
A Delegation-Based Cooperative Robotic Framework

Patrick Doherty and Fredrik Heintz
Dept. of Computer and Information Science, Linköping University, Sweden

{patrick.doherty, fredrik.heintz}@liu.se

Abstract— Cooperative robotic systems, such as unmanned
aircraft systems, are becoming technologically mature enough to
be integrated into civil society. To gain practical use and accep-
tance, a verifiable, principled and well-defined foundation for
interactions between human operators and autonomous systems
is needed. In this paper, we propose and specify such a formally
grounded collaboration framework. Collaboration is formalized
in terms of the concept of delegation and delegation is instanti-
ated as a speech act. Task Specification Trees are introduced as
both a formal and pragmatic characterization of tasks and tasks
are recursively delegated through a delegation process. The del-
egation speech act is formally grounded in the implementation
using Task Specification Trees, task allocation via auctions and
distributed constraint solving. The system is implemented as a
prototype on unmanned aerial vehicle systems and a case study
targeting emergency service applications is presented.

I. INTRODUCTION

Cooperative robotic systems, such as unmanned aircraft
systems, are becoming technologically mature enough
to be integrated into civil society. To gain practical use
and acceptance, a verifiable, principled and well-defined
foundation for interactions between human operators and
autonomous systems is needed. This interaction is going to
be mixed-initiative in nature. Humans will request help from
robotic systems and robotic systems will request help from
humans when collaborating to achieve complex missions in
unstructured and challenging environments. In developing
a principled framework for such sophisticated interactions,
many interdependent conceptual and pragmatic issues arise
and need clarification both theoretically and pragmatically.

The complexity of developing deployed architectures for
realistic cooperative activities among robots that operate in
the real world under time and space constraints is very high.
We tackle this complexity by working both abstractly at a
formal logical level and concretely at a systems building
level. More importantly, the two approaches are related to
each other by grounding the formal abstractions into actual
software implementations. This guarantees the fidelity of
the actual system to the formal specification.

This paper presents a principled formal framework
for cooperative robotic systems based on delegation.
The basis for the principled framework for interaction
between human operators and robotic systems is a triad of
fundamental, interdependent conceptual issues: delegation,

This work is partially supported by grants from the Swedish Research
Council (VR) Linnaeus Center CADICS, VR grant 2009-3857, the ELLIIT
Excellence Center at Linköping-Lund in Information Technology, NFFP5
The Swedish National Aviation Engineering Research Program, and the
Center for Industrial Information Technology CENIIT.

mixed-initiative interaction and adjustable autonomy. These
concepts are used to clarify, validate and verify different
types of interaction between robotic platforms and human
operators. The concept of delegation is particularly important
and provides in a sense a bridge between mixed-initiative
interaction and adjustable autonomy.

Delegation – In any mixed-initiative interaction, humans
may request help from robotic systems and robotic systems
may request help from humans. One can model such requests
as a form of delegation, Delegate(A,B, task, constraints),
where A is the delegating agent, B is the contractor, task
is the task being delegated which consists of a goal and
possibly a plan to achieve the goal, and constraints
represents a context in which the request is made and the
task should be carried out. In our framework, delegation
is formalized as a speech act and the delegation process
invoked can be recursive.

Adjustable Autonomy – In solving tasks in a mixed-
initiative setting, the robotic systems involved will have
a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should
not violate the degree of autonomy mandated by a human
operator. One can begin to develop a principled means
of adjusting autonomy through the use of the task and
constraint parameters in Delegate. A task delegated with
only a goal and no plan, with few constraints, allows the
robot to use much of its autonomy in solving the task,
whereas a task specified as a sequence of actions and many
constraints allows only limited autonomy.

Mixed-Initiative Interaction – By mixed-initiative, we
mean that interaction and negotiation between a robotic sys-
tem, such as a UAV, and a human will take advantage of each
of their skills, capacities and knowledge in developing a mis-
sion plan, executing the plan and adapting to contingencies
during the execution of the plan. Mixed-initiative interaction
involves a very broad set of issues, both theoretical and
pragmatic. One central part of such interaction is the ability
of a ground operator (GOP) to be able to delegate tasks to
a UAV, Delegate(GOP,UAV, task, constraints) and in a
symmetric manner, the ability of a UAV to be able to delegate
tasks to a GOP, Delegate(UAV,GOP, task, constraints).
Issues pertaining to safety, security, trust, etc., have to be
dealt with in the interaction process and can be formalized
as particular types of constraints associated with a delegated
task.

