
Semantic Information Integration for Stream
Reasoning

Fredrik Heintz and Zlatan Dragisic
Department of Computer and Information Science, Linköping University, Sweden

fredrik.heintz@liu.se and zlatan.dragisic@liu.se

Abstract—The main contribution of this paper is a practical
semantic information integration approach for stream reasoning
based on semantic matching. This is an important functionality
for situation awareness applications where temporal reasoning
over streams from distributed sources is needed. The integra-
tion is achieved by creating a common ontology, specifying
the semantic content of streams relative to the ontology and
then use semantic matching to find relevant streams. By using
semantic mappings between ontologies it is also possible to do
semantic matching over multiple ontologies. The complete stream
reasoning approach is integrated in the Robot Operating System
(ROS) and used in collaborative unmanned aircraft systems
missions.1

I. INTRODUCTION

The information available to modern autonomous systems
such as robots is often in the form of streams. As the
number of sensors and other stream sources increases there
is a growing need for incremental reasoning over sets of
streams in order to draw relevant conclusions and react to new
situations as quickly as possible. Reasoning over incrementally
available information in autonomous systems is needed to
support a number of important functionalities such as situation
awareness, execution monitoring and planning [1].

One major issue is integrating stream reasoning in robotic
systems. To do symbolic reasoning it is necessary to map
symbols to streams in a robotic system, which provides them
with the intended meaning for the particular robot. This is
currently done syntactically by mapping symbols to streams
based on their names. This makes a system fragile as any
changes in existing streams or additions of new streams require
that the mappings be checked and potentially changed. This
also makes it hard to reason over streams of information from
multiple heterogeneous sources, since the name and content
of streams must be known in advance.

To address these problems we have developed a semantic
matching approach using semantic web technologies. An on-
tology is used to define a common vocabulary over which
symbolic reasoning can be done. Streams are annotated with
ontological concepts to make semantic matching between
symbols and streams possible. One major advantage is that
the semantic of a stream can now be described by the creator
of the stream and then found by anyone based on this semantic

1This work is partially supported by grants from the Swedish Foundation
for Strategic Research (SSF) project CUAS, the Swedish Research Council
(VR) Linnaeus Center CADICS, and the Center for Industrial Information
Technology CENIIT.

annotation. Previously the user had to know the content and
meaning of the streams to select the appropriate ones. This
also opens up the possibility to find and fuse multiple streams
with relevant information.

This is in line with recent work on semantic modeling of
sensors [2], [3] and on semantic annotation of observations
for the Semantic Sensor Web [4]–[6]. An interested approach
is a publish/subscribe model for a sensor network based on
semantic matching [4]. The matching is done by creating an
ontology for each sensor based on its characteristics and an
ontology for the requested service. If the sensor and service
ontologies align, then the sensor provides relevant data for the
service. This is a complex approach which requires significant
semantic modeling and reasoning to match sensors to services.
Our approach is more direct and avoids most of the overhead.

The work presented in this paper extends the stream reason-
ing functionality of the stream-based knowledge processing
middleware framework DyKnow [7], [8]. DyKnow is inte-
grated in the Robot Operating System (ROS) [9] which makes
it available for a wide variety of robotic systems.

II. STREAM REASONING

One technique for incremental reasoning over streams is
progression of metric temporal logic formulas. This provides
real-time incremental evaluation of logical formulas as new
information becomes available. First order logic is a powerful
technique for expressing complex relationships between ob-
jects. Metric temporal logics extends first order logics with
temporal operators that allows metric temporal relationships
to be expressed. For example, our temporal logic, which is a
fragment of the Temporal Action Logic (TAL) [10], supports
expressions which state that a formula F should hold within
30 seconds and that a formula F ′ should hold in every
state between 10 and 20 seconds from now. This fragment
is similar to the well known Metric Temporal Logic [11].
Informally, ♦[τ1,τ2] φ (“eventually”) holds at τ iff φ holds at
some τ ′ ∈ [τ + τ1, τ + τ2], while �[τ1,τ2] φ (“always”) holds
at τ iff φ holds at all τ ′ ∈ [τ + τ1, τ + τ2]. Finally, φU[τ1,τ2] ψ
(“until”) holds at τ iff ψ holds at some τ ′ ∈ [τ + τ1, τ + τ2]
such that φ holds in all states in (τ, τ ′).

