
A Distributed Task Specification Language for
Mixed-Initiative Delegation∗

Patrick Doherty
Linköping University
Linköping, Sweden

patrick.doherty@liu.se

David Landén
Linköping University
Linköping, Sweden

david.landen@liu.se

Fredrik Heintz
Linköping University
Linköping, Sweden

fredrik.heintz@liu.se

ABSTRACT
In the next decades, practically viable robotic/agent sys-
tems are going to be mixed-initiative in nature. Humans
will request help from such systems and such systems will
request help from humans in achieving the complex mission
tasks required. Pragmatically, one requires a distributed
task specification language to define tasks and a suitable
data structure which satisfies the specification and can be
used flexibly by collaborative multi-agent/robotic systems.
This paper defines such a task specification language and an
abstract data structure called Task Specification Trees which
has many of the requisite properties required for mixed-
initiative problem solving and adjustable autonomy in a dis-
tributed context. A prototype system has been implemented
for this delegation framework and has been used practically
with collaborative unmanned aircraft systems.

Keywords
Multi-Agent Architectures, Cooperation, Delegation, Dis-
tributed Systems, Unmanned Aerial Vehicles

1. INTRODUCTION
In the past decade, the Unmanned Aircraft Systems Tech-
nologies Lab1 at the Department of Computer and Infor-
mation Science, Linköping University, has been involved in
the development of autonomous unmanned aircraft systems
(UAS’s) and associated hardware and software technolo-
gies [8]. The size of our research platforms range from the
RMAX helicopter system [9, 21] (Figure 1) developed by
Yamaha Motor Company, to smaller micro-size rotor based
systems such as the LinkQuad (Figure 2)2 and LinkMAV [11]

∗This work is partially supported by grants from the Swedish
Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII, the Swedish Research Council (VR), the
VR Linnaeus Center CADICS, the ELLIIT Excellence Cen-
ter at Linköping-Lund for Information Technology, and the
Center for Industrial Information Technology CENIIT.
1www.ida.liu.se/divisions/aiics/
2www.uastech.com

(Figure 1), in addition to a fixed wing platform, the Ping-
Wing [6] (Figure 1). The latter three have been designed
and developed by the Unmanned Aircraft Systems Tech-
nologies Lab. Previous work has focused on the develop-
ment of robust autonomous systems for UAS’s which seam-
lessly integrate control, reactive and deliberative capabilities
that meet the requirements of hard and soft realtime con-
straints [9, 16].

Figure 1: The UASTech RMAX (left), LinkMAV (cen-

ter) and the PingWing (right)

Figure 2: The UASTech LinkQuad Quadrotor Heli-

copter

More recently, our research efforts have begun to focus on
applications where UAS’s with heterogeneous unmanned air-
craft are required to collaborate not only with each other but
also with diverse human resources [10].

As UAS’s become more autonomous, mixed-initiative inter-
action between human operators and such systems will be
central in mission planning and tasking. In the near future,
the practical use and acceptance of UAS’s will have to be

based on a verifiable, principled and well-defined interac-
tion foundation between one or more human operators and
one or more autonomous systems. In developing a princi-
pled framework for such complex interaction between UAS’s
and humans in complex scenarios, a great many interdepen-
dent conceptual and pragmatic issues arise and need clarifi-
cation both theoretically, but also pragmatically in the form
of demonstrators.

1.1 A Conceptual Triad
In our current research, we have targeted a triad of funda-
mental, interdependent conceptual issues: delegation, mixed-
initiative interaction and adjustable autonomy. The triad of
concepts is being used as a basis for developing a principled
and well-defined framework for interaction that can be used
to clarify, validate and verify different types of interaction
between human operators and UAS’s both theoretically and
practically in experimentation with our deployed platforms.
The concept of delegation is particularly important and in
some sense provides a bridge between mixed-initiative inter-
action and adjustable autonomy.

Delegation – In any mixed-initiative interaction, humans
request help from robotic systems and robotic systems may
request help from humans. One can abstract and concisely
model such requests as a form of delegation,
Delegate(A, B, task, constraints), where A is the delegat-
ing agent, B is the potential contractor, task is the task
being delegated and consists of a goal and possibly a plan
to achieve the goal, and constraints represents a context in
which the request is made and the task should be carried
out.

Adjustable Autonomy – In solving tasks in a mixed-
initiative setting, the robotic system involved will have a
potentially wide spectrum of autonomy, yet should only use
as much autonomy as is required for a task and should not
violate the degree of autonomy mandated by a human oper-
ator unless agreement is made. One can begin to develop a
principled means of adjusting autonomy through the use of
the task and constraint parameters in the
Delegate(A, B, task, constraints) predicate. A task dele-
gated with only a goal and no plan, with few constraints,
allows the robot to use much of its autonomy in solving the
task, whereas a task specified as a sequence of actions and
many constraints allows only limited autonomy.

