
1

DyKnow: A Framework for Processing
Dynamic Knowledge and Object Structures in
Autonomous Systems

Fredrik Heintz and Patrick Doherty ?

Department of Computer and Information Science, Linköping University

Summary. Any autonomous system embedded in a dynamic and changing environ-
ment must be able to create qualitative knowledge and object structures representing
aspects of its environment on the fly from raw or preprocessed sensor data in order
to reason qualitatively about the environment. These structures must be managed
and made accessible to deliberative and reactive functionalities which are dependent
on being situationally aware of the changes in both the robotic agent’s embedding
and internal environment. DyKnow is a software framework which provides a set of
functionalities for contextually accessing, storing, creating and processing such struc-
tures. The system is implemented and has been deployed in a deliberative/reactive
architecture for an autonomous unmanned aerial vehicle. The architecture itself is
distributed and uses real-time CORBA as a communications infrastructure. We de-
scribe the system and show how it can be used in execution monitoring and chronicle
recognition scenarios for UAV applications.

1.1 Introduction

Research in cognitive robotics is concerned with endowing robots and soft-
ware agents with higher level cognitive functions that enable them to reason,
act and perceive in a goal-directed manner in changing, incompletely known,
and unpredictable environments. Research in robotics has traditionally em-
phasized low-level sensing, sensor processing, control and manipulative tasks.
One of the open challenges in cognitive robotics is to integrate techniques
from both disciplines and develop architectures which support the seamless
integration of low-level sensing and sensor processing with the generation and
maintenance of higher level knowledge structures grounded in the sensor data.

Knowledge about the internal and external environments of a robotic agent
is often both static and dynamic. A great amount of background or deep
knowledge is required by the agent in understanding its world and in un-
derstanding the dynamics in the embedding environment where objects of
? Both authors are supported by grants from the Wallenberg Foundation, Sweden

and NFFP 539 COMPAS.



2 Fredrik Heintz and Patrick Doherty

interest are cognized, hypothesized as being of a particular type or types and
whose dynamics must be continuously reasoned about in a timely manner.
This implies signal-to-symbol transformations at many levels of abstraction
with different and varying constraints on real-time processing.

Much of the reasoning involved with dynamic objects and the dynamic
knowledge related to such objects involves issues of situation awareness. How
can a robotics architecture support the task of getting the right information
in the right form to the right functionalities in the architecture at the right
time in order to support decision making and goal-directed behavior? Another
important aspect of the problem is the fact that this is an on-going process.
Data and knowledge about dynamic objects has to be provided continuously
and on-the-fly at the rate and in the form most efficient for the receiving
cognitive or reactive robotics functionality in a particular context.

Context is important because the most optimal rates and forms in which a
robotic functionality receives data are often task and environmentally depen-
dent. Consequently, autonomous agents must be able to declaratively specify
and re-configure the character of the data received. How to define a change,
how to approximate values at time-points where no value is given and how
to synchronize collections of values are examples of properties that can be
set in the context. By robotic functionalities, we mean control, reactive and
deliberative functionalities ranging from sensor manipulation and navigation
to high-level functionalities such as chronicle recognition, trajectory planning,
and execution monitoring.

The paper is structured as follows. We start with section 1.2 where a larger
scenario using the proposed framework is described. In section 1.3, the UAV
platform used in the project is briefly described. In section 1.4, DARA, a
Distributed Autonomous Robotics Architecture for UAVs is briefly described.
DyKnow is an essential module in this architecture. In sections 1.5 and 1.6,
the basic structure of the DyKnow framework and the dynamic knowledge
and object structures is described. In sections 1.7.2 and 1.7.3, two delibera-
tive functionalities which use the DyKnow framework are considered, chron-
icle recognition and execution monitoring, in addition to the dynamic object
repository (DOR) described in section 1.7.1. We conclude in section 1.8 with
a discussion of the role of the DyKnow framework and some related work.

