an agent,

2. by extending the Interface Agent to provide the DyKnow federation service
since the service is protected, and

3. by extending the Gateway Agent to allow the DyKnow federation service to
access the local DyKnow instance.

One important issue is how to refer to information among platforms. A Dy-
Know instance will contain a set of labeled stream generators. The easiest ap-
proach would be to use these labels directly. One problem with this approach is
that the agent level then must know what labels each of the other platforms have
in their local DyKnow instances. This is not a major issue if all platforms are built
by the same people, but in a more general setting this would not be easily done. A
more feasible approach is to agree on a set of labels with a certain meaning among
a group of agents called semantic labels. These semantic labels can then be trans-
lated by each agent to local DyKnow labels using whatever procedure necessary.

188

CHAPTER 9. DYKNOW FEDERATIONS

For example, a group of UAVs could agree that the semantic label heli-position is
used to refer to their own position. This is a first step towards introducing a com-
mon ontology of information among a group of agents. The benefits are that each
group of agents can use their own set of semantic labels, with a meaning they have
agreed upon, and that the labels in the local DyKnow instances are isolated from
each other.

The DyKnow Federation Service

The DyKnow federation service is responsible for supporting the finding and shar-
ing of information among local DyKnow instances. An agent which implements
the DyKnow federation service on a platform is called a DyKnow Federation
Agent. This agent is registered in the local Directory Facilitator to make this plat-
form available for federation. If an agent wishes to make a request to a DyKnow
Federation Agent on a particular platform, it sends this request to the Interface
Agent on that platform, which forwards the request to the DyKnow Federation
Agent. The DyKnow Federation Agent is then responsible for fulfilling the request
by using the Gateway Agent to access the local DyKnow instance.

Since we are working with agents which have their own agendas it is not guar-
anteed that they will accept all requests. However, unless there is a special reason
they will in general accept all requests that they have the capability to perform.

The following messages can be sent to a DyKnow federation service:

1. Request a create stream multicast from a semantic label, a sample period,
a maximum delay, a start time, an end time, and a set of receivers. This
request should create a fluent stream for the semantic label satisfying the
given sample, delay, and duration constraint. This fluent stream should then
be exported to all the receivers.

For example, UAV A could send a create stream multicast request for the
semantic label heli-position to UAV B with a sample period of 2 seconds and
UAVs C and D as receivers. If the request is accepted by UAV B, then it will
export a fluent stream with its helicopter position sampled every 2 seconds
to UAVs C and D.

2. Query the latest value, the value at a particular time-point, or all the values
between two time-points for the fluent stream associated with a semantic
label. The answer should be returned to the sender in an inform message.

For example, if a UAV would like to know the position of another UAV then
it could query the other UAV about the latest value of the stream associated
with the semantic label heli-position. If the query is accepted then the answer
will be looked up in the local DyKnow instance and returned in an inform
message.

Each request can be either local or global. 1If a local request is made to a
DyKnow federation service then only the local DyKnow instance on the platform
will be queried. If the request is global then the federation service will query all

189

CHAPTER 9. DYKNOW FEDERATIONS

other platforms as well. This is done by the DyKnow federation service asking
the Directory Facilitator about all agents providing the DyKnow federation service
and forwarding the request to each of them. It will then aggregate the result and
send it to the original requester.

The DyKnow Gateway

The DyKnow Gateway interface extends the Gateway Agent to allow the DyKnow
federation service to access the local DyKnow instance.

On the platform specific level there will be four CORBA servers, one for each
of the interfaces (DyKnow Gateway, Export Proxy, and Import Proxy) and one Dy-
Know location which makes the imported streams available to the local DyKnow
instance. The DyKnow Gateway will be called by the Gateway Agent, while the
import and export proxies are not called from the agent level.

The interface that an export proxy should implement is:

e create_streammulticast(s, f,t, p,d, u), where s is a semantic label,
f>t, p, and d are the from, to, sample period, and delay arguments used to
create a fluent stream policy, and u is the set of receiving platforms.

e create_stream_unicast(s, f,t, p,d,w), where s is a semantic label,
f>t, p, and d are the from, to, sample period, and delay arguments used to
create a fluent stream policy, and w is the receiving platform.

The method create_streammulticast(s, f,t, p,d, u) is used to start ex-
porting the stream associated with the semantic label s with the constraints from
f, to t, sample period p, and delay d to the platforms u. This method calls the
DyKnow Gateway interface method create_stream_unicast(s, f,t, p,d,w)
for each of the platforms w in u. The create_streammulticast method is
called by the Gateway Agent in response to a create-multicast FIPA ACL
message.

The create_stream_unicast(s, f,t, p,d,w) method does the following:

1. Translates the semantic label s to a local DyKnow label /;

2. creates a fluent stream policy p from the constraints from f, to z, sample
period p, and delay d;

3. uses the policy p and the label [to create a new fluent stream in the DyKnow
instance; and

4. exports the new fluent stream by invoking the start_exporting(l, s,w)
method in the local export proxy.

For example, for platform 1 to distribute heli-position to platform O with the
constraints sample every 1 second and max delay 1 second the call would be
create_stream_unicast (heli-position, 0, 0, 1, 1, 0), if the
local time-scale is seconds. Assume the local DyKnow instance on platform 1 has
a stream generator called heli_pos which can generate fluent streams of the position

190

CHAPTER 9. DYKNOW FEDERATIONS

of platform 1 and that the label for the exported fluent stream is export_heli_pos.
Then the policy for the created fluent stream is “sample every 1, max delay 1”.

Export Proxy

An export proxy is a component used by a platform to export one or more streams.
To export a stream an internal subscription is made by the proxy which then makes
the stream available to other platforms in an implementation specific way. It would
also be possible for the export proxy to reuse the DyKnow middleware to imple-
ment this functionality, but it might not be the best choice in all situations.

The interface that the export proxy should implement is:

e start_exporting(l,s,w), where [is a label, s is a semantic label, and w
is a receiver.

The start_exporting(l, s, w) method in the ExportProxy interface creates
a subscription to the fluent stream generator /. Each time a new sample v is pushed
on the new fluent stream the push(m, s,v) method is called on the ImportProxy
object on the receiving unit w, where m is the unit number of the sending platform.
The unit number of a platform is its unique identifier. For example, to continue the
example above each time a new sample is added to the export_heli_pos fluent stream
the push method on the import proxy of platform O is called with the arguments
platform 1, the semantic label heli-position, and the new sample.

Special care has to be taken when implementing the start_exporting call
since the other platform might no longer be available or it might be busy and not
accept the call directly. One approach is to make the export proxy multi-threaded
with one thread for each remote platform. In this way no other platforms will be
affected by a stop in the communication.

Import Proxy

An import proxy is a component used by a platform to import one or more streams.
Each imported stream will be provided as a source in the local DyKnow instance.
How the stream is imported is an implementation detail which must be coordinated
with the export proxy. Different pairs of proxies can use different methods to
communicate.

The interface that an import proxy should implement is:

e push(m, s, v), where m is the sender, s is the semantic label, and v the sam-
ple.

The push(m, s,v) method in the ImportProxy interface will translate the se-
mantic label s to a label /, and add the sample v to the local stream generator
associated with the label /. If this is the first sample for this semantic label then a
new source is created and its stream generator is associated with the label /.

191

CHAPTER 9. DYKNOW FEDERATIONS

9.3.4 DyKnow Federation Functionalities
Adding and Removing Nodes

To make a node available for federation the Interface Agent of that node has to
register its DyKnow federation service in the Directory Facilitator. When this is
done the node is available, but no information is yet shared between the node and
other nodes. To leave a DyKnow federation it is enough to unregister the DyKnow
federation service. It is possible to allow active streams to and from the node to
remain even after the node leaves the federation since the proxies talk directly with
each other when the streaming has been set up.

Query for Information

If a platform needs a particular piece of information, knows its semantic label, and
knows which platform can provide the information then a query can be sent to the
Interface Agent of that platform with the semantic label as the argument. Using
this method a platform could ask for the latest value of a stream, the value at a
particular time-point, or all the values between two time-points.

If a platform only knows the semantic label of the information, but not which
platform is hosting the information, then it has to make a global request. This will
cause the DyKnow federation service to query all platforms providing a DyKow
federation service for the semantic label. This could give any number of answers.
If the DyKnow federation service gets more than one answer then it has to either
select one of the values or merge them together.

To implement the first use case, explicit ask and tell to divide the monitor-
ing area, this functionality would be used. The leader UAV would make a global
request for the current value of the streams associated with the semantic labels
max-speed, fuel, and so on.

Streaming Information

Setting up a stream from one platform to another is different from requesting a
particular piece of information directly. Instead of sending something back, the
agent receiving the request will set up an export proxy which will start streaming
the information to the import proxy of the requesting agent.

When proxies are set up the platform that made the request can access the
stream through a local fluent stream generator. From the point of view of the local
DyKnow instance, the import proxy is another source of information, like a sensor.

This would be the main functionality required to implement the second use
case, to provide continuous information about tracked vehicles from one UAV to
another. The UAV receiving the stream would then have to fuse this stream with its
own stream of car estimations in order to do the qualitative spatial reasoning and
chronicle recognition.

192

CHAPTER 9. DYKNOW FEDERATIONS

Command and Control Center Platform 0 Platform 1

. Agent Level Agent Level
Grid GUI &
BN
&

MC,
Agent Level 1 monitof-groximity
IlODO ID |1]

I | |

&
&o

<8

v

GW, | GW,

Platform
Specific Level

Platform
Specific Level

Figure 9.4: The task of monitoring the proximity is delegated from the command
and control center to platform 0.

9.4 Implementing the Proximity Monitoring Scenario

This section describes how the DyKnow federation framework can be used to
implement the proximity monitoring functionality introduced in Section 9.2.1 on
page 181. The description of the implementation is divided into two parts, the
agent level and the platform specific level. The two layers are separated by the
Gateway Agent.

9.4.1 Implementing the Agent Level

The proximity monitor functionality is provided by a monitor coordination service
which is implemented by a Monitor Coordination Agent. It coordinates the collec-
tion of information, sets up the monitoring, and informs the other UAVs in case the
proximity constraint is violated. The collection of information and the monitoring
is done using the local DyKnow instance which is accessed through the Gateway
Agent. Since the Monitor Coordination Agent also implements the DyKnow fed-
eration service no separate DyKnow Federation Agent is used.

The proximity monitoring functionality is invoked by delegating the task of
(monitor-proximity) to a platform which has registered a monitor coordi-
nation service (Figure 9.4). In our example it is the command and control center
which delegates this task to platform 0. The Interface Agent on platform 0, lo,
will accept the delegation and call its local Monitor Coordination Agent, MCy, and
request it to perform the monitoring task.

To perform the monitoring task MCy checks what other agents have registered
with the agent framework and what semantic labels are required to evaluate the
monitor formula. Using this information it can delegate the task of exporting the
streams associated with the set of semantic labels to each registered platform (Fig-
ure 9.5). To delegate this task to each registered platform MCy has to go through the
Interface Agent |y which does the actual delegation (step 1 in Figure 9.5). In our
example there are two platforms and the semantic labels needed are heli-position
and heli-altitude.