II. DELEGATION AS A SPEECH ACT

Delegation is central to the conceptual and architectural
framework we propose. Consequently, formulating an
abstraction of the concept with a formal specification
amenable to pragmatic grounding and implementation in a
software system is paramount. As a starting point, Falcone
& Castelfranchi provide an illuminating, but informal
discussion about delegation as a concept from a social
perspective [1], [2]. Their approach to delegation builds on
a BDI model of agents, that is, agents having beliefs, goals,
intentions, and plans [3]. However, their specification lacks a
formal semantics for the operators used. Based on intuitions
from their work, we have previously provided a formal
characterization of their concept of strong delegation using
a communicative speech act with pre- and post-conditions
which update the belief states associated with the delegator
and contractor, respectively [4]. Strong delegation means that
the delegation is explicit. The formal characterization of the
speech act is expressed in KARO [5]. The KARO formalism
is an amalgam of dynamic logic and epistemic/doxastic
logic, augmented with additional modal operators to deal
with the motivational aspects of agents.

The target for delegation is a task. The Merriam-Webster
dictionary definition of a task is ”a usually assigned piece of
work often to be finished within a certain time”. Assigning a
piece of work to someone by someone is in fact what dele-
gation is about. In computer science, a piece of work in this
context is generally represented as a composite action. There
is also often a purpose to assigning a piece of work to be
done. This purpose is generally represented as a goal, where
the intended meaning is that a task is a means of achieving a
goal. We will require both a formal specification of a task at a
high-level of abstraction in addition to a more data-structural
specification flexible enough to be used pragmatically in an
implementation. For the formal specification, the definition
provided by Falcone & Castelfranchi will be used. For the
data-structure specification used in the implementation, Task
Specification Trees will be defined in a Section III.

Falcone & Castelfranchi define a task as a pair τ = (α, φ)
consisting of a goal φ, and a plan α for that goal, or rather,
a plan and the goal associated with that plan. Conceptually,
a plan is a composite action. At this abstraction level, the
definition of a task is purposely left general. For instance,
timing and resource issues are abstracted away although
they will be dealt with explicitly in the implementation.

From the perspective of adjustable autonomy, the task
definition is quite flexible. If α is a single elementary
action with the goal φ implicit and correlated with the post-
condition of the action, the contractor has little flexibility
as to how the task will be achieved. On the other hand, if
the goal φ is specified and the plan α is not provided, then
the contractor has a great deal of flexibility in achieving the
goal. There are many variations between these two extremes
and these variations capture the different levels of autonomy
and trust exchanged between two agents.

Paraphrasing Falcone & Castelfranchi into KARO terms,

we consider a notion of strong delegation represented by a
speech act S − Delegate(A, B, τ) of A delegating a task
τ = (α, φ) to B, where α is a possible plan and φ is a goal.

Preconditions:
(1) GoalA(φ)
(2) BelACanB(τ) (implies BelABelB(CanB(τ)))
(3) BelA(Dependent(A,B, τ))
(4) BelBCanB(τ)
Postconditions:
(1) GoalB(φ) and BelBGoalB(φ)
(2) CommittedB(α) (also written CommittedB(τ))
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1)

also IntendB(τ))
(5) IntendA(doB(α))
(6) MutualBelAB(”the statements above”

∧ SociallyCommitted(B,A, τ))1

This particular characterization of delegation follows
Falcone & Castelfranchi closely. One can easily foresee other
constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation [6], [7].

III. TASK SPECIFICATION TREES

Both the declarative and procedural representation and
semantics of tasks are central to the delegation process. The
relation between the two representations is also essential
if one has the goal of formally grounding the delegation
process in the system implementation. A task was previously
defined abstractly as a pair (α, φ) consisting of a composite
action α and a goal φ. In this section, we introduce a formal
task specification language which allows us to represent
tasks as Task Specification Trees (TSTs).

For our purposes, the task representation must be highly
flexible, sharable, dynamically extendible, and distributed
in nature. Tasks need to be delegated at varying levels of
abstraction and also expanded and modified because parts
of complex tasks can be recursively delegated to different
robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable.
Additionally, a task structure is a form of compromise
between an explicit plan in a plan library at one end of
the spectrum and a plan generated through an automated
planner [8], [9] at the other end of the spectrum. The task
representation and semantics must seamlessly accommodate
plan representations and their compilation into the task
structure. Finally, the task representation should support the
adjustment of autonomy through the addition of constraints
or parameters by agents and human resources.

The task specification formalism should allow for
the specification of various types of task compositions,
including sequential and concurrent, in addition to more
general constructs such as loops and conditionals. The task
specification should also provide a clear separation between
tasks and platform specific details for handling the tasks. The

1A discussion pertaining to the semantics of non-KARO modal operators
may be found in [4].

Fig. 1. An example TST.

specification should focus on what should be done and hide
the details about how it could be done by different platforms.

In the general case, A TST is a declarative representation
of a complex multi-agent task. In the architecture realizing
the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task
that should be performed. There are six types of nodes:
sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes
which requires some form of expansion or planning to
generate a plan for achieving the goal.

