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Abstract. To achieve sophisticated missions an autonomous UAV operating in a
complex and dynamic environments must create and maintain situational aware-
ness. It is achieved by continually gathering information from many sources, se-
lecting the relevant information for the current task, and deriving models about
the environment and the UAV itself. Often models close to the sensor data, suit-
able for traditional control, are not sufficient for deliberative services. More ab-
stract models are required to bridge the sense-reasoning gap. This paper presents
how DyKnow, a knowledge processing middleware, can bridge the gap in a con-
crete UAV traffic monitoring application. In the presented example sequences of
color and thermal images are used to construct and maintain qualitative object
structures modeling the parts of the environment necessary to recognize the traf-
fic behavior of the tracked vehicles in realtime. The system has been implemented
and tested both in simulation and on data collected during test flights.1

1 Introduction

Unmanned aerial vehicles (UAVs) are becoming more and more commonly used in both
civil and military applications. Especially missions which are considered dull, dirty and
dangerous could benefit from being more or less automated. One important application
domain for UAVs is different types of surveillance missions. Such missions may in-
volve flying over unknown areas to build terrain models, to quickly get an overview of
a disaster area including helping the rescue services to find injured people and deliver
medical supplies, or to help law enforcement agencies to monitor areas or people for on-
going or potential criminal activity. To achieve these complex missions an autonomous
UAV must continually gather information from many different sources, including sen-
sors, databases, other UAVs, and human operators, select the relevant information for
the current task, and derive higher-level knowledge about the environment and the UAV
itself in order to understand what is happening and to make the appropriate decisions.
In other words, the UAV must create and maintain situational awareness.

To become situationally aware the UAV needs to build models of the environment
and use them to reason about what is going on. These models should be constructed
from the information gathered from the distributed sources as close as possible to re-
altime in order to capture the latest developments and be up to date. Since there are
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infinitely many models that could be built and the UAV has limited resources it is im-
portant that the appropriate models are constructed for the particular task at hand. When
the task changes the models should reflect this change as well. What is an appropriate
model will depend on what properties of the world which are relevant, what reason-
ing is needed to make decisions to achieve the task, and the context within which the
reasoning is made. One important problem is therefore to construct models with differ-
ent properties from information collected by various sensors that can be used to reason
about the environment and the UAV in realtime. Traditionally this problem has been
separated in two different approaches, the “sensor” approach constructing quantitative
models based on sensor signals and the “reasoning” approach constructing qualitative
models using formal languages based on common sense reasoning. Not only have the
models been different, but also the purpose of the models have been radically differ-
ent. For example, while the “reasoning” approach has mainly focused on building gen-
eral and global domain models the “sensor” approach has worked on building local
models based on specific sensors and assumptions. The problem with the “reasoning”
approach is that the models are very difficult to implement in uncertain and dynamic
environments, while the “sensor” approaches are designed to handle these cases but
fail to reason about events on a more global scale and to build overview models using
encoded background knowledge. The gap between these two approaches is called the
sense-reasoning gap. The goal is to close this gap by constructing high-level models of
the environment using the information collected by sensors. The purpose of this paper
is to present an approach which tries to bridge this gap in order to provide a solution
which integrates the large amount of work done in both communities.

The application is implemented and has been tested both in simulation and on data
collected during test flights.

2 Traffic Monitoring

Imagine a human operator trying to maintain situational awareness about the traffic sit-
uation in an urban area using UAVs looking for accidents, reckless driving, or other rel-
evant activities. One approach would be for one or more UAVs to relay videos and other
data to the operator for human inspection. Another, more scalable approach, would be
for the UAVs to monitor the traffic situations which arise and only report back the high
level events observed, such as cars turning in intersections and doing overtakes, to re-
duce the amount of information and help the operator focus her attention. This paper
describes such a traffic monitoring application where cars are tracked by a UAV plat-
form and streams of observations are fused with a model of the road system in order to
draw conclusions about the behavior of the cars in the environment. The input consists
of images taken by the color and thermal cameras on the UAV which are fused and
geolocated to a single world position. This stream of positions is then correlated with
a geographical information system (GIS) in order to know where in a road system the
object is located. Based on this information high level behaviors such as turning in in-
tersections and overtaking are recognized in realtime as they develop using a chronicle
recognition system.
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Fig. 1.Overview of the components of the traffic monitoring application.

