
A Knowledge Processing Middleware Framework and its
Relation to the JDL Data Fusion Model

Fredrik Heintz and Patrick Doherty
Department of Computer and Information Science

Linköpings universitet, Sweden
{frehe, patdo }@ida.liu.se

Abstract – Any autonomous system embedded in a dynamic and
changing environment must be able to create qualitative knowl-
edge and object structures representing aspects of its environment
on the fly from raw or preprocessed sensor data in order to rea-
son qualitatively about the environment and to supply such state
information to other nodes in the distributed network in which it
is embedded. These structures must be managed and made ac-
cessible to deliberative and reactive functionalities whose suc-
cesful operation is dependent on being situationally aware of the
changes in both the robotic agent’s embedding and internal envi-
ronments. DyKnow is a knowledge processing middleware frame-
work which provides a set of functionalities for contextually creat-
ing, storing, accessing and processing such structures. The frame-
work is implemented and has been deployed as part of a delib-
erative/reactive architecture for an autonomous unmanned aerial
vehicle. The architecture itself is distributed and uses real-time
CORBA as a communications infrastructure. We describe the sys-
tem and show how it can be used to create more abstract entity and
state representations of the world which can then be used for situ-
ation awareness by an unmanned aerial vehicle (UAV) in achiev-
ing mission goals. We also show that the framework is a working
instantiation of many aspects of the JDL data fusion model.1

Keywords: Situation awareness, knowledge representation, JDL
data fusion model, cognitive robotics, sensor and symbol integra-
tion, middleware

1 Introduction
In the past several years, attempts have been made to
broaden the traditional definition of data fusion as state es-
timation via aggregation of multiple sensor streams. There
is a perceived need to broaden the definition to include the
many additional processes used in all aspects of data and
information fusion identified in large scale distributed sys-
tems. In this case, the nodes in such systems may not only
include sensors in the traditional sense, but also complex
systems where data and information are fused at many dif-
ferent levels of abstraction to meet the diverse situation as-
sessment needs associated with different applications.

One of the more successful proposals for providing a
framework and model for this broadened notion of data fu-
sion is the U.S. Joint Directors of Laboratories (JDL) data
fusion model [1] and its revisions [2, 3]. In [2] for exam-
ple, data fusion is defined as “the process of combining data

1This work is supported in part by the Wallenberg Foundation,
Sweden and an NFFP03 research grant (COMPAS).

or information to estimate or predict entity states” and the
data fusion problem “becomes that of achieving a consis-
tent, comprehensive estimate and prediction of some rele-
vant portion of the world state”.

The gap between models, such as the JDL data fusion
model, which describe a set of functions or processes which
should be components of a deployed system to the actual in-
stantiation of data fusion in a software architecture in this
broader sense is very much an open and unsolved prob-
lem. In fact, it is the belief of the authors that architectural
frameworks which support data and information fusion in
this broader sense have to be prototyped, tested, analyzed
in terms of performance and iterated on, in order to eventu-
ally support all the complex functionalities proposed in the
JDL data fusion model.

In this paper, we will describe an instantiation of parts of
such an architectural framework which we have designed,
implemented, and tested in a prototype deliberative/reactive
software architecture for a deployed unmanned aerial vehi-
cle [4, 5]. The name given to this architectural framework
which supports data fusion at many levels of abstraction is
DyKnow2. DyKnow is a knowledge processing middleware
framework used in our unmanned aerial vehicle (UAV) ar-
chitecture to support timely generation of state information
about entities in the environment in which the UAV is em-
bedded and entities internal to the UAV itself. The latter is
important for monitoring the execution of the autonomous
system itself.

The DyKnow system is platform independent in the
sense that the framework can be used in many different
complex systems. Consequently, we believe it is of gen-
eral interest to the data fusion community at large. One
aspect of DyKnow which is particularly interesting is the
fact that it was designed and prototyped independently of
any knowledge about the JDL data fusion model. The re-
quirements for specification were those necessary to reason
about world state at very high levels of abstraction and to be
able to take advantage of artificial intelligence techniques
for qualitative situation assessment and monitoring of the
UAV and dynamic entities in its embedded environment. It
turns out that the resulting prototype is a reasonable instan-

2“DyKnow” is pronounced as “Dino” in “Dinosaur” and stands
for Dynamic Knowledge and Object Structure Processing.

tiation of many of the JDL data fusion levels and provides
insight into many of the details that are important in making
such architectures a reality. For example, such systems are
not strictly hierarchical and often involve complex interac-
tions among the layers. This implies that it is not feasible
to specify and implement each level separately. This per-
ceived weakness in the JDL model was in fact pointed out
by Christensen in a recent panel debate concerning the JDL
model [6].

1.1 Structure of the Paper

The paper is structured as follows. In section 2, an overview
of the important concepts used in the definition of the Dy-
Know framework is given. In section 3, we consider the
DyKnow framework in the context of the revised JDL data
fusion model. In section 4, we describe a UAV scenario in-
volving vehicle identification and tracking, where DyKnow
has been used to advantage. In section 5, some work re-
lated to the DyKnow framework is presented. In section 6,
we conclude and summarize the work.

2 DyKnow

The main purpose of DyKnow is to provide generic and
well-structured software support for the processes involved
in generating state and entity abstractions about the external
and internal environments of complex systems, such as our
experimental UAV system. Generation of state and entity
descriptions is done at many levels of abstraction beginning
with low level quantitative sensor data. The result is often
qualitative data structures which are grounded in the world
and can be interpreted as knowledge by the system. The
resulting structures are then used by various functionalities
in the deliberative/reactive architecture for control, situa-
tion awareness and assessment, monitoring, and planning
to achieve mission goals.