Each node has a node interface containing a set of param-
eters, called node parameters, that can be specified for the
node. The node interface always contains a platform assign-
ment parameter and parameters for the start and end times
of the task, usually called P , TS and TE . These parameters
can be part of the constraints associated with the node called
node constraints. A TST also has tree constraints, expressing
precedence and organizational relations between the nodes
in the TST. Together the constraints form a constraint
network covering the TST. In fact, the node parameters
function as constraint variables in a constraint network, and
setting the value of a node parameter constrains not only the
network, but implicitly, the degree of autonomy of an agent.

Consider a small scenario where the mission is to first
scan AreaA and AreaB, and then fly to Dest4. A TST
describing this mission is shown in Figure 1. Nodes N0 and
N1 are composite action nodes, sequential and concurrent,
respectively. Nodes N2, N3, and N4 are elementary action
nodes. Each node specifies a task and has a node interface
containing node parameters and a platform assignment
parameter. In this case only temporal parameters are shown
representing the intervals tasks should be completed in.

A. TST Syntax

The syntax of a TST specification has the following BNF:

TST ::= NAME (’(’ VARS ’)’)? ’=’ (with VARS)?
TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS
TASK ::= <elementary action> | <goal>
| sequence TSTS | concurrent TSTS
| while <cond> TST | if <cond> then TST else TST

VAR ::= <var name> | <var name> ’.’ <var name>
VARS ::= VAR | VAR ’,’ VARS

CONS ::= <constraint> | <constraint> and CONS
ARG ::= VAR | <value>
ARGS ::= ARG | ARG ’,’ ARGS
NAME ::= <node name>

Where <elementary action> is an elementary action
name(p0, ..., pN), <goal> is a goal name(p0, ..., pN),
p0, ..., pN are parameters, and <cond> is a FIPA ACL
query message requesting the value of a boolean expression.

The TST clause introduces the main recursive pattern.
The right hand side of the equality provides the general
pattern of providing a variable context for a task (using
with) and a set of constraints (using where) over the
variables previously introduced.
Example: Consider the TST depicted in Figure 1. The
nodes N0 to N4 have the task names τ0 to τ4 associated with
them. This TST contains two composite actions, sequence
(τ0) and concurrent (τ1), and two elementary actions, scan
(τ2, τ3) and flyto (τ4).

τ0(TS0 ,TE0) =
with TS1 , TE1 , TS4 , TE4 sequence
τ1(TS1 ,TE1) =

with TS2 , TE2 , TS3 , TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3 ,TE3) = scan(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)

where consτ0

consτ0 = {TS0 ≤ TS1 ∧ TS1 ≤ TE1 ∧ TE1 ≤ TS4 ∧
TS4 ≤ TE4 ∧ TE4 ≤ TE0}

consτ1 = {TS1 ≤ TS2 ∧ TS2 ≤ TE2 ∧ TE2 ≤ TE1 ∧
TS1 ≤ TS3 ∧ TS3 ≤ TE3 ∧ TE3 ≤ TE1}

B. TST Semantics

A TST specifies a complex task (composite action)
under a set of tree-specific and node-specific constraints
which together are intended to represent the context in
which a task should be executed in order to meet the
task’s intrinsic requirements, in addition to contingent
requirements demanded by a particular mission. The leaf
nodes of a TST represent elementary actions used in the
definition of the composite action the TST represents and
the non-leaf nodes essentially represent control structures
for the ordering and execution of the elementary actions.
The semantic meaning of non-leaf nodes is essentially
application independent, whereas the semantic meaning of
the leaf nodes are highly domain dependent. They represent
the specific actions or processes that an agent will in fact
execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided
or generated to achieve a specific set of goals, and if the
delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be
characterized in terms of whether an agent believes it can
successfully execute the task associated with the node
in a given context represented by constraints, given its

capabilities and resources. This can only be a belief because
the task will be executed in the future and even under
the best of conditions, real-world contingencies may arise
which prevent the agent from successfully completing the
task. The formal semantics for TST nodes will be given in
terms of the logical predicate Can() which we have used
previously in the formal definition of the S-Delegate speech
act, although in this case, we will add additional arguments.
This is not a coincidence since our goal is to ground the
formal specification of the S-Delegate speech act into the
implementation in a very direct manner.