An overview of the components of the traffic monitoring application is shown in
Fig. 1. The three sensors used, the two cameras and the heli state estimation (which
is fused from INS and GPS data), are shown to the left. These provide the primitive
information about the environment and the UAV. The next component is the image
processing system which tracks objects seen by the cameras. When an object is being
tracked the images from the two cameras are fused to provide an estimation of the
position in the world of the tracked object. Each time a new frame is analysed a new
position estimate is produced. From this stream of position estimations, the system
recognizes high level events such as turning in intersections, overtaking, and so on.

To describe these events a formal representation calledchroniclesis used [1]. A
chronicle defines a class of events by a simple temporal network (STN) [2] where the
nodes are primitive events and the edges are temporal constraints between the occur-
rences of the primitive events. If a stream of primitive events contains a set of event
occurrences which satisfies all the constraints then an instance of the chronicle is rec-
ognized. The chronicles used in this application contain primitive events which capture
the structure of the road network, qualitative information about cars such as which road
segment they are on, and qualitative spatial relations between cars such as beside and
behind. If all occurrences of the primitive events are in the stream used by the chron-
icle recognition engine then the recognition is complete, meaning that all chronicle
instances in the stream will be recognized. Creating this stream of events, accurately
representing the environment of the UAV, based on sensor data is a concrete instance of
bridging the sense reasoning gap. This is done by a knowledge processing middleware
called DyKnow (see Section 5) [3,4].

DyKnow takes the stream of position observations provided by the image process-
ing system (see Section 4) and derives an event stream representation of cars and qual-
itative spatial relations between cars (see Section 7.1). DyKnow also derives an event
stream representation of the road network from the information stored in the GIS. One
issue that must be handled is how to anchor the car symbols used in the chronicles to
objects being tracked. Since the image processing system may lose track of cars or start
tracking other objects than cars DyKnow has to dynamically estimate and continually
monitor the type and identity of objects being tracked. To do this, the normative behav-
ior of different objects and the conditions for assuming that two objects have the same
identity are described using temporal logic (see Section 6). When a tracked object is
found which satisfies the normative behavior for e.g. a car a new car representation is
created and the tracked object islinkedto the new car representation. From this moment



the car representation will be updated each time the tracked object is updated. Since
links only represent hypotheses, they are always subject to becoming invalid given ad-
ditional observations, and therefore the UAV continually has to verify the validity of
the links. This is done by monitoring that the normative behavior of the assumed object
type is not violated. For example, an object assumed to be a car must not violate the
normative constraints on cars, e.g. leaving the road. If it does violate the corresponding
link is removed, in other words the object is no longer assumed to be a car. To evalu-
ate temporal logical formulas DyKnow has to derive temporal models representing the
value of the variables used in the formulas. Since these models are derived from the
sensor data it is another concrete example of how DyKnow can be used to bridge the
sense reasoning gap.

3 The Hardware Platform

The WITAS UAV platform [5] is a slightly modified Yamaha RMAX helicopter (Fig. 2),
equipped with a more efficient power generator and a taller landing gear. Its total length
is 3.6 m, including the main rotor, and it is powered by a 21 horse power two-stroke
engine. The maximum takeoff weight of the platform is 95 kg and it can stay in the air
up to one hour. The onboard avionics system is enclosed in an easily detachable box
mounted on the side of the UAV.

Fig. 2. The WITAS RMAX autonomous heli-
copter.

Fig. 3. The onboard color and thermal cameras
mounted on a pan-tilt unit.

The onboard computer system contains three PC104 embedded computers. The pri-
mary flight control (PFC) system runs on a Pentium-III (700MHz) and is responsible for
sensor fusion required for basic helicopter control and for sequentializing control modes
(i.e. takeoff, hover, 3D path following, landing, vehicle following etc.). PFC interfaces
with the RMAX helicopter through YAS (Yamaha Attitude Sensor) and YACS (Yamaha
Attitude Control System) and receives data from the GPS receiver and a barometric
altitude sensor. The deliberative/reactive control (DRC) system runs on a Pentium-M
(1.4GHz) and executes deliberative functionalities such as planning, execution moni-
toring, and scenario recognition.



