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ABSTRACT
Unmanned aircraft systems (UASs) are now becoming tech-
nologically mature enough to be integrated into civil society.
An essential issue is principled mixed-initiative interaction
between UASs and human operators. Two central problems
are to specify the structure and requirements of complex
tasks and to assign platforms to them so that they can be
achieved. We have previously proposed task specification
trees (TSTs) as a highly expressive specification language for
complex multiagent tasks that supports mixed-initiative del-
egation with adjustable autonomy. The main contribution
of this paper is a sound and complete distributed heuristic
search algorithm for allocating the individual tasks in a TST
to platforms. The allocation also instantiates the parame-
ters of the tasks such that all the constraints of the TST are
satisfied. Constraints can be used to model dependencies
between tasks, resource usage as well as temporal and spa-
tial requirements on the complex task. Finally, we discuss a
concrete case study with a team of unmanned aerial vehicles
assisting in a challenging emergency services scenario.

1. INTRODUCTION
Unmanned aircraft systems (UASs) are now becoming tech-
nologically mature enough to be integrated into civil society.
Principled interaction between UASs and human resources is
an essential component in the future uses of UASs in com-
plex emergency services scenarios. Mixed-initiative inter-
action between human operators and such systems will be
central. By mixed-initiative, we mean that interaction and
negotiation between a UAS and a human will take advantage
of each of their skills, capacities, and knowledge in develop-
ing a mission plan, executing the plan, and adapting to con-
tingencies during the execution of the plan. In developing
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a principled framework for such sophisticated interaction in
complex scenarios, a great many interdependent conceptual
and pragmatic issues arise and need clarification both theo-
retically and pragmatically in the form of demonstrators.

Two central problems are to define complex mixed-initiative
missions and given a mission find platforms which together
can execute it. We have previously proposed task specifi-
cation trees (TSTs) as a highly expressive specification lan-
guage for multiagent tasks that supports mixed-initiative
delegation with adjustable autonomy [4]. A task is recur-
sively defined as a tree of tasks where temporal requirements
and interdependencies among tasks are specified as con-
straints. In this paper we describe an allocation algorithm
for TSTs together with a concrete unmanned aerial vehicle
(UAV) case study. The allocation algorithm assigns plat-
forms to tasks and instantiates the parameters of the tasks
such that all the constraints of the TST are satisfied. The al-
gorithm recursively searches among the potential allocations
in a distributed manner and uses distributed constraint sat-
isfaction techniques to check if an allocation satisfies the task
and platform constraints. The case study gives a detailed ex-
ample of the allocation algorithm applied to a team of UAVs
assisting in a challenging emergency services scenario involv-
ing delivery of food and medical supplies to injured people.

2. THE DELEGATION FRAMEWORK
To support cooperative goal achievement among a group
of agents a delegation framework has been developed [4, 5].
It provides a formal framework for describing and reason-
ing about what it means for an agent to delegate an ob-
jective, which can be either a goal or a plan, to another
agent. The concept of delegation allows for studying not
only cooperation but also mixed-initiative problem-solving
and adjustable autonomy.

By delegating a partially specified objective the delegee is
given the autonomy to complete the specification itself. By
making the objective more specific the autonomy is limited.
If the delegated objective is completely specified then the
agent has no autonomy when it comes to achieving the objec-
tive. By allowing both agents and human operators to par-
tially specify an objective, mixed-initiative problem-solving
is supported.

2.1 Task Specification Trees
A task specification tree (TST) is a distributed data struc-
ture with a declarative representation that describes a com-



Figure 1: An example TST for first scanning AreaA

and AreaB concurrently and then flying to Dest4.

plex multiagent task. Each node in a TST corresponds to a
task that should be performed. Each node has a node inter-
face consisting of a set of parameters called node parameters
that can be specified for the node. The node parameters de-
termine task specific details of the node.

Nodes in a TST either specify actions or goals. Actions can
either be primitive or composite. A primitive action is a
leaf node in the TST while a composite action is an inte-
rior node. Action nodes can be executed when instantiated,
whereas goal nodes first require a plan to be generated. The
plan then becomes a new TST branch that in turn can be
instantiated and executed. A TST without any goal nodes
is called fully expanded. Nodes can also be removed and
added during execution, for example, to repair a TST after
a failure. When a TST has been executed, the resulting TST
represents the history of the mission, including concrete task
instantiations, errors, and repairs.