1.2 An Identification and Track Scenario

In order to make these ideas more precise, we will begin with a scenario from
an unmanned aerial vehicle project the authors are involved in which requires
many of the capabilities discussed so far.

Picture the following scenario. An autonomous unmanned aerial vehicle
(UAV), in our case, a helicopter, is given a mission to identify and track a
vehicle with a particular signature in a region of a small city. The signature is
provided in terms of color and size (and possibly 3D shape). Assume that the



1 DyKnow 3

UAV has a 3D model of the region in addition to information about building
structures and the road system. These models can be provided or may have
been generated by the UAV itself. Additionally, assume the UAV is equipped
with a GPS and INS2 for navigating purposes and that its main sensor is a
camera on a pan/tilt mount.

Let’s consider the processing from the bottom up, even though in reality,
there will be many feedback loops in the UAV architecture. One way for the
UAV to achieve its task would be to initiate a reactive task procedure (parent
procedure) which calls the systems image processing module with the vehicle
signature as a parameter. The image processing module might then try to
identify colored blobs in the region of the right size, shape and color as a
first step. These object descriptions would have to be sent to a module in the
architecture called the dynamic object repository (DOR) which is responsible
for the dynamic management of such objects. Each of these vision objects
would contain features related to the image processing task such as RGB
values with uncertainty bounds, length and width in pixels, position in the
image, a sub-image of the object which can be used as a template for tracking,
an estimate of velocity, etc.

From the perspective of the UAV, these objects are only cognized to the
extent that they are moving colored blobs of interest and the feature data
being collected should continue to be collected while tracking those objects
perceived to be of interest. What objects are of interest? The parent proce-
dure might identify that or those objects which are of interest based on a
similarity measure according to size, color and movement. In order to do this,
the DOR would be instructed to create one or more world objects and link
them to their respective vision objects. At this point the object is cognized
at a more qualitative level of abstraction, yet its description in terms of its
linkage structure contains both cognitive and pre-cognitive information which
must be continuously managed and processed due to the interdependencies of
the features at various levels.

A world object could contain additional features such as position in a geo-
graphic coordinate system rather than the low-level image coordinate. Gener-
ating a geographic coordinate from an image coordinate continuously, called
co-location is a complex process that involves combining dynamic data about
features from several different objects such as the camera object, helicopter
object and world objects, together with data from an onboard geographical
information system (GIS) module which is also part of the architecture. One
would require a computational unit of sorts that takes streamed data as input
and outputs a new stream at a higher level of abstraction representing the
current geographical coordinate of the object. This co-location process must
occur in real-time and continually occur as the world object is tracked. This
2 GPS and INS are acronyms for global positioning system and inertial navigation

system, respectively.



4 Fredrik Heintz and Patrick Doherty

implies that all features for all dynamic objects linked to the world object in
focus have to be continually updated and managed.

At this point, the parent task may want to make a comparison between
the geographical coordinate and the position of that coordinate in terms of
the road system for the region, information of which is stored in the onboard
GIS. This indexing mechanism is important since it allows the UAV to reason
qualitatively about its spatial surroundings. Let’s assume this is done and
after some period of tracking and monitoring the stream of coordinates, the
parent procedure decides that this looks like a vehicle that is following the
road. On-road objects might then be created for each of the world objects that
pass the test and linked to their respective world objects. An on-road object
could contain more abstract and qualitative features such as position in a road
segment which would allow the parent procedure to reason qualitatively about
its position in the world relative to the road, other vehicles on the road, and
other building structures in the vicinity of the road. At this point, streams of
data are being generated and computed for many of the features in the linked
object structures at many levels of abstraction as the helicopter tracks the
on-road objects.