2.1 Knowledge Processing Middleware

Conceptually, DyKnow processes data streams generated
from different sources in a distributed architecture. These
streams may be viewed as representations of time-series
data and may start as continuous streams from sensors or
sequences of queries to databases. Eventually they will
contribute to definitions of more complex composite knowl-
edge structures. Knowledge producing processes combine
such streams, by abstracting, filtering and approximating
as we move to higher levels of abstraction. In this sense,
the system supports conventional data fusion processes,
but also less conventional qualitative processing techniques
common in the area of artificial intelligence. The resulting
streams are used by different reactive and deliberative ser-
vices which may also produce new streams that can be fur-
ther processed. A knowledge producing process has differ-
ent quality of service properties, such as maximum delay,
trade-off between data quality and delay, how to calculate
missing values and so on, which together define the seman-
tics of the chunk of knowledge created for use. The same
streams of data may be processed differently by different

image
processing

camera
platform

helicopter
platform

task procedures

chronicle
recognition

execution
monitoring

streams

Databases

DyKnow

S
e
r
v

ic
e
sS

e
n

s
o

r
s

GIS

Fig. 1: An instantiation of the DyKnow knowledge process-
ing middleware used in the WITAS project.

parts of the architecture relative to the needs and constraints
associated with the tasks at hand.

In Figure 1 an example of a concrete instantiation of the
DyKnow framework that we use in our experimental UAV
architecture is shown. There are three virtual sensors, the
image processing subsystem, the camera platform and the
helicopter platform. We have a geographical information
system (GIS) which is a database that contain information
about the geography, like road structures and buildings, of
the region we are flying in. The services include the reactive
task procedures which are components linking the deliber-
ative services with the camera and helicopter controllers, a
chronicle recognition engine for reasoning about scenarios,
and a temporal logic progression engine for execution mon-
itoring and other tasks related to evaluating temporal logic
formulas.

2.2 Ontology

Ontologically, we view the external and internal environ-
ment of the agent as consisting of physical and non-physical
entities, propertiesassociated with these entities, andre-
lations between these entities. The properties and rela-
tions associated with entities will be calledfeatures. Fea-
tures may be static or dynamic. Due to the potentially dy-
namic nature of a feature, that is, its ability to change val-
ues through time, afluent is associated with each feature.
A fluent is a function of time whose range is the feature’s
type. Some examples of featuters would be thevelocityof
an object, theroad segmentof a vehicle, and thedistance
betweentwo car objects.

2.3 Object Identifiers and Domains

An object identifierrefers to a specific entity and provides
a handle to it. Example entities are “the colored blob”, “the
car being tracked” or “the entity observed by the camera”.

The same entity in the world may have several different
identifiers referring to it and a composite entity (consisting
of a set of entities) can be referred to with a single iden-
tifier. Three examples of this are shown in Figure 2. In
the first example we have two representations of the same
entity, in this caseblob1 andblob2 which could be blobs
extracted from two different pictures, that we may or may

not know refer to the same entity. In the second example
we haveblob3 andcar1 which represents two different as-
pects of the same entity. An example of object identifiers
referring to a composite entity may occur when several ob-
ject identifiers refer to the same entity at different levels of
abstraction, such as the car entity referred to bycar2 and
the hood and wheel entities referred to byhoodandwheel.

Representation
(DyKnow)

World

blob1 blob2 blob3 car1 car2 hood wheel

Fig. 2: Examples of relations between object identifiers and
entities.

An agent will most often not know the exact relation be-
tween object identifiers, whether they refer to the same en-
tities or not, because they are generated for different rea-
sons and often locally, but there are mechanisms for relating
them presented in Section 2.6. The basic constraints placed
on object identifiers are that they are unique and only as-
signed to an entity once (single assignment).

An object domainis a collection of object identifiers re-
ferring to entities with some common property, such as all
red entities, colored blobs found in images or qualitative
structures such as the set of cars identified in a mission. An
object identifier may belong to more than one domain and
will always belong to the domain “top”. Object domains
permit multiple inheritance and have a taxonomic flavor.
The domains an object identifier belongs to may change
over time, since new information provides new knowledge
as to the status of the entity. This makes it possible to create
domains such as “currently tracked entities” or “entities in
regions of interest”.

2.4 Approximating Fluents

The fluents associated with features are the target of the rep-
resentation in DyKnow. A feature has exactly one fluent in
the world which is its true value over time. The actual fluent
will almost never be known due to uncertain and incomplete
information. Instead we have to create approximations of
the fluent. Therefore, the primitive unit of knowledge is the
fluent approximation. In DyKnow there are two represen-
tations for approximated fluents, thefluent generatorand
thesample trace. The fluent generator is a procedure which
can compute an approximated value of the fluent for any
time-point. The sample trace is a set of observations of a
fluent or samples of an approximated fluent. Since a flu-
ent may be approximated in many different ways each fea-
ture may have many approximated fluents associated with
it. The purpose of DyKnow is to describe and represent
these fluent generators and sample traces in such a way that
they correspond to useful approximations of fluents in the
world.