We have for example used this expressive metric temporal
logic to monitor the execution of complex plans [12] and
to express conditions for when to hypothesize the existence
and classification of observed objects in an anchoring frame-
work [13]. In execution monitoring, for example, suppose that

a UAV supports a maximum continuous power usage of M ,
but can exceed this by a factor of f for up to τ units of
time, if this is followed by normal power usage for a period
of length at least τ ′. The following formula can be used to
detect violations of this specification: �∀uav.(power(uav) >
M → power(uav) < f ·M U[0,τ] �[0,τ ′] power(uav) ≤M).

The semantics of these formulas are defined over infinite
state sequences. To make metric temporal logic suitable for
stream reasoning, formulas are incrementally evaluated using
progression over a stream of timed states. The result of
progressing a formula through the first state in a stream is
a new formula that holds in the remainder of the state stream
if and only if the original formula holds in the complete state
stream. If progression returns true (false), the entire formula
must be true (false), regardless of future states. Even though
the size of a progressed formula may grow exponentially in
the worst case, it is always possible to use bounded intervals to
limit the growth. It is also possible to introduce simplifications
which limits the growth for many common formulas [14].

DyKnow views the world as consisting of objects and
features, where features may for example represent properties
of objects and relations between objects. A sort is a collection
of objects, which may for example represent that they are all
of the same type.

Due to inherent limitations in sensing and processing, an
agent cannot always expect access to the actual value of a
feature over time, instead it will have to use approximations.
Such approximations are represented as streams of samples
called fluent streams. Each sample represents an observation
or estimation of the value of a feature at a specific point in
time called the valid time. A sample is also tagged with its
available time, the time when it is ready to be processed by
the receiving process after having been transmitted through
a potentially distributed system. The available time allows
to formally model delays in the availability of a value and
permits an application to use this information introspectively
to determine whether to reconfigure the current processing
network to achieve better performance. DyKnow also provides
support for generating streams of states by synchronizing
distributed individual streams. Using the stream specifications
it is possible to determine when the best possible state at each
time-point can be extracted [14].

III. SEMANTIC INFORMATION INTEGRATION

A temporal logic formula consists of symbols representing
variables, sorts, objects, features, and predicates besides the
symbols which are part of the logic. Consider ∀x ∈ UAV.x 6=
uav1 → � XYDist[x, uav1] > 10, which has the intended
meaning that all UAVs, except uav1, should always be more
than 10 meters away from uav1. This formula contains the
variable x, the sort UAV, the object uav1, the feature XYDist,
the predicates 6= and >, and the constant value 10, besides the
logical symbols. To evaluate such a formula an interpretation
of its symbols must be given. Normally, their meanings are
predefined. However, in the case of stream reasoning the
meaning of features can not be predefined since information

about them becomes incrementally available. Instead their
meaning has to be determined at run-time. To evaluate the
truth value of a formula it is therefore necessary to map feature
symbols to streams, synchronize these streams and extract
a state sequence where each state assigns a value to each
feature [14].

In a system consisting of streams a natural approach is to
syntactically map each feature to a single stream. This works
well when there is a stream for each feature and the person
writing the formula is aware of the meaning of each stream in
the system. However, as systems become more complex and
if the set of streams or their meaning changes over time it is
much harder for a designer to explicitly state and maintain this
mapping. Therefore automatic support for mapping features in
a formula to streams in a system is needed. The purpose of this
matching is for each feature to find one or more streams whose
content matches the intended meaning of the feature. This is
a form of semantic matching between features and contents
of streams. The process of matching features to streams in a
system requires that the meaning of the content of the streams
is represented and that this representation can be used for
matching the intended meaning of features with the actual
content of streams.

The same approach can be used for symbols referring to
objects and sorts. It is important to note that the semantics of
the logic requires the set of objects to be fixed. This means
that the meaning of an object or a sort must be determined for
a formula before it is evaluated and then may not change. It
is of course possible to have different instances of the same
formula with different interpretations of the sorts and objects.

Our goal is to automate the process of matching the intended
meaning of features, objects and sorts to content of streams
in a system. Therefore the representation of the semantics of
streams needs to be machine readable. This allows the system
to reason about which stream content corresponds to which
symbol in a logical formula. The knowledge about the meaning
of the content of streams needs to be specified by a user,
even though it could be possible to automatically determine
this in the future. By assigning meaning to stream content the
streams do not have to use predetermined names, hard-coded
in the system. This also makes the system domain independent
meaning that it could be used to solve different problems in a
variety of domains without reprogramming.

