
From Images to Traffic Behavior - A UAV Tracking
and Monitoring Application

Fredrik Heintz, Piotr Rudol and Patrick Doherty
Department of Computer and Information Science

Linköpings universitet, Sweden
{frehe, pioru, patdo}@ida.liu.se

Abstract— An implemented system for achieving high level
situation awareness about traffic situations in an urban area is
described. It takes as input sequences of color and thermal images
which are used to construct and maintain qualitative object
structures and to recognize the traffic behavior of the tracked
vehicles in real time. The system is tested both in simulation and
on data collected during test flights. To facilitate the signal to
symbol transformation and the easy integration of the streams of
data from the sensors with the GIS and the chronicle recognition
system, DyKnow, a stream-based knowledge processing middle-
ware, is used. It handles the processing of streams, including
the temporal aspects of merging and synchronizing streams, and
provides suitable abstractions to allow high level reasoning and
narrow the sense reasoning gap.
Keywords: Level 2/3 fusion, tracking, knowledge represen-
tation, sensor and symbol integration.

I. INTRODUCTION

Imagine a human operator trying to maintain situational
awareness about a traffic situation in an urban area using
UAVs. One approach would be for the UAVs to relay videos
and other data to the operator for human inspection. Another,
more scalable approach, would be for the UAVs to monitor
the traffic situations which arise and only report back the high
level events observed, such as cars turning in intersections and
doing overtakes. This paper describes such a traffic monitoring
application where cars are tracked by a UAV platform and
the stream of observations is fused with a model of the road
system in order to draw conclusions about the behavior of
these cars in the environment. The inputs are images taken by
the color and thermal cameras on the UAV which are fused and
geolocated to a single world position. This stream of positions
is then correlated with a geographical information system
(GIS) in order to know where in a road system the object is
located. Based on this information, high level behaviors such
as turning in intersections and overtaking are recognized in
real time as they develop using a chronicle recognition system.

To facilitate the easy integration of the streams of data
from the sensors with the GIS and the chronicle recognition
system our stream-based knowledge processing middleware
DyKnow is used [1], [2]. It takes care of the temporal
aspects of merging and synchronizing streams and provides
suitable abstractions to describe and implement these types of
applications and close the sense reasoning gap. The approach
is then extended with a method to dynamically estimate and
continually monitor the type of objects being tracked.

The approach is based on using temporal logic formulas to
describe the normative behavior of different objects and to use
formula progression to evaluate when formulas are satisfied or
violated. Based on the results, the objects being tracked can
be hypothesized to be of different types. The application is
implemented and has been tested both in simulation and on
data collected during test flights.

A. Structure of the Paper

The paper starts with Section II and Section III describing
the UAV platform and the image processing system which is
used to track and geolocate objects in the world. Section IV de-
scribes the DyKnow knowledge processing middleware which
is used to integrate streams of data from the sensors with the
GIS and the chronicle recognition system. Section V and Sec-
tion VI describe the intersection and road segment monitoring
scenarios which have been implemented. Section VII describes
an extension to the representation of objects which makes it
possible to make hypotheses about the type of object being
tracked. The paper concludes with related work in Section IX
and a summary in Section X.

II. THE HARDWARE PLATFORM

Fig. 1. The WITAS RMAX autonomous helicopter

The WITAS UAV platform [3] is a slightly modified Yamaha
RMAX helicopter (Fig. 1), equipped with a more efficient
power generator and a higher landing gear. Its total length
is 3.6 m (including the main rotor) and is powered by a 21
horse power two-stroke engine. The maximum takeoff weight
of the platform is 95 kg and it can stay in the air up to one



hour. The onboard avionics system is enclosed in an easily
detachable box mounted on the side of the UAV.

The onboard computer system contains three PC104 embed-
ded computers. The primary flight control (PFC) system runs
on a Pentium-III (700Mhz) and is responsible for the sensor
fusion required for basic helicopter control and for sequen-
tializing control modes (i.e. takeoff, hover, 3D path following,
landing, vehicle following etc.). The PFC interfaces with the
RMAX helicopter through the YAS (Yamaha Attitude Sensor)
and YACS (Yamaha Attitude Control System) and receives
data from the GPS receiver and a barometric altitude sensor.
The deliberative/reactive (DRC) system runs on a Pentium-
M (1.4GHz) and executes deliberative functionalities such as
planning, execution monitoring, and scenario recognition.