Mixed-Initiative Interaction – By mixed-initiative, we
mean that interaction and negotiation between a UAS and
a human will take advantage of each of their skills, capaci-
ties and knowledge in developing a mission plan, executing
the plan and adapting to contingencies during the execu-
tion of the plan. Mixed-initiative interaction involves a very
broad set of issues, both theoretical and pragmatic. One
central part of such interaction is the ability of a ground
operator (GOP) to be able to delegate tasks to a UAS,
Delegate(GOP, UAS, task, constraints) and in a symmet-
ric manner, the ability of a UAS to be able to delegate tasks
to a GOP, Delegate(UAS, GOP, task, constraints). Issues
pertaining to safety, security, trust, etc., have to be dealt
with in the interaction process and can be formalized as
particular types of constraints associated with a delegated
task.

1.1.1 The Central Role of Tasks and their Specifica-
tion and Semantics

An important conceptual and pragmatic issue which is cen-
tral to the three concepts and their theoretical and prag-
matic integration is that of a task and its representation
and semantics in practical systems. The task representa-
tion must be highly flexible, distributed and dynamic. Tasks
need to be delegated at varying levels of abstraction and also
expanded and modified as parts of tasks are recursively del-
egated to different UAS agents. Consequently, the structure
must also be distributable. Additionally, a task structure
is a form of compromise between a compiled plan at one
end of the spectrum and a plan generated through an auto-
mated planner [14] at the other end of the spectrum. The
task representation and semantics must seamlessly accom-
modate plan representations and their compilation into the
task structure. Finally, the task representation should sup-
port the adjustment of autonomy through the addition of
constraints or parameters by agents and human resources.

1.2 Paper Structure
The first part of the paper sets the broader context by pro-
viding a short summary in Section 2 of a formal delegation
framework based on the use of speech acts in addition to a
short summary about the pragmatics of implementing such
a system on UAS’s in Section 3. The second part of the
paper described in Section 4 is specifically about task spec-
ification and provides details about task representation and
semantics through the use of Task Specification Trees. This
section also provides an example. The paper then concludes
with related work and conclusions.

2. SEMANTIC PERSPECTIVE
In [3, 13], Falcone & Castelfranchi provide an illuminating,
but informal discussion about delegation as a concept from
a social perspective. Their approach to delegation builds on
a BDI model of agents, that is, agents having beliefs, goals,
intentions, and plans [4], but the specification lacks a formal
semantics for the operators used. Based on intuitions from
their work, we have previously provided a formal character-
ization of their concept of strong delegation using a com-
municative speech act with pre- and post-conditions which
update the belief states associated with the delegator and
contractor, respectively [10]. In order to formally character-
ize the operators used in the definition of the speech act, we
use KARO [20] to provide a formal semantics. The KARO
formalism is an amalgam of dynamic logic and epistemic /
doxastic logic, augmented with several additional (modal)
operators in order to deal with the motivational aspects of
agents.

First, we define the notion of a task as a pair consisting
of a goal and a plan for that goal, or rather, a plan and
the goal associated with that plan. Paraphrasing Falcone
& Castelfranchi into KARO terms, we consider a notion
of strong/strict delegation represented by a speech act S-
Delegate(A, B, τ) of A delegating a task τ = (α, φ) to B,
where α is a possible plan and φ is a goal. It is specified as
follows:

S-Delegate(A, B, τ), where τ = (α, φ)

Preconditions:

(1) GoalA(φ)

(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))

(3) BelA(Dependent(A, B, α))

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)

(2) CommittedB(α).

(3) BelBGoalA(φ)

(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also
IntendB(τ))

(5) MutualBelAB(“the statements above” ∧
SociallyCommitted(B, A, τ))3

Informally speaking this expresses the following: the pre-
conditions of the S-delegation act of A delegating task τ to
B are that (1) φ is a goal of delegator A (2) A believes that
B can (is able to) perform the task τ (which implies that A
believes that B himself believes that he can do the task!) (3)
A believes that with respect to the task τ he is dependent
on B.