Our solution involves creating an ontology acting as a
common vocabulary of features, objects and sorts, a language
for representing the content of streams relative to an ontology,
and a semantic matching algorithm for finding all streams
which contain information relevant for a feature, object or sort
in the ontology.

A. Ontologies

An important step in semantic information integration is
to establish a vocabulary of the information. One way to do
this is to model the entities and the relationships between the
entities in the domain. To make this usable in the semantic
matching process the domain model should be interpretable

by machines. Ontologies provide suitable support for creat-
ing machine readable domain models [15]. Ontologies also
provide reasoning support and support for semantic mapping
which is necessary for the integration of streams on multiple
platforms, see Section III-B.

Reasoning about an ontology is used to make knowledge
that is implicit in the ontology explicit. For example if A
is a subclass of B and B is a subclass of C, a reasoning
process could infer that A is also a subclass of C. This type
of reasoning is based on class inference. Reasoners can also
be used to determine the coherence of an ontology or more
precisely determine if some concept (class) is unsatisfiable. A
class is unsatisfiable if the interpretation of that class is the
empty set in all models of the ontology.

To represent ontologies the Web Ontology Language
(OWL), a W3C ontology language recommendation, is
used [16]. OWL uses a RDF/XML syntax but other syntaxes
also exist which provide higher readability for humans. There
are three different versions of OWL [16]: OWL Full, OWL
DL, and OWL Lite. These languages differ in the expressive-
ness and correspondingly the decidability and computational
complexity. We have chosen to use OWL DL which supports
the decidable fragment of OWL Full. It is based on description
logics and guarantees completeness and decidability [17].

In OWL it is possible to define classes, properties and
instances. OWL includes additional constructs which give
knowledge engineers more expressive power. These constructs
allow them to describe classes as the union, intersection or
complement of other classes. To specify restrictions on the
values of properties, OWL supports universal and existential
quantifiers together with three different cardinality restrictions:
minimal, maximal and exact.

To represent features, objects and sorts we propose to
use an ontology with two different class hierarchies, one for
objects and one for features. The feature hierarchy is actually
a reification of OWL relations. The reason for this is that
OWL only supports binary relations while we need to handle
arbitrary relations. Figure 1 shows an example ontology.

As the object hierarchy shows, our example domain deals
with two types of objects, static and moving objects. Static
objects in this case represent points of interest while moving
objects are different types of vehicles. The actual objects
or instances of the classes are not shown in the figure but
must also be included in the ontology. The example ontology
includes 5 objects: uav1 and uav2 of type UAV and car1, car2
and car3 of type Car.

Features describe relations in the domain and are repre-
sented as relations in the ontology. These relations in our
ontology are described as intersection classes. The intersection
includes the class which defines the arity of the feature
(UnaryRelation, BinaryRelation, or TernaryRelation)
and an enumeration of possible classes for each argument.
The enumeration is done using object properties arg1, arg2
and arg3 which specify the order of the arguments. For
example, the feature XYDist representing the distance between
two objects in the XY-plane is defined as follows: XYDist v

Fig. 1: An example ontology defining objects and features.

BinaryRelationu∀arg1.Objectu∀arg2.Object meaning that
XYDist is a binary relation where both arguments must be of
type Object.

Reasoning is required to infer implicit relations in the
ontology. As a simple example, consider the feature XYDist
which takes arguments of type Object. Therefore objects uav1
and uav2 of type UAV could not be used as arguments even
though all objects defined in the ontology are of type Object.
Using the reasoner these relations would be included in the
ontology and uav1 and uav2 could be used as arguments to
XYDist.

B. Mappings Between Ontologies

To evaluate formulas over streams from many different
platforms, each having their own ontology, it is necessary to
align multiple ontologies. It could for example be the case
that no single platform has all the relevant streams. To align
two ontologies, they have to have some overlap and partially
describe the same aspects of the environment. An issue is that
even if two ontologies model the same part of the environment
they might use different concept names. An example of this is
shown in Figure 1 and Figure 2. The first ontology deals with
both aerial and ground vehicles while the second ontology only
contains ground vehicles. However, since they use different
concepts it is not possible to directly fuse the information from
the two ontologies, even if they contain information about the
same vehicles in the environment.