There are two types of fluent approximations, primitive
and computed fluent approximations. Primitive fluent ap-
proximations acquire their values from an external source,
such as a sensor or human input, while computed fluent ap-
proximations are functions of other fluent approximations.
To do the actual computation a procedural element called a
computational unitis used. The computational unit is bas-
cially a function taking a number of fluent approximations
as input and generating a new fluent approximation as out-
put. A picture of a general computed sample trace is shown
in Figure 3.

computational
unit

sample trace

sample trace

sample trace

Fig. 3: A computed sample trace in DyKnow.

Since a fluent generator represents a total function from
time to value and the sample trace only represents a set of
samples the fluent generator must be able to estimate the
value at any time-point whether or not a sample exist at that
time-point. Since this estimation can be made in many dif-
ferent ways, depending on how the samples are interpreted,
it is possible to create many different fluent generators from
a single sample trace. And, from each of these fluent gen-
erators we can generate many different sample traces by
sampling the fluent generator at different time-points. How
these transformations are done are described by declarative
policies. Thefluent policyspecifies a transformation from
a sample trace to a fluent generator, and thefluent stream
policy specifies a transformation from a fluent generator to
a sample trace. A policy may be viewed as the context in
which the observations in a sample trace are interpreted.
The resulting fluent approximation is the meaning of the
feature in that context. An overview of how approximated
fluents can be created from an existing sample trace approx-
imation is shown in Figure 4.

We are primarily interested in distributed systems where
the sources of data often determine its quality and latency.
These and other characteristics such as access and update
constraints must be taken into account when generating and
using fluent approximations associated with specific data
sources.Locationsare introduced as a means of indexing
into data sources which generate fluent approximations as-
sociated with specific features. A feature may be associ-
ated with several fluent approximations located in different
places in the architecture. By representing these different
places with locations we make it possible to model and rea-
son about them. Different locations might give the approx-
imated fluents hosted different properties by only allowing
certain types of access to them. For instance, position of an

sample trace fluent generator

sample trace

sample trace

sample trace

sample trace

sample trace

sample trace

sample trace

sample trace

sample trace

fluent generator

fluent generator

fluent
policy

fluent
policy

fluent
policy

fluent
stream
policy

fluent
stream
policy

fluent
stream
policy

Fig. 4: An overview of how new approximated fluents can
be created from an existing sample trace approximation.

autonomous agent may be accessed directly from a dense
stream from a virtual sensor or from a discrete stream in a
database. This is useful when processing data since various
functionalities have different requirements on type, quality,
density of data, etc. Control modes have much different
requirements on feature data than inferencing mechanisms
do.

2.5 States and Events

Two important concepts in many applications are states and
events. In DyKnow astateis a composite feature which is a
coherent representation of a collection of features. A state
synchronizes a set of fluent approximations for the compo-
nent features into a single fluent approximation for the state
as shown in Figure 5. The value of the new fluent approxi-
mation, which actually is a vector of values, can be regarded
as a single value for additional processing, i.e. a state where
all the components have values at the same time-points (this
might be relaxed, so that all the values are within a certain
time-window depending on the properties of the state fea-
tures). The need for states is obvious if we consider that
we might have several sensors each providing a part of the
knowledge about an object, but whose fluent approxima-
tions have different sample rates (implying samples at dif-
ferent time-points).

syn
ch

ro
n

ize

sample trace

sample trace

sample trace

Fig. 5: A synchronized sample trace in DyKnow.

A concrete example is that we have streams of positions
given in pixel coordinates and streams of camera states de-
scribing the position and direction of the camera. In order
to find out what coordinate in the world a pixel position cor-
responds to we need to synchronize these two streams. If
we have a position at time-pointt we want to find a cam-
era state which is also valid at time-pointt. In the simplest
case there exist such a sample, but in a more general (and
realistic) case we have to either find the “best” camera state
in the stream or estimate what the camera state would be
at time-pointt from the observed samples. Three simple
strategies for estimating the sample att is to take the clos-
est sample beforet, the closest sample aftert or the closest
sample either before or aftert. Close is here defined in the
valid time domain.

The problem of creating coherent states from data
streams is non-trivial and can be realized in many differ-
ent ways. In DyKnow the synchronization strategy is de-
scribed by a policy called thestate policy. If the existing
pre-defined synchronization strategies are not adequate for
an application then a computational unit can be defined and
used as a general mechanism for extracting states.

An eventis intended to represent some form of change
or state transition. Events can either be primitive, e.g. a
sample received from a sensor can be seen as an event, or
generated, e.g. the event of the approximated fluentf reach-
ing a peak in its value. Generated events can either be ex-
tracted from fluent approximations or computed from other
events. In DyKnow it is possible to define primitive events
on approximated fluents, mainlychange eventssuch as flu-
ent approximationf changed its value with more than 10%
since the last change event, or the value off was updated
(but might not have been changed). Events are most often
used as triggers or inputs to complex event recognition en-
gines such as the chronicle recognition engine used in our
UAV architecture.

DyKnow currently has support for two types of com-
puted events. The first is the evaluation of linear temporal
logic (LTL) formulas becoming true or false. The second
is the recognition of scenarios, called chronicles, composed
of temporally related events (expressed by a temporal con-
straint network). The LTL formulas are evaluated on a state
stream containing all the features used by the LTL formula,
so the state extraction mechanism mentioned above is a pre-
requisite for the LTL formula evaluation. The chronicle
recognition engine, on the other hand, takes events repre-
senting change in fluent approximations as input and pro-
duces other events representing the detection of scenarios as
output. These can be used recursively in higher level struc-
tures representing complex external activity such as vehicle
behavior. In summary, the data flow state extraction func-
tionality supported by DyKnow has to be flexibly support-
ive and adaptive to the different functionalities which will
use the data.