The postconditions of the delegation act mean: (1) B has
φ as his goal and is aware of this (2) he is committed to
the task (3) B believes that A has the goal φ (4) B can do
the task τ (and hence believes it can do it, and furthermore
it holds that B intends to do the task, which was a sepa-
rate condition in Falcone & Castelfranchi’s set-up), and (5)
there is a mutual belief between A and B that all precon-
ditions and other postconditions mentioned hold, as well as
that there is a contract between A and B, i.e. B is socially
committed to A to achieve τ for A. In this situation we will
call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents
induces obligations to the partners involved, depending on
how the task is specified in the delegation action. This di-
mension has to be added in order to consider how the con-
tract affects the autonomy of the agents, in particular the
contractor’s autonomy. We consider a few relevant forms of
delegation specification below.

2.1 Closed vs Open Delegation
Falcone & Castelfranchi furthermore discuss the following
variants of task specification:

• closed delegation: the task is completely specified: both
goal and plan should be adhered to.

3A discussion pertaining to the semantics of all non-KARO
modal operators may be found in [10].

• open delegation: the task is not completely specified:
either only the goal has to be adhered to while the plan
may be chosen by the contractor, or the specified plan
contains ‘abstract’ actions that need further elabora-
tion (a ‘sub-plan’) to be dealt with by the contractor.

So in open delegation the contractor may have some freedom
to perform the delegated task, and thus it provides a large
degree of flexibility in multi-agent planning, and allows for
truly distributed planning.

The specification of the delegation act in the previous sub-
section was in fact based on closed delegation. In case of
open delegation, α in the postconditions can be replaced by
an α′, and τ by τ ′ = (α′, φ). Note that the fourth clause, viz.
CanB(τ ′), now implies that α′ is indeed believed to be an
alternative for achieving φ, since it implies that BelB [α′]φ
(B believes that φ is true after α′ is executed). Of course,
in the delegation process, A must agree that α′ is indeed
viable. This would depend on what degree of autonomy is
allowed.

This particular specification of delegation follows Falcone
& Castelfranchi closely. One can easily foresee other con-
straints one might add or relax in respect to the basic specifi-
cation resulting in other variants of delegation [5, 7]. In [10],
we also provide an instantiation of the delegation framework
using 2APL, a popular agent programming language.

3. PRAGMATIC PERSPECTIVE
From a semantic perspective, delegation as a speech act pro-
vides us with conceptual insight and an abstract specifica-
tion which can be used as a basis for a more pragmatic im-
plementation on actual UAS platforms. There is a large gap
between semantics and pragmatics which one would like to
reduce in a principled manner. To do this, we have chosen to
also work from a bottom-up perspective and have developed
a prototype software system that implements the delegation
framework using a JADE-based architecture specified in the
next section. This system has been tested using a number
of complex collaborative scenarios described in [14, 17].

One particularly interesting result of approaching the com-
plex characterization of delegation from a top-down abstract
semantic perspective and a bottom-up implementation per-
spective is that one can ground the semantic insights into
the implementation in a very direct manner. A central com-
ponent in the speech-act based characterization of delega-
tion is the use of Can() in the pre-conditions to the speech
act. It turns out that verifying the truth of the Can() pre-
conditions becomes equivalent to checking the satisfiability
of a distributed constraint network generated through recur-
sive calls to the delegation operator in the implementation.
This will be shown in Section 4.

3.1 An Agent-Based UAS Architecture
Our RMAX helicopters use a CORBA-based distributed ar-
chitecture [9]. For our experimentation with collaborative
UASs, we view this as a legacy system and extend it with
what is conceptually an additional outer layer in order to
leverage the functionality of JADE [12]. ”JADE (Java Agent
Development Framework) is a software environment to build

agent systems for the management of networked informa-
tion resources in compliance with the FIPA specifications
for interoperable multi-agent systems.” [12]. The reason for
using JADE is pragmatic. Our formal characterization of
the Delegate() operator is as a speech act. We also use
speech acts as an agent communication language and JADE
provides a straightforward means for integrating the FIPA
ACL language which supports speech acts with our existing
systems. The outer layer may be viewed as a collection of
JADE agents that interface to the legacy system. We are
currently using four agents in the outer layer:

1. Interface agent - This agent is the clearinghouse for
communication. All requests for delegation and other
types of communication pass through this agent. Ex-
ternally, it provides the interface to a specific robotic
system.

2. Delegation agent - The delegation agent coordinates
delegation requests to and from other UAS systems,
with the Executor, Resource and Interface agents. It
does this essentially by verifying that the pre-conditions
to a Delegate() request are satisfied. In particular,
calls to the Resource agent determine whether Can()
assertions are satisfiable.

3. Executor agent - After a task is contracted to a par-
ticular UAS, it must eventually execute that task rela-
tive to the constraints associated with it. The Execu-
tor agent coordinates this execution process.