One approach to fuse knowledge from multiple ontologies
is to specify the relations between concepts in the different
ontologies, so called semantic mappings, and use a reasoning
mechanism which can reason over multiple ontologies [18].
This is a multiple ontology approach [19] which has the ad-

Fig. 2: A second example ontology.

vantage that information sources are independent and changes
in a local ontology does not influence other local ontologies.

Much work has been done related to semantic mappings
between ontologies [20]–[23]. The work done by Serafini
and Tamilin [18] differs from these as it also presents a
reasoning mechanism for reasoning over multiple ontologies
connected by semantic mappings. Their semantic mappings
are based on C-OWL [21]. In order to support reasoning over
multiple distributed ontologies they use the idea of Distributed
Description Logics (DDL) [24] which provides support for
formalizing collections of ontologies connected by semantic
mappings. The DDL reasoning is based on a tableau reasoning
technique for local description logics which was extended to
support multiple ontologies.

We use C-OWL [21] for representing semantic mappings
as it provides support for explicit semantic mappings between
classes and individuals in ontologies together with an XML
representation which can easily be queried. In this represen-
tation a mapping between two ontologies is represented as
a set of bridge rules. Each bridge rule defines a semantic
correspondence, such as equivalence, more general or more
specific, between a source and a target ontology entity.

For example, consider the two ontologies in Figure 3. Even
though they refer to the same objects in the environment it is
impossible to infer this directly. However, by specifying bridge
rules between concepts and individuals in the ontologies it is
possible to infer this by reasoning over the combined ontology.

C. Semantic Annotation of Streams

After establishing a common vocabulary the next step
is to represent streams and their content in terms of this
vocabulary. Each representation of a stream should include
all the information necessary to subscribe to the stream. Since
our approach is integrated with ROS this means that streams
correspond to topics. Each topic has a name and a message
type. To access the content of a stream it is also necessary to
know which message field contains which information.

To represent the content of streams we propose the Semantic
Specification Language for Topics (SSLT). Each topic defined
in SSLT includes all the necessary information needed for
subscribing to the topic. The formal grammar for SSLT is
presented in Listing 1.

Listing 1: Formal grammar for SSLT .
spec : e x p r e s s i o n + ;
e x p r e s s i o n : ’ t o p i c ’ topic name ’ c o n t a i n s ’

f e a t u r e l i s t ;
topic name : NAME ’ : ’ NAME ;

Fig. 3: Examples of mappings between ontologies and the
supported inference.

f e a t u r e l i s t : f e a t u r e (’ , ’ f e a t u r e)∗ ;
f e a t u r e : feature name ’ = ’ MSGFIELD f o r p a r t ? ;
feature name : NAME ’ (’ f e a t u r e a r g s ’) ’ ;
f e a t u r e a r g s : f e a t u r e a r g (’ , ’ f e a t u r e a r g)∗ ;
f e a t u r e a r g : ent i ty name a l i a s ? ;
f o r p a r t : ’ f o r ’ e n t i t y (’ , ’ e n t i t y)∗ ;
e n t i t y : s o r t | o b j e c t ;
ent i ty name : NAME;
a l i a s : ’ as ’ NAME;
o b j e c t : e n t i t y f u l l ;
s o r t : s o r t t y p e e n t i t y f u l l ;
e n t i t y f u l l : NAME ’ = ’ MSGFIELD ;
s o r t t y p e : ’ some ’ | ’ e v e r y ’ ;

NAME : (’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’)+ ;
MSGFIELD : NAME ’ . ’ NAME;

Listing 2: Example SSLT sort specifications.
t o p i c t o p i c 1 :UAVMsg c o n t a i n s s o r t some UAV = msg . i d
t o p i c t o p i c 2 :UAVMsg c o n t a i n s s o r t every UAV = msg . i d

Listing 2 gives the SSLT specifications for two topics
enumerating objects in a sort. topic1 contains only a subset
of all objects of sort UAV while topic2 contains all objects
of the same sort. As the listing shows, the topic specifications
include names of the topics (topic1 and topic2), message
types (UAVMsg) and the id fields (msg.id). The id field
is important since it contains the identifier for the particular
object instance.