The image processing (IPC) system runs on a Pentium-III (700MHz) embedded
computer. The camera platform suspended under the UAV fuselage is vibration iso-
lated by a system of springs. The platform consists of a Sony color CCD block camera
FCB-780P and a ThermalEye-3600AS miniature infrared camera mounted rigidly on a
pan-tilt unit (Fig. 3). Both cameras delivers analogue PAL signals with the frame size
768x576 pixels at a rate of 25Hz.

Network communication between the onboard computers is physically realized with
serial lines (RS232C point-to-point realtime communication) and Ethernet (non-realtime
communication). Finally, the onboard system contains two miniDV video recorders
controlled by software through a Control-L (LANC) interface. The live video is also
sent to the ground and presented to the UAV operator. The recorded video is synchro-
nized with the log data (i.e. complete UAV state) allowing off-line processing.

4 Image Processing

The task of image processing in this work is to calculate world coordinates of vehicles
tracked in video sequences. First, an object tracker is used to find pixel coordinates of
the vehicle of interest based on color and thermal input images. Second, the geograph-
ical location of the object is calculated and expressed as world coordinates. The object
tracker developed for the purpose of this work can be initialized automatically or man-
ually. The automatic mode chooses the warmest object on a road segment (description
fetched from the GIS database) within the thermal camera view and within a certain
distance from the UAV (the process of calculating the distance to a tracked object is ex-
plained below). The area around the initial point is checked for homogeneity in thermal
and color images. The object is used to initialize the tracker if its area is consistent with
the size of a car signature. This initialization method works with satisfactory results for
distances up to around 50m from the tracked object.

If the tracker is initialized incorrectly the user can choose the object of interest
manually by clicking on a frame of the color or thermal video. The corresponding pixel
position (for color and thermal images) is calculated knowing the parameters of the
cameras, the UAV’s position and attitude and the model of the ground elevation. After
initialization, tracking of an object is performed independently in color and thermal
video streams. Tracking in the thermal image is achieved by finding the extreme value,
the warmest or coldest spot, within a small window, i.e. 5 percent of the image size,
around the previous result. Object tracking in color video sequences is also performed
within such a small window and is done by finding the center of mass of the color
blob in the HSI color space. The thresholding parameters are updated to compensate for
illumination changes. Tracking in both images is performed at full frame rate (i.e. 25Hz)
which allows for compensating for moderate illumination changes and moderate speeds
of relative motion between the UAV and the tracked object. The problem of automatic
reinitialization in case of loss of tracking is not addressed in this work. The result from
the thermal image tracking is preferred if the trackers do not agree on the tracking
solution.

In order to find the distance to the tracked object as well as corresponding regions
in both images, the cameras have been calibrated to find their intrinsic and extrinsic



parameters. The color camera has been calibrated using the Matlab Camera Calibra-
tion Toolkit [6]. The same toolkit could not be used for finding optical parameters of
the thermal camera because it was infeasible to obtain sharp images of the chessboard
calibration pattern. To find focal length, principal point and the lens distortion parame-
ters, a custom calibration pattern and the calibration toolkit by Wengert et. al. has been
used [7]. The extrinsic parameters of the cameras were found by minimizing the error
between the calculated corresponding pixel positions for several video sequences.

Finding pixel correspondences between the two cameras can not be achieved by
feature matching commonly used in stereo vision algorithms since objects generally
appear different in color and thermal images. Because of this, the distance to an ob-
ject whose projection lies in a given pixel must be determined. Knowing the camera
intrinsic and extrinsic parameters, helicopter attitude and position, and the ground ele-
vation model, the distance to an object can easily be calculated as the distance from the
camera center to the intersection between the ground plane and the ray going through
the pixel belonging to the object of interest. For the environment in which the flight
tests were performed the error introduced by the flat world assumption is neglectable.
Finally, calculating pixel correspondences between the two cameras can be achieved
by performing pixel geolocalization using intrinsic and extrinsic parameters of one of
the cameras followed by applying inverse procedure (i.e. projection of geographical
location) using the other camera parameters.