4. Resource agent - The Resource agent determines
whether the UAS of which it is part has the resources
and ability to actually do a task as a potential contrac-
tor. Such a determination may include the invocation
of schedulers and planners to satisfy goal requests and
use of constraint solvers in order to determine whether
local and global constraints can be satisfied.

A prototype implementation of this system has been tested
both in the field with RMAX helicopters and in-the-loop
simulation.

4. TASK SPECIFICATION TREES
We require a formal specification for a task representation
which we call task specification trees (TST’s). This repre-
sentation has to be implicitly sharable, dynamically extend-
able, and distributed in nature. Such a task structure is
passed from one agent to another and possibly extended in
more detail as the delegation process is invoked recursively
among agents and humans. If the delegation process is suc-
cessful, the resulting shared structure is in fact executable
in a distributed manner. The Delegation agents associated
with specific UAS’s are responsible for passing and extend-
ing such structures in order to meet the requirements of
goal specifications or instantiations of abstract task specifi-
cations. The Executor agents associated with specific UAS’s
have the capacity to execute specific nodes in a shared task
specification tree that have been delegated to them. The
Resource agents include constraint solvers which are used
to check the consistency of local and global constraints, and
they sometimes participate in distributed constraint solving
structures across UAS platforms.

4.1 TST Concepts
In this section, we describe the syntax and semantics of a
task specification format for specifying constraint-based task
trees. We call a task-tree specified in the task specification
format a task specification tree.

A TST is a distributed data structure with a declarative rep-
resentation that describes a complex multiagent task. Each
node in a TST corresponds to a task that should be per-
formed. Each node has a node interface containing a set
of parameters that can be specified for the node. The pa-
rameter platform assignment determines the platform that
should execute the node, if specified. The other parame-
ters of the node interface, called node parameters, determine
task specific details of the node. Instantiating the platform
assignment and node parameters partially determines the
degree of autonomy for the task the TST specifies.

Nodes in a TST either specify actions or goals. Action nodes
can be executed when instantiated, whereas goal nodes re-
quire a plan to be generated when instantiated. The plan
then becomes a new TST branch that in turn can be in-
stantiated and executed. Nodes can also be removed and
added during execution, for example, to repair a TST af-
ter a failure. When a TST has been executed, the resulting
TST structure is in fact a representation of the history of
what has been done, including concrete task instantiations,
errors, and repairs.

A TST has a constraint model for each node. The con-
straints associated with a node are called node constraints.
A TST also has tree constraints, expressing precedence and
organizational relations between the nodes in the TST. To-
gether the constraints form a constraint network covering
the TST. In fact, the node parameters function as constraint
variables in a constraint network, and setting the value of
a node parameter constrains not only the network, but im-
plicitly, the degree of autonomy of an agent.

A primitive action node is also called an elementary task.
What defines a task as elementary is application dependent,
although node constraints do integrate with the larger tree
constraint network (see Figure 4). A composite action node
is also called a composite task.

A platform that can be assigned a task in a TST is called
a candidate. Whether a platform can be assigned or not is
determined by the capabilities and resources required for a
node. Only platforms with the required capabilities can be
candidates. The TST concepts are shown in Figure 3.

Nodes N0 and N1 are composite action nodes, sequential
and concurrent, respectively. Nodes N2, N3 and N4 are
primitive action nodes (also called elementary tasks). Each
node specifies a task and has a node interface containing
node parameters and a platform assignment variable. In
this case only temporal parameters are shown representing
the respective intervals a task should be completed in. The
parameters in the node interface correspond to global vari-
ables that can be used in tree constraints relating the nodes
in the tree.

Figure 3: A TST with the nodes N0–N4.

4.2 TST Syntax
A TST specification is a TST node. A TST node consists of
local variables, a task type and constraints. The task type
is either a primitive action, a goal or a composite action.
Composite actions apply their composition relation to one
or more child tasks.

The syntax of a TST specification has the following BNF:

SPEC ::= TST

TST ::= NAME (’(’ VARS ’)’)? ’=’
(with VARS)? TASK (where CONS)?