Figure 1 shows an example TST for first scanning AreaA

and AreaB concurrently and then flying to Dest4. Nodes N0

and N1 are composite action nodes, sequential (S) and con-
current (C), respectively. Nodes N2, N3 and N4 are prim-
itive action nodes. Each node specifies a task and has a
node interface containing node parameters. In this case only
temporal parameters are shown representing the respective
intervals a task should be completed in.

Each node can have constraints associated with it, called
node constraints. These constraints limit the valid values of
the node parameters. A TST can also have tree constraints,
expressing precedence, dependence, and organizational re-
lations between the nodes in the TST. Together the node
parameters and the constraints form a constraint network.
Setting the value of a parameter constrains not only the
network, but implicitly, also the degree of autonomy of an
agent. Figure 2 shows the constraint network defined by the
TST in Figure 1.

3. ALLOCATING TST SPECIFIED TASKS
Given a TST representing a complex task, an important
problem is to find a set of platforms that can execute these
tasks according to the specification. The problem is to allo-
cate tasks to platforms and assign values to parameters such
that each task can be carried out by its assigned platform
and all the constraints of the TST are satisfied.

Figure 2: The constraint network defined by the
TST in Figure 1.

For a platform to be able to carry out a task, it must have
the capabilities and the resources required for the task. A
platform that can be assigned a task in a TST is called a
candidate and a set of candidates is a group. The capabilities
of a platform are fixed while the available resources will vary
depending on its commitments, including the tasks it has al-
ready been allocated. The resources and the commitments
are modeled with constraints. Resources are represented by
variables and commitments by constraints. The resources
used by a platform when executing a particular action are
represented by a parameterized set of constraints. The ac-
tion parameters must be part of the node interface for any
node containing that action. These constraints are local to
the platform and different platforms may have different con-
straints for the same action. Figure 3 shows the constraints
for the scan action for platform P1.

When a platform is assigned an action node in a TST, the
constraints associated with that action are instantiated and
added to the constraints of the platform. The platform con-
straints are connected to the constraint problem defined by
the TST through the node parameters in the node interface.
Figure 4 shows the constraint network after allocating node
N2 from the example TST to platform P1.

A platform can be allocated more than one node. This may
introduce implicit dependencies between the actions since
each allocation adds constraints to the constraint problem
of the platform. There can for example be a shared resource
that both actions use. Figure 5 shows the constraint net-
work of platform P1 after it has been allocated nodes N2

and N4 from the example TST. In this example the position
of the platform is implicitly shared since the first action will
change the location of the platform.

A complete allocation is an allocation which allocates ev-
ery node in a TST to a platform. A completely allocated
TST defines a constraint problem that represents all the
constraints for this particular allocation of the TST. As the
constraints are distributed among the platforms it is in effect
a distributed constraint problem. If the constraint problem
is consistent then a valid allocation has been found and each
solution can be seen as a potential execution schedule of the
TST. The consistency of an allocation can be checked by
a distributed constraint satisfaction problem (DCSP) solver
such as the Asynchronous Weak Commitment Search (AWCS)



Figure 3: The parameterized platform constraints
for the scan action. The red/dark variables are con-
nected to the TST as part of the node interface.

algorithm [17] or ADOPT [13].

4. MULTI-ROBOT TASK ALLOCATION
Multi-robot task allocation (MRTA) is an important prob-
lem in the multiagent community [7, 8, 12, 16, 18, 19]. It deals
with the complexities involved in taking a description of a
set of tasks and deciding which of the available robots should
do what. Often the problem also involves maximizing some
utility function or minimizing a cost function. Important
aspects of the problem are what types of tasks and robots
can be described, what type of optimization is being done,
and how computationally expensive the allocation is. In
this section we discuss the MRTA problem and how it re-
lates to allocating complex tasks specified as TSTs. In the
process, we extend the classification introduced by Gerkey
and Matarić [7, 9] with four new dimensions.