193

CHAPTER 9. DYKNOW FEDERATIONS

2 create-multicast

Command and Control Center Platform 0 Platform 1

Agent Level Agent Level
i 2t
Grid GUI /g,ﬁ\“}@—»

Agent Level

(o |

________J|

Platform
Specific Level

Platform
Specific Level

Figure 9.5: The necessary information sharing is set up by the Monitor Coordina-
tion Agent MCy.

It is not enough to only have the semantic labels. The constraints specifying
the properties of the exported streams are also required. In this implementation we
will sample the values for each semantic label every second and accept a delay of
one second. No duration constraint is placed on the streams.

Therefore, platform O delegates to platform 1 the task of multicasting heli-
position and heli-altitude to platform O with the constraints sample every 1 second
and max delay 1 second (step 2 in Figure 9.5). The actual message is:

(create—-multicast

semantic—labels: (sequence heli-position heli-altitude)
sample-period: 1.0 delay: 1.0
to-units: (sequence 0))

Platform 0 will also set up a multicast to distribute its own position and altitude
to platform 1 (step 3 in Figure 9.5).

To set up a multicast a Monitor Coordination Agent sends a request to the
Gateway Agent to call the DyKnow instance which does the actual work (step 4
and step 6 in Figure 9.5).

The third and final step is to start the monitoring (Figure 9.6). This is done
by a Monitor Coordination Agent by delegating the task of creating a proximity
monitor to each registered platform including itself (steps 1-3 in Figure 9.6). The
actual message is: (create-monitor name: proximity). To setup a
local monitor, a Monitor Coordination Agent sends a request to the Gateway Agent
to call the local DyKnow instance which does the actual monitoring (steps 4 and 6
in Figure 9.6). How this is done is described in Section 9.4.2.

If a proximity monitor is violated then the Monitor Coordination Agent will
send a message to the other platform which contributed to the violation in order to
initiate an avoidance maneuver.

During the monitoring the Monitor Coordination Agent MCy is responsible for
checking if new platforms register with the agent framework. If a new platform
is registered then the information sharing and monitoring tasks are delegated to

194

CHAPTER 9. DYKNOW FEDERATIONS

2 monitor

Command and Control Center Platform 0 Platform 1

R Agent Level Agent Level
Grid GUI _
b g

Agent Level

il

| I

Platform
Specific Level

Platform
Specific Level

Figure 9.6: The proximity monitoring is started by the Monitor Coordination Agent
MCy.

it by MCy. The new platform will then have to delegate the task of streaming
updates related to the necessary semantic labels to each of the platforms in the
agent framework, since they do not keep track of new platforms themselves. By
implementing a broadcast functionality instead of a multicast it would have been
the responsibility of each platform to detect new platforms.

9.4.2 Implementing the Platform Specific Level

To set up a monitor the method create_named.-monitor(n) in the DyKnow
Gateway interface is called by the Monitor Coordination Agent. The actual monitor
formula is implicit to make the knowledge of it local to the DyKnow Gateway
implementation. Currently the monitor formulas are hard coded and referred to by
name, but this is not a fundamental limitation and it is easy to add new names.

If the name is proximity then the create_named monitor method adds
the formula O(xy_dist[h0, h1] > 15.0 A z_dist[h0, h1] > 10.0) to the local execution
monitoring service. The formula says that the distance in the xy-plane between
platform 0 and 1 must always be greater than 15 meters and the distance in the
z-plane must always be greater than 10 meter. The formula uses the fluent streams
xy_dist[h0,h1] and z_dist[h0,h1] which are computed from the position and altitude
respectively by computational units. Each of the computational units takes one
stream which is produced locally and one stream which is produced on the other
platform, synchronizes the samples, and then computes the distance between the
platforms.

To evaluate the proximity monitoring formula a fluent stream must be created
for each of the features used in the formula. This is currently done by the import
proxy. When the import proxy on a platform is created it will create a source in
the import location for each of the semantic labels it knows. It will also create
the necessary computed fluent streams and state streams to evaluate the formula.
For example, in the proximity monitoring example each platform would create a
source for the helicopter position and the helicopter altitude of the other platform.

195

CHAPTER 9. DYKNOW FEDERATIONS

When the import proxy has been created the platform is ready to receive posi-
tion and altitude information from the other platforms and evaluate whether they
are coming too close or not. As soon as the goal of monitoring the proximity is
given the sharing of the information is set up and the actual monitoring can be
started. The scenario has been tested both in simulation and live flight tests.

9.5 Summary

A DyKnow federation framework for information integration in a distributed multi-
node network of UAVs has been presented. This type of framework is required
to develop complex multi-agent systems where agents have to cooperate to solve
problems which are beyond the capability of any individual agent. The frame-
work allows agents to share and merge information to provide more complete and
accurate information about the environment.

The federation framework is an extension of DyKnow which integrates Dy-
Know with a FIPA compliant multi-agent framework. The extension allows an
agent to share parts of its local DyKnow instance with other agents in a DyKnow
federation. The basic interaction and sharing is made on an agent level using the
standardized FIPA ACL agent communication language. To increase the efficiency,
direct communication is supported for continuous streaming of information be-
tween nodes. In either case the federation is used to find information and to set up
the distribution.

The main contribution of this chapter is how the versatile and useful knowl-
edge processing middleware framework DyKnow can be extended to cover an even
larger set of issues and allow it to integrate not only sensing and reasoning on a sin-
gle platform, but also finding and sharing of information among multiple platforms.
This chapter provides the motivation, requirements, and initial design of such an
integrated framework which is being implemented and tested on our existing UAV
platforms.

196

Part IV

Conclusions

197

Chapter 10

Relations to the JDL Data
Fusion Model

10.1 Introduction

To improve the quality of the available information about a specific subject it is
often useful to combine and refine information from many different sources. It
can be that no single source contains all the required information. For example,
to detect traffic patterns it might be necessary to use both a geographical informa-
tion system to get the details about the current road system and a suit of sensors
providing information about the vehicles driving on the road system. It could also
be the case that by combining information from many sources the uncertainty in
the information can be reduced. For example, robots often combine the odometry
information from an inertial measurement unit with the global position estimation
provided by a GPS to estimate their current position.

How to combine and refine information from multiple sources is often called
the fusion problem. Depending on the type of sources and the type of output from
the process one often adds a specific prefix, referring to sensor fusion, data fusion,
information fusion, and so on. In this chapter we will use the term fusion without
any prefix to indicate the general nature of our approach.

One definition of data fusion which is provided by the JDL Data Fusion Sub-
group (1987) is:

A process dealing with the association, correlation, and combination
of data and information from single and multiple sources to achieve
refined position and identity estimates, and complete and timely as-
sessments of situations and threats, and their significance. The pro-
cess is characterized by continuous refinements of its estimates and
assessments, and the evaluation of the need for additional sources, or
modification of the process itself, to achieve improved results.

Since the fusion problem is very general there is a need to provide a common

198

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

framework for talking about different approaches to the different parts of the fusion
problem. One such framework is the JDL Data Fusion Model (Llinas et al., 2004;
Steinberg and Bowman, 2001). It is a functional model which is often considered
to be the de facto standard fusion model. The JDL Data Fusion Model provides
a common framework where fusion functionalities are divided into a number of
different abstraction levels described in the next section.

Usually the fusion problems on each of the functional levels are solved using
different methods and approaches. Many interesting applications, such as moni-
toring traffic and assisting emergency services, require fusion on many different
levels to be used in a single application. Therefore, there is a need to integrate
these different approaches. We believe that DyKnow provides a framework with
the appropriate concepts and mechanisms to integrate different existing partial so-
lutions to the fusion problem into more advanced applications. It is important to
realize that DyKnow does not solve the different fusion problems involved, but
rather provides a framework where different specialized fusion algorithms can be
integrated and applied.

10.2 The JDL Data Fusion Model

The JDL Data Fusion Model is the most widely adopted functional model for data
fusion. It was developed in 1985 by the U.S. Joint Directors of Laboratories (JDL)
Data Fusion Group (White, 1988) with several revisions proposed (Blasch and
Plano, 2003; Llinas et al., 2004; Steinberg and Bowman, 2001). The purpose of the
model is according to Steinberg and Bowman (2001) to “facilitate understanding
and communication among acquisition managers, theoreticians, designers, evalu-
ators, and users of data fusion techniques to permit cost-effective system design,
development, and operation”.

The data fusion model originally divided the data fusion problem into four
different functional levels (White, 1988). Each of the first three levels builds on the
previous level by making the information more abstract. The fourth level supports
the dynamic adaptation of the fusion process itself. Later a level O performing sub-
object assessment (Steinberg and Bowman, 2001) and a level 5 performing user
refinement (Blasch and Plano, 2003) were introduced. The levels 0-4 as presented
by Steinberg and Bowman (2001) are shown in Figure 10.1 and described below.

o Level 0 - Sub-Object Data Assessment: Estimation and prediction of signal-
or object-observable states on the basis of pixel/signal-level data association
and characterization.

o Level 1 - Object Assessment: Estimation and prediction of entity states on
the basis of inferences from observations.

o Level 2- Situation Assessment: Estimation and prediction of entity states on
the basis of inferred relations among entities.

e Level 3 - Impact Assessment: Estimation and prediction of effects on sit-
uations of planned or estimated/predicted actions by the participants (e.g.,

199

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

DATA FUSION DOMAINO

DISTRIBUTED

LOCALO Level 0 Level 1 Level 2 Level 3
Processing Processing Processing Processing
Sub-Object[] ObjectO SituationO Impactd
Assessmentlll | Assessment[ll | Assessmentfll | Assessment|f]
SensorsQ
DocumentsO CHuman/D
Peopled omputer
E Interfacel]
.0
.0
Data storesd
Level 4 Database Management[]
\) Processing System0]
Process(
SOURCESO Refinementl}

> N
Support(] Fusion[
Databasell |Databasell

Figure 10.1: Revised JDL data fusion model from Steinberg and Bowman (2001).

assessing susceptibilities and vulnerabilities to estimated/predicted threat ac-
tions, given one’s own planned actions).

e Level 4 - Process Refinement: Adaptive data acquisition and processing to
support mission objectives.

The rest of this chapter describes how DyKnow can support the functionalities
on each of the levels in the JDL Data Fusion Model. This shows that DyKnow
provides ample support for fusion on all levels of abstraction.

10.3 JDL Level 0 — Sub-Object Data Assessment

On level 0 signals and sub-object features are fused. This could for example in-
volve detecting the presence of a signal and estimating its state. An example is to
recognize a feature in an image. One purpose of fusion on this level is to reduce
the noise and uncertainty in the signals in order for the higher levels to get the best
possible input to work with.

All fusion applications developed using DyKnow are structured as a set of
knowledge processes taking streams as inputs and generating new streams. Any
fusion algorithm that can be described as a process taking streams as input and
generating streams as output can be integrated in the DyKnow framework as a
knowledge process.

Since a stream can be seen as a digital signal where each sample is the value
of the signal at a particular time-point there is a direct mapping between digital
signal processing and stream processing. For example, to fuse two sub-object level

200

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

signals they first have to be integrated in the DyKnow framework by making them
available as sources. When the signals are made available any knowledge process,
such as a fusion process, can create and subscribe to fluent streams corresponding
to the signals. The output of the fusion process would be a third stream containing
the fused result.