Recall that in the formal semantics for the speech act
S-Delegate (described in Section II), the logical predicate
CanX(τ) is used to state that an agent X has the capabilities
and resources to achieve task τ . An important precondition
for the successful application of the speech act is that the del-
egator (A) believes in the contractor’s (B) ability to achieve
the task τ , (2): BelACanB(τ). Additionally, an important
result of the successful application of the speech act is that
the contractor actually has the capabilities and resources to
achieve the task τ , (4): CanB(τ). In order to directly couple
the semantic characterization of the S-Delegate speech act
to the semantic characterization of TST’s, we will assume
that a task τ = (α, φ) in the speech act characterization
corresponds to a TST. Additionally, the TST semantics will
be characterized in terms of a Can predicate with additional
parameters to incorporate constraints.

In this case, the Can predicate is extended to include as
arguments a list [p1, . . . , pk] denoting all node parameters in
the node interface together with other parameters provided
in the (with VARS) construct2 and an argument for an
additional constraint set cons provided in the (where CONS)
construct.3 Observe that cons can be formed incrementally
and may in fact contain constraints inherited or passed
to it through a recursive delegation process. The formula
Can(B, τ, [ts, te, . . .], cons) then asserts that an agent B has
the capabilities and resources for achieving task τ if cons,
which also contains node constraints for τ , is consistent.
The temporal variables ts and te associated with the task τ
are part of the node interface which may also contain other
variables which are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies
its specification, will now be equivalent to the successful
solution of a constraint problem in the formal logical
sense. The constraint problem in fact provides the formal
semantics for a TST. Constraints associated with a TST
are derived from a reduction process associated with the
Can() predicate for each node in the TST. The generation
and solution of constraints will occur on-line during the
delegation process. Let us provide some more specific
details. In particular, we will show the very tight coupling
between the TST’s and their logical semantics.

The basic structure of a Task Specification Tree is:

2For reasons of clarity, we only list the node parameters for the start and
end times for a task, [ts, te, . . .], in this article.

3For pedagogical expediency, we can assume that there is a constraint
language which is reified in the logic and is used in the CONS constructs.

TST ::= NAME (’(’ VARS1 ’)’)? ’=’ (with VARS2)?
TASK (where CONS)?

where VARS1 denotes node parameters, VARS2 denotes
additional variables used in the constraint context for a
TST node, and CONS denotes the constraints associated
with a TST node. Additionally, TASK denotes the specific
type of TST node. In specifying a logical semantics for a
TST node, we would like to map these arguments directly
over to arguments of the predicate Can(). Informally, an
abstraction of the mapping is

Can(ag1, TASK, V ARS1 ∪ V ARS2, CONS) (1)

The idea is that for any fully allocated TST, the meaning
of each allocated TST node in the tree is the meaning of the
associated Can() predicate instantiated with the TST specific
parameters and constraints. The meaning of the instantiated
Can() predicate can then be associated with an equivalent
Constraint Satisfaction Problem (CSP) which turns out to be
true or false depending upon whether that CSP can be satis-
fied or not. The meaning of the fully allocated TST is then the
aggregation of the meanings of each individual TST node as-
sociated with the TST, in other words, a conjunction of CSPs.

One would also like to capture the meaning of partial
TSTs. The idea is that as the delegation process unfolds,
a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number
of fully expanded and allocated nodes in addition to other
nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by
providing meaning for an unallocated TST node in terms of
both a Can() predicate and a Delegate() predicate:

∃ag2 Delegate(ag1, ag2, TASK, V ARS1 ∪ V ARS2, CONS) (2)

Either ag1 can achieve a task, or (exclusively) it can find
an agent, ag2, to which the task can be delegated. In fact,
it may need to find one or more agents if the task to be
delegated is a composite action.

Given the S-Delegate(ag1, ag2, TASK) speech act
semantics, we know that if delegation is successful then as
one of the postconditions of the speech act, ag2 can in fact
achieve TASK (assuming no additional contingencies):

Delegate(ag1, ag2, TASK, V ARS1 ∪ V ARS2, CONS) (3)
→ Can(ag2, TASK, V ARS1 ∪ V ARS2, CONS)

Consequently, during the computational process associated
with delegation, as the TST expands through delegation
where previously unallocated nodes become allocated, each
instance of the Delegate() predicate associated with an
unallocated node is replaced with an instance of the Can()
predicate. This recursive process preserves the meaning
of a TST as a conjunction of instances of the Can()
predicate which in turn are compiled into a (interdependent)
set of CSPs and which are checked for satisfaction using
distributed constraint solving algorithms.
Sequence Node For a sequence node, the child nodes
should be executed in sequence, from left to right, during
the execution time of the sequence node.

Can(B,S(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)4

where cons = {ts ≤ t1 ∧ (
∧n

i=1 t2i−1 < t2i)
∧(

∧n−1
i=1 t2i ≤ t2i+1) ∧ t2n ≤ te} ∪ cons′

Concurrent Node For a concurrent node, the child nodes
should be executed during the time interval of the concurrent
node.

Can(B,C(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)
where cons = {

∧n
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′.