The task allocation problem can be traced back to the Op-
timal Assignment Problem (OAP) [6]. In OAP, m workers
should be assigned to n jobs, one worker per job, where the
worker-job combinations have different utilities depending
on how well suited the worker is for the job. The problem
is to find the optimal allocation.

The following assumptions are made in OAP: A worker can
only have one job at a time. A job only needs one worker.
The assignment is instantaneous. There are no more jobs to
take care of later. The jobs are atomic in the sense that they
do not relate to each other. Both utilities and jobs are inde-
pendent. Since assigning a worker to a job does not change
the utilities of other workers, the jobs can be assigned in any
order. One can see that the problem has three dimensions:
worker capacity, job complexity, and allocation horizon.

4.1 Classifying Multi Robot Task Allocation
The multi-robot task allocation problem is in its simplest
form equal to the OAP. By varying the problem along the
three OAP dimensions Gerkey and Matarić define seven
more complex variants [9]. Single task robots (ST) vs. multi-
task robots (MT), i.e. can a robot execute one or many tasks
at the same time (worker capacity). Single robot tasks (SR)
vs. multi-robot tasks (MR), where SR means that each task
can be executed by a single robot, while with MR a task
may need more than one robot (job complexity). The final
dimension, allocation horizon, is instantaneous assignment
(IA) vs. time-extended assignment (TE). In IA there is no
information available to reason about further allocations, in-
stead an allocation can be done directly with the information
that is available. For TE there is more information such as
information about all tasks that need to be assigned or a
model of how tasks are expected to arrive in time.

Figure 4: The combined constraint problem after
allocating node N2 to platform P1.

In his thesis [7], Gerkey points out that the classification
does not really apply to tasks that have interrelated utilities
(e.g., the utility of task 1 for platform A is dependent on
whether it is also allocated task 2) and tasks that have con-
straints between them (e.g., a TST with sequential tasks).
To cover these cases we extend the classification model with
the dimensions unrelated utilities (UU) vs. interrelated util-
ities (IU) and independent tasks (IT) vs. constrained tasks
(CT).

Another aspect of the task allocation problem is who is mak-
ing the task allocation. In OAP, solving the allocation prob-
lem is separate from executing the allocated tasks. The al-
location itself is not seen as something that has to be done
by a worker, instead it is an external process. If the al-
location is done by a worker, then both the tasks and the
task allocation are tasks for the multiagent system. Mak-
ing task allocation a task is part of the delegation concept.
A delegation is a task allocation performed by a particular
platform. We call this new dimension external allocation
view (EV) vs. internal allocation view (IV). Whether IV is
harder than EV depends on how much information about
the task allocation problem that the allocator has. In EV
it is assumed that all the information can be given to the
external allocator. This does not have to be the case for IV.

Related to, but not directly included in the task allocation
problem is the task allocation environment dimension. A
task allocation environment can be even more challenging
than TE, if the task allocator not only has to take into ac-
count future tasks to allocate, but also that the task alloca-
tion problem can change unexpectedly. Changes could in-
clude addition or removal of robots, changes to constraints,
and changes to variables. Such environments introduce the
additional problem of task re-allocation. We call this extra
dimension static allocation environment (SA) vs. dynamic
allocation environment (DA).



Figure 5: The parameter constraints of platform P1

when allocated node N2 and N4.

4.2 Classifying Allocating TST Specified Tasks
Following the above classification, the problem of allocating
a complex task according to a TST is classified as a MT-
SR-TE-IU-CT-IV-DA problem. Each platform can do more
than one task at a time (MT) since it is only restricted by
its resources. Only one platform is needed (SR) for each
task if we view each node in the TST as an individual task.
If we view the entire TST as a task, then it is in the MR
class. This shows that specifying a multi-robot task as a
TST avoids the problem of allocating multiple robots to the
same task. More generally, the class SR-CT includes parts
of the MR class. Since a TST models the tasks that should
be allocated and how they relate to each other the problem
is in TE. Since a TST can specify constraints such as exe-
cution order and global timing, the problem is in CT. The
problem is also in IU due to shared resources for example.
Since allocating tasks is an active part in the delegation, the
problem is in IV. In addition, the problem is in DA, meaning
that we also have to think about task re-allocation.