An example of a level O functionality in the traffic monitoring application is
when the image processing system detects the presence of a car-like object in an
image. If the sequence of color images and the sequence of thermal images are
seen as two signals then they could be fused on level 0 producing a combined color
and thermal image signal.

The sub-object features are used mostly at level 1 to estimate object states.

10.4 JDL Level 1 — Object Assessment

On level 1 sub-object data are fused into coherent object states. The purpose is
to detect individual objects, to estimate their current state, and to generate tracks
estimating their states over time.

A traditional level 1 fusion approach is to use a Kalman filter to estimate the
current position of a robot by fusing odometry information from an inertial mea-
surement unit with global position estimations provided by a GPS. In DyKnow this
functionality would be provided by a computational unit implementing the Kalman
filter and fluent streams modeling the odometry, GPS, and position information.

Level 1 is usually partitioned into four functions (Hall, 1992): Data alignment,
data association, tracking, and identification. Data alignment tries to put data from
different sources into a common frame of reference, such as a common coordinate
system. Data association then tries to group the data into clusters where each clus-
ter only contains data about a single object. The tracking functionality then tries
to estimate the object state, mainly the position and velocity of each of the objects.
The focus on position and velocity indicates the history of the research area in
the military target tracking community. Finally, identification tries to classify the
target and to extract more information about it besides its current location.

DyKnow provides support for all four of these functionalities, with a special
emphasis on data association and identification. As usual, almost any functionality
can be realized as a knowledge process which means that DyKnow does not prevent
any existing approaches from being used.

Data alignment in the temporal domain is supported in DyKnow through the
state extraction mechanism described in Section 7.8. It allows two or more streams
to be aligned in time by creating a state containing an element from each of the
streams, where all the elements in each state is valid at the same time. Aligning
streams in time is especially important in distributed applications where the data
can be generated by sources on different platforms without any synchronization.
Example 7.8.1 on page 118 provides an example where the data generated by two
sensors is synchronized in time. An appropriate fusion algorithm can then be ap-
plied to the resulting state stream.

201

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

The object linkage structures described in Section 8.5 provide sophisticated
support for data association, tracking, and identification. Anchoring is in itself
a form of data association where sensor data is associated with symbols. Object
linkage structures provide support for both associating sensor data with objects
and incrementally classifying these objects. To use the functionality it is enough
to define a set of classes which are of interest and then describe the conditions in
a link specification for when to associate an instance of a class with an instance of
another class.

For example, in the traffic monitoring scenario there are three classes: Vision
object, world object, and on road object. Vision objects can be linked to world
objects, hypothesizing that the entity seen in the image is a physical object in the
world. A vision object is transformed to a world object by converting the position
coordinates from an image-centered coordinate system to a common “world” coor-
dinate system. This is in fact another example of data alignment. If a world object
is observed to be on the road system, as defined by a geographic information sys-
tem, then it is hypothesized that the world object is actually an on road object. The
data extracted by the image processing system is now being associated first with a
world object and then an on road object. As long as this chain of associations is
maintained and the vision object is tracked, the world object and then the on road
object will be updated each time a new picture is taken and the vision object is
updated.

In DyKnow, streams from level 1 mainly interact with level 2 by providing co-
herent object states for computing and detecting situations. Level 3 is also very
important since it is responsible for checking the hypothetical object linkage struc-
tures by continually monitoring the impact of new observations on the current hy-
potheses. Since the computations on level 1 can be time consuming, the interac-
tions with level 4 is also important in order to maintain a steady update of the most
important fluent streams for the moment. Level 4 can for example change the sam-
pling rate, increase the amount of allowed delay, or remove less important fluent
streams.

10.5 JDL Level 2 - Situation Assessment

On level 2 relations between objects detected on the previous level should be de-
tected and put in a larger context to estimate the current situation. A situation often
involves a number of objects satisfying a set of spatial and temporal constraints.
Describing such situations and detecting instances of the situations is an important
functionality at this level.

DyKnow has two different mechanisms for describing and detecting situations.
Both the metric temporal logic introduced in Section 7.5.1 and the chronicle for-
malism described in Section 8.2 can be used to recognize complex temporal rela-
tions between objects and their attributes.

In the traffic monitoring application a reckless overtake is a typical exam-
ple of a situation which is of interest to detect. To describe and detect reckless
overtakes a chronicle can be defined using qualitative spatial relations such as

202

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

beside(cary, car,), close(car, cary), and on(car, road). A chronicle could add met-
ric temporal constraints to the qualitative spatial constraints described by the spa-
tial relations. Since the temporal constraints can be metric it is possible to combine
both qualitative and quantitative reasoning as well as spatial and temporal reason-
ing. Given a chronicle definition and streams of car object states generated using
level 1 functionality it is possible to recognize instances of the reckless overtake
chronicle.

Combining the situation assessment functionalities with the object assessment
functionalities it is possible to provide support for a concept such as “the set of all
cars that have been observed making reckless overtakes in the last 30 minutes”. To
describe and maintain sets of related objects, where the set changes over time as the
properties of the objects changes, object linkage structures can be used. By using
the establish and maintain condition of a link declaration to describe the conditions
for when a car should be linked to a reckless car a stream of all reckless cars can be
created. The link function as a classification procedure which collects all objects
which satisfy the establish condition and keeps them as members as long as the
maintain condition is not violated (see Section 8.5).

To maintain the set of cars that have been observed making reckless overtakes,
functions on JDL levels O to 3 have to work in concert. To detect cars sub-object
features have to be extracted from color and thermal images. These sub-object
features then have to be classified as belonging to a car and associated with a car
symbol. From the stream of car object states it is then possible to detect reckless
overtakes as a complex spatio-temporal relation using chronicle recognition. When
a car has been observed making a reckless overtake it is automatically added to the
class of reckless cars, by linking the car object to a reckless car object. However,
to stay a member the car has to be observed making a reckless overtake every 30
minutes or else it will be removed from the class. To monitor this condition a metric
temporal logical formula is used. This is an example where a complex concept can
be supported through the interaction of the different functionalities provided by the
DyKnow framework.

Another mechanism which can be used to collect information about a situation
is state generation. Collections of object states can be aggregated into states in or-
der to synchronize them to a coherent situation, just as collections of fluent streams
can be collected into states.

Apart from the input provided by streams at level 1, the interactions of level 2
are mainly with level 3 where streams representing complex situations can be used
to maintain object linkage structures as well as create new hypotheses.

10.6 JDL Level 3 — Impact Assessment

On level 3 the impact of the object and situation assessment on the current actions
and plans of an agent is assessed. A typical task on this level is to determine if the
current plans are working as expected or if there are threats or opportunities which
should be considered.

203

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

One approach to continually assessing the impact of the current situation is to
monitor a set of conditions describing those situations which have an impact. If
one of the monitors is triggered then the system has to react to that event. We have
for example described how DyKnow monitors the current classification hypotheses
by monitoring the maintain conditions of links. If such a condition is violated then
the link is removed and the two objects are no longer classified as representing the
same physical object.

DyKnow supports the definition of complex monitors through the use of the
complex event detection mechanisms described in the previous section. As shown
in the example in the previous section, chronicle recognition and metric temporal
logical formulas can be combined to support complex conditions to be monitored.
Both mechanisms are efficient enough to perform this monitoring effectively.

Another example of monitoring the impact of the current situation on the cur-
rent plans of an agent is execution monitoring as described in Section 7.5. By
integrating the monitoring conditions in the planning domain it is possible for the
planner to take the conditions into consideration when creating the plan. The gen-
erated plan contains the conditions, expressed in logic, to be monitored during the
execution of the plan. If a condition is violated the execution system is given the
possibility to react to the violation and perform a recovery operation. It is also
possible to call the planner again to generate a new plan to take the new situation
into consideration.

Level 3 interacts with both level 1 and level 2 since the streams produced on
those levels are the ones used as input to impact assessment. The detection of
violations of monitored constraints will lead to changes at the lower levels.

10.7 JDL Level 4 — Process Refinement

On level 4 the system should adapt the data acquisition and the processing to sup-
port mission objectives. In DyKnow, the whole process is described as a set of
knowledge processes generating streams and refining the process corresponds to
changing what streams are being computed. This is related to focus of attention
issues where the most important streams should be computed while less important
streams have to stand back in times of high loads.

The main tool for supporting process refinement and focus of attention is poli-
cies. A policy describes the desired properties of a stream. By changing the poli-
cies of the streams the load can be reduced. For example, consider an application
where the GPS position is sampled at 50 Hz and there is a chain of processes which
are all dependent on the position. If the latency when updating all the processes
in the chain is larger than 20 milliseconds then the application will lag further and
further behind. To manage the situation it is possible to change the policy of the po-
sition stream to for example sample the GPS at 25 Hz instead. This single change
in a policy will affect the whole application since the input frequency is reduced by
50%. If the overload of the system is only temporary it is possible to change back
to the original policy later.

204

CHAPTER 10. RELATIONS TO THE JDL DATA FUSION MODEL

To detect that a process needs refinement the functionality at level 3 can be
used to set up the desired monitors.

Level 4 interacts with all the other levels since it controls the context within
which those are being computed by controlling the policies.

10.8 Summary

This chapter has presented a high level view of how DyKnow provides support for
the functionalities on the different levels in the JDL Data Fusion Model.

As long as a fusion component can be described as a process which takes
streams as input and generates streams as output it can easily be integrated in the
DyKnow framework. This makes it possible to use DyKnow to integrate existing
partial solutions to the fusion problem into fusion applications.

One important aspect is that DyKnow allows functionalities on the different
JDL levels to interact in a seamless manner. This chapter has shown how the dif-
ferent parts of DyKnow can work in concert to produce information and knowledge
on all levels of abstraction. Starting from primitive sensor data the end result of the
processing is highly qualitative information and knowledge.

The conclusion is that DyKnow provides an integrated framework where fusion
applications using functionalities on all the JDL levels can be supported.

205

Chapter 11

Related Work

11.1 Introduction

In this chapter stream-based knowledge processing middleware and DyKnow are
put into perspective by comparing them to other related approaches.

Section 11.2 relates DyKnow to distributed real-time databases. We will argue
that distributed real-time databases systems do not by themselves satisfy any of
the requirements from the introduction. Rather, they address relevant but different
research issues.

Section 11.3 relates DyKnow to existing agent and robot control architectures.
Even though DyKnow is not such an architecture they do partly address the same
issues. We will argue that DyKnow could be used by these architectures to further
improve them.

Section 11.4 focuses on some frameworks providing general support for inte-
grating sensing and reasoning. We will argue that even though there exist many
interesting frameworks none of them satisfy the requirements well enough. For
example, none of the frameworks have a formal basis and most of them do not
handle time as well as DyKnow. With general support we mean that a system does
not prevent any of the requirements introduced in Section 1.2.1 on page 11 from
being met. However, the explicit support for the requirements often wildly differs.

11.2 Distributed Real-Time Databases

What separates a real-time database from a traditional database is that transac-
tions may be associated with timing constraints (Ramamritham, Son, and Dipippo,
2004). These timing constraints must be satisfied together with the normal consis-
tency constraints. Examples of timing constraints are completion deadlines, start
times, and periodic invocations. Since timing properties are essential for real-time
databases it is necessary to make query and scheduling algorithms aware of time.
Non-real-time databases generally try to minimize the average response time by

206

CHAPTER 11. RELATED WORK

maximizing the resource utilization while real-time databases will first maintain
timing constraints and only in second place consider average response times and
resource utilization.