Topics containing features are specified in a similar manner.
However, in this case a list of arguments for each feature
is also needed. Arguments can either be objects or sorts in
which case the topic contains values for the feature for all
possible combinations of the specified argument. Listing 3

shows five different topic specification examples. The first
topic, topic1, contains feature Altitude for the specific object
uav1. The actual altitude value is stored in the field msg.alt.
Similarly, topic topic2 defines the feature Speed for uav1.
However, it is important to note the difference between these
two topics. In the case of topic1 the object argument, uav1,
is explicit while in topic topic2 the object argument is
implicit and needs to be computed from a field in the message.
This field is specified after the for keyword.
topic3 defines the same feature but for multiple UAVs.

In this case the feature is only defined for a subset of UAVs.
topic4, topic5 and topic6 specify topics which contain
feature XYDist which has arity 2. They differ only in the types
of arguments they have. It is important to note that if we are
defining a topic for a feature which has a sort as an argument
we need to define if the topic contains some or all instances
of this sort. This is done using the some and every keywords.
If these keywords are not specified then the specified topic
contains data for a single object with a name and id field
specified after the for keyword.

Listing 3: Example SSLT feature specifications.
t o p i c t o p i c 1 :UAVMsg c o n t a i n s A l t i t u d e (uav1) =msg . a l t
t o p i c t o p i c 2 :UAVMsg c o n t a i n s A l t i t u d e (uav1) =msg . a l t

f o r uav1=msg . i d
t o p i c t o p i c 3 :UAVMsg c o n t a i n s A l t i t u d e (UAV) =msg . a l t

f o r some UAV=msg . i d
t o p i c t o p i c 4 :UAVMsg c o n t a i n s XYDist (uav1 , uav3) =msg .

d i s t f o r uav1=msg . id1 , uav3=msg . i d 2
t o p i c t o p i c 5 :UAVMsg c o n t a i n s XYDist (uav2 , uav1) =msg .

d i s t f o r uav2=msg . id1 , uav1=msg . i d 2
t o p i c t o p i c 6 :UAVMsg c o n t a i n s XYDist (UAV, uav2) =msg .

d i s t f o r every UAV=msg . id1 , uav2=msg . i d 2

D. Semantic Matching Single Ontology

To achieve automatic semantic matching of the intended
meaning of symbols to content of streams it should be possible
to automatically determine which streams are relevant for
which symbol based on their content. To find all the streams
relevant for a logical formula it is necessary to first find and
extract all features from the formula and then match these
features to relevant streams. Figure 4 gives an overview of the
complete matching process.

The first step is to extract features from a formula. As
an example, consider the formula ∀x ∈ UAV.x 6= uav1 →
�(Altitude[uav1] > 20 ∨ XYDist[x, uav1] > 10). XYDist and
Altitude are features, uav1 is a constant, and x is a quantified
variable which may take any value from the sort UAV. From
this formula, the features XYDist[UAV, uav1] and Altitude[uav1]
would be extracted. After completing the feature extraction
the next step is to find the relevant streams for each of these
features.

This problem can be stated as: Given an ontology, a stream
specification, and a parameterized feature find a set of streams
which allows the estimation of the value of the feature over
time. If a feature is parameterized, then the arguments may
either be objects corresponding to constants in a formula
or sorts corresponding to quantified variables in a formula.

Fig. 4: The semantic matching process.

Altitude[uav1] is an example of a feature with a constant
argument, XYDist[UAV,UAV] a feature with two sort arguments,
and XYDist[uav1,UAV] a feature with one sort and one constant
argument.

As described in the previous section, the meaning of streams
is represented in the stream specification. However, the pro-
posed language is not suitable for querying. Therefore, we
use an equivalent XML representation. XML is a suitable
candidate because it is machine readable and provides good
support for querying.

Each topic is defined in the element Topic. This element
contains two attributes, msgtype and name which corre-
spond to the message type and topic name. Features are
defined using the feature tag which contains the name
of the feature and the topic field which has the value for
this feature. The list of feature arguments are defined as
children to the feature element. Each argument includes

the type (object or sort), name and id field. The sorts also
include a boolean all_objects attribute which defines if
the argument covers all objects of certain type or only a subset.

Finding the relevant topics differs depending on which types
of arguments a feature has. First we consider the case where
a feature only has constant arguments. In this case, topics
that match both the feature name and the specific feature
argument should be found. This process includes multiple
steps. In the first step, only topics that match the feature
name are extracted from the topic specifications. For example,
querying the specification given in Listing 3 for relevant topics
for feature XYDist[uav1, uav2] would find topic4, topic5,
and topic6.