5. AN ALGORITHM FOR ALLOCATING
COMPLEX TASKS SPECIFIED BY TSTS

This section presents a heuristic search algorithm for allocat-
ing a fully expanded TST to a set of platforms. A successful
allocation allocates each node to a platform and assigns val-
ues to parameters such that each task can be carried out by
its assigned platform and all the constraints of the TST are
satisfied. During the allocation, variables will be instanti-
ated resulting in a schedule for executing the TST.

The algorithm starts with an empty allocation and extends
it one node at a time in a depth-first order over the TST.
To extend the allocation, the algorithm takes the current al-
location, finds a consistent allocation of the next node, and
then recursively allocates the rest of the TST. Since a partial
allocation corresponds to a distributed constraint satisfac-
tion problem, a DCSP solver is used to check whether the
constraints are consistent. If all possible allocations of the
next node violate the constraints, then the algorithm uses
backtracking with backjumping to find the next allocation.

The algorithm is both sound and complete. It is sound since
the consistency of the corresponding constraint problem is
verified in each step and it is complete since every possible
allocation is eventually tested. Since the algorithm is recur-
sive the search can be distributed among multiple platforms.

To improve the search, a heuristic function is used to deter-
mine the order platforms are tested. The heuristic function
is constructed by auctioning out the node to all platforms
with the required capabilities. The bid is the marginal cost
for the platform to accept the task relative to the current
partial allocation. The cost could for example be the total
time required to execute all tasks allocated to the platform.

To increase the efficiency of the backtracking, the algorithm
uses backjumping to find the latest partial allocation which
has a consistent allocation of the current node. This pre-
serves the soundness as only partial allocations that are
guaranteed to violate the constraints are skipped.

The AllocateTST algorithm takes a TST rooted in the node
N as input and finds a valid allocation of the TST if possible.
To check whether a node N can be allocated to a specific
platform P the TryAllocateTST algorithm is used. It tries to
allocate the top node N to P and then recursively finding
an allocation of the sub-TSTs.

AllocateTST(Node N)
1. Find the set of candidates C for N .

2. Run an auction for N among the candidates in C and
order C according to the bids.

3. For each candidate c in the ordered set C:

(a) If TryAllocateTST(c, N) then return success.

4. Return failure.

TryAllocateTST(Platform P, Node N)
1. AllocateTST P to N .

2. If the allocation is inconsistent then undo the alloca-
tion and return false.

3. For each sub-TST n of N do

(a) If AllocateTST(n) fails then undo the allocation
and do a backjump.

4. An allocation has been found, return true.

The implementation of TryAllocateTST is based on the con-
tract-net protocol [15]. For a platform A to try to allocate a
TST rooted in N to platform B it sends a call-for-proposal
(cfp) message containing the TST to platform B. If TryAl-
locateTST is successful then A will send a propose message
back to A otherwise it will send a refuse message.

5.1 Node Auctions
Broadcasting for candidates for a node N only returns plat-
forms with the required capabilities for the node. There is
no information about the usefulness or cost of allocating the
node to the candidate. Blindly testing candidates for a node
is an obvious source of inefficiency. Instead, the node is auc-
tioned out to the candidates. Each bidding platform bids
its marginal cost for executing the node. I.e., taking into
account all previous tasks the platform has been allocated,
how much more would it cost the platform to take on the
extra task. The cost could for example be the total time
needed to complete all tasks. To be efficient, it is important
that the cost can be computed by the platform locally. We



are currently only evaluating the cost of the current node,
not the sub-TST rooted in the node. This leaves room for
interesting extensions. Low bids are favorable and the can-
didates are sorted according to their bids. The bids are used
as a heuristic function that increases the chance of finding
a suitable platform early in the search.

5.2 Distributed Backjumping
A dead-end is reached when a platform is trying to allo-
cate a node Nk but there is no consistent allocation. The
platform must then undo previous allocations until a partial
allocation is found where Nk can be allocated. This is the
backjump point where the backtracking will start.