An important issue in real-time data management systems is data consistency
and freshness. Not only should a database meet all the timing requirements, it
should also use the most current and up to date information (Gustafsson, 2007).
Each time new information has been received, all the components dependent on
this information have to be updated. Since these updates can be expensive and
might lead to an increasing number of missed deadlines, a database has to make
a decision whether new information should be accepted or not. This allows the
database to make a trade-off between data freshness and deadline miss ratio (Kang,
Son, and Stankovic, 2004).

Managing the quality of service (QoS) is another important issue. A QoS spec-
ification could for example express the desired requirements on data freshness,
deadline miss ratio, and the trade-off between them. Traditional approaches rely on
knowing the worst-case execution times of the system (Buttazzo, 1997). Recently,
a new class of approaches based on feedback control have been developed in or-
der to handle uncertain and time-varying load (Amirijoo, 2007; Lu et al., 2002).
In these approaches, the current load and execution times are used to regulate the
admission control and the scheduling of a system. Therefore there is no need to re-
serve resources for the worst case. In this way resources are used more effectively.

The complexity of these issues increases further when considering distributed
real-time databases (Shanker, Misra, and Sarje, 2008). Important issues with re-
spect to distribution are replication and consistency among distributed nodes and
distributed real-time commit protocols that satisfy timing constraints for distributed
real-time transactions in the face of unpredictable communication delays and mul-
tiple concurrent transactions. Since DyKnow does not replicate streams or support
atomic transactions these issues are avoided. DyKnow still has to manage unpre-
dictable communication delays, but these are assumed to be taken into account in
the delay constraint in the policy of a stream.

A distributed real-time database system does not prevent any of the require-
ments from the introduction from being satisfied. Neither does it by itself provide
very much support for them. However, the techniques developed within this com-
munity are relevant and useful when designing and implementing knowledge pro-
cessing middleware with real-time guarantees. Especially the issues of data fresh-
ness and satisfying timing constraints are important. Currently DyKnow focuses
on reducing the average response time without providing real-time guarantees. As
future work, it would be interesting to apply the research on admission control and
scheduling to DyKnow to provide basic real-time guarantees and graceful degra-
dation in the face of temporary overloads. Especially the work on using feedback
control to manage real-time quality of service guarantees seems appropriate.

207

CHAPTER 11. RELATED WORK

11.3 Agent and Robot Control Architectures

An agent architecture defines how to structure the functionality of an agent or
robotic system as a number of subsystems and how these subsystems interact.
An architecture provides a way of managing the growing complexity of building
robotic systems by embodying well-defined concepts which enable the effective re-
alization of systems to meet high-level goals (Coste-Maniere and Simmons, 2000).
The focus is usually on how to control an agent to achieve goals. Important issues
are how to decompose the control problem and how to manage the trade-off be-
tween reactive stimulus-response behavior and deliberative goal-directed actions.
Depending on this trade-off a distinction is made between reactive, deliberative,
and hybrid architectures.

A reactive architecture couples sensors more or less directly to actuators through
some form of stimulus-response mechanism. One common trait of these archi-
tectures is that they usually do not create or require any models of the environ-
ment. Well-known examples of reactive architecture are Brooks’ Subsumption
Architecture (Brooks, 1985, 1991) and different forms of behavior-based architec-
tures (Arkin, 1998).

A deliberative architecture, on the other hand, focuses on the goal-directed
deliberation on what actions to perform in order to achieve the goals of an agent.
These architectures are dependent on having models of the environment which are
used to reason about the effects of different actions. Usually these architectures use
a Sense-Plan-Act control loop where an agent first collects all the information it can
from its sensors, then generates a plan to achieve its goals, and finally executes the
plan.

Hybrid architectures try to combine the fast response of reactive architectures
with the goal-directed nature of deliberative architectures. This has been a very
active area and there are many architectures available (for example Arkin (1998);
Atkin et al. (2001); Bonasso et al. (1997); Pell et al. (1998)).

Since deliberative and hybrid approaches often use symbolic reasoning they
need to bridge the gap between the information available from sensors and the in-
put required for reasoning about the environment. This means that one purpose of
a deliberative or hybrid agent architecture is, in a sense, to describe how an agent
bridges the sense-reasoning gap with respect to action. Existing agent architectures
have mainly focused on integrating actions on different levels of abstraction, from
control laws to reactive behaviors to deliberative planning. It is often mentioned
that there is some form of parallel hierarchy of more and more abstract information
extraction processes or that the deliberative layer uses symbolic knowledge (An-
dronache and Scheutz, 2003; Atkin, Westbrook, and Cohen, 2001; Barbera et al.,
2003; Ingrand et al., 2007; Konolige et al., 1997; Lyons and Arbib, 1989; Roten-
stein et al., 2007; Scheutz and Kramer, 2006; Shapiro and Ismail, 1998; Volpe et
al., 2001), but only a few of these approaches are described in some detail. Two of
these approaches will now be described in some detail.

208

CHAPTER 11. RELATED WORK

11.3.1 The Hierarchical Agent Control Architecture

The Hierarchical Agent Control architecture (HAC) is a general toolkit for control-
ling agents (Atkin et al., 2001; Atkin, Westbrook, and Cohen, 2001). It supports ac-
tion abstraction, resource management, and sensor integration. What makes HAC
different is that it has a sensor hierarchy parallel to the hierarchy of actions. In the
same way as complex actions are composed of simpler actions, complex sensors
use the output of simpler sensors as input to provide more abstract or refined infor-
mation. These sensors are not physical, but integrate and re-interpret sensor data
from other sensors which may be physical.

Apart from the action and sensing hierarchies there is also a context hierarchy
which consists of goals. A context provides assumptions for actions to operate
within. This means that HAC separately manages the flow of control informa-
tion, sensor information, and context. Each type of information corresponds to a
separate hierarchy in HAC.

HAC supports the principle of supervenience, where higher level sensors inte-
grate and interpret information from lower levels but without changing the lower
level information. Lower level sensors provide information to the higher level ones
but they do not control them. An advantage of this is that each level of the hierar-
chy can be treated independently without worrying about the interactions with the
other levels.

In summary, HAC provides a uniform way of structuring the processing of
sensor data which is appropriate in many situations. However, it lacks support for
integrating information from distributed sensors and it does not have any support
for the temporal aspects of information processing. Neither does it have any declar-
ative description of the information processing so an agent can not reason about its
own processing of sensor data.

11.3.2 4D/RCS

4D/RCS is a control system architecture inspired by a theory of cerebellar func-
tion (Albus, 1981, 2002; Barbera et al., 2003; Schlenoff et al., 2006). 4D refers to
three dimensions of space and one dimension of time, and RCS stands for Real-
time Control Systems. 4D/RCS models the brain as a hierarchy of goal-directed
sensory-interactive intelligent control processes that theoretically could be imple-
mented by neural nets, finite state automata, cost-guided search, or production
rules.

4D/RCS tries to combine different knowledge representation techniques in a
unified architecture. It consists of a multi-layered hierarchy of computational nodes
each containing sensory processing, world modeling, value judgment, behavior
generation, and a knowledge database (Figure 11.1 on the following page). The
idea of the design is that the lowest levels have short-range and high-resolution
representations of space and time appropriate for the sensor level while higher lev-
els have long-range and low-resolution representations appropriate to deliberative
services. Each level thus provides an abstract view of the previous levels. Each
node may use its own knowledge representation and thereby supports multiple dif-

209

CHAPTER 11. RELATED WORK

SENSORY COMMANDED

OiPUT staTus ZoRMaORD)
RCS Node
VALUE
JuoGMENT kg |
PEER INPUT = —] operator
PERCEIVED m 2
OUTPUT OBJECTS& 4 » 6\“«1(L, _| — |—*] NTERFACE
h o EVENTS cs =5 YGo— T _
\ >3 <3 — 2 —
52 S3— Y B
SET 2 —
— =Y —
PLAN
SP sensory UPDATE WM, oRLD - BG BEHAVIOR
PROCESSING | g1 MODELING P GENERATION
PREDICTED STATE
INPUT NOWLEDG
DATABASE
OBSERVED KD
INPUT
SENSORY COMMANDED

INPUT STATUS L CTIONS (SUBGOALS)

Figure 11.1: An overview of a 4D/RCS component (from Albus (2002)).

ferent representation techniques. However, the architecture does not, to our knowl-
edge, address the issues related to connecting representations and transforming one
representation into another.

4D/RCS represents procedural knowledge in terms of production rules and
declarative knowledge in abstract data structures such as frames, classes, and se-
mantic nets. Like DyKnow it also includes signals, images, and maps in its knowl-
edge database, and maintains a tight real-time coupling between iconic and sym-
bolic data structures in its world model. Some specific characteristics: Its focus on
task decomposition as the fundamental organizing principle, its level of specificity
in the assignment of duties and responsibilities to agents and units in the behavior
generating hierarchy, and its emphasis on controlling real machines in real-world
environments.

4D/RCS uses many different representations but the authors do not provide any
details about how these representations are connected and controlled. For example,
is there a specification of how the information in one representation is transformed
into information in another representation. This leads to questions such as: How
does a component know if a representation has changed in such a way that the
component has to react?

11.3.3 Discussion

The gap between sensing and reasoning is present in all types of architectures, but
it is especially important in hybrid architectures. The reason is that they must con-
tinually integrate information collected from sensors into symbolic representations
required by deliberative functionalities. The existing architectures do not currently
provide any general approaches to bridging this gap. Instead they use fixed solu-
tions for particular problems such as navigating in unknown terrains (Ingrand et
al., 2007; Thrun et al., 2006) and object recognition in combination with grasping

210

CHAPTER 11. RELATED WORK

(Brenner et al., 2007). One reason for the lack of general approaches could be that
it is very challenging to find generic solutions and it is often faster and cheaper to
bridge the gap in robot and application specific ways.

As DyKnow focuses on information and knowledge processing and not on con-
trol it is orthogonal to most of the functionality provided by agent architectures.
Since most existing architectures only have limited support for closing the sense-
reasoning gap DyKnow could be used to support the development of such architec-
tures. The sensor processing functionality they do provide could be integrated in
DyKnow. The same is true for those specific approaches that have been developed
to build particular models from sensor data, such as simultaneous localization and
mapping (Montemerlo and Thrun, 2007) and transforming signals to symbols (Nii
et al., 1988). They do not replace DyKnow, nor make it irrelevant. Instead they
accentuate the need for DyKnow since there are so many disparate partial solutions
which would benefit from being integrated. Therefore knowledge processing mid-
dleware, such as DyKnow, could become an important tool in the toolkit of agent
architecture developers.

11.4 Robotics Middleware and Frameworks

There are many frameworks and toolkits for supporting the development of robotic
systems. These often focus on how to support the integration of different func-
tional modules into complete robotic systems. To handle this integration, most ap-
proaches support distributed computing and communication. However, even when
an approach supports communication among distributed components it does not
necessarily explicitly support information and knowledge processing.