In the next step of the algorithm, this list of specifications
is used to extract only those topics whose feature arguments
match. To find topics with matching arguments the ontology is
queried to find the sorts of each argument. In each subsequent
step of the algorithm an argument object is chosen and used
to extract topic specifications which have this object or a
sort of this object as an argument. This step is repeated for
every argument of the feature using the list from the previous
iteration of the algorithm. In the previous example, the next
step of the algorithm would be to extract topic specifications
which either have uav1 or sort UAV as the first argument.
Therefore, the output from this step of the algorithm would
be topics topic4 and topic6.

In the final step, topic specifications based on their second
argument are extracted. which in our example should either
be the object uav2 or the sort UAV. In this case only topic6
is relevant as topic4 specifies feature XYDist which has an
object uav3 as the second argument. Therefore the result of
matching feature XYDist[uav1, uav2] to the topic specifications
in Listing 3 is topic5.

However, topic5 contains feature XYDist for multiple
objects since the first argument is a sort. Therefore, in order
to get the value of feature XYDist[uav1, uav2] it is necessary
to filter out messages which have uav1 and uav2 as the first
and second argument respectively. In our approach, this is
done using the id fields defined in the specification. Currently
the value of the id field is acquired directly from an object
name and represents the numeric part of the name. Therefore,
in the case of topic5 only messages which have values
msg.id1 = 1 and msg.id2 = 2 would contain values for
feature XYDist[uav1, uav2].

Next we consider the case where a feature has one or more
sort arguments. In this case, the first step of the matching
algorithm is to find all possible values for each argument. The
set of objects in a sort is represented in the ontology. Therefore
to acquire all possible assignments of a variable it is necessary
to query the ontology for all instances (objects) of a certain
sort. After acquiring these objects, the next step is to form new
features, one for each of these objects. This requires taking
the Cartesian product of the set of sorts to find all possible
combinations. For example, if the sort UAV has two instances,
uav1 and uav2, according to the ontology, then the result after
expansion for XYDist[uav1, UAV] would be XYDist[uav1, uav1]

Fig. 5: The stream reasoning architecture.

and XYDist[uav1, uav2]. The expanded features are matched to
topic specifications using the algorithm for matching features
with constant arguments presented earlier.

When the matching is done, the relevant streams must be
collected and synchronized in order to evaluate the formula.
This is done by generating a state stream specification from
the relevant topic specifications which is sent to a stream
processing engine. The stream processor generates a stream of
states based on the specification which is used by the stream
reasoner to evaluate the formula. Figure 5 gives an overview
of the complete stream reasoning architecture and the steps
involved in temporal logical stream reasoning.

E. Semantic Matching Multiple Ontologies

To support matching topics over multiple ontologies, the
process of matching topics to formulas described earlier
needs to be extended. Each feature from the formula (after
expansion) is taken and first checked against the local topic
specifications. In the next step of the algorithm the feature
is checked against the distributed topic specifications. This
is done by first constructing an ontology which combines
the local and the remote ontology, as in Figure 3. The new
ontology also includes relevant mappings which can be used
by a reasoner (Pellet) to add implicit relations. This new model
is used to query for features equivalent to the selected feature.
The same thing is done for the arguments of the selected
feature. If an equivalent feature exists and all arguments of
the selected feature can be mapped to objects in the remote
ontology, the feature is added to the list of features that needs
to be checked for correctness in the remote ontology. This
step is crucial as the ontology and the mappings are defined
by a user and are therefore susceptible to accidental errors,
e.g., a feature Speed in the remote ontology is defined to
accept arguments of type Car, but car1 from the local ontology
maps to uav1 which is of type UAV which means that this
feature is not valid on this remote platform and therefore it
cannot provide the relevant information. If the features are
correct in the remote ontology, try to find relevant topics in

the distributed topic specifications following the same method
described earlier for the local topic specifications. Relevant
topics are added to the list of topics that need to be merged for
the selected feature. This process is repeated for each remote
ontology.