The parent procedure could now use static knowledge stored in onboard
knowledge bases and the GIS together with this dynamic knowledge to hy-
pothesize as to the type of vehicle. The hypothesis would of course be based
on the linkage structure for an on-road object and various features at differ-
ent levels of abstraction. Assume the parent procedure hypothesizes that the
on-road object is a car. A car object could then be created and linked to the
existing linkage structure with additional high-level feature information about
the car.

Whether or not the sum of streamed data which makes up the linkage
structure represents a particular type of conceptual entity will only ever re-
main a hypothesis which could very well change, based on changes in the
character of the streams of data. Monitors, users of these structures, would
have to be set up to observe such changes and alert the parent procedure
if the changes become too abnormal relative to some criteria determined by
the parent procedure. Abnormality is a concept that is well-suited for being
reasoned about at a logical level and the streamed data would have to be put
into a form amenable to this type of processing.

How then can an architecture be set up to support the processes described
in the UAV scenario above? This is the main topic of this paper and in it we
propose a software system called the DyKnow Framework.3

1.3 The WITAS UAV Platform

3 ”DyKnow” is pronounced as ”Dino” in ”Dinosaur” and stands for Dynamic
Knowledge and Object Structure Processing.



1 DyKnow 5

The WITAS4 Unmanned Aerial Vehicle Project [4, 5] is a long-term basic
research project whose main objectives are the development of an integrated
hardware/software VTOL (Vertical Take-Off and Landing) platform for fully-
autonomous missions and its future deployment in applications such as traffic
monitoring and surveillance, emergency services assistance, photogrammetry
and surveying.

The WITAS Project UAV platform we use is a slightly modified Yamaha
RMAX (Fig. 1.1). It has a total length of 3.6 m (including main rotor), a
maximum take-off weight of 95 kg, and is powered by a 21 hp two-stroke
engine. Yamaha equipped the radio controlled RMAX with an attitude sensor
(YAS) and an attitude control system (YACS).

Fig. 1.1. The WITAS RMAX Helicopter

The hardware platform consists of three PC104 embedded computers
(Fig. 1.2). The primary flight control (PFC) system consists of a PIII (700Mhz)
processor, a wireless Ethernet bridge and the following sensors: a RTK GPS
(serial), and a barometric altitude sensor (analog). It is connected to the YAS
and YACS (serial), the image processing computer (serial) and the deliberative
computer (Ethernet). The image processing (IP) system consists of a second
PC104 embedded computer (PIII 700MHz), a color CCD camera (S-VIDEO,
serial interface for control) mounted on a pan/tilt unit (serial), a video trans-
mitter (composite video) and a recorder (miniDV). The deliberative/reactive
(D/R) system runs on a third PC104 embedded computer (PIII 700MHz)
which is connected to the PFC system with Ethernet using CORBA event
channels. The D/R system is described in more detail in the next section.

For further discussion, it is important to note that computational pro-
cesses are executed concurrently on distributed hardware. Data flow is both
synchronous and asynchronous and the concurrent distributed nature of the
hardware platform contributes to diverse latencies in data flow throughout
the system.
4 WITAS (pronounced vee-tas) is an acronym for the Wallenberg Information Tech-

nology and Autonomous Systems Laboratory at Linköping University, Sweden.



6 Fredrik Heintz and Patrick Doherty

RTLINUX

RTLINUX

TCP/IP

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/256Mbflash

GPS

serial analog

magnetic
compass

pressure
sensor

temp.
sensors

camera
control

framegrabber
BT878

preprocessor

IPAPI

path
planner

task
planner

knowledge
repository

TP exec

chronicle
recognition

GIS

DOR

Other. . .

Helicopter Control

RMAX Helicopter
Platform

Yamaha
Attitude
Controller

roll

yaw

pitch

200Hz

50Hz

Camera Platform

Color CCD Camera/
PTU

mini-dv

Yamaha
Attitude
Sensors

200/66Hz

LINUX

RS232

sonar

Fig. 1.2. DARA Hardware Schematic

1.4 DARA: A Distributed Autonomous Robotics
Architecture

The DARA system [6] consists of both deliberative and reactive components
which interface to the control architecture of the primary flight controller
(PFC). Current flight modes include autonomous take-off and landing, pre-
defined and dynamic trajectory following, vehicle tracking and hovering. We
have chosen real-time CORBA [16]5 as a basis for the design and implemen-
tation of a loosely coupled distributed software architecture for our aerial
robotic system.