There are a few surveys available (Biggs and Macdonald, 2003; Kramer and
Scheutz, 2007; Mohamed, Al-Jaroodi, and Jawhar, 2008; Orebick and Christensen,
2003). Of these, the survey by Kramer and Scheutz (2007) is the most detailed.
It evaluates nine freely available robotic development environments according to
their support for specification, platforms, infrastructure, and implementation. While
it mainly focuses on software engineering aspects of these development environ-
ments we are more interested in how robotic frameworks support knowledge pro-
cessing and bridging the gap between sensing and reasoning.

Before summarizing the support provided for knowledge processing by current
robotics software framework we will give a high-level overview of a representative
selection of existing frameworks.

114.1 ADE

ADE is an agent architecture development environment intended for the design,
implementation, and testing of distributed robotic agent architectures (Andronache
and Scheutz, 2004, 2006; Scheutz, 2006). It is based on APOC, a general and
universal agent architecture framework which allows a wide range of agent archi-
tectures to be expressed and defined (Andronache and Scheutz, 2003).

211

CHAPTER 11. RELATED WORK

L]

— Priority —_—
—_—3S] e Activation L2 _; —

e

Figure 11.2: An overview of an ADE component (from Scheutz (2006)).

The APOC framework views agent architectures as networks of computational
components connected by four types of links (Figure 11.2). Each component is an
autonomous computational process with activation and priority values which are
used for process management. A component can also be associated with a process
which could for example be used to control a robot device or integrate an external
function.

The links support different types of interactions among components in an ar-
chitecture. The activation link allows components to send and receive messages.
The observation link allows components to observe the state of other components.
The priority link allows components to influence the execution of other compo-
nents. The component link allows components to instantiate other components and
connect to them via links. Each link type is defined formally.

By using different types of links many varieties and kinds of agent architec-
tures can easily be created. An architecture instance is specified by an architecture
diagram which describes how the components are connected using the different
links. To provide limited support for managing resources it is possible to specify
how many instances of a component may exist at the same time.

An APOC server provides mechanisms for instantiating, deleting, and updating
components and links. Instantiated components and links are hosted by an APOC
server. The update of components and links can either be synchronous or asyn-
chronous. In the synchronous mode all components are updated before starting a
new update cycle. In the asynchronous mode no restriction is placed on the order
of updates. Instead they are made as quickly as possible.

To provide a hardware abstraction layer robot servers are used to provide access
to various physical devices, such as sensors and actuators. ADE also provides sev-
eral tools and utilities which makes it a complete agent development environment,
such as graphical user interfaces and runtime inspection and monitoring support.

One difference compared to DyKnow is the lack of explicit support for time.

212

CHAPTER 11. RELATED WORK

Coordinator Subarchitecture

e p

Commurstation Subarchtecture

Binding Subarchitecturs

S —
Mg

prvcsssing covguosrs | vt |
—
| L. Spatial Subarchitectuns
— P -
Wy | Frocmusisg Comporeniy |
——Ji. i | — I_n-na-"

Figure 11.3: Some example subarchitectures (from Hawes, Zillich, and Wyatt
(2007)).

Even though data can be time-stamped this information is not taken into consider-
ation by the toolkit itself. Another difference is that ADE lacks the possibility to
declaratively specify what data a component is interested in.

11.4.2 CAST/BALT

The CoSy Architecture Schema Toolkit (CAST) is developed in order to study dif-
ferent instantiations of the CoSy Architecture Schema (Hawes et al., 2007; Hawes,
Wyatt, and Sloman, 2006; Hawes, Zillich, and Wyatt, 2007). An architecture
schema defines a design space containing many different architectural instantia-
tions which are specific architecture designs. CAST implements the instantiations
of the architecture schema using the Boxes and Lines Toolkit (BALT) which pro-
vides a layer of component connection software.

The BALT middleware provides a set of processes which can be connected ei-
ther by 1-to-1 pull connections or 1-to-N push connections. With its support for
push connections, distributing information, and integrating reasoning components
it can be seen as basic stream-based knowledge processing middleware. A differ-
ence is that it does not provide any declarative policy-like specification to control
push connections nor does it explicitly represent time.

An architecture instantiation of the CoSy Architecture Schema (CAS) consists
of a collection of interconnected subarchitectures (SAs) (Figure 11.3). Each subar-
chitecture contains a set of processing components that can be connected to sensors
or actuators, and a working memory which acts like a blackboard within the sub-
architecture (Figure 11.4 on the next page).

213

CHAPTER 11. RELATED WORK

["Task " 7] Puish
o ; PUll e g
> Manager
N —
InputfOutput ™ iiii
[T Je————— | Warking
| i i i . Memaory
Managed Pt
Processing
i Components
i Unmanaged
f~._ | Pracessing

Input H'“*f-:. Camponents e
]

Figure 11.4: The CAS Subarchitecture Design Schema (from Hawes, Zillich, and
Wyatt (2007)).

A processing component can either be managed or unmanaged. An unman-
aged processing component runs constantly and directly pushes its results onto the
working memory. A managed process, on the other hand, monitors the working
memory content for changes and suggests new processing tasks. Since these tasks
might be computationally expensive a task manager uses a set of rules to decide
which task should be executed next based on the current goals of the SA. The gen-
eral principle is that processing components work concurrently to build up shared
representations. The SAs work concurrently on different sub-tasks, and the com-
ponents of a SA work on different parts of a sub-task.

When data is written to a working memory, change objects are propagated to all
subarchitecture managed components and all connected working memories, which
forward the objects to the managed components in their subarchitectures. Change
objects generated as a result of a change to working memory are the primary mech-
anism for distributing information through the architecture.

CAST is implemented using CORBA and has been used for several different
robots in the CoSy EU project. Like many of the other frameworks, CAST does
not have any explicit support for time. The support for specifying the information
a component is interested in is also limited to change objects.

1143 CLARAty

The Coupled Layer Architecture for Robotic Autonomy (CLARALty) is designed
for improving the modularity of robotic system software while coupling the inter-
action of autonomy and control more tightly (Nesnas et al., 2006; Nesnas, 2007,

214

CHAPTER 11. RELATED WORK

»

INTELLIGENCE

Figure 11.5: An overview of CLARAty (from Volpe et al. (2001)).

Volpe et al., 2001). The architecture consists of two layers, the Decision Layer and
the Functional Layer (Figure 11.5). The Decision Layer provides the high-level au-
tonomy of the system. It reasons about global resources and missions constraints.
The Functional Layer provides abstractions of the system and adapts the abstract
components to real or simulated devices. Unlike conventional three-level archi-
tectures CLARAty makes a separation between levels of granularity and levels of
intelligence. While the Decision Layer has a higher level of intelligence both the
Decision Layer and the Functional Layer cover the whole range of different levels
of granularity.

The Functional Layer consists of an object-oriented hierarchy of classes which
provide basic functionality of system operation, resource prediction, state estima-
tion, and status reporting. Two fundamental notions of CLARALty are: Abstractions
at various levels of granularity and encapsulation of information at the appropriate
levels of the hierarchy. The Functional Layer provides three main types of ab-
stractions: Data structures, physical components providing abstractions of physi-
cal objects, and functional components encapsulating algorithms. The functional
and physical components provide interface definitions and implementations of ba-
sic functionality, manage local resources, and support state and resource queries
by the Decision Layer.

The Decision Layer is a global engine that reasons about system resources and
mission constraints. It includes planners, executives, schedulers, activity databases,
and rover and planner specific heuristics. This layer plans, schedules, and executes
plans. It also monitors the execution and modifies the plans if necessary. In the cur-
rent instantiation they have a tight coupling between the planner CASPER (Estlin
et al., 2000) and the executive TDL (Simmons and Apfelbaum, 1998).

CLARALty supports both push and pull models of data flow. It provides generic

215

CHAPTER 11. RELATED WORK

interfaces for bridging the timing requirements of consumers and the actual data
flow provided by specific devices. A consumer can choose whether to force a
new update, access the most recently stored data, or retrieve a data source object.
A consumer can customize the timing constraints of a data source object. When
new information becomes available all consumers who have registered an interest
in the data source will be notified. If new data is not available within the timing
constraints then the consumer will be notified about the violation and has the option
of forcing the data source to update itself. This feature makes CLARAty one of
the few frameworks together with DyKnow that supports the explicit specification
of timing constraints.

1144 CoolBOT

CoolBOT is a component-based programming framework for developing robotic
systems without imposing any specific architecture (Cabrera-Gdmez, Dominguez-
Brito, and Herndndez-Sosa, 2001; Dominguez-Brito et al., 2007; Fernddez-Pérez
et al., 2004). An application consists of a network of asynchronously interact-
ing components. Each component is modeled as a Port Automaton where all the
communication is through input and output ports (Steenstrup, Arbib, and Manes,
1983). Transitions in the port automata of a component are triggered by events
caused either by incoming data, internal conditions, or a combination of these.

A connection between two components consists of an input/output port pair.
Data is transmitted through a connection in discrete units called port packets. There
are two types of port packets, event packets that signal events and data packets
which contains data. Each port can only transmit one type of packet and the two
ports in a connection must be of the same type.

There are five types of connections depending on the kind of ports connected.
A poster output port provides a finite circular buffer of data packets that are made
available to poster input ports. This is similar to posters provided by GenoM as
described later. A tick output port emits event packets to connected tick input
ports. This can be used to associated timers with components. A generic output
port can be connected to either a LIFO, FIFO, or unbounded FIFO input port. In
this connection, the input port instead of the output port buffers the packets. This
allows a consumer to process data at its own pace disregarding the rate with which
data is produced.

The communication through a connection can follow either a push model or
a pull model. In the push model the producer pushes the data to the connected
consumers while in the pull model a consumer requests the data from a producer.
Pull connections can only be created from poster, FIFO, and unbounded FIFO
connections.

Another feature of CoolBOT is that it puts a special focus on the robustness of
its components. A component is considered robust if it is able to monitor its own
performance, adapt to changing operating conditions, and recover from errors that
it can detect. If a component detects an error which it can not recover from then it
should announce the error through its interface and then wait in an idle state until

216

CHAPTER 11. RELATED WORK

the error can be handled by some external component.

CoolBOT provides both a formal framework for describing components as port
automata and a wide variety of different types of ports. There is however no explicit
support for time, synchronization, or for specifying sampling rates.

11.4.5 GenoM

GenoM provides a language for specifying functional modules and automatically
generate implementations of these modules according to a generic model (Fleury,
Herrb, and Chatila, 1997; Mallet, Fleury, and Bruyninckx, 2002). It was devel-
oped in order to specify and integrate functional modules in a distributed hybrid
robotic architecture. GenoM also generates an interactive test program and inter-
face libraries to control the module and to read its output. A module is a software
entity that offers services related to a physical (sensor, actuator) or a logical (data)
resource. This makes the module responsible for the resource. It should control
the resource including detecting failures and recovering from these to ensure the
integrity of the resource.

Services are parameterized and activated asynchronously through requests to
the module. A request starts a client/server relationship that ends with the termi-
nation of the service by the server returning a reply to the client. The reply will
include an execution report from a set of predefined reports and optionally data
produced by the service. A service may dynamically choose to use other services
to execute a request.