Let us consider the example in Figure 3. A mapping shows
that the feature Altitude in the local ontology is equivalent to
the feature Height in the remote ontology. The feature Height
is equivalent to the feature UAVAltitude where both concepts
are in the remote ontology. While matching Altitude using the
previously defined matching process UAVAltitude would not
be considered as there does not exist an explicit relationship
between these two concepts. In order to find both explicitly
and implicitly defined equivalent features we introduce a
reasoner in our implementation, Pellet. The reasoner adds new
entailments to the ontology, which means that while searching
for the equivalent features and objects the features that can be
acquired through transitivity would also be included. Using the
reasoner the feature UAVAltitude is also found in the example.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our solution a number
experiments were made. We varied the size of the ontology,
the size of the stream specification, and the type of features
being matched. In each case the input was a temporal logical
formula, the task was to match all the features in the formula to
streams, and we measured the execution time for the different
steps in the process. The different steps are:

1) Preprocessing – loading ontologies and topic specifica-
tions

2) Extracting features – extracting features from a formula
3) Checking features – checking extracted features against

an ontology
4) Matching features – matching features to relevant topic

specifications
5) ROS integration – generating appropriate ROS messages
The experiments were run on a Dell Studio 1558, with a

1.6 GHz sixcore Intel i7-720QM processor and 4 gigabytes
of memory running Ubuntu 11.04 with ROS 1.4.9 (Diamond-
back), Jena Semantic Web Framework 2.6.32 and Pellet 2.2.23

OWL2 reasoner.

A. Varying the size of the ontology

In this experiment the number of concepts in the on-
tology varies from 25 to 200 while the number of indi-
viduals is constant at 200. The topic specification contains
20 specifications and each feature has exactly one relevant
specification. The following formula with 9 features is used
X[b1] ∧ X[b2] ∧ X[b3] ∧ Y [b1, b1] ∧ Y [b1, b2] ∧ Y [b1, b3] ∧
Z[b1, b2, b1] ∧ Z[b1, b2, b2] ∧ Z[b1, b2, b3].

Figure 6 shows a linear increase in execution time when
increasing the number of concepts in the ontology. The sudden
increase in the feature checking phase when going from

2http://jena.sourceforge.net/
3http://clarkparsia.com/pellet/

Fig. 6: Performance when varying the number of concepts.

Fig. 7: Performance when varying the number of topic speci-
fications.

75 to 100 concepts is probably due to the internals of the
Jena Semantic Web Framework. As expected, increasing the
number of concepts has the highest impact on the feature
checking phase while the matching phase is constant.

An experiment were the number of individuals in the
ontology is varied gives similar results.

B. Varying the size of the stream specification

In this experiment the number of extra stream specifications
besides those that are necessary for the formula varies from 0
to 500 while the size of the ontology is constant (50 concepts
and 50 individuals). The same formula with 9 features as
before is used.

Figure 7 shows that the checking phase is constant while
the matching phase increase linearly with the number of topic
specifications.

C. Varying the type of features

In this experiment the number of quantified feature argu-
ments for a ternary feature varies from 1 to 3 (all). The size
of the ontology (50 concepts and 50 individuals) and the topic
specification (20 specifications) is constant. The following
formulas and their expanded versions are used:

Fig. 8: Comparing quantified and non-quantified versions of a
formula.

forall x in B (Z[x, d1, e1])
forall x in B, y in D (Z[x, y, e1])

forall x in B, y in D, z in E(Z[x, y, z])

Figure 8 show that formulas with quantified arguments
require less time for semantic matching. The main difference
is in the feature checking phase. This is expected as checking
features with object arguments is done in two steps, the first
where an ontology is queried for arguments’ sorts and the
second where these sorts are checked against the ontology. If
one or more arguments of a feature is a sort then the first
step is skipped. The results indicate that queries to acquire
arguments’ sorts are more expensive than checking these sorts
against a relation in the ontology. The results also show that the
matching phase requires more time when quantified variables
are used. This was expected as in the case of features with sort
arguments additional steps are required for feature expansion.

V. CONCLUSIONS AND FUTURE WORK

We have presented a practical semantic matching approach
to finding streams of information based on their meaning. This
makes temporal reasoning over streams of information from
multiple heterogeneous robots possible which is necessary in
many situation awareness applications. The approach uses se-
mantic web technologies to define ontologies (OWL), to define
mappings between ontologies (C-OWL) and to reason over
multiple related ontologies (DDL). To represent the semantic
content of streams in terms of features, objects, and sorts the
Semantic Specification Language for Topics SSLT is intro-
duced. Given a feature the proposed approach finds all streams
which contain information relevant for the feature. This makes
it possible to automatically find all the streams that are relevant
for evaluating a temporal logical formula even if they are
distributed among multiple platforms. These streams can then
be collected, fused, and synchronized into a single stream of
states over which the truth value of the formula is incremen-
tally evaluated. The conclusion is that the proposed approach
makes it possible to integrate stream reasoning in real robotic
systems based on semantic matching. This functionality is cen-

tral to creating and maintaining situational awareness in for ex-
ample collaborative unmanned aircraft systems [25]. We also
showed that the approach is practical as it grows linearly with
the size of the ontology and the size of the stream specification.