Observe that the constraint sets consk in the semantics for
the concurrent and sequential nodes are simply the constraint
sets defined in the (where CONS) constructs for the child
nodes included with the sequential or concurrent nodes,
respectively. Additionally, the definition of the constraint set
cons in the semantics for the concurrent and sequential nodes
contains the structural temporal constraints which define se-
quence and concurrency, respectively, together with possibly
additional constraints, denoted by cons′ that one may want to
include in the constraint set. Note also, that we are assuming
that scoping and overloading issues for variables in embed-
ded TST structures are dealt with appropriately in the recur-
sive expansion of the Can() predicates in the definitions.

Selector Node Compared to a sequence or concurrent node,
only one of the selector node’s children will be executed,
which one is determined by a test condition in the selector
node. The child node should be executed during the time
interval of the selector node. A selector node is used to
postpone a choice which can not be known when the TST
is specified. When expanded at runtime, the net result can
be any of the node types.

Loop Node A loop node will add a child node for each
iteration the loop condition allows. In this way the loop node
works as a sequence node but with an increasing number of
child nodes which are dynamically added. Loop nodes are
similar to selector nodes, they describe additions to the TST
that can not be known when the TST is specified. When
expanded at runtime, the net result is a sequence node.

Goal A goal node is a leaf node which can not be directly
executed. Instead it has to be expanded by using an
automated planner or related planning functionality (such
as [8], [9]). After expansion, a TST branch representing the
generated plan is added to the original TST.

Can(B,Goal(φ), [ts, te, . . .], cons) ↔
∃α (GenerateP lan(B,α, φ, [ts, te, . . .], cons)

∧ Can(B,α, [ts, te, . . .], cons)) ∧ consistent(cons)
Observe that the agent B can generate a partial or

complete plan α and then further delegate execution or

4The predicate consistent() has the standard logical meaning and
checking for consistency would be done through a call to a constraint solver
which is part of the architecture.

completion of the plan recursively via the Can() statement
in the second conjunct.
Elementary Action An elementary action node is a leaf node
that specifies a domain-dependent action. The semantics of
Can for an elementary action is platform dependent.
Can(B, τ, [ts, te, . . .], cons, . . .) ↔

Capabilities(B, τ, [ts, te, . . .], cons)
∧Resources(B, τ, [ts, te, . . .], cons) ∧ consistent(cons)
There are two parts to the definition of Can for an

elementary action node. These are defined in terms of a
platform specification which is assumed to exist for each
agent potentially involved in a cooperative mission. The
platform specification has two components.

The first, specified by the predicate
Capabilities(B, τ, [ts, te, . . .], cons) is intended to
characterize all static capabilities associated with platform B
that are required as capabilities for the successful execution
of τ . If platform B has the necessary static capabilities
for executing task τ in the interval [ts, te] with constraints
cons, then this predicate will be true.

The second, specified by the predicate
Resources(B, τ, [ts, te, . . .], cons) is intended to character-
ize dynamic resources such as fuel and battery power, which
are consumable, or cameras and other sensors which are
borrowable. Since resources generally vary through time, the
semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of pa-
rameterized resource constraint predicates, one per task. The
parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task.
For example, assume there is a task flyto(dest, speed).
The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate
is defined as a conjunction of constraints, in the logical
sense. As an example, consider the task flyto(dest, speed)
with the corresponding resource constraint predicate
flyto(ts, te, dest, speed). The constraint model associated
with the task for a particular platform P1 might be:
te = ts + distance(pos(ts ,P1),dest)

speed ∧ (SMin ≤ speed ≤ SMax)

IV. ALLOCATING TASKS TO PLATFORMS

The Delegate speech act requires that the delegating agent
believes that the contractor has the ability to achieve the task.
One central problem is therefore to find an agent which can
achieve a particular, potentially very complex, task. When a
task becomes complex it is highly likely that no single agent
can achieve it alone. Since an agent can achieve a task by
delegating parts of it to another agent, recursive delegation
can solve the problem. The problem is therefore to find
a set of agents who together can achieve a complex task
with time, space and resource constraints through recursive
delegation. This can be seen as a task allocation problem.
The problem is to allocate tasks to platforms and assign
values to parameters such that each task can be carried out
by its assigned platform and all the constraints are satisfied.

When a platform is assigned an elementary action
node in a TST, the constraints associated with that action

Fig. 2. The completely allocated and reduced TST showing the interaction
between the TST constraints and the platform dependent constraints.

are instantiated and added to the constraint store of the
platform. The resource constraint is connected to the
constraint problem defined by the TST through the node
parameters. A platform can be allocated more than one
node in a TST. This may introduce implicit dependencies
between the actions since each allocation adds resource
constraints to the constraint problem of the platform. There
can for example be a shared resource that both actions uses.