The communication infrastructure for the architectures is provided by
CORBA facilities and services. Fig. 1.3 depicts an (incomplete) high-level
schematic of some of the software components used in the architecture. Each
of these may be viewed as a CORBA server/client providing or requesting ser-
vices from each other and receiving data and events through both real-time
and standard event channels.

The modular task architecture (MTA) which is part of DARA is a reactive
system design in the procedure-based paradigm developed for loosely coupled
heterogeneous systems such as the WITAS aerial robotic system. Reactive be-
5 We are currently using TAO/ACE. The Ace Orb is an open source implementa-

tion of CORBA 2.6.



1 DyKnow 7

haviors are implemented as task procedures (TP) which are executed concur-
rently and essentially event-driven. A TP may open its own (CORBA) event
channels, and call its own services (both CORBA and application-oriented
services such as path planners) including functionalities in DyKnow.

��������	
��
���

�����	���

���������
�����	���

�����	

����


�����	���

��������
���������
�	��
 ������!��� "

��# ���

����	
	��
$��%	
�

&����	
��
��
���		��
$��%	
�

�����������
$��%	
�

������������
$��%	
�

'��	
����
&��������

����	
��
&�����
&��������

(����
&��������

(�)�(
(�)�(����	��

(��������
���	��� ������!(� "

*���	�	%�
$	��������
���	��

&��������

Fig. 1.3. DARA Software Schematic

1.5 DyKnow

Given the distributed nature of both the hardware and software architec-
tures in addition to their complexity, one of the main issues is getting data to
the right place at the right time in the right form and to be able to transform
the data to the proper levels of abstraction for use by high-level deliberative
functionalities and middle level reactive functionalities. DyKnow is designed
to contribute to achieving this.

Ontologically, we view the external and internal environment of the agent
as consisting of entities representing physical and non-physical objects, prop-
erties associated with these entities, and relations between entities. We will call
such entities objects and those properties or relations associated with objects
will be called features. Features may be static or dynamic and parameterized
with objects. Due to the potentially dynamic nature of a feature, that is, its
ability to change value through time, a fluent is associated with each feature.
A fluent is a function of time whose range is the feature’s type. For a dynamic
feature, the fluent values will vary through time, whereas for a static feature
the fluent will remain constant through time.

Some examples of features would be the estimated velocity of a world ob-
ject, the current road segment of an on-road object, and the distance between
two car objects. Each fluent associated with these examples implicitly gener-
ates a continuous stream of time tagged values of the appropriate type.

Additionally, we introduce locations, policies, computational units and flu-
ent streams which refer to aspects of fluent representations in the actual soft-
ware architecture. A location is intended to denote any pre-defined physical



8 Fredrik Heintz and Patrick Doherty

or software location that generates feature data in the DARA architecture.
Some examples would be onboard or offboard databases, CORBA event chan-
nels, physical sensors or their device interfaces, etc. In fact, a location will be
used as an index to reference a representational structure associated with a
feature. This structure denotes the process which implements the fluent as-
sociated with the feature. A fluent implicitly represents a stream of data, a
fluent stream. The stream is continuous, but can only ever be approximated
in an architecture. A policy is intended to represent a particular contextual
window or filter used to access a fluent. Particular functionalities in the ar-
chitecture may need to sample the stream at a particular rate or interpolate
values in the stream in a certain manner. Policies will denote such collections
of constraints. Computational units are intended to denote processes which
take fluent streams as input, perform operations on these streams and gener-
ate new fluent streams as output. Each of these entities are represented either
syntactically or in the form of a data structure within the architecture and
many of these data structures are grounded through sensor data perceived
through the robotic agent’s sensors. In addition, since declarative specifica-
tions of both features and policies that determine views of fluent streams are
1st-class citizens in DyKnow, a language for referring to features, locations,
computational units and policies is provided, see [13] for details.