2.6 Objects, Classes and Identity

Grounding and anchoring internal representations of exter-
nal entities in the world is one of the great open problems

in robotics. Consequently, middleware systems for knowl-
edge processing must provide complex support for the man-
agement of representations and their relation to the external
entities they represent.

It is often the case that there are several object identifiers
referring to the same entity in the world. For example, a
vehicle is an object which can enter a tunnel. The object
which leaves the tunnel may or may not be the same entity.
One has to reason about both possibilities until additional
constraints resolve the ambiguity.

We require a mechanism for reasoning about the relation
between object identifiers, including finding those object
identifiers which actually codesignate with the same entity
in the world. When two object identifiers are hypothesized
as referring to the same entity in the world, a link is created
between them. The collection of object identifiers referring
to the same entity in the world and the links between them
is called anobject linkage structure.

We have separated the object identity (i.e. what entity in
the world an object identifier refers to) from the object state.
Classes provides a mechanism for specifying certain rela-
tionships between the two, by regulate the minimum state
required for certain classes of object identifiers. Links pro-
vides the mechanism for describing relations between ob-
ject identifiers, i.e. to reason about the identity of object
identifiers.

The object linkage structure makes it possible to model
each aspect of an entity as a class and then provide the con-
ditions for when an instance of the class should be linked to
an instance of another class. For example, in the traffic do-
main we model the blobs extracted by the image processing
subsystems as separate object identifiers belonging to the
class VisionObject and objects in the world as object iden-
tifiers belonging to the class WorldObject. We also provide
a link type between these classes in order to describe the
conditions for when a vision object should be hypothesized
as being a certain world object. This simplifies the mod-
eling since each aspect can be modeled separately, it also
simplifies the classification, tracking and anchoring of the
objects.

To describe a collection of object identifiers representing
an aspect of an object, aclass is used. A class describes
what fluent approximations all instances should have and
includes four constraints, thecreate, add, codesignate, and
maintain constraints, that regulate the membership of the
class. If a create constraint is satisfied then a new object
identifier is created and made an instance of the class. If
the add constraint for an object identifier is satisfied then
it is considered an instance of the class and it is added
to the class domain. A codesignation constraint encodes
when two objects of the class should be considered identi-
cal. The maintain constraint describes the conditions that
always should be satisfied for all instances of a class. If
the maintain constraint is violated the object identifier is re-
moved from the class. The maintain constraint represents
the essential and invariant properties of a class. A con-
straint can be any event, but it is usually an LTL formula.
Constraints can only use the fluent approximations that are
required by a class in their definitions.

A link type represents the potential that objects from two
classes might represent the same entity. The link specifi-
cation contains three constraints, theestablish, reestablish,
andmaintain constraints. If an establish constraint, defined
on objects from the linked-from class (a link is directed), is
satisfied then a new instance of the linked-to class is cre-
ated and a link instance is created between the objects. An
example of this is given in Figure 6 if read from left to
right. The establish constraint represents the conditions for
assuming the existence of another, related, aspect of an en-
tity. For example, in our application we assume all vision
objects are related to a world object, therefore a new world
object is created if a vision object is not already linked to
one. A reestablish constraint encodes when two existing
objects, one from each class, should be linked together. An
example of this is given in Figure 7 if read from left to right.
When a link instance is created a maintain constraint, which
is a relation between the two objects, is set up in order to
monitor the hypothesis that they are actually referring to the
same entity in the world. If it is violated then the link in-
stance is removed which is the case in Figure 7 if read from
right to left.

new vehicle

establish

new car

establish

delete car

e1

obj1

e1

obj1 vehicle obj1 vehicle car

e1

delete vehicle

Fig. 6: An example of creating and deleting a linked object.

reestablish

link

violate maintain

constraint

obj1

e1

vehicle1 obj1 vehicle

e1

Fig. 7: An example of reestablishing a link and violating its
maintain constraint.

For a more detailed account of object linkage structures
in DyKnow, see [7].

2.7 Implementation

All of the concepts described above are implemented in
C++ using the TAO/ACE [8] CORBA implementation. The
DyKnow implementation provides two services. The do-
main and object manager (DOM) and the dynamic object
repository (DOR). The DOM manages object identifiers,
domains, classes and objects. The DOR manages features,
fluent approximations, states and events. To evaluate LTL
formulas we use our own implementation of the progression
algorithm presented in [9]. Complex dynamic scenarios in-
volving single or multiple entities are recognized online us-
ing the C.R.S. chronicle recognition system from France
Telecom which is based on the IxTeT chronicle recognition
system [10].

3 JDL Data Fusion Model

The JDL data fusion model is the most widely adopted
functional model for data fusion. It was developed in 1985
by the U.S. Joint Directors of Laboratories (JDL) Data Fu-
sion Group [1] with several recent revisions proposed [2, 3].

The data fusion model originally divided the data fusion
problem into five different functional levels (but there are
currently some discussions regarding level 0 and level 4).
The levels as presented in [2] are shown in Figure 8 and
described below.

• Level 0- Sub-Object Data Assessment: estimation and
prediction of signal- or object-observable states on the
basis of pixel/signal-level data association and charac-
terization.

• Level 1 - Object Assessment: estimation and predic-
tion of entity states on the basis of inferences from ob-
servations.

• Level 2- Situation Assessment: estimation and predic-
tion of entity states on the basis of inferred relations
among entities.