A complete allocation is an allocation which allocates
every node in a TST to a platform. A completely allocated
TST defines a constraint problem that represents all the
constraints for this particular allocation of the TST. As
the constraints are distributed among the platforms it is a
distributed constraint problem. If the constraint problem is
consistent then a valid allocation has been found and each
solution can be seen as a potential execution schedule of
the TST. The consistency of an allocation can be checked
by a distributed constraint satisfaction problem (DisCSP)
solver such as the Asynchronous Weak Commitment Search
(AWCS) algorithm [10] or ADOPT [11].

However, solving the task allocation problem as a single
DisCSP problem is currently not possible since the problem
is too large even for modest TSTs. Instead we have developed
a heuristic search approach for allocating tasks to platforms
which uses marginal cost auctions to guide the search [12].
This allows reasonably large TSTs to be allocated.

Example The constraint problem for a TST is derived
by recursively reducing the Can predicate statements
associated with each task node with formally equivalent
expressions, beginning with the top-node τ0 until the logical
statements reduce to a constraint network. Below, we show
the reduction of the complex task α0 represented by the

TST in Figure 1 when there are three platforms, P0, P1 and
P2, with the appropriate capabilities, P0 has been delegated
the composite action α0 and has recursively delegated α2

and α4 to P1 and α3 to P2 while keeping α1. αi is the
composite action described by the TST rooted in node τi.

Can(P0, α0, [ts0 , te0], cons) =
Can(P0, S(α1, α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4((Can(P0, α1, [ts1 , te1], consP0)

∨ ∃a1Delegate(P0, a1, α1, [ts1 , te1], consP0))
∧ (Can(P0, α4, [ts4 , te4], consP0)

∨ ∃a2Delegate(P0, a2, α4, [ts4 , te4], consP0)))

Let us focus on the reduction of first element in the
sequence, α1. Since P0 has not delegated α1 we expand the
Can predicate one more step:

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3((Can(P0, α2, [ts2 , te2], consP0)

∨ ∃a1Delegate(P0, a1, α2, [ts2 , te2], consP0))
∧ (Can(P0, α3, [ts3 , te3], consP0)

∨ ∃a2Delegate(P0, a2, α3, [ts3 , te3], consP0)))

Since P0 has recursively delegated α2 to P1 and α3 to P2

the Delegate predicates can be reduced to Can predicates:

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3(Can(P1, α2, [ts2 , te2], consP1)

∧ Can(P2, α3, [ts3 , te3], consP2))

Since P0 has recursively delegated α4 to P1 we can
complete the reduction and end up with the following:

Can(P0, α0, [ts0 , te0], cons) =
Can(P0, S(C(α2, α3), α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4

∃ts2 , te2 , ts3 , te3(Can(P1, α2, [ts2 , te2], consP1)
∧ Can(P2, α3, [ts3 , te3], consP2))

∧ Can(P1, α4, [ts4 , te4], consP1)

The remaining tasks are elementary actions and consequently
the definition of Can for these are platform dependent.
When a platform is assigned an elementary action node the
resource constraints for that action is added to the local
constraint store. The local constraints are connected to the
distributed constraint problem through the node parameters
of the assigned node. All remaining Can predicates in
the recursion are replaced with constraint sub-networks
associated with specific platforms as shown in Figure 2. To
check that distributed constraint problem is consistent we
use local CSP solvers together with a DisCSP solver.

V. A COOPERATIVE UAS CASE STUDY

One important application area for unmanned aircraft
systems is to assist emergency services. Here we consider an
emergency services assistance scenario where an unmanned
aircraft system (UAS) should scan a disaster area for injured
people and deliver relief packages to them. In the first part
of the scenario, the UAS scans the disaster area and creates
a map over the locations of the identified survivors [13].

Fig. 3. The TST for the supply delivery case study.

In the second part, the UAS delivers boxes with supplies
to the survivors. To transport a box it can either be carried
directly by an unmanned aircraft or it can be loaded onto
a carrier which is transported to a key position from where
the boxes can be distributed to their final locations.

In this particular scenario, there is a UAS consisting of
two platforms (P1 and P2), an operator (OP1) which has
found five survivors (S1–S5), and a carrier. Both platforms
have the capability to transport a single box while only
platform P1 has the capability to transport a carrier. Both
platforms also have the capabilities to coordinate sequence
and concurrent tasks. At the same time another operator,
OP2, is performing a mission with the platforms P3 and
P4 north of the survivors. P3 is currently idle and OP1 is
therefore allowed to borrow it if necessary.