The image processing (IPC) system runs on a Pentium-
III (700MHz) embedded computer. The camera platform sus-
pended under the UAV fuselage is vibration isolated by a
system of springs. The platform consists of a Sony color CCD
block camera FCB-780P and a ThermalEye-3600AS miniature
infrared camera mounted rigidly on a pan-tilt unit (Fig. 2).
Both cameras deliver analogue PAL signals with the frame
size 768x576 pixels at 25Hz rate.

Fig. 2. Onboard camera system consisting of color and thermal cameras
mounted on a pan-tilt unit.

Network communication between the onboard computers
is physically realized with serial lines (RS232C point-to-
point realtime communication) and Ethernet (non-realtime
communication). Finally, the onboard system contains two
miniDV video recorders controlled by software through a
Control-L (LANC) interface. The live video is also sent to
the ground and presented to the UAV operator. The recorded
video is synchronized with the log data (i.e. complete UAV
state) allowing for off-line processing.

III. IMAGE PROCESSING

The task of image processing in this work is to calculate
world coordinates of vehicles tracked in video sequences. First,
an object tracker is used to find pixel coordinates of the vehicle
of interest based on color and thermal input images. Second,
the geographical location of the object is calculated and
expressed as world coordinates. The object tracker developed
for the purpose of this work can be initialized automatically or
manually. The automatic mode chooses the warmest object on

a road segment (description fetched from the GIS database)
within the thermal camera view and within a certain distance
from the UAV (the process of calculating the distance to
a tracked object is explained below). The area around the
initial point is checked for homogeneity in thermal and color
images. The object is used to initialize the tracker if its area
is consistent with the size of a car signature. This method
of initialization works with satisfactory results for distances
up to around 50m from the tracked object. If the tracker
is initialized incorrectly the user can choose the object of
interest manually by clicking on a frame of the color or
thermal video. The corresponding pixel position (for color and
thermal images) is calculated based on the parameters of the
cameras, the UAV’s position and attitude and the model of
the ground elevation. After initialization tracking of an object
is performed independently in the color and thermal video
streams. Tracking in the thermal image is achieved by finding
the extreme value (warmest or coldest spots) within a small (5
percent of the image size) window around the previous result.

Object tracking in color video sequences is also performed
within such a small window and is done by finding the
center of mass of a color blob in the HSI color space.
The thresholding parameters are updated to compensate for
illumination changes. Tracking in both images is performed at
full frame rate (i.e. 25Hz) which allows for compensating for
moderate illumination changes and moderate speeds of relative
motion between the UAV and the tracked object. The problem
of automatic reinitialization in case of loss of tracking, as well
as more sophisticated interplay between both trackers, is not
addressed in this work. The result from the thermal image
tracking is preferred if the trackers do not agree on the tracking
solution.

In order to find the distance to the tracked object as well
as corresponding regions in both images, the cameras have
been calibrated to find their intrinsic and extrinsic parame-
ters. The color camera has been calibrated using the Matlab
Camera Calibration Toolkit [4]. The thermal camera has been
calibrated using a custom calibration pattern and a different
calibration method [5] because it was infeasible to obtain sharp
images of the standard chessboard calibration pattern. The
extrinsic parameters of the cameras were found by minimizing
the error between calculated corresponding pixel positions for
several video sequences.

Finding pixel correspondences between the two cameras
can not be achieved by feature matching commonly used in
stereovision algorithms since objects generally appear different
in color and infrared images. Because of this fact, the distance
to an object whose projection lies in a given pixel must be
determined. Given the camera parameters, helicopter pose,
and the ground elevation model the distance to an object
can be calculated. It is the distance from the camera center
to the intersection between the ground model and the ray
going through the pixel belonging to the object of interest.
For the environment in which the flight tests were performed
the error introduced by the flat world assumption (i.e. ground
elevation model simplified to a plane) is negligible. Finally,



calculating pixel correspondences between the two cameras
can be achieved by performing pixel geolocalisation using
intrinsic and extrinsic parameters of one of the cameras
followed by applying a inverse procedure (i.e. projection of
geographical location) using the other camera parameters.