One can view DyKnow as implementing a distributed qualitative signal
processing tool where the system is given the functionality to generate dy-
namic representations of parts of its internal and external environment in a
contextual manner through the use of policy descriptors and feature represen-
tation structures. The dynamic representations can be viewed as collections
of time series data at various levels of abstraction, each time series represent-
ing a particular feature and each bundle representing a particular history or
progression. Another view of such dynamic representations and one which is
actually put to good use is to interpret the fluent stream bundles as partial
temporal models in the logical sense. These partial temporal models can then
be used on the fly to interpret temporal logical formulas in TAL (temporal
action logic) or other temporal formalisms. Such a functionality can be put to
good use in constructing execution monitors, predictive modules, diagnostic
modules, etc. The net result is a very powerful mechanism for dealing with a
plethora of issues associated with focus of attention and situational awareness.

1.6 Dynamic Object Structure in DyKnow

An ontologically difficult issue involves the meaning of an object. In a
distributed architecture such as DARA, information about a specific object
is often distributed throughout the system, some of this information may be
redundant and it may often even be inconsistent due to issues of precision and
approximation. For example, given a car object, it can be part of a linkage



1 DyKnow 9

structure which may contain other objects such as on-road, world and vision
objects. For an example of a linkage structure see Fig. 1.4. In addition, many of
the features associated with these objects are computed in different manners
in different parts of the architecture with different latencies. One candidate
definition for an object could be the aggregate of all features which take the
object as a parameter for each feature. But an object only represents some
aspects of an entity in the world. To represent that several different objects
actually represent the same entity in the world, links are created between
those objects. It is these linkage structures that represent all the aspects of an
entity which are known to the UAV agent. It can be the case that two linkage
structures in fact represent the same entity in the world but the UAV agent is
unable to determine this. Two objects may even be of the same type but have
different linkage structures associated with them. For example, given two car
objects, one may not have an on-road object, but an off-road object, as part
of its linkage structure. It is important to point out that objects as intended
here have some similarities with OOP objects, but many differences.

#5
OnRoadObjectVisionObject

#2 #3
WorldObject

#7
CarObject

Fig. 1.4. An example object linkage structure

To create and maintain these object linkage structures we use hypothesis
generation and validation. Each object is associated with a set of possible
hypotheses. Each possible hypothesis is a relation between two objects asso-
ciated with constraints between the objects. To generate a hypothesis, the
constraints of a possible hypothesis must be satisfied. Two different types of
hypotheses can be made depending on the types of the objects. If the ob-
jects have different types then a hypothesis between them is represented by a
link. If they have the same type then a hypothesis is represented by a codes-
ignation between the objects. Codesignations hypothesize that two objects
representing the same aspect of the world are actually identical, while a link
hypothesizes that two objects represent different aspects of the same entity.

A link can be hypothesized when a reestablish constraint between two ex-
isting objects is satisfied or an establish constraint between an object and a
newly created object is satisfied. In the anchoring literature these two pro-
cesses are called reacquire and find [3].

Since the UAV agent can never be sure its hypotheses are true, it has
to continually verify and validate them against its current knowledge of the
world. To do this, each hypothesis is associated with maintenance constraints
which should be satisfied as long as the hypothesis holds. If the constraints
are violated then the hypothesis is removed. The maintenance and hypothesis
generation constraints are represented using the linear temporal logic (LTL)



10 Fredrik Heintz and Patrick Doherty

with intervals [15] and are checked using the execution monitoring module
which is part of the DyKnow framework. For a more detailed description see
[14].