A B

Fig. 4. A. Two frames from video sequence with the UAV hovering close to a road segment
observing two cars performing overtaking maneuver.B. Three frames from video sequence with
the UAV following a driving car passing road crossings. Top row contains color images and
bottom row contains corresponding thermal images.

Using the described object tracker several data series of world coordinates of tracked
vehicles were generated. Two kinds of video sequences were used as data sources. In the
first kind (Fig. 4A) the UAV is stationary at altitudes of 50 and 60 meters and observes
two vehicles as they drive on a nearby road. In the second kind (Fig. 4B) both the car
and the UAV are moving. The ground vehicle drives several hundreds meters on the
road system passing through two crossings and the UAV follows the car at altitudes



between 25 and 50 meters. For sequences containing two cars, the tracker was executed
twice to track both vehicles independently.

A precise measure of the error of the computed world location of the tracked object
is not known because the true location of the cars was not registered during the flight
tests. The accuracy of the computation is influenced by several factors, such as error
in the UAV position and the springs in the camera platform suspension, but the tracker
in general delivers world coordinates with enough accuracy to determine which side of
the road a car is driving on. Thus the maximum error can be estimated to be below 4-5
meters for distances to the object of around 80 meters.

5 DyKnow

To facilitate the development of general traffic scenario recognition application a knowl-
edge processing middleware called DyKnow is used [3, 4]. The main purpose of Dy-
Know is to provide generic and well-structured software support for the processes in-
volved in generating state, object, and event abstractions about the environments of
complex systems. The generation is done at many levels of abstraction beginning with
low level quantitative sensor data and resulting in qualitative data structures which are
grounded in the world and can be interpreted as knowledge by the system. To produce
these structures the system supports operations on data and event streams at many dif-
ferent levels of abstraction. For the result to be useful, the processing must be done
in a timely manner so that the UAV can react in time to changes in the environment.
The resulting structures are used by various functionalities in a deliberative/reactive ar-
chitecture for control, situation awareness and assessment, monitoring, and planning to
achieve mission goals. In the current application it is used to derive high level infor-
mation about the objects being tracked. DyKnow provides a declarative language for
specifying the structures needed by the different subsystems. Based on this specifica-
tion it creates representations of the external world and the internal state of a UAV based
on observations and a priori knowledge, such as facts stored in databases.

Conceptually, a knowledge processing middleware processes streams generated by
different components in a distributed system. These streams may be viewed as rep-
resentations of time-series data and may start as continuous streams from sensors or
sequences of queries to databases. Eventually, they will contribute to definitions of
more refined, composite, knowledge structures. Knowledge producing processes com-
bine such streams by computing, synchronizing, filtering and approximating to derive
higher level abstractions. A knowledge producing process has different quality of ser-
vice properties such as maximum delay, trade-off between quality and delay, how to
calculate missing values and so on, which together define the semantics of the knowl-
edge derived by the process. It is important to realize that knowledge is not static, but
is a continually evolving collection of structures which are updated as new informa-
tion becomes available from sensors and other sources. Therefore, the emphasis is on
the continuous and ongoing knowledge derivation process, which can be monitored
and influenced at runtime. The same streams of data may be processed differently by
different parts of the architecture by tailoring the knowledge processes relative to the
needs and constraints associated with the tasks at hand. This allows DyKnow to support



easy integration of existing sensors, databases, reasoning engines and other knowledge
producing services.

5.1 Fluent Streams

For modelling purposes, the environment of the UAV is viewed as consisting of physi-
cal and non-physicalobjects, propertiesassociated with these objects, andrelationsbe-
tween these objects. The properties and relations associated with objects will be called
features, which may be static or dynamic. Due to the potentially dynamic nature of a
feature, that is, its ability to change values through time, a total function from time to
value called afluent is associated with each feature. It is this fluent, representing the
value over time of a feature, which is being modelled.