During the execution of a service it may have to read or produce data. This
is done using posters. A poster is a structured shared memory that is readable by
any other element in the architecture but only writable by its owner. Each poster
always provides the most up to date value which can be accessed by a service
using the unique identifier of the poster. This allows services to access the value of
any poster in their own pace. Since a service might be executed periodically it is
possible to poll a poster with a certain sample period.

GenoM provides a very mature and robust module specification language which
has been used in several projects (Ingrand et al., 2007; Mallet et al., 2007). Re-
cently work has been made to formally verify applications developed using GenoM
(Basu et al., 2008). From a knowledge processing perspective, it provides support
for both synchronous and asynchronous polling of data but not for asynchronous
notification of the availability of new data. Neither does GenoM provide support
for synchronization or the specification of the data required by a service.

11.4.6 MARIE

The Mobile and Autonomous Robotics Integration Environment (MARIE) is a
middleware framework for developing and integrating new and existing software
for robotic systems (C6té et al., 2004, 2005, 2006; Coté, Champagne, and Michaud,
2007; Coté, Létourneau, and Michaud, 2007). It is designed according to three
software requirements:

217

CHAPTER 11. RELATED WORK

Processing Processing
Class Class Node App App Node
MARIE

Class e » Class App (N

A
A

Mediator L N

Class r »(Class App C App
h h

Class Class Processing App App Processing

Node Node

LT]
H N NE

Figure 11.6: Original Mediator Pattern (left) and MARIE’s Distributed Mediator
Adaptation (right) (from C6té, Létourneau, and Michaud (2007)).

1. Reuse available solutions. To avoid having to start from scratch and reinvent
the wheel it is necessary to be able to integrate existing software components
even though they have been developed independently with different design
requirements.

2. Support multiple sets of concepts and abstractions. This is necessary to sup-
port different types of components and applications from high-level decision
making, to processing of sensor data, to motor control which have their own
objectives and requirements.

3. Support a wide range of communication protocols, communication mecha-
nisms, and robotics standards. Since there is no standard protocol and the
robotics community is still exploring different approaches it is important to
be able to integrate and adapt existing communication protocols.

To implement distributed applications using heterogeneous softwares, MARIE
uses a Mediator Interoperability Layer (MIL) adapted from the Mediator design
pattern (Gamma et al., 1994). The Mediator design pattern consists of a central-
ized control unit (called Mediator) which interacts with a number of classes (called
Colleagues) independently to coordinate the global interactions among the classes.
In MARIE, the MIL acts as the Mediator among any number of components which
are the Colleagues (Figure 11.6). The use of a mediator promotes a loose cou-
pling between components by replacing a many-to-many interaction model with a
one-to-many interaction model. Each component can use its own communication
protocols and mechanisms as long as the MIL supports it. This provides a way to
exploit the diversity of communication protocols and mechanisms.

The development of robotic applications using MARIE is based on reusable
software blocks, referred to as components, which implement functionalities by
encapsulating existing applications, programming environments, or dedicated al-
gorithms. Components are configured and interconnected to implement the desired
system, using the software applications and tools available through MARIE.

218

CHAPTER 11. RELATED WORK

To allow connections between components they can have ports. Two ports
that are connected allow the components to communicate. Each component has a
director port, a configuration port, and possibly input and output ports. The director
port is used to control the execution of the component and the configuration port is
used to configure the input and output ports.

Four types of components are used in the MIL:

1. Application Adapter (AA): A component which interfaces to applications
within the MIL and enables them to interact with each other through MARIE’s
port-based communication interface.

2. Communication Adapter (CA): A component that makes communication be-
tween different components possible by adapting incompatible communica-
tion mechanisms and protocols or by implementing traditional routing com-
munication functions.

3. Application Manager (AM): A system level component that manages, on
local or remote processing nodes, Application Adapters and Communication
Adapters. The initialization, configuration, starting, stopping, suspending,
and resuming of Application and Communication Adapters are handled by
an Application Manager.

4. Communication Manager (CM): A system level component that dynamically
manages, on local or remote processing nodes, the communications mecha-
nisms (socket, port, shared memory, etc.).

To integrate a set of applications into a working system an adapter for each
application must be developed. These adapters can then be connected either using
the existing communication mechanisms supported by MARIE or through commu-
nication adapters. Examples of communication adapters are mailboxes, splitters,
shared maps, and switches. A mailbox serves as a buffer between asynchronous
components. A splitter forwards incoming data to multiple components. A shared
map is a push-in/pull-out key-value data structure used to store data that can be
used by other components at their own rate. A switch takes multiple inputs but only
sends one of them to its single output port. An example from C6té, Létourneau,
and Michaud (2007) where three applications are integrated is shown in Figure 11.7
on the following page. Interconnections using port communication abstraction are
illustrated with a small dot between communication links represented by arrows.

The strength of MARIE to integrate many different approaches was shown by
the development of Spartacus, a socially interactive autonomous mobile robot (C6té,
Létourneau, and Michaud, 2007; Michaud et al., 2007). Spartacus is equipped with
a laser range finder, a pan-tilt-zoom color camera, eight microphones, and a touch
screen. The processing is done by two onboard computers. The application devel-
oped for the 2005 AAAI Mobile Robot Challenge integrated autonomous naviga-
tion, vision processing, sound processing, and communication through the touch
screen display. An overview of some of the components are shown in Figure 11.8
on page 221.

219

CHAPTER 11. RELATED WORK

4 : : N '
Comm. | App. | | App. | Comm. App. C |
Manager |Manager| : : |Manager| Manager 4
Application .| Application -
App. A Adapter 1 "I Adapter 2 j App-B
4 P
Application . Comm. | _
Adapter 3 N Adapter .
{ rl(\)]i;s:llrl £ \ Mediator Intei’opérability Layer y rNog(eiisﬁlg :

Figure 11.7: MARIE’s Component Framework Using the Mediator Interoperabil-
ity Layer (from C6té, Létourneau, and Michaud (2007)).

Spartacus shows that MARIE has the necessary functionality to integrate many
different applications. To our knowledge MARIE does not provide any support for
a component to specify the desired properties of its input which DyKnow supports
through its policies. Neither does MARIE have any explicit representation of time
or synchronization of input streams. It might, however, be possible to provide
synchronization through the use of a communication adapter.

11.4.7 Miro

Miro is an object-oriented middleware for mobile robot applications (Kraetzschmar
et al., 2002; Kriiger et al., 2006; Utz et al., 2002). It is implemented using the
TAO/ACE CORBA framework (Object Computing, Inc., 2003). Miro consists of
three layers interwoven with two CORBA layers (Figure 11.9 on page 222):

1. The Miro Device Layer provides platform dependent object-oriented inter-
face abstractions for sensor and actuator facilities.

2. The Miro Service Layer provides active service abstractions for sensors and
actuators via CORBA IDL descriptions and implements these services as
network transparent and platform independent objects. Event-based com-
munication is provided by the CORBA notification service.

3. The Miro Class Framework provides a number of common functional mod-
ules for mobile robot control, such as mapping, self localization, behavior
generation, path planning, logging, and visualization.

Each sensor and actuator is modeled by an object in the Service Layer which can
be controlled and queried through methods. A robot can therefore be viewed as an
aggregation of sensor, actuator, and cognitive objects which can trade information
and services in an agent-like manner.

220

CHAPTER 11. RELATED WORK

H Odometry Odometry) |CARMEN| (7 ;.o ion) (Localization
1 Wheels Dat; Spartacus H Data Localizer . .
! Odometry AA ' Switch AA Splitter Mailbox
i iﬂ:j“’i“‘_’g L (:/::]t:‘lm I()d()mclryi | l
. rbitration - ata '
ey Data CARMEN Path Plan
! Gyroscope 0y Data Gyro : Data Path Planner Data
+ Gyros . .
s P AA Splitter AA Mailbox
Robot Setup — ...t
H Las;.r l;ange Laser Data_t
Lisres +| Player 1 il
! Stage / Gazebo Simulated Data H AA I
: Audio Localization Localization Ae ;:rmtlts
B . . . rbitration
i Simulation Setup Splitter Paibox ED AA
AUDIBLE| Dialog Motor
FD AA - » Nuance |N Separated Speech Command Command
N Scparulcd Server Recognition Data Mailbox Spartacus
Raw Audio Channels b PA/;)
Microphone Audio 3
Array Audio Festival Dialogue System State
Audio | - Server Text AA Text AA Shared Maj aur
Speakers o . P
Audio Audio

Figure 11.8: An overview of some of the components integrated in Spartacus using
MARIE (from C6té, Létourneau, and Michaud (2007)).

Miro has been used on three robot platforms, the B21, the Pioneer-1, and
the Sparrow-99 robots which are equipped with different sensors, actuators, and
computational resources. The robots have been used in different scenarios in-
cluding office delivery and robotic soccer. Miro has also been used to imple-
ment higher-level functionalities such as Monte-Carlo localization methods, hybrid
multi-representation world modeling system, and a hierarchical system of naviga-
tion planners.

11.4.8 Orca

Orca is an open source project developing a component-based robotics framework
(Brooks et al., 2005, 2007; Kaupp et al., 2007; Makarenko, Brooks, and Kaupp,
2006, 2007). The main focus of the project is to develop a framework that imposes
minimal design constraints. An Orca application consists of a set of components
which run asynchronously, communicating with each other using well-defined in-
terfaces. Each component provides a set of interfaces and requires another set
of interfaces. Orca provides the framework for defining and implementing these
interfaces so that they are interoperable and therefore reusable.

To distribute components and to provide platform and language transparency
Orca is implemented on top of the Internet Communication Engine (Ice) which
is an object-oriented middleware framework similar to CORBA but more mod-
ern (Henning, 2004). Each interface is defined using the Slice interface definition
language provided by Ice. To allow components to communicate using a pub-
lish/subscribe model Orca uses the IceStorm event service provided by Ice, which
is similar to the event and notification services provided by CORBA.

221

CHAPTER 11. RELATED WORK

g R—

Figure 11.9: An overview of the layers of Miro (from Utz et al. (2002)).

To summarize, Orca provides a component-based framework implemented as
a relatively thin layer on top of the Ice middleware. No special support for knowl-
edge processing besides publish/subscribe communication is provided.

11.4.9 Orocos

The aim of the Orocos (Open Robot Control Software) project is to develop a
general-purpose and modular framework for robot and machine control and make it
available as free software (Bruyninckx, 2001, 2008). It consists of 4 C++ libraries:
The Real-Time Toolkit, the Kinematics and Dynamics Library, the Bayesian Fil-
tering Library, and the Orocos Component Library. Of these libraries it is the first
that is relevant for this thesis since it provides the real-time infrastructure and the
functionalities to build interactive and component-based robotic applications.

An Orocos application consists of distributed software components which are
built and connected using the Real-Time Toolkit. A component encapsulates a
process of arbitrary complexity and can be interfaced through properties, events,
commands, methods, and data flow ports (Figure 11.10). Properties are parameters
of the component which can be used to configure it. Events allow the component
to react to changes in the application using a finite state machine. Commands are
given to a component to command it to reach a goal such as move to a certain po-
sition. Since the execution of a command is not expected to finish instantaneously
a command request is non-blocking. Methods are used to interface computations
which return an immediate result. Finally, data flow ports implement the Port-

222

CHAPTER 11. RELATED WORK

Methods Commands Events
Data Flow Data Flow
Ports D o | Ports
a CAC++ [l Dynamic a
t functions: functions: t
a &
-Callbacks - State Charts
F -Algorithms - Program F
I —1 scripts I
5] L8]
W
1 | tectl
1
Configuration
Interface
| | |
Scripting Properties Inspection

Figure 11.10: An overview of an Orocos Component (from Soetens (2007)).