1.7 Applications using DyKnow

In the following subsections, we will show how the DyKnow framework can
be used to generate fluent streams for further processing by two important
deliberative functionalities in the DARA system, chronicle recognition and
execution monitoring. Both are implemented in the UAV system. Before doing
this, we provide a short description of the Dynamic Object Repository (DOR),
an essential part of the DARA which uses the DyKnow framework to provide
other functionalities in the system with information about the properties of
dynamic objects most often constructed from sensor data streams.

1.7.1 The Dynamic Object Repository

The Dynamic Object Repository (DOR) is essentially a soft real-time database
used to construct and manage the object linkage structures described in sec-
tion 1.6. The DOR is implemented as a CORBA server and the image process-
ing module interfaces to the DOR and supplies vision objects. Task procedures
in the MTA access feature information about these objects via the DyKnow
framework, creating descriptors on-the-fly and constructing linkages. Compu-
tational units are used to provide values for more abstract feature properties
associated with these objects. For example, the co-location process involv-
ing features from the vision, helicopter and camera objects, in addition to
information from the GIS, use computational units to output geographical
coordinates. These are then used to update the positional features in world
objects linked to the specific vision objects in question.

Objects are referenced via unique symbols which are created by the sym-
bol generation module which is part of the DOR. Each symbol is typed using
pre-defined domains such as car, world-object, vision-object, vehicle, etc. Sym-
bols can be members of more than one domain and are used to instantiate
feature representations and as indexes for collecting information about fea-
tures which take these symbols as arguments. Since domains collect symbols
which reference a certain type of object, one can also conveniently ask for
information about collections or aggregates of objects. For example, “take all
vision objects and process a particular feature for each in a certain manner”.

1.7.2 An Application to Chronicle Recognition

Chronicles are used to represent complex occurrences of activity described in
terms of temporally constrained event structures. In this context, an event is



1 DyKnow 11

defined as a change in the value of a feature. For example, in a traffic mon-
itoring application, a UAV might fly to an intersection and try and identify
how many vehicles turn left, right or drive straight through a specific inter-
section. In another scenario, the UAV may be interested in identifying vehicle
overtaking. Each of these complex activities can be defined in terms of one or
more chronicles. In the WITAS UAV, we use the CRS chronicle recognition
system developed by France Telecom. CRS is an extension of IxTeT [8]. Our
chronicle recognition module is wrapped as a CORBA server.

As an example, suppose we would like to recognize vehicles passing through
an intersection. Assume cars are being identified and tracked through the
UAV’s camera as it hovers over a particular intersection. Recall that the DOR
generates and maintains linkage structures for vehicles as they are identified
and tracked. It can be assumed that the following structured features exist:
pos = position(DOR, policy1, car1)

roadseg = road segment(DOR, roadSegment(pos), policy2, car1)

incross = in crossing(DOR, inCrossing(roadseg), policy3, car1)

pos is a feature of a car object and its fluent stream can be accessed
via the DOR as part of its linkage structure. roadseg is a complex feature
whose value is calculated via a computational unit roadSegment which takes
the geographical position of a world object associated with the car object as
argument and uses this as an index into the GIS to return the road segment
that the vehicle is in. Similarly, incross is a complex feature whose value is
produced using a computational unit that takes the roadseg fluent stream as
input and returns a boolean output stream, representing whether the car is
in a crossing or not, calculated via a lookup in the GIS.

For the sake of brevity, a car is defined to pass through an intersection
if its road segment type is not a crossing then it eventually is in a road
segment that is a crossing and then it is again in a road segment that is not
a crossing. In this case, if the fluent stream generated by incross generates
samples going from false to true and then eventually true to false within a
certain time frame then the car is recognized as passing through a crossing.
The chronicle recognition system would receive such streams and recognize
two change events which match its chronicle definition and thereby recognize
that the car has passed through the crossing.