From the map, a TST is created that will achieve the goal
of distributing relief packages to all survivors (Figure 3).
The TST contains a sub-TST (N1–N12) for loading the
carrier with four boxes (N2–N6), delivering the carrier (N7),
and unloading the packages from the carrier and delivering
them to the survivors (N8–N12). A package must also be
delivered to a survivor (S5) far away from where most of the
survivors were found (N13). The delivery of packages can be
done concurrently to save time, while the loading, moving,
and unloading of the carrier is a sequential operation.

To achieve the mission, OP1 delegates the TST to P1.
P1 is now responsible for N0 and for recursively delegating
the nodes in the TST that it is not able to do itself. The
allocation algorithm traverses the TST in depth-first order
and uses marginal cost auctions as a heuristic to guide the
allocation. P1 starts with node N1 and when the entire sub-
TST rooted in N1 is allocated then it will find an allocation
for node N13. Nodes N1 and N2 are composite action
nodes which have the same marginal cost for all platforms.
P1 therefore allocates N1 and N2 to itself. The constraints
from nodes N0–N2 are added to the constraint network of
P1. The network is consistent since the composite action
nodes describe an unrestricted schedule.

Below node N2 are four elementary action nodes. Since P1

is responsible for N2, it tries to allocate them one at the time.
For elementary action nodes, the choice of platform is the key

to a successful allocation. The candidates for node N3 are
platforms P1 and P2 so an auction is created where each of
them may bid on N3. P1 is closest to the package depot and
therefore gives the lowest bid. P1 is allocated to N3. For node
N4, platform P1 is still the best choice, and it is allocated to
N4. Given the new position of P1 after being allocated N3

and N4, P2 is now closest to the depot resulting in the lowest
bid and is allocated to N5 and N6. The schedule initially de-
fined by nodes N0–N2 is now also constrained by how long
it takes for P1 and P2 to carry out action nodes N3–N6. The
constraint network is distributed among platforms P1 and P2.

The next node for P1 to allocate is N7, the carrier
delivery node. P1 is the only platform that has the fly carrier
capability and is allocated the node. Continuing with nodes
N8–N12, the platform with the lowest bid in the auction
for each node is platform P1, since it is in the area after
delivering the carrier. P1, is therefore allocated all the nodes
N8–N12. The last node, N13, is allocated to platform P2

and the allocation is complete.
The only non-local information used by P1 was the

capabilities of the available platforms which was gathered
through a broadcast. Everything else is local. The bids are
made by each platform based on local information and the
consistency of the constraint network is checked through
distributed constraint satisfaction techniques.

The total mission time is 58 minutes, which is much
longer than the operator expected. Since the allocation
of the TST results in a constraint problem, it is possible
for the operator to modify it by adding more constraints,
and thereby potentially changing the task allocation. The
operator puts a time constraint on the mission, restricting
the total time to 30 minutes.

The added time constraint makes the current allocation
inconsistent. The last allocated node must therefore be
re-allocated. However, no platform for N13 can make the
allocation consistent, not even the unused platform P3.
Backjumping starts. Platform P1 is in charge, since it is
responsible for allocating node N13. The N1 sub-network is
disconnected. Trying different platforms for node N13, P1

discovers that N13 can be allocated to P2. Since removing all
constraints due to the allocation of node N1 and its children
made the problem consistent, the backjump point is in the
sub-TST rooted in N1. Removing the allocations for sub-tree
N8 does not make the problem consistent so further back-
jumping is necessary. Notice that with a single consistency
check the algorithm could deduce that no possible allocation
of N8 and its children can lead to a consistent allocation of
N13. Removing the allocation for node N7 does not make a
difference either. However, removing the allocations for the
sub-TST N2 makes the problem consistent. When finding
an allocation of N13 after removing the constraints from N6

the allocation process continues from N6. When a consistent
allocation is found, P1 informs the operator. The operator
inspects the allocation and approves it, thereby confirming
the delegation and starting the execution of the mission.

Based on this scenario we have started to evaluate the
performance of our task allocation algorithm. In a first

Fig. 4. The total number of messages sent when allocating a TST to a
group of platforms while varying the size (number of carriers) of the TST.

Fig. 5. The total number of messages sent when allocating a TST with
1 carrier to 4 platforms using either chronological backtracking (BT) or
backjumping (BJ) while varying the bound on the expected execution time.

experiment we increased the size of the TST by repeating the
sub-tree rooted in N1 corresponding to increasing the number
of carriers and boxes to be transported. Figure 4 shows how
the number of messages varies as the number of carriers
increases from 1 to 11, where each carrier corresponds to
12 TST nodes. In a second experiment we took the original
TST and added a bound on the total expected execution
time of the mission. This makes finding a valid allocation
much harder. Figure 5 shows how the number of messages
varies with the bound on the expected execution time for
the whole mission when allocating a TST with 1 carrier
(13 TST nodes) to 4 platforms. The figure shows that it is
expensive to determine that there is no valid allocation and
that the cost decreases exponentially as the bound moves
away from the lowest possible bound (which is 53).