Connector design pattern and provide a push-based data transport mechanism to
send buffered or unbuffered data between components. If a port has a buffer then
it is possible to query the port for historic data.

The components provided by Orocos are very general and ought to be ap-
propriate for almost any imaginable process. The data flow ports provide a pub-
lish/subscribe communication model between components while the methods and
properties support on-demand communication. Since Orocos has periodic tasks it
is possible to create a component which generates data with a specific sampling
period. However, besides the property interface no support is provide for specify-
ing the input and output of a component. Neither is there any explicit support for
synchronization, even though Orocos provides a synchronized clock service.

11.4.10 Player/Stage

Player/Stage (Collett, MacDonald, and Gerkey, 2005; Gerkey, Vaughan, and Howard,
2003; Vaughan and Gerkey, 2007) is a software tool for developing multi-robot,
distributed robot, and sensor network systems. Player is a robot device server that
provides network transparent robot control. It seeks to minimize the constraints on
controller design as it is device independent, non-locking, and language-neutral.
Stage is a lightweight, highly configurable robot simulator which supports large
populations.

The design of Player is heavily influenced by the design of the UNIX operat-

223

CHAPTER 11. RELATED WORK

ing system. For example, one of the main principles is to hide the details of the
underlying hardware that varies from robot to robot. This is done through the use
of a device model where a robot functionality is seen as a device which is con-
trolled through an interface. An implementation of a device is called a driver. By
programming against a device interface any robot which has a driver for that de-
vice can be used. This provides a clear abstraction to well-defined devices such as
position estimation, laser scanners, and sonars.

A driver can either send data directly to another driver or a client or it can send
data to all subscribed clients. Incoming data are placed on a message queue. It
is up to each driver or client to process the messages on the queue. The delivery
of data is handled by a separate transport layer. This layer is usually implemented
using TCP sockets but other transport protocols such as CORBA and JINI could
be used as well. A program that contains a set of drivers is called a Player Server.

The Player/Stage project is mature, but mainly provides a hardware abstraction
layer hiding the hardware differences between different robots. The communi-
cation infrastructure provides basic support for publish/subscribe communication
between clients through a Player server. There is no support for specifying the
properties of the input or output of a client.

11.4.11 ROCI

ROCI (Remote Objects Control Interface) is a self-describing, object-oriented,
strongly typed programming framework for developing applications involving multi-
robot teams (Chaimowicz et al., 2003; Cowley, Chaimowicz, and Taylor, 2006;
Cowley, Hsu, and Taylor, 2004). An application in ROCI consists of a number of
distributed modules that have typed input and output pins. A module encapsulates
a process which acts on the data from its input pins and makes results available to
its output pins. The pins of the different modules can be connected in a variety of
ways to create different application instances. Only pins of the same type can be
connected. The connections can also be changed dynamically at run-time. A col-
lection of modules that work together to accomplish some result can be organized
into a task.

When a module assigns data to an output pin all the connected input pins will
be notified about the availability of new data. They can then decide whether they
want to get this data or not. Since data are time-stamped a module can compare the
age of its current input value with the freshly available one. When all consumers
have processed the notification the output data is removed.

ROCI supports easy and efficient distribution of modules over many nodes
where modules can communicate using a typed push-based mechanism. The in-
formation processing infrastructure does not support synchronization or the speci-
fication of properties of data streams apart from their data type.

224

CHAPTER 11. RELATED WORK

11.4.12 S* Software Framework

The S* Software Framework (Rotenstein et al., 2007; Tsotsos, 1997) supports the
development of intelligent control systems in the behavior-based paradigm. It pro-
vides a set of design principles for integrating representations in a behavior-based
controller, which are necessary for learning, cognition, and perception. This is
done by extending a behavior-based architecture with representations which are
used by behaviors both to access information extracted through perception and
reasoning, and to send commands to actuators.

A behavior maintains two sets of references to representations, one used for
input called event representations and the other used for output called action rep-
resentations. This allows a behavior to be implemented by a sense—model—plan—act
process where it first senses a subset of its event representations, constructs an in-
ternal model that is used to reason about the inputs and produce a plan, which is
then carried out by updating the action representations of the behavior. Behaviors
are decoupled by their use of shared representations.

To determine when a behavior is to be executed it maintains a window of atten-
tion by monitoring a subset of its event representations for relevant state changes.
If such a change, called an event, is detected the behavior is triggered as soon as
it becomes idle. Each event has a trigger condition which is a first-order predicate
evaluated each time an operation is performed on one of the event representations.

The S* Software Framework is implemented as a class hierarchy in C++, where
Behavior and Representation are two abstract base classes which can be extended
to implement behaviors and representations. A representation is a shared data
structure with state. Since representations are shared it is important that the in-
ternal data structures are locked, which may cause calls to block if some other part
is updating it. Representations can be chained together to describe an incremental
transformation of sensor data. However, no support is provided for explicit time or
for distributing the computations over multiple computers.

11.4.13 SPQR-RDK

SPQR-RDK is a modular robot development toolkit for mobile robots developed
by Universita di Roma “La Sapienza” (Farinelli, Grisetti, and Iocchi, 2005, 2006).
It provides an infrastructure for executing tasks and sharing information, a remote
inspection capability, and a common robot hardware interface. It has been used to
develop robots for RoboCup soccer, RoboCup rescue, and RoboCare.

The Robot Hardware Interface module encapsulates the functionalities of the
underlying robot platform by providing abstractions for kinematics and devices
such as sensors and actuators. The main concepts are Robot and Device controlling
the robot kinematics and the devices respectively. Each device is connected to a
robot. A specific implementation of a device or a robot is called a driver. Both
devices and robot drivers can be replaced by simulators or logfile players. The
hardware configuration is described in a configuration file.

The Remote Inspection Server provides a general mechanism for remotely in-
specting the internal status of each component of an application and dynamically

225

CHAPTER 11. RELATED WORK

choose what to monitor and when, while limiting the network bandwidth used
and the computational overhead. The remote introspection capability provided by
SPQR-RDK uses TCP for reliable communication, a separate thread to reduce in-
terference with other processes, and a publish/subscribe communication model to
disseminate information.

The Task Manager allows a user to dynamically load modules, to specify their
execution features (execution period, scheduling policy, priority, and so on), and
to export the information to be shared among them. There are three types of tasks:
Asynchronous tasks corresponding to normal threads, periodic tasks corresponding
to asynchronous tasks that are re-spawned with a fixed period, and serial tasks
grouping tasks together whose execution are serialized within the group.

Since using shared memory without any data access policy is difficult the man-
agement of shared data can become very complex. By using conventions, either
explicitly or implicitly, the modularity is reduced. If a module needs information
provided by some other module, then it needs to know where to read the informa-
tion and when the information is available. By providing a specification in the form
of the fype of information provided by a module, the coupling between modules is
reduced.

Therefore the task manager has a Shared Information Register (SIR) sub-com-
ponent that provides a possibility to exchange information through a shared mem-
ory specified by their types. A producer publishes information in the SIR under
a name and consumers can read the information from the SIR at their own pace.
No notification mechanism for informing consumers when new information seems
to be available and no information has been found on what can be specified in the
type. To manage distribution aspects they have a pass-through mechanism which
allows data to be transferred between computers.

11.4.14 YARP

Yet Another Robot Platform (YARP) is an open-source project that provides a plat-
form for developing applications that are real-time, computation-intensive, and in-
volve interfacing with diverse and changing hardware (Fitzpatrick, Metta, and Na-
tale, 2008; Metta, Fitzpatrick, and Natale, 2006). It is developed using the Adaptive
Communication Environment (ACE) (Huston, Johnson, and Syyid, 2003) to pro-
vide support for different operating systems including Windows, Linux, Mac OSX,
and QNX. YARP provides a communication abstraction, a device abstraction, and
a library of signal processing routines for audio and image processing. It has been
used in many applications on a number of different robots (Beltran-Gonzalez and
Sandini, 2005; Brooks et al., 1999; Edsinger-Gonzales and Weber, 2004).
Communication is supported in the form of port objects. A port is an active
object managing multiple connections for a given unit of data either as input or
output. An input port can receive data from multiple connections at different rates
and using different protocols. An output port can send data to many destinations,
where each destination may read the data at a different rate. The use of several
different protocols allows YARP to exploit their different characteristics. Each

226

CHAPTER 11. RELATED WORK

port is typed and has a unique name which is registered in a name server.

When data is written to an output port it is only sent to those connected input
ports which are not busy processing the previous input. In order for all connected
input ports to get a new value the output port has to wait for them to finish. This can
be done in two different ways. Either the output port waits before writing the new
data (called wait-before) or it waits after it has written data and thereby is certain
that the input ports are available when a new value is produced (called wait-after).
The default strategy is not to wait (called no-wait).

While data is being processed by an input port there are three strategies for
handling new input. The single-buffer strategy does not allow new data to be re-
ceived until the previous data has been processed. With the double-buffer strategy
an input port stores two data items. When the first item is being processed a second
item can be received. If more than one item arrives while the first one is processed
then only the latest is kept. This strategy minimizes the data latency. With the
triple-buffer strategy three data items are stored and there will always be a new
item ready to be processed if the producer process is at least as fast as the client
process. As with the double-buffer strategy only the latest data item is kept. This
strategy maximizes throughput.

As with many of the other frameworks YARP provides a light-weight and
highly functional communication infrastructure on a quite low level. No support
is provided for representing time, synchronizing data, or specifying the desired
properties of inputs and outputs.

11.4.15 Discussion

Even though there exist many different frameworks on different abstraction lev-
els, the support provided for knowledge processing is usually limited to distributed
components which can communicate. Most frameworks provide publish/subscribe
communication while some also support the combination of push and pull com-
munication where a producer pushes information to a consumer that buffers the
data to be consumed on demand. What all these frameworks lack is ways for con-
sumers to specify the information that they would like to have. For example, in
DyKnow a knowledge process can specify the start and end time of a stream or
the sampling period and how to approximate missing values. To our knowledge,
there is no robotics framework that supports this type of specification. Some of
the frameworks do however provide ways of specifying when a value has changed
enough for it to be relevant for a consumer, for example S* and CAST.

Another important aspect of knowledge processing that is not supported by
the mentioned frameworks is an explicit representation of time. In DyKnow all
samples are tagged with both the valid time and the available time. This makes it
possible for a knowledge process to reason about when a value is valid, when it
was actually available to the process, and how much it was delayed by previous
processing. DyKnow also supports sample-based sources that periodically read
a sensor or a database and make the result available through a stream generator.
Stream generators also support the caching of historic data which can be used for

227

CHAPTER 11. RELATED WORK

later processing. This allows the specification of streams that begin in the past,
where the content is partially generated from cached historic data.