• Level 3 - Impact Assessment: estimation and pre-
diction of effects on situations of planned or es-
timated/predicted actions by the participants (e.g.,
assessing susceptibilities and vulnerabilities to es-
timated/predicted threat actions, given one’s own
planned actions).

• Level 4 - Process Refinement:adaptive data acquisi-
tion and processing to support mission objectives.

Sub-Object
Assessment

Level 0
Processing

Assessment

Processing
Level 1

Object
Assessment

Processing
Level 2

Situation
Assessment

Processing
Level 3

Impact

Processing
Level 4

Refinement
Process

Database Management

System

DATA FUSION DOMAIN

Fig. 8: Revised JDL data fusion model from [2]

In this section we will go through each of the levels and
describe how its functionalities can be implemented using
the DyKnow middleware. By this we claim that the con-
cepts provided by DyKnow are suitable for implementing
parts of the JDL data fusion model. It is important to realize
that DyKnow does not solve the different fusion problems
involved, but rather provides a framework where different
specialized fusion algorithms can be integrated and applied

in a data fusion application. DyKnow also provides support
for a number of special fusion problems, such as the fusion
of several objects from a class into a single object of that
class or the fusion of objects from many different classes
into a single object of another class.

3.1 Level 0 Data Fusion

On this level, fusion on the signal and sub-object level
should be made. Since the object identifiers can refer to any
entity, including sensors and entities which may be an ob-
ject on its own or not, we can represent and work on features
such as “signal from sensor S” and “property of blob found
by image processing system”. Fusion on this level would
be implemented by computational units. The purpose of
the computational units is to reduce the noise and uncer-
tainty in the fluent approximations in order for the higher
layers to get the best possible approximations to work with.
The sub-object features are used mostly at level 1 to create
coherent object states.

3.2 Level 1 Data Fusion

On this level, sub-object data should be fused into coherent
object states. In DyKnow there are mainly two functionali-
ties used, state aggregation and the creation of object link-
age structures. A state collects a set of sub-object features
(which could represent properties of an object) into a state
which can be used as a synchronized value similar to the
value of a struct in C. Linkage structures are then used to
reason about the identity of objects and to classify existing
objects.

In the linkage structure two special cases of data fusion
are needed. The first is the fusion of codesignated ob-
jects, i.e. when two or more objects from the same class
are hypothesized as actually being the same entity, where
the knowledge related to each of these objects have to be
fused into a single object. There are two modes of doing
this fusion; it can either be done continuously, so that all
the individual object instances still exist but their content
is continually fused into a new object, or it can be as a
one-shot fusion where all knowledge at the moment of the
codesignation is fused into a single new object and the old
objects are deleted.

The second special case is the fusion of several different
objects from different classes into a single object. This is
the case when an object is linked-to from more than one
object of different classes. For example, assume our robot
has both a sonar and a camera, each sensor provides sub-
object fluent approximations containing the sensor readings
related to entities in the world. If the entity sensed by the
sonar and the entity sensed by the camera are hypothesized
as being the same entity, the position fluent approximation
of the camera state and the position fluent approximation
of the sonar state must be merged into a single position flu-
ent approximation, representing the combined knowledge
about the entity. In DyKnow this would be done using a
computational unit which takes two data streams as input,
as shown in Figure 9, one with camera positions and one
with sonar positions and using some algorithm to compute

a new fluent approximation, the combined position in the
world. The streams will be generated as long as the hy-
pothesis that the three objects are the same is maintained.

PositionMerger

camera position

sonar position

combined position

Fig. 9: An example of level 1 fusion of two level 0 fluent
approximations.

In DyKnow fluent approximations from level 1 mainly
interact with level 2 by providing coherent object states for
computing and detecting situations. Level 3 is also very im-
portant since it is responsible for checking the hypothetical
object linkage structures by continually checking the im-
pact of new observations on the current hypotheses. Since
the computations on this level can be time consuming, the
interactions with level 4 are also important in order to main-
tain a steady update of the most important fluent approxi-
mations for the moment.

3.3 Level 2 Data Fusion
On this level, relations between objects fused together on
the previous levels should be detected as well as more com-
plex situations being represented and recognized. The de-
tection of events, both primitive and computed, are impor-
tant tools to model situations. Computed events can e.g. be
temporal logic formulas or chronicles describing temporal
relations between objects. In this fashion different features
are fused together over time in order to extract more ab-
stract situations that are features in themselves. Collections
of objects can also be aggregated into states in order to syn-
chronize them to a coherent situation.

Properties, relations, states and events are all represented
by fluent approximations in DyKnow. Sets of entities be-
longing to concepts such as “the set of all cars that have
been observed to make reckless overtakes in the last 30
minutes” can be described and maintained through the use
of domains described by classes. Classes function as clas-
sification procedures which add all object identifiers which
satisfy the associated add constraint to the domain and keep
them as members as long as the maintain constraint for the
object identifier is not violated. By belonging to a class
certain fluent approximations related to the object identifier
are guaranteed to exist and to have certain properties de-
scribed by the maintain constraint. The maintain constraint
represents invariant properties of entities belonging to the
class.

Assuming these constructs, we can easily create a stream
with all updates in the car states of those object identifiers
that have been detected as reckless vehicles. The stream
corresponds to a non-trivial set of dynamic knowledge com-
puted from sensors and continually being correlated to the
current state of the world model as well as being monitored
by level 3 data fusion.

