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In the past several years, attempts have been made to
broaden the traditional definition of data fusion as state
estimation via aggregation of multiple sensor streams.
One of the more successful proposals for providing a
framework and model for this broadened notion of data
fusion is the U.S. Joint Directors of Laboratories (JDL)
data fusion model [1, 3] shown in Figure 1. The gap
between such models, which describe a set of functions
which should be components of a deployed system, and
the actual instantiation of data fusion in a software ar-
chitecture is very much an open and unsolved problem.
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Figure 1: Revised JDL data fusion model from [1].

We have developed a knowledge processing middle-
ware framework called DyKnow in an attempt to bridge
the gap. DyKnow was designed, implemented, and
tested in a prototype deliberative/reactive software ar-
chitecture for a deployed unmanned aerial vehicle [2].

Conceptually, DyKnow processes data streams gen-
erated from different sources in a distributed architec-
ture. These streams are viewed as representations of
time-series data and may start as continuous streams
from sensors or sequences of queries to databases.
Eventually they will contribute to qualitative data struc-
tures grounded in the world which can be interpreted as
knowledge by the system. Knowledge producing pro-

cesses combine such streams, by abstracting, filtering
and approximating as we move to higher levels of ab-
straction. In this sense, the system supports conven-
tional data fusion processes, but also less conventional
qualitative processing techniques common in the area
of artificial intelligence. The resulting streams are used
by reactive and deliberative services for control, situ-
ation awareness, monitoring, and planning to achieve
mission goals. A knowledge producing process has dif-
ferent quality of service properties, such as maximum
delay, trade-off between data quality and delay, how to
calculate missing values and so on, which together de-
fine the semantics of the chunk of knowledge created.
The same streams of data may be processed differently
by different parts of the system relative to the needs and
constraints associated with the tasks at hand.

Ontologically, we view the external and internal envi-
ronment of the agent as consisting of physical and non-
physicalentities, propertiesassociated with these enti-
ties, andrelationsbetween these entities. The proper-
ties and relations associated with entities will be called
features. Due to the potentially dynamic nature of a fea-
ture, that is, its ability to change values through time, a
fluentis associated with each feature. A fluent is a func-
tion of time whose range is the feature’s type.

Grounding and anchoring internal representations of
external entities in the world is one of the great open
problems in robotics. Consequently, middleware sys-
tems for knowledge processing must provide suitable
support for the management of representations and their
relation to the external entities they represent. In Dy-
Know anobject identifierrefers to a specific entity and
a link between two object identifiers represents that they
are hypothesized as refering to the same entity. The col-
lection of object identifiers linked toghether represents
the current knowledge about the identity of the entity.
The object structures are one of the main concepts used
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on the object assessment level of the JDL model where
they are used to reason about objects and object types.

The fluents associated with features are the target of
the representation in DyKnow. A feature has exactly
one fluent in the world which is its true value over time.
The actual fluent will almost never be known due to un-
certain and incomplete information, instead we create
approximations. Therefore, the primitive unit of knowl-
edge is thefluent approximation. There are two types
of fluent approximations, primitive and computed. A
primitive fluent approximation acquires its values from
an external source, such as a sensor or human input,
while a computed fluent approximation is a function of
other fluent approximations. To do the actual compu-
tation acomputational unitis used. The computational
unit is a function taking a number of fluent approxima-
tions as input and generating a new fluent approxima-
tion as output. The fluent approximation is a very gen-
eral concept and are used on all the JDL levels to rep-
resent dynamic information while computational units
are used to encapsulate existing data fusion algorithms.

Since a fluent may be approximated in many different
ways each feature may have many approximated fluents
associated with it. Each fluent approximation is speci-
fied by a declarativepolicy which represents how it is
created and what properties it has. The policy is the
context in which the observations of the feature are in-
terpreted. The policy can also be used by other services
to reason about the fluent approximations. This is very
useful at the process and user refinement levels where
the system or the user should be able to adapt the cur-
rent data fusion process as the world evolves.

Two important concepts in many applications are
states and events. In DyKnow astate is a composite
feature which is a coherent representation of a collec-
tion of features. A state synchronizes a set of fluent
approximations, one for each component feature, into
a single fluent approximation for the state. The need
for states is obvious if we consider that we might have
several sensors each providing a part of the knowledge
about an object, but whose fluent approximations have
different sample rates or varying delays. The state con-
cept is the other important concept on the object assess-
ment level since it is used to fuse data streams from dif-
ferent sensors related to a single object into a coherent
representation of that object.

An event is intended to represent some form of
change or state transition. Events can either be prim-
itive or generated. Generated events can either be ex-
tracted from fluent approximations or computed from

other events. DyKnow currently has support for two
types of computed events. The first is the evaluation of
linear temporal logic (LTL) formulas becoming true or
false. The second is the recognition of scenarios, called
chronicles, composed of temporally related events, ex-
pressed by a simple temporal constraint network. An
LTL formula is evaluated on a state stream containing
all the features used by the LTL formula, so the state ex-
traction mechanism mentioned above is a prerequisite
for the LTL formula evaluation. The chronicle recogni-
tion engine takes events representing changes in fluent
approximations as input and produces events represent-
ing the detection of scenarios as output. These can be
used recursively in higher level structures representing
complex external activity such as vehicle behavior.

The event concept is important on the situation as-
sessment level of the JDL model where relations be-
tween objects should be recognized. Situations can be
represented by computed events such as temporal logic
formulas or chronicles describing temporal relations be-
tween events. This way different features are fused to-
gether over time in order to extract more abstract sit-
uations. The computed events are also well suited to
extract higher level events that can be reported to the
user as an indication that something important has hap-
pend. This abstraction can be used on the user refine-
ment level to reduce the cognitive load on the user.

To summarize, we believe that DyKnow provides
suitable concepts to integrate existing software and al-
gorithms related to data fusion and world modelling in
general. Observe that the focus is not on individual data
fusion techniques but on the infrastructure which per-
mits the use of many different data fusion techniques in
a unified framework.
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