TSTS ::= TST | TST ’;’ TSTS

TASK ::= ACTION | GOAL |
(NAME ’=’)? NAME (’(’ ARGS ’)’)? |
while COND TST | if COND then TST else TST |
sequence TSTS | concurrent TSTS

VAR ::= <variable name> |
<variable name> ’.’ <variable name>

VARS ::= VAR | VAR ’,’ VARS

CONSTRAINT ::= <constraint>

CONS ::= CONSTRAINT | CONSTRAINT and CONS

ARG ::= VAR | VALUE

ARGS ::= ARG | ARG ’,’ ARGS

VALUE ::= <value>

NAME ::= <node name>

COND ::= <ACL query>

GOAL ::= <goal statement>

ACTION ::= <primitive action>

The TST clause in the BNF introduces the main recursive
pattern in the specification language.The right hand side of
the equality provides the general pattern of providing a vari-
able context for a task (using with) and a set of constraints
(using where) which may include the variables previously
introduced. An example of a TST specification for the TST
depicted in Figure 3 is provided in Section 4.4.

4.3 TST Semantics
A TST defines what to do as well as constraints on how to
do it. In this section we describe informally the complex
action defined by a TST and formally what it means for a
fully instantiated TST to satisfy its specification. This is
defined as a constraint problem. The constraint problem

is formed by the capabilities needed for the TST and the
actual platforms assigned to the task nodes.

In the delegation framework described in Section 2, the log-
ical predicate CanB(τ) states that platform B has the ca-
pability to achieve or execute task τ . One precondition for
delegation is that the delegator believes in the contractor’s
capability to achieve or execute τ , and one postcondition for
successful delegation is that the contractor has the capabil-
ity to achieve or execute the task τ .

In this section, it is shown how our previous formal specifi-
cation of delegation is connected to the dynamic formation
of a constraint problem for an assigned TST, where a TST
corresponds to a task τk = [αk, φk] [10]. In this case, the
Can predicate is extended to include a node interface [ts, te]
representing begin and end times for a node/task and an
additional constraint set cons. Observe that cons can be
formed incrementally and may in fact contain constraints
inherited or passed to it through a recursive delegation pro-
cess.

Can(B, τ, [ts, te], cons) then asserts that an agent B has the
capability for achieving or executing task τ if cons together
with the node constraints for τ are consistent. The task
τk = [αk, φk] consists of a tuple containing αk, a plan or
action(complex or elementary) and φk, a goal (which may
be empty). The temporal variables [ts, te] associated with
the task τ are part of the node interface which may also
contain other variables and are often related to cons.

For each type of composite action (sequence, concurrent,
loop, selector), we can now describe the meaning of its as-
sociated task as part of a larger constraint problem which is
the union of the constraints for the participating sub-nodes
in the composite action. The tree constraints associated
with composite action nodes are independent of the plat-
form assigned to the node in the sense that they are domain
independent and their execution is standard. In contrast to
composite action nodes, the meaning of a primitive action
node is expressed as a platform dependent constraint prob-
lem and execution is dependent on the platform involved.
We describe one primitive action node for the capability
flyto for a UAS platform as an example (the definition of
flyto may be different for different platforms). The meaning
of a goal node is the constraint problem associated with the
plan that is generated for achieving the goal.

Sequential
• In a sequence node, the child nodes should be executed

in sequence (from left to right) during the execution
time of the sequence node.

• Can(B, S(α1, ..., αn), [ts, te], cons) ↔
∃t1, . . . , t2n

Vn
k=1(Can(B, αk, [t2k−1, t2k], consB)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k], consB)) ∧
consistent(consB)4

• consB =
{ts ≤ t1 ∧ (

Vn
i=1 t2i−1 < t2i ∧ t2i ≤ t2i+1) ∧ t2n+1 ≤

te} ∪ cons

4The predicate consistent() has the standard logical mean-
ing.

Concurrent
• In a concurrent node each child node should be exe-

cuted during the time interval of the concurrent node.
5

• Can(B, C(α1, ..., αn), [ts, te], cons) ↔
∃t1, . . . , t2n

Vn
k=1(Can(B, αk, [t2k−1, t2k], consB)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k], consB)) ∧
sconsistent(consB)

• consB =
{

Vn
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons

Elementary Action
• An elementary action node specifies a domain-dependent

action (flyto in this example). An elementary action
node is a leaf node.

• Can(B, flyto(stime, etime, speed, pos), [ts, te], cons) ↔
consistent(consB)

• consB = {te = ts + dist(location(ts), pos)/speed ∧
min speed ≤ speed ≤ max speed ∧ ts < te} ∪ cons6

Selector Node
• Compared to a sequence or concurrent node, only one

of the selector node’s children will be executed, which
one is determined by a test condition in the selector
node. The child node should be executed during the
time interval of the selector node. A selector node is
used to postpone a choice which can not be known
when the TST is specified.

Loop Node
• A loop node will add a child node for each iteration the

loop condition allows. In this way the loop node works
as a sequence node but with an increasing number of
child nodes which are dynamically added. Loop nodes
are similar to selector nodes, they describe additions
to the TST that can not be known when the TST is
specified.