More formally, the current partial allocation can be seen as
the assignment A1, . . . , Ak of platforms to each node in the
sequence N1, . . . , Nk. Instead of backtracking over the next
allocation for N1, . . . , Nk−1 as in normal chronological back-
tracking, the algorithm finds the node Nj with the highest
index j such that a consistent allocation for Nk can be found
given the partial allocation A1, . . . , Aj . The node Nj is
called the backjump point. Using the fact that Nk must be al-
located we can skip all partial allocations of Nj+1, . . . , Nk−1

that do not lead to a consistent allocation of Nk.

The backjump point is found by disconnecting parts of the
DCSP network and then trying all possible allocations for
Nk. When the node can be allocated with parts of the net-
work disconnected, it means that the backjump point resides
in the disconnected part of the network. The localization of
the backjump point continues in the previously disconnected
network by recursively dividing it into smaller parts. Each
new partial allocation is checked by trying to extend it with
an allocation of Nk. Since the task allocation process is
distributed the backjump process must also be distributed.

To describe the algorithm, the following definitions are used.
A platform is in charge of all nodes below a node it has been
allocated. The node that could not be allocated is called the
failure point. The platform trying to find an allocation for
the failure point is called failure point allocator. Disconnect-
ing a network means temporarily removing the variables in
the network from the DCSP which is equivalent to removing
the corresponding allocations. When a platform disconnects
networks and checks for consistency, an activation message
is sent from the platform to the failure point allocator. The
failure point allocator will then try applicable platforms for
the failure point until an allocation is found or none exists.
The failure point allocator sends an allocation succeed if an
allocation is found, otherwise an allocation failed message.

The procedures Search Upwards and Search Downwards are
used to find the backjump point, beginning with the Search
Upwards procedure. Two different search procedures are
necessary since we first have to find which platform is in
control over the backjump point, and second to find the ac-
tual backjump point.

Search Upwards
1. Disconnect all child branches (that have been allo-

cated) except the branch that contains the failure point.
Signal the failure point allocator to start finding an al-
location for the failure point.

(a) If the failed node can be allocated, reconnect all
child branches and start searching for the back-
jump point by calling Search Downwards.

(b) If no allocation can be found, then do a Search
Upwards starting from the parent of the node. If
the node has no parent then there is no allocation.

Search Downwards
1. Disconnect child branches one at the time in the re-

verse order they were allocated and check the consis-
tency. If the network is consistent then the backjump
point is in that branch.

2. When a branch containing the backjump point is lo-
cated, check if the child branch has a composite action
node as the top-node. In that case, do a recursive
Search Downwards starting at that node. Otherwise,
the backjump point has been found.

6. A UAV CASE STUDY
On December 26, 2004, a devastating earthquake of high
magnitude occurred off the west coast of Sumatra. This re-
sulted in a tsunami which hit the coasts of India, Sri Lanka,
Thailand, Indonesia, and many other islands. Both the
earthquake and the tsunami caused great devastation. Dur-
ing the initial stages of the catastrophe, there was a great
deal of confusion and chaos in setting into motion rescue op-
erations in such wide geographic areas. The problem was ex-
acerbated by a shortage of manpower, supplies, and machin-
ery. The highest priorities in the initial stages of the disaster
were searching for survivors in many isolated areas where
road systems had become inaccessible and providing relief
in the form of delivery of food, water, and medical supplies.

Let us assume that one has access to a fleet of autonomous
unmanned helicopter systems with ground operation facil-
ities. How could such a resource be used in the real-life
scenario described?

A prerequisite for the successful operation would be the
existence of a multiagent (UAV platforms, ground opera-
tors, etc.) software infrastructure for assisting emergency
services. At the very least, one would require the system
to allow mixed-initiative interaction with multiple platforms
and ground operators in a robust, safe, and dependable man-
ner. As far as the individual platforms are concerned, one
would require a number of different capabilities, not neces-
sarily shared by each individual platform, but by the fleet
in total. These capabilities would include: the ability to
scan and search for salient entities such as injured humans,
building structures, or vehicles; the ability to monitor or
survey these salient points of interest and continually collect
and communicate information back to ground operators and
other platforms to keep them situationally aware of current
conditions; and the ability to deliver supplies or resources
to these salient points of interest if required. For example,
identified injured persons should immediately receive a relief
package containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume
there are two separate legs or parts to the emergency relief
scenario in the context sketched previously.