A fluent streamis a partial representation of a fluent, where a stream ofsamplesof
the value of the feature at specific time-points is seen as an approximation of the fluent.
A sample can either come from an observation of the feature or a computation which
results in an estimation of the value at the particular time-point, called thevalid time. If
the samples are ordered by the time they become available to the fluent stream, then the
result is a stream of samples representing the value of the feature over time, that is, an
approximation of its fluent. The time-point when a sample is made available or added to
a fluent stream is called theadd time. To be able to totally order the samples in a fluent
stream a requirement that the add time is unique is imposed, i.e. at most one sample
may be added to a fluent stream at any given time-point. A fluent stream has certain
properties such as start and end time, maximum size, i.e. number of samples in the
stream, sample rate and maximum delay. These properties are specified by a declarative
policywhich describes the constraints placed on the fluent stream.

For example, the position of a car would be an example of a feature. The true posi-
tion of the car at each time-point during its existence would be its fluent, and a particular
sequence of observations of its position would be a fluent stream. There can be many
fluent streams all approximating the same fluent.

5.2 Computational Units

A computational unitencapsulates a computation on one or more fluent streams. A
computational unit takes a number of fluent streams as input and computes a new fluent
stream as output. The encapsulated function can do anything, including calling external
services.

Examples of computational units are filters, such as Kalman filters, and other sensor
processing and fusion algorithms. Several other examples of computational units will
be presented later.

6 Object Linkage Structures

One problem that has to be dealt with is recognizing that the object being tracked by the
UAV platform is actually a car, that is, to anchoring the symbolic representation of a car
with the stream of positions extracted by the image processing system. This is called



the anchoring problem [8]. Our approach is based on using temporal logic to describe
the normative behavior of different types of entities and based on the behavior of an
observed entity hypothesize its type. For example, in the traffic monitoring domain the
object being tracked is assumed to be a physical object in the world, called aworld
object. Then, if the position of this world object is consistently on the road system then
it is hypothesized to be aroad object, i.e. an object moving within the road system. By
further monitoring the behavior and other characteristics such as speed and size of the
road object it could be hypothesized whether it is a car, a truck, a motorcycle, or another
type of vehicle.

An object or an aspect of an object is represented by anentity structure. The term
entity is used to indicate that it is more general than an object. An entity structure
consists of a type, a name and a set of features representing the properties of the entity.
The name is supposed to be unique and is used to identify the entity. All entity structures
with the same type are assumed to have the same features. Anentity frameis a data
structure representing a snapshot of an entity. It consists of the type and name of an
entity structure and a value for each of the features of the entity. An entity structure is
implemented in DyKnow as a fluent stream where the values are entity frames. Each
entity frame represents the state of an entity at a particular time-point and the fluent
stream represents the evolution of the entity over time.

Each object is represented by an entity structure and relations between the entities
are represented bylinks. The description of a class of links from entities of type A to
entities of type B consists of three constraints, theestablish, reestablish, andmaintain
constraints, and a computational unit for computing B entity structures from A entity
structures.

The establish constraint describes when a new instance of type B should be created
and linked to. For example, if the position of a world object is on the road for more
than 30 seconds then a road object is created together with a link between them. A
road object could contain more abstract and qualitative attributes such as which road
segment it is on, which makes it possible to reason qualitatively about its position in
the world relative to the road, other vehicles on the road, and building structures in the
vicinity of the road. At this point, streams of data are being generated and computed
for the features in the linked object structures at many levels of abstraction as the UAV
tracks the road objects.

The reestablish constraint describes when two existing entities of the appropriate
types which are not already linked should be linked. This is used when the tracking of a
road object is lost and the tracker finds a new world object which may or may not be the
same object as before. If the reestablish constraint is satisfied then it is hypothesized that
the new world object is in fact the same road object as was previously tracked. Since
links only represent hypotheses, they are always subject to becoming invalid given ad-
ditional data, so the UAV continually has to verify the validity of the links. This is done
by monitoring that the maintenance constraint is not violated.

A maintenance constraint could compare the behavior of the new entity, which is
the combination of the two representations, with the normative behavior of this type of
entity and, if available, the predicted behavior of the previous entity. In the road object
example the condition is that the world object is continually on the road maybe with



shorter periods when it is outside. If this condition is violated then the link is removed
and the road object is no longer updated since the hypothesis can not be maintained.