VI. RELATED WORK

Due to the multi-disciplinary nature of the work
considered here, there is a vast amount of related work too
numerous to mention. In addition to the work referenced in
the article, we instead consider a number of representative
references from the areas of cooperative multi-robot systems
and task allocation from a robotic perspective.

Cooperative multi-robot systems have a long history
in robotics, multi-agent systems and AI in general. One
early study presented a generic scheme based on a
distributed plan merging process [14]. Another early work is
ALLIANCE [15], which is a behavior based framework for

instantaneous task assignment of loosely coupled subtasks
with ordering dependencies. M+ [16] integrates mission
planning, task refinement and cooperative task allocation.
It uses a task allocation protocol based on the Contract
Net protocol with explicit pre-defined capabilities and task
costs. The M+CTA framework [17] is an extension of M+,
where each robot has an individual plan and tasks are
initially decomposed and then allocated. After the planning
step, robots negotiate with each other to adapt their plans
in the multi-robot context. The MURDOCH system [18]
uses a publish/subscribe protocol for communication and
an auction mechanism for task allocation. The result is very
similar to the Contract Net protocol. Other Contract-Net
and auction-based systems similar to those described above
are COMETS [19], Hoplites [20] and TAEMS [21].

REFERENCES

[1] C. Castelfranchi and R. Falcone, “Toward a theory of delegation for
agent-based systems,” Robotics and Autonomous Systems, vol. 24, pp.
141–157, 1998.

[2] R. Falcone and C. Castelfranchi, “The human in the loop of a delegated
agent: The theory of adjustable social autonomy,” IEEE Trans. Syst.,
Man, Cybern. A, vol. 31, no. 5, pp. 406–418, 2001.

[3] P. Cohen and H. Levesque, “Intention is choice with commitment,”
AI, vol. 42, no. 3, pp. 213–261, 1990.

[4] P. Doherty and J.-J. C. Meyer, “Towards a delegation framework for
aerial robotic mission scenarios,” in Proc. International Workshop on
Cooperative Information Agents, 2007.

[5] B. v. L. W. van der Hoek and J.-J. C. Meyer, “An integrated modal
approach to rational agents,” in Foundations of Rational Agency,
M. Wooldridge and A. Rao, Eds., 1998.

[6] P. Cohen and H. Levesque, “Teamwork,” Nous, vol. 25, no. 4, 1991.
[7] E. Davis and L. Morgenstern, “A first-order theory of communication

and multi-agent plans,” Journal Logic and Computation, vol. 15, no. 5,
pp. 701–749, 2005.

[8] J. Kvarnström and P. Doherty, “Automated planning for collaborative
UAV systems,” in Proc. ICARCV, 2010.

[9] J. Kvarnström, “Planning for loosely coupled agents using patrial order
forward-chaining,” in Proc. ICAPS, 2011.

[10] M. Yokoo, “Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems,” in Proc. CP, 1995.

[11] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “ADOPT: Asyn-
chronous distributed constraint optimization with quality guarantees,”
AI, vol. 161, 2006.

[12] D. Landén, F. Heintz, and P. Doherty, “Complex task allocation in
mixed-initiative delegation: A UAV case study (early innovation),” in
Proc. PRIMA, 2010.

[13] P. Rudol and P. Doherty, “Human body detection and geolocalization
for UAV search and rescue missions using color and thermal imagery,”
in Proc. IEEE Aerospace Conference, 2008.

[14] R. Alami, F. Ingrand, and S. Qutub, “A scheme for coordinating
multirobot planning activities and plans execution,” in Proc. ECAI,
1998.

[15] L. E. Parker, “Alliance: An architecture for fault tolerant multi-robot
cooperation,” IEEE Trans. Robot. Automat, vol. 14, no. 2, 1998.

[16] S. Botelho and R. Alami, “M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement,” in Proc. ICRA,
1999.

[17] R. Alami and S. C. Botelho, “Plan-based multi-robot cooperation,” in
Advances in Plan-Based Control of Robotic Agents, 2001.

[18] B. Gerkey and M. Mataric, “Sold!: Auction methods for multi-robot
coordination,” IEEE Trans. Robot. Automat., vol. 18, no. 5, 2001.

[19] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation
scheme in multi-UAV context,” in Proc. ICRA, 2004.

[20] N. Kaldra, D. Ferguson, and A. Stentz, “Hoplites: A market-based
framework for planned tight coordination in multirobot teams,” in
Proc. ICRA, 2005.

[21] K. Decker, “TAEMS: A framework for environment centered analysis
and design of coordination mechanisms,” in Foundations of Distributed
AI. Wiley Inter-Science, 1996.