Apart from the input provided by fluent approximations
at level 1, the interactions of level 2 are mainly with level
3 where fluent approximations representing complex situ-
ations can be used to maintain object linkage structures as

well as create new object identity hypotheses. For instance
the example given in [2] about the detection of a missing
SA-6 unit in a battery can be handled by a create constraint
on the SA-6 class triggered by the detection of an incom-
plete SA-6 battery. Given a computed event that is detected
when an incomplete battery is found, this event could be
used to trigger the creation of a new SA-6 instance. In
this case a monitor could also be set up to make sure the
complete SA-6 battery is detected since all units have been
found. This monitoring would be handled by level 3 data
fusion.

3.4 Level 3 Data Fusion

On this level, objects and situations should be used to assess
the impact on the current actions and plans of the agent. To
assess the impact, different types of monitoring are done,
among others the execution monitoring of plans and behav-
iors and the monitoring of object hypotheses. To implement
these monitors the different event detection mechanisms
can be used. Currently, we use LTL formulas to model the
temporal aspects of execution and hypothesis validation.

Level 3 interacts with both level 1 and level 2 since the
fluen approximations produced on those levels are the ones
used as input to impact assessment. The detection of vio-
lations of monitored constraints will lead to changes at the
lower levels.

3.5 Level 4 Data Fusion

On the fourth and final level, process refinement is handled.
In DyKnow this usually corresponds to changing what flu-
ent approximations and classes are currently being com-
puted. This is related to focus of attention problems where
the most important fluent approximations should be com-
puted while less important fluent approximations have to
stand back in times of high loads. To support focus of at-
tention, fluent approximation and class specifications can
be added and deleted at run-time.

Another tool used for refinement are the policies supplied
with fluent approximations. By changing the policies of the
fluent approximations the load can be reduced. For exam-
ple, if the current policy for a fluent approximation of the
position given by the sonar sensor is to sample it 10 times a
second and the latency on the higher level approximations
computed from this is longer than 100ms then the sample
rate could be lowered to e.g. 5 times a second or some-
thing more appropriate until the load goes down again. It
is also possible to setup filters to remove certain samples
or events. For example, instead of receiving all samples,
only receive a sample when the value has changed more
than 10%. Changes in policies can be made dynamically
and can later be changed back to the original policy.

Level 4 interacts with all the other levels since it controls
the context within which those are being computed as well
as controlling what is actually being computed.

4 Example Scenario
Picture the following scenario. An autonomous unmanned
aerial vehicle (UAV), in our case a helicopter, is given a

mission to identify and track vehicles with a particular sig-
nature in a region of a small city in order to monitor the
driving behavior of the vehicles. If the UAV finds vehicles
with reckless behavior it should gather information about
these, such as what other vehicles they are overtaking and
where they are going in crossings. The signature is pro-
vided in terms of color and size (and possibly 3D shape).
Assume that the UAV has a 3D model of the region in ad-
dition to information about building structures and the road
system. These models can be provided or may have been
generated by the UAV itself. Additionally, assume the UAV
is equipped with a global positioning system (GPS) and in-
ertial navigation system (INS) for navigation purposes and
that its main sensor is a camera on a pan/tilt mount.

One way for the UAV to achieve its task would be to initi-
ate a reactive task procedure (parent procedure) which calls
an image processing module with the vehicle signature as a
parameter. The image processing module will try to iden-
tify colored blobs in the region of the right size, shape and
color as a first step. The fluent approximations of each new
blob, such as RGB values with uncertainty bounds, length
and width in pixels and position in the image, are associ-
ated with a vision object (i.e. an object identifier which is
an instance of the class VisionObject). The image process-
ing system will then try to track these blobs. As long as the
blob is tracked the same vision object is updated. From the
perspective of the UAV, these objects are only cognized to
the extent that they are moving colored blobs of interest and
the fluent approximations should continue to be computed
while tracking.

Now one can hypothesize, if the establish constraint of
the vision to world object link is satisfied, that the blob ac-
tually represents an object in the world by creating a rep-
resentation of the blob in the world. New fluent approxi-
mations, such as position in geographical coordinates, are
associated with the new world object. The geographic co-
ordinates provide a common frame of reference where po-
sitions over time and from different objects can be com-
pared. To represent that the two objects represents two as-
pects of the same entity the vision object is linked to the
world object. Since the two objects are related, the flu-
ent approximations of the world object will be computed
from fluent approximations of the linked-from vision ob-
ject. When the vision object is linked to a world object the
entity is cognized at a more qualitative level of abstraction,
yet its description in terms of its linkage structure contains
both cognitive and pre-cognitive information which must be
continuously managed and processed due to the interdepen-
dencies of the fluent approximations at various levels. We
have now moved from level 0 to level 1 in the data fusion
model.

Each time a new vision object is created, it is tested
against each existing world object to see if they could rep-
resent the same entity. If the world object passes the test,
i.e. the reestablish constraint of the link between vision and
world objects is satisfied, then a link is created between it
and the new vision object. In this case, the world object flu-
ent approximations would be updated using fluent approx-
imations from the new vision object for as long as they re-

main linked. This is an example where the world object has
been reacquired, to use the anchoring terminology. Another
possibility to regain the tracking is when two world objects
are hypothesized as being the same entity, but where only
one is currently linked to a vision object. This happens if
the codesignation constraint between the two world objects
is satisfied. In this case, they are merged into a single world
object to which the vision object is linked.