Figure 6: The disaster area with platforms P1–P3,
survivors S1–S5, and operators OP1 and OP2.

Leg I In the first part of the scenario, it is essential that for
specific geographic areas, the UAV platforms should
cooperatively scan large regions in an attempt to iden-
tify injured persons. The result of such a cooperative
scan would be a saliency map pinpointing potential
victims and their geographical coordinates and asso-
ciating sensory output such as high resolution photos
and thermal images with the potential victims. The
saliency map could then be used directly by emergency
services or passed on to other UAVs as a basis for ad-
ditional tasks.

Leg II In the second part of the scenario, the saliency map
from Leg I would be used for generating and executing
a plan for the UAVs to deliver relief packages to the
injured. This should also be done in a cooperative
manner.

In this paper, we will focus on the second leg, which is an
example of a logistics scenario. One approach to the first
leg is described in [14].

One approach to solving logistics problems is to use a task
planner to generate a sequence of actions that will trans-
port each box to its destination. Each action must then be
executed by a UAV. We have previously shown how to gen-
erate pre-allocated plans and monitor their execution [3, 11].
In this paper we show how a plan without explicit alloca-
tions expressed as a TST can be allocated to a set of UAV
platforms which where not known at the time of planning.

6.1 The TST for the Logistics Scenario
In this particular scenario, shown in Figure 6, five survivors
(S1–S5) are found in Leg I, and there are three platforms
(P1–P3) and one carrier available. To start Leg II, the op-
erator creates a TST, for example using a planner, that will
achieve the goal of distributing relief packages to all sur-
vivor locations in the saliency map [11]. The resulting TST
is shown in Figure 7. The TST contains a sub-TST (N1–
N12) for loading a carrier with four boxes (N2–N6), deliver-
ing the carrier (N7), and unloading the packages from the
carrier and delivering them to the survivors (N8–N12). A
package must also be delivered to the survivor in the right
uppermost part of the region, far away from where most of

Figure 7: The TST for the logistics scenario.

the survivors were found (N13). The delivery of packages can
be done concurrently to save time, but the loading, moving,
and unloading of the carrier is a sequential operation. UAVs
and equipment should be allocated carefully to assure that
all relief packages reach their destinations in time.

Another operator OP2 is performing a scan mission, with
the platforms P3 and P4 north of the area in Figure 6. P3

is currently idle and OP1 is therefore allowed to borrow it.

6.2 Allocating the Logistics Scenario Tasks
To allocate the TST in Figure 7 the operator OP1 invokes
AllocateTST on the top node N0. After an auction between
P1 and P2 for N0, OP1 sends a cfp message with the TST to
the winner P1. This invokes TryAllocateTST for N0 on P1.

P1 is now responsible for N0 and for allocating the remaining
nodes in the TST. The task allocation algorithm traverses
the TST in depth-first order, so P1 should first find a plat-
form for node N1, and when the entire sub-TST rooted in
N1 is allocated, find an allocation for node N13. Node N1

and N2 are two composite action nodes which have the same
marginal cost for all platforms. P1 therefore recursively al-
locates N1 and N2 to itself. The constraints from nodes N0–
N2 are added to the constraint network of P1. The network
is consistent because the composite action nodes describe a
schedule without any restrictions.

Below node N2 are four primitive action nodes. Since P1 is
responsible for N2, it tries to allocate them one at the time.
For primitive action nodes, the choice of platform is the key
to a successful allocation. This is because of each platform’s
unique state, constraint model for the action, and available
resources. The candidates for node N3 are platform P1 and
P2. P1 is closest to the package depot, and therefore gives
the best bid for the node. P1 is allocated to N3. For node
N4, platform P1 is still the best choice, and it is allocated to
N4. Given the new position of P1 after being allocated N3

and N4, P2 is now closest to the depot resulting in the lowest
bid and is allocated to N5 and N6. The schedule defined by
nodes N0–N2 is now constrained further by how long it takes
for P1 and P2 to carry out action nodes N3–N6. The con-
straint network is now shared between platforms P1 and P2.