One purpose of the object linkage structures is to maintain an explicit representation
of all the levels of abstraction used to derive the representation of an object. It is believed
that this will make the anchoring problem easier since sensor data, such as images,
does not have to be directly connected to a car representation but can be anchored and
transformed in many small steps. Another benefit is that if the tracking is lost only the
link between the world object and the road object is lost, if the road object is linked to
a car object then this link can still persists and the car will be updated once the road
object has been linked to a new world object. Another usage of the linkage structures
could be to replace the world object which is lost with a simulated world object which
simulates or predicts the development of the previous world object based on its history.

7 Scenario Recognition

In many applications it is crucial to describe and recognize complex events and scenar-
ios. Chronicles [1] is one formalism used to represent complex occurrences of activities
described in terms of temporally constrained events. In this context, an event is defined
as a change in the value of a feature. For example, in the traffic monitoring application,
a UAV might fly to an intersection and try to identify how many vehicles turn left, right
or drive straight through a specific intersection. In another scenario, the UAV may be
interested in identifying vehicles overtaking. Each of these complex activities can be
defined in terms of one or more chronicles. In our project, we use the C.R.S. chronicle
recognition system developed by France Telecom [9].

A chronicle is a description of a generic scenario whose instances should be rec-
ognized. A chronicle is represented by a set of events and a set of temporal constraints
between these events with respect to a context [1]. An event represents a change in
the value of a feature. The online recognition algorithm takes a stream of time-stamped
event instances and finds all matching chronicle instances. To do this C.R.S. keeps track
of all possible developments in a tractable and efficient manner by using simple tempo-
ral networks [2]. A chronicle instance is matched if all the events in the chronicle model
are present in the stream and the time-stamps of the event instances satisfies the tem-
poral constraints. Recognized instances of a chronicle can be used as events in another
chronicle, thereby enabling recursive chronicles.

In order to use chronicle recognition to recognize event occurrences the event must
be expressed in the chronicle formalism and a stream of primitive events must be avail-
able. The only requirement on the stream is that the primitive events arrive ordered by
occurrence time. The reason is that all the information for a specific time-point has to be
available before the temporal network can be updated with the new information. This
means that whenever a new event arrives with the occurrence timet all partial chronicle
instances are updated up to the time-pointt− 1 and then the new information is added.
If an event arrives out of order it will be ignored. The integration using DyKnow is done
in two steps, integration of chronicles and integration of events.

The first step is when a chronicle is registered for recognition. To integrate a new
chronicle DyKnow goes through each of the features in the chronicle and subscribes to



the corresponding fluent stream. The name of each feature is required to be a reference
to a fluent stream containing discrete values. To make sure that the chronicle recogni-
tion engine is aware of all the changes in the fluent stream a policy is constructed which
subscribes to all changes in the fluent stream and makes sure that the changes are or-
dered by valid time by use of a monotone order constraint. When subscriptions for all
fluent streams are set up the recognition engine is ready to recognize chronicles.

The second step is when a sample arrives to the chronicle recognition engine. To
integrate a sample it must be transformed into an event, i.e. a change in the feature
represented by the fluent stream. To do this the recognition engine keeps track of the
last value for each of the features and creates an event if the feature changed values
compared to the stored value. The first value is a special case where the value changes
from an unknown value to the new value. When the chronicle recognition engine is
started events representing the initial state must be added. Since it is assumed that the
events arrive in order the recognition engine updates the internal clock to the time-point
before the valid time of the new sample. Thus the chronicle engine can prune all partial
chronicles which are inconsistent with the current knowledge of what events have taken
place. When a chronicle instance is recognized this is announced by an event.

7.1 Recognizing Overtakes

One instance of the traffic monitoring application involves the UAV observing a road
segment and collecting information about the behavior of the vehicles passing by. The
example used is recognizing overtakes, but the approach is general.