The stream itself requires some modification and policy3 specifies this via
a monotonic time constraint and a change constraint. The monotonic time
constraint would make sure the stream is ordered, i.e. the time stamp of events
increase monotonically. The change constraint specifies how change is defined
for this stream. There are several alternatives which can be used:

• any change policy – any difference between the previous and current value is a
change;

• absolute change policy – an absolute difference between the previous and current
value larger than a parameter delta is a change;

• relative change policy – a normalized difference between the previous and current
value larger than a parameter delta is a change.



12 Fredrik Heintz and Patrick Doherty

There are obvious variations on these policies for different types of signal
behavior. For example, one might want to deal with oscillatory values due to
uncertainty of data, etc. The example used above is only intended to provide
an overview as to how DyKnow is used by other modules and is therefore
simplified.

1.7.3 An Application to Execution Monitoring

The WITAS UAV architecture has an execution monitoring module which
is based on the use of a temporal logic, LTL (linear temporal logic with in-
tervals [15]), which provides a succinct syntax for expressing highly complex
temporal constraints on activity in the UAV’s internal environment and even
aspects of its embedding environment. For example safety and liveness condi-
tions can easily be expressed. Due to page limitations we can only briefly de-
scribe this functionality. Essentially, we appeal to the intuitions about viewing
bundles of fluent streams as partial models for a temporal logic and evaluating
formulas relative to this model. In this case though, the model is fed piece-
wise (state-wise) to the execution monitor via a state extraction mechanism
associated with the execution monitor. A special progression algorithm [15] is
used which evaluates formulas in a current state and returns a new formula
which if true on the future states would imply that the formula is true for the
complete time-line being generated.

The DyKnow system is ideal for generating such streams and feeds these
to the execution monitor. Suppose we would like to make sure that two task
procedures (all invocations) in the reactive layer of the DARA, called A and
B, can never execute in parallel. For example, A and B may both want to
use the camera resource. This safety condition can be expressed in LTL as
the temporal formula always¬(∃x∃y tp name[x]=”A” ∧ tp running[x]=true
∧ tp name[y]=”B” ∧ tp runing[y]=true), where “always” in the formula is
the modal operator for “at all times”. To monitor this condition the execution
monitor requires fluent streams for each of the possible instantiations of the
parameterized features tp name and tp running which can be generated by the
reactive layer of the DARA. These are fed to the instantiated execution mon-
itor which applies the progression algorithm to the temporal formula above
relative to the fluent streams generated via the DyKnow framework. This al-
gorithm is run continuously. If the formula evaluates to false at some point,
an alert message is sent to a monitor set up by the functionality interested in
this information and modifications in the system configuration can be made.

1.8 Related Work

The DyKnow framework is designed for a distributed, real-time and embed-
ded environment [18, 19] and is developed on top of an existing middleware
platform, real-time CORBA [20], using the real-time event channel [12], the



1 DyKnow 13

notification [11] and the forthcoming real-time notification [9] services. One
of the purposes for this work is in the creation of a knowledge processing mid-
dleware capability, i.e. a framework for interconnecting different knowledge
representation and reasoning services, grounding knowledge in sensor data
and providing uniform interfaces for processing and management of gener-
ated knowledge and object structures. The framework is quite general and is
intended to serve as a platform for investigating a number of pressing issues
associated with the processing and use of knowledge on robotic platforms with
soft and hard real-time constraints. These issues include anchoring, or more
generally symbol grounding, signal to symbol transformations, information
fusion, contextual reasoning, and focus of attention. Examples of application
services which use the middleware capabilities are execution monitoring ser-
vices, anchoring services and chronicle recognition services.

We are not aware of any similar frameworks, but the framework itself uses
ideas from many diverse research areas mainly related to real-time, active,
temporal, and time-series database [7, 17, 21], data stream management [1,
2, 10], and work in the area of knowledge representation and reasoning.