Since links only represent hypotheses, they are always
subject to becoming invalid given additional observations.
Therefore the UAV agent continually has to verify the va-
lidity of the links. This is done by associating maintenance
constraints with links. If the constraint is violated then the
link is removed, but not the objects. A maintenance con-
straint could compare the behavior of the objects with the
normative and predicted behavior of these types of objects.
The monitoring of hypotheses at level 3 in the data fusion
model uses fluent approximations computed at all the lower
levels.

The next qualitative step in creating a linkage structure
in this scenario would be to check if the world object is on
or close to a road, as defined by a geographical information
system (GIS). In this case, it would be hypothesized that
the world object is an on-road object, i.e. an object mov-
ing along roads. The maintenance constraint is that it is
actually following the road system, otherwise it would be
an off-road object (which we ignore in this scenario). An
on-road object could contain more abstract and qualitative
features such as position in a road segment which would
allow the parent procedure to reason qualitatively about its
position in the world relative to the road, other vehicles on
the road, and building structures in the vicinity of the road.
At this point, streams of data are being generated and com-
puted for many of the fluent approximations in the linked
object structures at many levels of abstraction as the heli-
copter tracks the on-road objects. Most of the links and flu-
ent approximations in the example are shown in Figure 10.
We could go on and hypothesize what type of vehicle it is
based on the size and driving behavior but we leave that out
of this example.

More specifically, the establish constraint for a link from
the class WorldObject to the class OnRoadObject is repre-
sented as an LTL formula,32[0,10]on road(this), which
states that in order for a world object to be hypothesized as
being an on-road object the world object must be observed
on the road for at least 10 seconds. If this is true then a new
on-road object is created and linked to from the world ob-
ject. The maintain constraint is represented as the LTL for-
mula,¬32[0,5]¬on road(this), which states that a world
object is not allowed to be observed off the road for more
than 5 seconds in a row. If the maintain condition is vio-
lated then the link between the world and on-road objects is
removed. These formulas provide one way of handling the
uncertainty in the observations of the position of an object
in a qualitative manner since it considers the position over
an interval instead of at a single time-point.

Using on-road objects, we can define situations describ-
ing different traffic behavior such as reckless driving, reck-
less overtakes, normal overtakes and turning left and right

EstDrivingDir

FindRoadSegment

EstPosOnRoad

EstDirection

Colocate Derivate Derivate

EstQualitativeRelDir

EstQualitativeRelDir

FindRoadSegment

EstPosOnRoad

EstDirection

Colocate Derivate Derivate

EstDrivingDir

ColocateObjectType o

Computational unitObject instance Fluent approximation Link instance

dir[oro1]

pos_on_road[oro1]

road_seg[oro1]

pos[wo1] vel[wo1] acc[wo1]

right_front[v1,v2]

right_back[v1,v2]

left_back[v1,v2]

right_front[v2,v1]

left_back[v2,v1]

right_back[v2,v1]

driving_dir[v1]

pos[wo2] vel[wo2] acc[wo2]

dir[oro2]

pos_on_road[oro2]
road_seg[oro2]

driving_dir[v2]

left_front[v2,v1]

left_front[v1,v2]

mean_x[vo2]

mean_y[vo2]

mean_y[vo1]

mean_x[vo1]

camera_state[cam]

heli_state[heli]

vo_wo_link

wo_oro_link

oro_veh_link

vo_wo_link

wo_oro_link

oro_veh_link

VisionObject vo1 WorldObject wo1

OnRoadObject oro1
Vehicle v1

Vehicle v2
WorldObject wo2

OnRoadObject oro2

VisionObject vo2

Fig. 10: The link instances and fluent approximations in one instance of the traffic monitoring scenario.

in crossings. All of these situations are described using
chronicles, which are represented by temporal constraint
networks where events are represented with nodes and tem-
poral constraints are attached to edges between nodes. The
chronicles can then be recognized online by a chronicle
recognition engine.

We can now define a class RecklessBehavior which has
the add constraint,
3(reckless overtake(this)∨reckless driving(this)), which
is satisfied if an on-road object is observed doing a reckless
overtake or driving recklessly. A maintain constraint for
this class could be,2[0,1800]3(reckless overtake(this) ∨
reckless driving(this)), which is violated if the object is
not observed doing any reckless driving within 30 minutes
(the time-unit is seconds in the formulas). By subscribing
to all overtake, turn left, and turn right events related to
an object in the RecklessBehavior domain using a set sub-
scription (which subscribes to certain fluent approximations
for all objects in a given domain), the system is able to pro-
duce the required information and successfully carry out the
mission. We are now maintaining fluent approximations at
levels 0, 1, and 2 in the data fusion model, which are con-
tinually being monitored by fluent approximations at level
3.

All fluent approximations, classes, links, events and
chronicles are configured by a parent task procedure at the
beginning of the scenario. Thus if the situation changes the
task procedure has the option of modifying the specifica-
tions associated with the task at hand. It is also possible
to set up monitors checking current delays in computing
different fluent approximations in order to monitor the real-

time behavior of the system. If the latency goes over a cer-
tain threshold the task procedure has the option of either
removing fluent approximations it deems as less important
or changing policies in such a way that the amount of data
produced is reduced. These are all examples of process re-
finement at level 4 of the data fusion model.

5 Related Work

The DyKnow framework is designed for a distributed, real-
time and embedded environment [11, 12] and is devel-
oped on top of an existing middleware platform, real-time
CORBA [13], using the real-time event channel [14] and
the notification [15] services.