An overtake is considered to have occurred when two cars are driving on the same
road and when one of the cars has caught up with and passed the other car. This is the
same as saying that an overtake occurs if a car is first behind another car, and then later
in front of the same car while both cars are on the same road. A requirement that the cars
are beside each other at some time-point in between could be added to strengthen the
definition. The overtake event can be formalized by the following overtake chronicle:

chronicle overtake[?car1, ?car2] {
event(same_road[?car1, ?car2]:(?, true), t0)
event(behind[?car1, ?car2]:(?, true), t1)
event(behind[?car1, ?car2]:(true, false), t2)
event(in_front[?car1, ?car2]:(false, true), t3)

noevent(behind[?car1, ?car2]:(true, false), (t1, t2-1))
noevent(behind[?car1, ?car2]:(false, true), (t2, t3-1))
noevent(in_front[?car1, ?car2]:(false, true), (t1, t3-1))
noevent(same_road[?car1, ?car2]:(true, false), (t0, t3-1))

t0 < t2
t1 < t2
t1 < t3 }

An event(A[?x]:(v1, v2), t) statement says that the featureA of the object
assigned to the variable?x changed values fromv1 to v2 at time-pointt. The value
can be? which works as a wildcard and represents that the actual value is not impor-
tant. Each? represents a new variable. Anoevent(A:(v1, v2), (t1, t2))



statement says that an event, where the featureA changes values fromv1 to v2 , should
not occur in the interval[t1, t2]. The temporal constraints at the end of the chronicle can
be any metric constraint on pairs of time-points. The constraintt0 < t2 could also
be writtent2-t0 in [1, oo] . Thenoevent statement is used to make sure that
a value does not change within an interval. For example, to say thatA should be true
over the interval[b, e] the following statements could be used:

event(A:(?, true), a)
noevent(A:(true, false), (b, e))
a <= b

The recognition has been tested both on simulated cars driving in a road system and
on real data captured during flight tests. One example of the latter is shown in Fig. 5.

Fig. 5.An example overtake situation recorded during a test flight.

To recognize overtakes using the above chronicle a stream of qualitative spatial
relations between pairs of cars, such as behind and beside, must be computed. This
might sound like a very simple task, but does in fact require a number of steps. First,
the set of cars that are actually being tracked must be extracted from the stream of
car observations using the object linkage structures described in the previous section.
Second, the set of pairs of active cars can be computed from the set of cars. Third, for
each pair of car names a stream of synchronized pairs of car entity structures have to be
created. Since they are synchronized both car entities in the pair are valid at the same
time-point, which is required to compute the relation between the two cars. Fourth, from
this stream of car pairs the qualitative spatial relations must be computed. Finally, this
stream of car relations can be used to detect overtakes and other driving patterns using
the chronicle recognition engine. All these functions are implemented as computational
units. The complete setup is shown in Fig. 6. A more detailed description follows.

To extract the active cars a computational unit is created which keeps track of the
names of all cars that have been updated the last minute. This means that if no ob-
servation of a car has been made in more than 60 seconds it will be removed from
the set of active cars. For example, assuming the stream of car observations looks
like: 〈〈car1, . . .〉, . . . 〈car2, . . .〉, . . . 〈car3, . . .〉, . . .〉 then the stream of sets of active cars
would be〈{car1}, {car1, car2}, {car1, car2, car3}〉. Since the qualitative spatial rela-
tions are computed on pairs of cars where the cars are different and the order of the two



Tracking
Source

Car
Domain

CU

Car
Relation

CU

Car
Pairs
CU

Car
Relations

CU

cars Cars CarPairs car_pairs car_relations

Fig. 6.The DyKnow setup used in the overtake monitoring application.

cars are not important the computational unit that extracts pairs of car names only com-
putes one pair for each combination of distinct car names. To continue the example, the
stream of set of pairs would be〈{}, {〈car1, car2〉}, {〈car1, car2〉, 〈car1, car3〉, 〈car2, car3〉}〉.
The stream of sets of pairs is calledCarPairs and is updated when a car is added or
removed from the set of active car names, calledCars. This stream of car name pairs
is then used as input together with the stream of car entities to a state extraction com-
putational unit which for each pair synchronizes the streams of car entities as shown in
Fig. 7. The figure shows that for each of pair of car names in theCarPairs stream a
new state synchronization unit is created where only updates to those car entities with
the specified names are sent. Each time one of the state synchronization units derives a
new state it is added to the fluent stream defined by the computational unit.

state sync

state synccar2, car3 <car2, car3>

state sync

cars, CarPairs car1, car3 <car1, car3>

car1, car2 <car1, car2>

car_pairs

Fig. 7.The synchronization of car pairs.
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Fig. 8.The qualitative spatial
relations used.