Goal
• A goal node is a leaf node which can not directly be ex-

ecuted, instead it has to be expanded through a call to
an automated planner. After expansion a TST branch
representing the generated plan is added to the original
TST.

• Can(B, Goal(φ), [ts, te], cons) ↔
∃α (GenerateP lan(B, α, φ, [ts, te], cons) ∧
Can(B, α, [ts, te], cons)) ∨
∃akDelegate(B, ak, Goal(φ), [ts, te], cons)

5Concurrency in this case does not necessarily mean that
the execution of the child nodes should be concurrent,
they can be in sequence, but concurrency is allowed, so
S ⊆ C.Comparing S and C to Allen’s interval algebra [1], C
can cover all 13 relations, and S can cover 4 of the relations
(b,m,bi,mi).
6Additional constraints would be required in general to
model resource allocation, etc. For clarity, we leave these
nuances outside the example.

4.4 Example
Assume we have a TST structure as depicted in Figure 3.
Let’s assume that nodes N0 to N4 have the task names τ0

to τ4 associated with them, respectively. This TST contains
two composite actions, with the capabilities sequence (τ0)
and concurrent (τ1). The primitive action nodes τ2 and τ3

require a scan capability and τ4 requires a flyto capability.
We can assume that the delegation process together with
a platform allocation algorithm [2] has found three UAS
platforms, P0, P1 and P2, with the appropriate capabilities.
P0 has been assigned and/or delegated the composite actions
τ0 and τ1. P0 has recursively delegated parts of these tasks
to P1 (τ2 and τ4) and P2(τ3).

The specification for this TST is:

τ0(TS0 ,TE0) =
with TS1 , TE1 , TS4 , TE4 sequence
τ1(TS1 ,TE1) =
with TS2 , TE2 , TS3 , TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3 ,TE3) = scan(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)

where consτ0

– consτ0 = {TS0 ≤ TS1 ∧ TS1 ≤ TE1 ∧ TE1 ≤ TS4 ∧
TS4 ≤ TE4 ∧ TE4 ≤ TE0}

– consτ1 = {TS1 ≤ TS2 ∧ TS2 ≤ TE2 ∧ TE2 ≤ TE1 ∧
TS1 ≤ TS3 ∧ TS3 ≤ TE3 ∧ TE3 ≤ TE1}

The constraint problem for the TST is derived by recursively
reducing the Can predicates for each task with ”semanti-
cally” equivalent expressions, beginning with the top-node
τ0 until the logical statements reduce to a constraint net-
work:

Can(P0, α0, [ts0 , te0], cons) =
Can(P0, S(α1, α4), [ts0 , te0], cons) ↔
∃ts1 , te1 , ts4 , te4 ((Can(P0, α1, [ts1 , te1], consP0)
∨ ∃a1(Delegate(a1, α1, [ts1 , te1], consP0)))
∧ (Can(P0, α4, [ts4 , te4], consP0) ∨
∃a2(Delegate(a2, α4, [ts4 , te4], consP0))))

Let’s continue with a reduction of the 1st element in the
sequence α1 (The 1st conjunct in the previous formula on
the right-hand side of the biconditional):

Can(P0, α1, [ts1 , te1], consP0)
∨ ∃a1(Delegate(a1, α1, [ts1 , te1], consP0))

We can assume that P0 has been allocated α1, so the 2nd
disjunct is false.

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3 ((Can(P0, α2, [ts2 , te2], consP0) ∨
∃a1 Delegate(a1, α2, [ts2 , te2], consP0)) ∧
(Can(P0, α3, [ts3 , te3], consP0) ∨
∃a2 Delegate(a2, α3, [ts3 , te3], consP0)))

The node constraints for τ0 and τ1 are then added to P0’s
constraint store. What remains to be done is a reduction of
tasks τ2 and τ4 associated with P1 and τ3 associated with
P2. We can assume that P1 has been delegated α2 and P2

has been delegated α3 as specified. Consequently, we can
reduce to

Can(P0, α1, [ts1 , te1], consP0) =
Can(P0, C(α2, α3), [ts1 , te1], consP0) ↔
∃ts2 , te2 , ts3 , te3 (Can(P1, α2, [ts2 , te2], consP0) ∧
Can(P2, α3, [ts3 , te3], consP0))

These remaining tasks are primitive or elementary tasks and
consequently platform dependent. The definition of Can for
a primitive action node is platform dependent. When a plat-
form is assigned to a primitive action node a local constraint
problem is created on the platform and then connected to
the global constraint problem through the node parameters
of the assigned node’s node interface. In this case, the node
parameters only include temporal constraints and these are
coupled to the internal constraint variables associated with
the primitive actions.The completely allocated and reduced
TST is shown in Figure 4. The reduction of Can for any
primitive action node contains no further Can predicates,
since a primitive action only depends on the platform itself.
All remaining Can predicates in the recursion are replaced
with constraint sub-networks associated with specific plat-
forms as shown in Figure 4.