The main differences between DyKnow and the database and data stream
approaches are that we have a different data model based on the concepts of
features and fluents and we have many views or representations of the same
feature data in the system each with different properties depending on the
context where the feature is used as described by a policy.

References

1. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for
data stream management. VLDB Journal, August 2003.

2. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of 21st ACM
Symposium on Principles of Database Systems (PODS 2002), 2002.

3. S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem.
Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

4. P. Doherty. Advanced research with autonomous unmanned aerial vehicles. In
Proceedings on the 9th International Conference on Principles of Knowledge
Representation and Reasoning, 2004.

5. P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skar-
man, and J. Wiklund. The WITAS unmanned aerial vehicle project. In Proceed-
ings of the 14th European Conference on Artificial Intelligence, pages 747–755,
2000.

6. P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and B. Wing-
man. A distributed architecture for autonomous unmanned aerial vehicle exper-
imentation. In Proceedings of the 7th International Symposium on Distributed
Autonomous Robotic Systems, 2004.

7. Joakim Eriksson. Real-time and active databases: A survey. In Proc. of 2nd
International Workshop on Active, Real-Time, and Temporal Database Systems,
1997.



14 Fredrik Heintz and Patrick Doherty

8. M. Ghallab. On chronicles: Representation, on-line recognition and learning. In
Proceedings of the International Conference on Knowledge Representation and
Reasoning (KR-96), 1996.

9. Pradeep Gore, Douglas C. Schmidt, Chris Gill, and Irfan Pyarali. The design
and performance of a real-time notification service. In Proc. of the 10th IEEE
Real-time Technology and Application Symposium, may 2004.

10. The STREAM Group. STREAM: The Stanford stream data manager. IEEE
Data Engineering Bulletin, 26(1), 2003.

11. R. Gruber, B. Krishnamurthy, and E. Panagos. CORBA notification service:
Design challenges and scalable solutions. In 17th International Conference on
Data Engineering, pages 13–20, 2001.

12. Tim Harrison, David Levine, and Douglas C. Schmidt. The design and perfor-
mance of a real-time CORBA event service. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA-97), volume 32, 10 of ACM SIGPLAN Notices, pages
184–200, New York, October 5–9 1997. ACM Press.

13. Fredrik Heintz and Patrick Doherty. DyKnow: An approach to middleware for
knowledge processing. Journal of Intelligent and Fuzzy Systems, 2004.

14. Fredrik Heintz and Patrick Doherty. Managing dynamic object structures using
hypothesis generation and validation. In Proceedings of the AAAI Workshop on
Anchoring Symbols to Sensor Data, 2004.

15. K. Ben. Lamine and F. Kabanza. Reasoning about robot actions: A model
checking approach. In Advances in Plan-Based Control of Robotic Agents, LNAI,
pages 123–139, 2002.

16. Object Computing, Inc. TAO Developer’s Guide, Version 1.3a, 2003. See also
http://www.cs.wustl.edu/~schmidt/TAO.html.

17. Gultekin Özsoyoglu and Richard T. Snodgrass. Temporal and real-time
databases: A survey. IEEE Trans. Knowl. Data Eng., 7(4):513–532, 1995.

18. Douglas C. Schmidt. Adaptive and reflective middleware for distributed real-
time and embedded systems. Lecture Notes in Computer Science, 2491:282–??,
2002.

19. Douglas C. Schmidt. Middleware for real-time and embedded systems. Com-
munications of the ACM, 45(6):43–48, June 2002.

20. Douglas C. Schmidt and Fred Kuhns. An overview of the real-time CORBA
specification. IEEE Computer, 33(6):56–63, June 2000.

21. Duri Schmidt, Angelika Kotz Dittrich, Werner Dreyer, and Robert W. Marti.
Time series, a neglected issue in temporal database research? In Proceedings of
the International Workshop on Temporal Databases, pages 214–232. Springer-
Verlag, 1995.