The next node to allocate for P1 is node N7, the carrier de-
livery node. P1 is the only platform that has the fly carrier
capability and is allocated the node. Continuing with the
nodes N8–N12, the platform with the lowest bid for each
node is platform P1, since it is in the area after delivering
the carrier. P1, is therefore allocated to nodes N8–N12.

The final node, N13, is allocated to platform P2 and the al-
location is complete. The only non-local information used
by P1 was the capabilities of the available platforms which
was gathered through a broadcast. Everything else is local.
The bids are made by each platform based on local informa-
tion and the consistency of the constraint network is checked
through distributed constraint satisfaction techniques.

The total mission time is 58 minutes, much longer than the
operator expected. Since the constraint problem defined by
the allocation to the TST is shared between the platforms,
it is possible for the operator to modify the constraint prob-
lem by adding more constraints, and in this way modify the
task allocation. The operator puts a time constraint on the
mission, restricting the total time to 30 minutes.

To re-allocate the modified TST, operator OP1 sends a reject-
proposal to platform P1. The added time constraint to the
mission makes the current allocation inconsistent. The last
allocated node must therefore be re-allocated. However, no
platform for N13 can make the allocation consistent, not
even the newly added P3. Backtracking starts. Platform
P1 is in charge, since it is responsible for allocating node
N13. The N1 sub-network is disconnected. Trying different
platforms for the node N13, P1 discovers that N13 can be
allocated to P2. P1 sends a backjump-search message to the
platform in charge of the sub-TST with top-node N1, which
happens to be P1, to start an Upward Search. When receiv-
ing the message P1 continues the search for the backjump
point. Since removing all constraints due to the allocation of
node N1 and its children made the problem consistent, the
backjump point is in the sub-TST rooted in N1. Removing
the allocations for sub-tree N8 does not make the problem
consistent so further backjumping is necessary. Notice that
with a single consistency check the algorithm could show
that no possible allocation of N8 and its children can lead
to a consistent allocation of N13. Removing the allocation
for node N7 does not make a difference either. Removing
the allocations for sub-TST N2 makes the problem consis-
tent. When finding an allocation of N13 after removing the
constraints from N6 the allocation process continues from
N6 and tries the next platform for the node, P1.

When the allocation reaches node N11 it is discovered that
since P1 has taken on nodes N3–N8, there is not enough
time left for P1 to unload the last two packages from the
carrier. Instead P3, even though it made a higher bid for
N11–N12, is allocated to both nodes. Finally platform P2

is allocated to node N13. It turns out that since platform
P2 helped P1 loading the carrier, it has not enough time to
deliver the final package. Instead, a new backjump point
search starts, finding node N5, and continuing from there.
This time around, nodes N3–N9 are allocated to platform
P1, platform P3 is allocated to node N10–N12, and platform
P2 is allocated to node N13. The allocation is consistent.
The allocation algorithm finishes on platform P1, by send-

Scenario A D C kB Makespan (range)

Log5-2P-A 12 16 6 52 253
Log5-2P-R - 13 6 27 289 (257–321)
Log5-4P-A 31 18 7 89 224
Log5-4P-R - 20 6 142 221 (201–242)
Log17-2P-A 40 46 32 177 543
Log17-2P-R - 49 32 114 561 (451–679)
Log17-4P-A 141 78 18 160 365
Log17-4P-R - 73 24 142 389 (311–511)

Table 1: Evaluation of the task allocation algorithm.

ing a propose message back to the operator. The operator
inspects the allocation and approves it, thereby starting the
execution of the mission.

6.3 Preliminary Empirical Evaluation
To get an initial feeling for the runtime cost of the algorithm
and the benefit of using node auctions as a heuristic function
we have tried a number of different settings. We used both
a TST like the one in the scenario with 5 boxes (14 nodes)
and a larger TST with 17 boxes (50 nodes). The algorithm
was tried on each scenario with both 2 or 4 platforms and
with or without node auctions. The scenarios which did not
use node auction used a random order of the nodes. To get
a better estimation of the randomized test we ran them 10
times and took the average results.