Figure 4: The completely allocated and reduced TST

showing interaction between the global and internal plat-

form dependent constraints.

The net result is that a logical specification of collaborative
capabilities required for successful achievement of a com-
plex set of distributed tasks is formally reduced to a dis-
tributed constraint problem. So, in effect, the semantic ba-
sis for a TST and what couples it to the abstract delegation
speech act, corresponds to a constraint problem and pro-
vides a pragmatic implementation correlate of the formal
abstraction. The satisfiability of which provides real-world
grounding to the abstract delegation speech act.

An unassigned composite action node and an unassigned
primitive action node have different implications. The con-
straints of composite actions nodes are global and related to
the tree shape created by the composition of the compos-
ite actions. For global constraints, the choice of platform
does not matter, it still results in a similar constraint prob-
lem. Primitive action nodes on the other hand create a
unique local constraint problem for the node platform com-
bination, implying that the choice of platform in such cases
must be handled with greater care. If we arbitrarily assign
platforms to τ2, τ3 and τ4 in the example, this may result
in a constraint network that is inconsistent, but it does not
mean that there exist no platform assignment combinations
to τ2, τ3 and τ4 where the resulting constraint network ac-
tually is consistent. This is why solving the task allocation
problem entails a search among possible assignment combi-
nations and the use of distributed constraint algorithms to
determine proper allocation. A number of allocation algo-
rithms for dealing with this problem are reported in [2].

5. RELATED WORK
Two related task specification languages which are represen-
tative of state of the art in this area are the Configuration
Description Language [15], used in MissionLab and the task
description language (TDL) [18].

CDL has a recursive composition of configurations, similar
to our TST task structure. In CDL a behavior and a set of
parameters creates an agent. Agents can be composed into
larger entities, called assemblages, that function as macro-
agents. Assemblages can in turn be part of larger assem-
blages. CDL has been used as the basis for MissionLab,
a tool for mission specification using case based reasoning.
Task-allocation is done using a market-based paradigm with
contract-nets. Task allocation can be done together with
mission specification, or at run time [19].

With TDL it is possible to specify task decomposition, syn-
chronization, execution monitoring, and exception handling.
TDL is an extension to C++, meaning the specification is
compiled and executed on the robots. Task are in the form
of task-trees. A task has parameters and is either a goal or a
command, where a command is similar to an action node in
a TST. Goal nodes can have both goal and command nodes
as children, but commands nodes have no goal children. An
action can perform computations dynamically and add child
nodes or perform some physical action in the world. An ac-
tion can contain conditional, iterative and recursive code.

Both CDL and TDL are similar to TST, but with the dif-
ference that the specification of a TST is not precompiled
and therefore allow more dynamic handling of tasks in the
case of changing circumstances. The specification remains
through the stages of task-allocation (delegation) and exe-
cution. Each node in a TST has parameter values which are
restricted by constraints. Each node has an executor object
(for each platform) that can be instantiated with the param-
eter values determined in the task allocation stage. Since we
have this separation between specification and execution of a
task, connected as a constraint problem of the node param-
eters and platform assignments, we can go back and forth
from the task-allocation and execution stage, which must
be done when monitoring formulas fails and an error is de-

tected, or when the mission is changed with mixed-initiative
input. The loose coupling between specification and execu-
tion is needed for combining the adjustable autonomy and
mixed-initiative features.

6. CONCLUSIONS
The complexity of developing deployed architectures for re-
alistic collaborative activities among agents that operate in
the real world and under time and space constraints is ex-
treme when compared to much existing formal work which
tackles parts of the larger problem at very high levels of ab-
straction. We have tried to show the benefits of using both
strategies, working abstractly at a formal logical level and
also concretely at a system building level. More importantly,
we have shown how one might relate the two approaches to
each other by grounding the formal abstractions into actual
software implementations. This of course guarantees the fi-
delity of the actual system to the formal specification.

We proposed TSTs as a vehicle for representing tasks and
showed how they relate to the formal delegation abstraction,
how its semantics can be described as a constraint model and
how that model is used in an actual implemented system to
give meaning to the ability of an agent to be able to do or
execute a task. There is much future work to be done in
this complex research area, but work in this direction can
continue based on the foundations provided in this work.

7. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal

intervals. Commun. ACM, 26(11):832–843, 1983.

[2] D.Landén and F. Heintz and P. Doherty. Complex
task allocation in mixed-initiative delegation: A UAV
case study (Early Innovation). The 13th International
Conference on Principles and Practice of Multi-Agent
Systems (PRIMA-2010), 2010.

[3] C. Castelfranchi and R. Falcone. Toward a theory of
delegation for agent-based systems. In Robotics and
Autonomous Systems, volume 24, pages 141–157, 1998.

[4] P. Cohen and H. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42(3):213–261,
1990.

[5] P. Cohen and H. Levesque. Teamwork. Nous, Special
Issue on Cognitive Science and AI, 25(4):487–512,
1991.

[6] G. Conte, M. Hempel, P. Rudol, D. Lundström,
S. Duranti, M. Wzorek, and P. Doherty. High accuracy
ground target geo-location using autonomous micro
aerial vehicle platforms. In Proceedings of the AIAA-08
Guidance,Navigation, and Control Conference, 2008.

[7] E. Davis and L. Morgenstern. A first-order theory of
communication and multi-agent plans. Journal Logic
and Computation, 15(5):701–749, 2005.

[8] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall,
K. Nordberg, E. Skarman, and J. Wiklund. The
WITAS unmanned aerial vehicle project. In
Proceedings of the 14th European Conference on
Artificial Intelligence, pages 747–755, 2000.

[9] P. Doherty, P. Haslum, F. Heintz, T. Merz, T. Persson,
and B. Wingman. A distributed architecture for
intelligent unmanned aerial vehicle experimentation.
In Proceedings of the 7th International Symposium on

Distributed Autonomous Robotic Systems, 2004.

[10] P. Doherty and J.-J. C. Meyer. Towards a delegation
framework for aerial robotic mission scenarios. In
Proceedings of the 11th International Workshop on
Cooperative Information Agents, 2007.

[11] S. Duranti, G. Conte, D. Lundström, P. Rudol,
M. Wzorek, and P. Doherty. LinkMAV, a prototype
rotary wing micro aerial vehicle. In Proceedings of the
17th IFAC Symposium on Automatic Control in
Aerospace, 2007.

[12] G. C. F. Bellifemine, F. Bergenti and A. Poggi. JADE
– a Java agent development framework. In J. D.
R. H. Bordini, M. Dastani and A. Seghrouchni,
editors, Multi-Agent Programming - Languages,
Platforms and Applications. Springer, 2005.

[13] R. Falcone and C. Castelfranchi. The human in the
loop of a delegated agent: The theory of adjustable
social autonomy. IEEE Transactions on Systems, Man
and Cybernetics–Part A: Systems and Humans,
31(5):406–418, 2001.

[14] J. Kvarnström and P. Doherty. Automated planning
for collaborative systems. In Proceedings of the
International Conference on Control, Automation,
Robotics and Vision (ICARCV), 2010.

[15] D. C. MacKenzie, R. Arkin, and J. M. Cameron.
Multiagent mission specification and execution. Auton.
Robots, 4(1):29–52, 1997.

[16] T. Merz, P. Rudol, and M. Wzorek. Control System
Framework for Autonomous Robots Based on
Extended State Machines. In Proceedings of the
International Conference on Autonomic and
Autonomous Systems, 2006.

[17] P.-M. Olsson, J. Kvarnström, P. Doherty,
O. Burdakov, and K. Holmberg. Generating UAV
communication networks for monitoring and
surveillance. In Proceedings of the International
Conference on Control, Automation, Robotics and
Vision (ICARCV), 2010.

[18] R. Simmons and D. Apfelbaum. A task description
language for robot control. In in Proceedings of the
Conference on Intelligent Robots and Systems (IROS,
1998.

[19] P. Ulam, Y. Endo, A. Wagner, and R. C. Arkin.
Integrated mission specification and task allocation for
robot teams - design and implementation. In ICRA,
pages 4428–4435, 2007.

[20] B. v. L. W. van der Hoek and J.-J. C. Meyer. An
integrated modal approach to rational agents. In
M. Wooldridge and A. Rao, editors, Foundations of
Foundations of Rational Agency, volume 14 of Applied
Logic Series. An Integrated Modal Approach to
Rational Agents, 1998.

[21] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti,
and P. Doherty. From motion planning to control – a
navigation framework for an unmanned aerial vehicle.
In Proceedings of the 21st Bristol International
Conference on UAV Systems, 2006.