Finally the car pair entities are used as input in the car relation computational unit
which computes the qualitative spatial relation between the two cars by comparing the
forward direction ofcar1 with the direction fromcar2 to car1 , as shown in Fig. 8.
The forward direction of the car is assumed to be either along the current road segment
or against it. To compute which, the current driving direction of the car is compared to
the forward direction of the road segment. Since the estimated driving direction of the
car is very noisy this provides a much better estimate.

Each time the car relations are computed the chronicle recognition engine is noti-
fied, since it subscribes to that fluent stream, and the chronicles instance are updated
with the new information. In the next section some experimental results are presented.

8 Experimental Results

The traffic monitoring application has been test both in simulation and on images col-
lected from flight tests. The only difference between the two cases is who creates the
world objects. One of the trajectories collected at a flight test is shown in Fig. 5.



The robustness to noise in the position estimation was tested in simulation by adding
random error to the true position of the cars. The error has a uniform distribution with
a known maximum value and is added independently to the x and y coordinates. If the
maximum error is 2 meters, then the observed position is within a 2x2 meter square
centered on the true position. Two variables were varied, the speed of the car and the
sample period of the position. For each combination 10 simulations were run were a
car overtook another. If the overtake was recognized the run was considered successful.
The results are shown in Table 1.

Speed Sample 0m 1m 2m 3m 4m 5m 7m
period error error error error error error error

15 m/s 200 ms 100% 100% 70% 60% 50% 40% 20%
20 m/s 200 ms 100% 90% 60% 70% 50% 50% 20%
25 m/s 200 ms 100% 100% 100% 50% 40% 10% 0%
15 m/s 100 ms - - 60% 90% 60% 90% 0%
20 m/s 100 ms - - 90% 90% 90% 80% 20%
25 m/s 100 ms - - 90% 80% 70% 80% 0%
Table 1.The results from varying the speed of the cars and the sample period.

The conclusions from these experiments are that the speed of the car is not signif-
icant but the sample period is. The more noise in the position the more samples are
needed in order to detect the overtake. The reason for the very poor performance when
the error is 7 meters is due to the fact that most observations are outside the road and
those observations are filtered out. Since the estimated error from the image processing
is 4-5 meters the system should reliably detect overtakes.

9 Related Work

There is a great amount of related work which is relevant for each of the components,
but the focus will be on integrated systems. There are a number of systems for mon-
itoring traffic by interpreting video sequences, for example [10–15]. Of these, almost
all work on sequences collected by static surveillance cameras. The exception is [12]
which analyses sequences collected by a Predator UAV. Of these none combine the
input from both color and thermal images. Another major difference is how the scenar-
ios are described and recognized. The approaches used include fuzzy metric-temporal
logic [11], state transition networks [13], belief networks [15], and Petri-nets [10, 14]
neither of which have the same expressivety when it comes to temporal constraints as
the chronicle recognition approach. Another difference is the ad-hoc nature of how the
components of the system and the data flows are connected. In our solution the basis
is a declarative description of the properties of the different data streams which is then
implemented by the DyKnow knowledge processing middleware. This makes it very
easy to change the application to e.g. add new features or to change the parameters. The
declarative specification could also be used to reason about the system itself.



10 Conclusions

A traffic monitoring application which is an instance of a general approach to creat-
ing high-level situation awareness applications is presented. The implemented system
takes as input sequences of color and thermal images used to construct and maintain
qualitative object structures and recognize the traffic behavior of the tracked vehicles
in realtime. The system is tested both in simulation and on data collected during test
flights. It is believed that this type of system where streams of data are generated at
many levels of abstraction using both top-down and bottom-up reasoning handles many
of the issues related to closing the sense-reasoning gap. A reason is that the information
derived at each level is available for inspection and use. This means that the subsystems
have access to the appropriate abstraction while it is being continually updated with
new information and used to derived even more abstract structures. High-level informa-
tion, such as the type of vehicle, can then be used to constrain and refine the processing
of lower level information. The result is a very powerful and flexible system capable of
achieving and maintaining high-level situation awareness.
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