The results are shown in Table 1. To measure the cost and
quality of the algorithm we measured the number of mes-
sages related to auctions (A), delegation (D), and constraint
satisfaction (C), the total size of the messages (kB), and the
total makespan of the resulting allocation. The makespan
can be seen as a quality measure of the allocation. The
shorter it is the more efficient the allocation is.

From these preliminary results we can see that node auctions
use more messages and result in a slightly higher quality.
The benefit is expected to increase as the TST complexity
grows and a more careful choice of allocation is required. In
the example TSTs very little backtracking was necessary.

7. RELATED WORK
The closest work to allocating TSTs is the work on task al-
location for task trees [16, 18, 19]. In task trees, tasks are
related to each other either by precedence constraints or by
compositions as expressed by logical connectives. The au-
thors call this “complex task allocation”. A major difference
is that these task trees can not express interrelated utilities
(IU), which TSTs can.

Many task allocation algorithms are auction-based [2, 18].
There, tasks are auctioned out and allocated to the agent
that makes the best bid. Bids are determined by a utility
function. The auction concept decentralizes the task allo-
cation process which is very useful especially in multi-robot
systems, where centralized solutions are impractical. For
tasks that have unrelated utilities, this approach has been
very successful. The reason is that UU guarantees that each
task can be treated as an independent entity, and can be
auctioned out without affecting other parts of the alloca-



tion. This means that a robot does not have to take other
tasks into consideration when making a bid.

In complex task allocation sub-tasks may not be indepen-
dent. A complex task has structure and there are relations
between its atomic tasks. It is also often the case that a com-
plex task must be allocated to a group of agents, creating
relations between the agents relative to the task. Complex
task allocation must therefore take into account synergy ef-
fects between allocations which influence the bids for tasks.
A bid could for example be different depending on other
commitments of the platform.

More advanced auction protocols have been developed to
handle dependencies among tasks. These are constructed
to deal with complementarities (substitution effects, which
we call interrelated utilities). Examples are sequential sin-
gle item auctions [10] and combinatorial auctions [1]. These
auctions typically handle that different combinations of tasks
have different bids, which can be compared to our model
where different sets of allocations result in different restric-
tions to the constraint network between the platforms.

The sequential single item (SSI) auction [10] is of special in-
terest as it is similar to our algorithm. In SSI auctions, the
tasks are auctioned out in sequence, one at a time to make
sure the new task fits with the previous allocations. Nor-
mally SSI auctions are applied to problems where it is easy
to find a solution but it is hard to find a good solution. They
are therefore normally not complete for problems where it
is hard to find a solution, like with TST allocation.

Combinatorial auctions deal with complementarities by bid-
ding on bundles containing multiple items. Each bidder
places bids on all the bundles that are of interest, which
could be exponentially many. The auctioneer must then
select the best set of bids, called the winner determination
problem, which is NP-hard [1]. This means that even in the
best case there is a very high computational cost involved
in using combinatorial auctions.

8. CONCLUSIONS
Two central problems in our research with collaborative un-
manned aerial vehicles are to define complex mixed-initiative
missions and given a mission find UAV platforms that can
execute it. We have previously introduced a formal delega-
tion framework and within that proposed task specification
trees as a highly expressive specification language for mul-
tiagent tasks that supports mixed-initiative delegation with
adjustable autonomy. In this paper we have discussed the
problem of allocating complex tasks to robots. We extended
the multi-robot task allocation classification introduced by
Gerkey and Matarić [9] with four new dimensions and argued
that allocating task specification trees is more challenging
than most allocation problems currently considered. The
problem of allocating TSTs to robot platforms was defined
and a heuristic algorithm for finding a consistent allocation
was presented. The algorithm recursively searches among
the potential allocations in a distributed manner and uses
distributed constraint satisfaction techniques to check if an
allocation satisfies the constraints. We also presented a de-
tailed case study with a team of unmanned aerial vehicles
assisting in a challenging emergency services scenario.

In conclusion, specifying and allocating complex tasks are
important research problems in multiagent systems, espe-
cially when dealing with robotic agents in the real world.
The presented approach takes another step towards a prac-
tical collaborative multi-robot system.
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