Since DyKnow explicitly tags samples with time-stamps and each stream is
associated with a declarative policy specifying its properties, it is possible to de-
fine a synchronization algorithm which extracts a sequence of states from a set of
asynchronous streams. Each of these states is valid at a particular time-point and
contains a single value from each of the asynchronous streams valid at the same
time as the state. Some of these values may be approximated as specified by the
state synchronization policy. This is another example of functionality that is miss-
ing from existing approaches.

11.5 Summary

This chapter has compared stream-based knowledge processing middleware to dis-
tributed real-time databases, control architectures, and robotics frameworks pro-
viding general support for integrating sensing and reasoning. The main conclusion
with respect to distributed real-time databases is that they provide complementary
solutions that can be used to further develop knowledge processing middleware
and provide real-time guarantees. Control architectures currently use partial and
specialized solutions to bridge the gap between sensing and reasoning. This ac-
centuates the need for DyKnow, since there are many disparate partial solutions
which would benefit from being integrated. Regarding existing robotics frame-
works the main conclusion is that the support provided for knowledge process-
ing is usually limited to distributed components which can communicate. These
frameworks generally lack explicit representation of time and ways for consumers
to specify the information they would like to have. These two concepts are central
to knowledge processing middleware such as DyKnow.

228

Chapter 12

Conclusions

12.1 Summary

As robotic systems become more and more advanced the need to integrate existing
deliberative functionalities such as chronicle recognition, motion planning, task
planning, and execution monitoring increases. To integrate such functionalities
into a coherent system it is necessary to reconcile the different formalisms used
by the functionalities to represent information and knowledge about the world. To
construct and integrate these representations and maintain a correlation between
them and the environment it is necessary to extract information and knowledge
from data collected by sensors. However, deliberative functionalities tend to as-
sume symbolic and crisp knowledge about the current state of the world while the
information extracted from sensors often is noisy and incomplete quantitative data
on a much lower level of abstraction. There is a wide gap between the informa-
tion about the world normally acquired through sensing and the information that is
assumed to be available for reasoning about the world.

As physical autonomous systems grow in scope and complexity, bridging the
gap in an ad-hoc manner becomes impractical and inefficient. Instead a principled
and systematic approach to closing the sense-reasoning gap is needed. At the same
time, a systematic solution has to be sufficiently flexible to accommodate a wide
range of components with highly varying demands. We therefore introduced the
concept of knowledge processing middleware for a principled and systematic soft-
ware framework for bridging the gap between sensing and reasoning in a physical
agent.

To describe the desired features of knowledge processing middleware a set of
design requirements were specified. Knowledge processing middleware should:

e Support integration of information from distributed sources (requirement
la),

e support processing on many levels of abstraction (requirement 1b),

e support integration of existing reasoning functionalities (requirement 1c),

229

CHAPTER 12. CONCLUSIONS

e support quantitative and qualitative processing (requirement 2),

e support bottom-up data processing and top-down model-based processing
(requirement 3),

e support management of uncertainty (requirement 4),
e support flexible configuration and reconfiguration (requirement 5), and

e provide a declarative specification of the information being generated and
the information processing functionalities available (requirement 6).

Then, stream-based knowledge processing middleware was proposed as one
specific type of middleware which provides an appropriate basis for satisfying
the requirements. Due to the need for incremental refinement of information at
different levels of abstraction, we model computations and processes within the
stream-based knowledge processing framework as active and sustained knowledge
processes working on and producing streams. This step provides a considerable
amount of structure for the integration of the necessary functionalities, but still
leaves certain decisions open in order to avoid unnecessarily limiting the class of
systems to which stream-based knowledge processing middleware is applicable.

We then presented a knowledge processing middleware framework called Dy-
Know which supports the integration of diverse data and knowledge sources with
different existing knowledge processing systems in such a way that the result is
useful for a cognitive robotic system deployed in an uncontrolled environment.
DyKnow supports generating partial and context dependent stream-based repre-
sentations of past, current, and potential future states at many levels of abstraction
in a timely manner. Contextual generation of world state is essential in distributed
contexts where contingencies continually arise which often restrict the amount of
time a system has for assessing situations and making timely decisions. It is our
belief that autonomous systems will have to have the capability to determine where
to access data, how much data should be accessed, and at what levels of abstraction
it should be modeled. We have provided initial evidence that such a system can be
designed and deployed and described several scenarios where such functionality is
useful.

To show the versatility and utility of DyKnow two symbolic reasoning engines
were integrated into DyKnow. By integrating these reasoning engines into Dy-
Know, they can be used by any knowledge processing application. Each integration
therefore extends the capability of DyKnow and increases its applicability.

The first reasoning engine is a metric temporal logical progression engine. Its
integration is made possible by extending DyKnow with a state generation mech-
anism to generate state sequences over which temporal logical formulas can be
progressed. A task planner, TALplanner, is then extended with support for an-
notating plans with monitor formulas in an approach to integrating planning and
execution monitoring. These formulas are evaluated using the progression engine
as the plan is executed. This functionality has been used to implement a logistics
scenario as part of an emergency service application.

230

CHAPTER 12. CONCLUSIONS

The second reasoning engine is a chronicle recognition engine for recognizing
complex events such as traffic situations. The integration is facilitated by extending
DyKnow with support for anchoring symbolic object identifiers to sensor data in
order to collect information about a physical object using the available sensors.
The resulting object linkage structures not only anchor symbols to sensor data, they
also perform incremental object classification to make the classification more and
more specific. Information about the objects in the environment can be collected
using object linkage structures and provided as input to the chronicle recognition
engine, which can then recognize scenarios or behaviors involving these objects.
As a concrete example, a traffic monitoring application was developed which takes
streams of color and thermal images, recognizes and tracks cars in these streams,
and then detects traffic patterns involving the tracked cars.

The first two applications focus on how DyKnow can support closing the sense-
reasoning gap within a single agent. To show that DyKnow also has a potential
for multi-agent knowledge processing, an extension was presented which allows
agents to federate parts of their local DyKnow instances to share information and
knowledge. Using the DyKnow federation concept, a virtual proximity sensor was
developed where a set of UAVs share their current positions and use the execution
monitoring functionality to detect if two UAVs get too close to each other.

Finally, it was shown how DyKnow provides support for the functionalities on
the different levels in the JDL Data Fusion Model, which is the de facto standard
functional model for fusion applications. Note that the focus here was not on in-
dividual fusion techniques but rather on an infrastructure that permits use of many
different fusion techniques in a unified framework.

12.2 Conclusions

In the introduction six requirements on knowledge processing middleware were
presented (Section 1.2.1 on page 11). These requirements are not binary in the
sense that a system either satisfies them or not. Instead, most systems satisfy the
requirements to some degree. In this section we argue that DyKnow provides a
significant degree of support for each of the six requirements.

Requirement 1a: Support integration of information from distributed sources.
DyKnow satisfies this requirement by virtue of three features: CORBA-based im-
plementation, explicit support for representing time, and a stream synchronization
mechanism.

Since DyKnow is implemented on-top of CORBA, its extensive support for
distributed applications is leveraged. For example, it allows different knowledge
processes within the same knowledge processing application to be distributed over
different processes and machines as long as the computing nodes are connected
with some form of network.

All samples in DyKnow contain both a valid time and an available time. This
provides explicit support for modeling important aspects of a distributed system

231

CHAPTER 12. CONCLUSIONS

such as when information is available and when information is valid. It also al-
lows DyKnow to model the delay of the information as the difference between the
available and the valid time. This gives DyKnow, for example, the possibility to
determine which information is the most current, how to control different types of
prioritization and scheduling mechanisms to improve the throughput of the system,
and whether the delays in a system are too long.

The explicit representation of time can also be used to guarantee that informa-
tion arrives in the order it was produced, even though different samples might have
different delays. If the delay of a sample is too long, or if a sample is lost, then
it is possible to approximate the missing value by using the available information.
These functionalities are put to good use in the stream synchronization mechanism
presented in Section 7.8. A major benefit of this mechanism is that the streams
from the different sources in the system do not have to be synchronized when they
enter the system, even though some functionalities require synchronized streams
of states.

Requirement 1b: Support processing on many levels of abstraction. Dy-
Know is designed to provide both general and specific support for knowledge pro-
cessing at multiple levels of abstraction.

General support is provided through fluent streams, where information can be
represented at any abstraction level from raw sampled sensor data and upwards
and where each element can be unstructured or structured with arbitrary complex-
ity. The use of knowledge processes also provides general support for arbitrary
forms of processing. Thus, the information flowing through the system and the
processing performed on this information is not arbitrarily limited by the stream-
based knowledge processing framework or its implementation.

At the same time, DyKnow is explicitly designed to be extensible and to pro-
vide support for information structures and knowledge processing that is more spe-
cific than arbitrary streams and yet useful for a wide array of applications. For ex-
ample, more specific stream support is currently provided for state streams, object
state streams, and streams of recognized chronicles. DyKnow also provides di-
rect support for specific forms of high-level information structures, such as object
linkage structures, and specific forms of knowledge processing, including formula
progression and chronicle recognition. This provides initial support for knowl-
edge processing at higher levels than plain streams of data, together with a suitable
framework for further extensions.

That the support is enough to provide an appropriate framework for supporting
all the functional abstraction levels in the JDL Data Fusion Model was argued in
Chapter 10.

Requirement 1c: Support integration of existing reasoning functionalities.
By providing a general representation in the form of streams, any reasoning func-
tionality whose inputs can be modeled as streams and where the desired properties
on the input streams can be described by policies can easily be integrated using
DyKnow. Due to this general representation it is enough to describe how to model

232

CHAPTER 12. CONCLUSIONS

the input to a reasoning functionality in the form of streams to integrate it. As
two concrete examples, we have shown how progression of temporal logical for-
mulas (Chapter 7) and chronicle recognition (Chapter 8) can be integrated using
DyKnow.

Requirement 2: Support quantitative and qualitative processing. First, since
fluent streams can contain anything, from real values to images to object structures
to qualitative relations, DyKnow provides basic support for both quantitative and
qualitative processing. The structured content of samples also allows quantitative
and qualitative information to be part of the same sample.

Second, DyKnow has explicit support for combining qualitative and quantita-
tive processing in the form of chronicle recognition, metric temporal logical for-
mulas, and object linkage structures. The objects in an object linkage structure
often contain both quantitative and qualitative attributes. For example in the traf-
fic monitoring application, a vision object contains quantitative attributes such as
size and position while an on road object contains qualitative information such as
which road the object is on and whether it is in a crossing or not. Both chronicles
and temporal logical formulas support expressing conditions combining quantita-
tive time and qualitative features and thus support both quantitative and qualitative
processing.

Requirement 3: Support bottom-up data processing and top-down model-
based processing. Streams are directed, which gives the application program-
mer the possibility to do both top-down and bottom-up processing. For example, a
knowledge process taking a stream of high-level objects can create a stream con-
taining information about how the image processing system should focus its detec-
tion and tracking of these objects.

In the DyKnow implementation, it is also possible to change policies for streams
at run-time. This means that it is possible for knowledge processes on one level of
abstraction to control or influence processing on other abstraction levels by replac-
ing their policies. This is another form of bottom-up and top-down processing.

Object linkage structures are an example where explicit support for bottom-
up processing is provided. By looking at the incoming data a more and more
refined classification of the data is made. So far, the object linkage structures
have been purely bottom-up. However, we believe that they are well suited for
combining both bottom-up and top-down processing. For example, if an o