The two most interesting directions for future work are the
dynamic adaptation to changes in streams and extending the
semantic matching to consider properties such as quality and
delays of streams.

REFERENCES

[1] F. Heintz, J. Kvarnström, and P. Doherty, “Stream-based middleware
support for autonomous systems,” in Proc. ECAI, 2010.

[2] J. Goodwin and D. Russomanno, “Ontology integration within a service-
oriented architecture for expert system applications using sensor net-
works,” Expert Systems, vol. 26, no. 5, pp. 409–432, 2009.

[3] D. Russomanno, C. Kothari, and O. Thomas, “Building a sensor ontol-
ogy: A practical approach leveraging iso and ogc models,” in Proc the
Int. Conf. on AI, 2005, pp. 17–18.

[4] A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski,
“Semantically-enabled sensor plug & play for the sensor web,” Sensors,
vol. 11, no. 8, pp. 7568–7605, 2011.

[5] A. Sheth, C. Henson, and S. Sahoo, “Semantic sensor web,” IEEE
Internet Computing, pp. 78–83, 2008.

[6] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC R© sensor web
enablement: Overview and high level architecture,” GeoSensor networks,
pp. 175–190, 2008.

[7] F. Heintz and P. Doherty, “DyKnow federations: Distributing and merg-
ing information among UAVs,” in Proc. Fusion, 2008.

[8] F. Heintz, J. Kvarnström, and P. Doherty, “Bridging the sense-reasoning
gap: DyKnow – stream-based middleware for knowledge processing,” J.
of Advanced Engineering Informatics, vol. 24, no. 1, pp. 14–26, 2010.

[9] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[10] P. Doherty and J. Kvarnström, “Temporal action logics,” in Handbook
of Knowledge Representation. Elsevier, 2008.

[11] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[12] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” J. of Auton. Agents and Multi-Agent Systems, vol. 19, 2009.

[13] F. Heintz, J. Kvarnström, and P. Doherty, “A stream-based hierarchical
anchoring framework,” in Proc. IROS, 2009.

[14] F. Heintz, “DyKnow: A stream-based knowledge processing middleware
framework,” Ph.D. dissertation, Linköpings universitet, 2009.

[15] I. Horrocks, “Ontologies and the Semantic Web,” Communications of
the ACM, vol. 51, no. 12, p. 58, Dec. 2008.

[16] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL Web Ontology
Language Guide,” 2004.

[17] I. Horrocks, “OWL: A description logic based ontology language,” Logic
Programming, pp. 1–4, 2005.

[18] L. Serafini and A. Tamilin, “DRAGO: Distributed reasoning architecture
for the semantic web,” The Semantic Web: Research and Applications,
pp. 361–376, 2005.

[19] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schus-
ter, H. Neumann, and S. Hübner, “Ontology-based integration of
information-a survey of existing approaches,” in IJCAI-01 workshop:
ontologies and information sharing, vol. 2001, 2001, pp. 108–117.

[20] N. Choi, I. Song, and H. Han, “A survey on ontology mapping,” ACM
Sigmod Record, vol. 35, no. 3, pp. 34–41, 2006.

[21] P. Bouquet, F. Giunchiglia, F. Harmelen, L. Serafini, and H. Stucken-
schmidt, “C-OWL: Contextualizing ontologies,” in Proc. ISWC, 2003.

[22] B. Grau, B. Parsia, and E. Sirin, “Working with multiple ontologies on
the semantic web,” in Proc. ISWC, 2004.

[23] A. Maedche, B. Motik, N. Silva, and R. Volz, “MAFRA – a mapping
framework for distributed ontologies,” Knowledge Engineering and
Knowledge Management: Ontologies and the Semantic Web, 2002.

[24] A. Borgida and L. Serafini, “Distributed description logics: Assimilating
information from peer sources,” J. on Data Semantics, 2003.

[25] F. Heintz and P. Doherty, “Federated dyknow, a distributed information
fusion system for collaborative UAVs,” in Proc. ICARCV, 2010.