Different aspects of the framework borrow and extend
ideas from a number of diverse research areas primar-
ily related to real-time, active, temporal, and time-series
databases [16, 17, 18], data stream management [19, 20],
and knowledge representation and reasoning [21].

One of the many differences between DyKnow and main-
stream database and data stream approaches is that we use
a data model based on the use of features and fluents which
integrates well between quantitative and qualitative con-
structions of knowledge structures. In addition, there is
greater flexibility since the same data streams can be used
in many different ways to generate knowledge structures
with different characteristics. This contextual generation is
represented as policies which can be generated and used by
sources which requireknowledge in different forms.

6 Conclusions

We have presented a knowledge processing middleware
framework which provides support for many of the func-
tionalities specified in the revised version of the JDL data
fusion model. DyKnow supports on-the-fly generation of
different aspects of an agent’s world state at different levels
of abstraction. Contextual generation of world state is abso-
lutely essential in distributed contexts where contingencies
continually arise which often restrict the amount of time a
system has for assessing situations and making timely de-
cisions. It is our belief that autonomous systems will have
to have the capability to determine where to access data,
how much data should be accessed and at what levels of
abstraction it should be modeled. We have provided initial
evidence that such a system can be designed and deployed
and described a scenario where such functionality is useful.

DyKnow has also been designed with both generality and
genericity in mind. It is relatively straightforward to add
additional functionality in terms of specialized algorithms
for data fusion and diverse deliberative services which in-
terface to the data fusion backbone in a seamless manner.
CORBA provides a communication infrastructure which
guarantees moderate amounts of scalability. The system
has been tested in a number of complex scenarios involv-
ing our experimental UAV platform and has provided great
insight into what will be required for the realization of ad-
vanced distributed data fusion services. Observe that the
focus here is not on individual data fusion techniques but
the infrastructure which permits use of many different data
fusion techniques in a unified framework.

References

[1] F. White. A model for data fusion. InProc. of 1st National
Symposium for Sensor Fusion, volume 2, 1988.

[2] A. Steinberg and C. Bowman. Revisions to the JDL data
fusion model. In D. Hall and J. Llinas, editors,Handbook of
Multisensor Data Fusion. CRC Press LLC, 2001.

[3] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz,
and F. White. Revisions and extensions to the JDL data fu-
sion model II. In P. Svensson and J. Schubert, editors,Proc.
of the 7th Int. Conf. on Information Fusion, 2004.

[4] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom,
T. Persson, and B. Wingman. A distributed architecture for
autonomous unmanned aerial vehicle experimentation. In
Proc. of the 7th International Symposium on Distributed Au-
tonomous Robotic Systems, 2004.

[5] P. Doherty. Advanced research with autonomous unmanned
aerial vehicles. InProc. of International Conference on Prin-
ciples of Knowledge Representation and Reasoning, 2004.

[6] Panel discussion on challenges in higher level fusion: Un-
solved, difficult, and misunderstood problems/approaches in
levels 2-4 fusion research. In P. Svensson and J. Schubert,
editors,Proc. of the 7th Int. Conf. on Information Fusion,
2004.

[7] F. Heintz and P. Doherty. Managing dynamic object struc-
tures using hypothesis generation and validation. InProc. of
the AAAI Workshop on Anchoring Symbols to Sensor Data,
2004.

[8] Object Computing, Inc. TAO Developer’s Guide, Version
1.3a, 2003. See alsohttp://www.cs.wustl.edu/
˜schmidt/TAO.html .

[9] K. Ben Lamine and F. Kabanza. Reasoning about robot ac-
tions: A model checking approach. InAdvances in Plan-
Based Control of Robotic Agents, LNAI, 2002.

[10] M. Ghallab. On chronicles: Representation, on-line recog-
nition and learning. InProc. of the International Conference
on Knowledge Representation and Reasoning, 1996.

[11] D. Schmidt. Adaptive and reflective middleware for dis-
tributed real-time and embedded systems.Lecture Notes in
Computer Science, 2491, 2002.

[12] D. Schmidt. Middleware for real-time and embedded sys-
tems.Communications of the ACM, 45(6), 2002.

[13] D. Schmidt and F. Kuhns. An overview of the real-time
CORBA specification.IEEE Computer, 33(6), 2000.

[14] T. Harrison, D. Levine, and D. Schmidt. The design and
performance of a real-time CORBA event service. InPro-
ceedings of OOPSLA’97, 1997.

[15] R. Gruber, B. Krishnamurthy, and E. Panagos. CORBA noti-
fication service: Design challenges and scalable solutions. In
17th International Conference on Data Engineering, 2001.

[16] J. Eriksson. Real-time and active databases: A survey. In
Proc. of 2nd International Workshop on Active, Real-Time,
and Temporal Database Systems, 1997.

[17] G. Özsoyoglu and R. Snodgrass. Temporal and real-time
databases: A survey.IEEE Trans. Knowl. Data Eng., 7(4),
1995.

[18] D. Schmidt, A. Kotz Dittrich, W. Dreyer, and R. Marti. Time
series, a neglected issue in temporal database research? In
Proc. of the Int. Workshop on Temporal Databases, 1995.

[19] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Au-
rora: A new model and architecture for data stream manage-
ment.VLDB Journal, 2003.

[20] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InProc. of 21st
ACM Symposium on Principles of Database Systems, 2002.

[21] R. Brachman and H. Levesque.Knowledge Representation
and Reasoning. Morgan Kaufmann, 2004.