Using the described object tracker, several data series of
world coordinates of tracked vehicles were generated. Two
kinds of video sequences were used as data sources. In the
first kind (Fig. 3A) the UAV is stationary at altitudes of 50
and 60 meters and observes two vehicles as they drive on a
nearby road. In the other kind (Fig. 3B) both the car and the
UAV are moving. The ground vehicle drives several hundreds
meters on the road system passing through two crossings and
the UAV follows the car at altitudes from 25 to 50 meters. For
sequences containing two cars, the tracker was executed twice
to track both vehicles independently.

A precise measure of the error of the computed world
location of the tracked object is not known because the true
location of the cars was not registered during the flight tests.
The accuracy of the computation is influenced by several
factors, such as error in the UAV position and the springs
in the camera platform suspension, but the tracker in general
delivers world coordinates with enough accuracy to determine
which side of the road a car is driving on. Thus the maximum
error can be estimated to be below 4-5 meters for distances
to the object of around 80 meters. For example results of car
tracking see Fig. 5 and Fig. 8.

IV. DYKNOW

To facilitate the development of the traffic scenario recogni-
tion applications a knowledge processing middleware frame-
work called DyKnow is used [1], [2]. The main purpose of
DyKnow is to provide generic and well-structured software
support for the processes involved in generating state, object,
and event abstractions about the environments of complex
systems. The generation is done at many levels of abstraction
beginning with low level quantitative sensor data and resulting
in qualitative data structures which are grounded in the world
and can be interpreted as knowledge by the system. To produce
these structures the system supports operations on data and
event streams at many different levels of abstraction. For the
result to be useful, the processing must be done in a timely
manner so that the UAV can react in time to changes in the
environment. The resulting structures are used by various func-
tionalities in a deliberative/reactive architecture for control,
situation awareness and assessment, monitoring, and planning
to achieve mission goals. In the current application it is used to
derive high level information about the objects being tracked.
DyKnow provides a declarative language for specifying the
structures needed by the different subsystems. Based on this
specification it creates representations of the external world
and the internal state of a UAV based on observations and a
priori knowledge, such as facts stored in databases.

Conceptually, the knowledge processing middleware pro-
cesses streams generated by different components in a dis-
tributed system. These streams may be viewed as repre-

sentations of time-series data and may start as continuous
streams from sensors or sequences of queries to databases.
Eventually, they will contribute to definitions of more refined,
composite, knowledge structures. Knowledge producing pro-
cesses combine such streams by computing, synchronizing,
filtering and approximating to derive higher level abstractions.
A knowledge producing process has different quality of service
properties such as maximum delay, trade-off between quality
and delay, how to calculate missing values and so on, which
together define the semantics of the knowledge derived by
the process. It is important to realize that knowledge is not
static, but is a continually evolving collection of structures
which are updated as new information becomes available from
sensors and other sources. Therefore, the emphasis is on the
continuous and ongoing knowledge derivation process, which
can be monitored and influenced at runtime. The same streams
of data may be processed differently by different parts of the
architecture by tailoring the knowledge processes relative to
the needs and constraints associated with the tasks at hand.
This allows DyKnow to support easy integration of existing
sensors, databases, reasoning engines and other knowledge
producing services.

A. Fluent Streams

For modelling purposes, the environment of the UAV is
viewed as consisting of physical and non-physical objects,
properties associated with these objects, and relations between
these objects. The properties and relations associated with ob-
jects will be called features, which may be static or dynamic.
Due to the potentially dynamic nature of a feature, that is, its
ability to change values through time, a total function from
time to value called a fluent is associated with each feature.
It is this fluent, representing the value over time of a feature,
which is being modelled.

A fluent stream is a partial representation of a fluent, where a
stream of samples of the value of the feature at specific time-
points is seen as an approximation of the fluent. A sample
can either come from an observation of the feature or a
computation which results in an estimation of the value at
the particular time-point, called the valid time. If the samples
are ordered by the time they become available to the fluent
stream, then the result is a stream of samples representing the
value of the feature over time, that is, an approximation of
its fluent. The time-point when a sample is made available
or added to a fluent stream is called the add time. A fluent
stream has certain properties such as start and end time,
maximum size, i.e. number of samples in the stream, sample
rate and maximum delay. These properties are specified by
a declarative policy which describes constraints on the fluent
stream.

For example, the position of a car would be an example of a
feature. The true position of the car at each time-point during
its existence would be its fluent, and a particular sequence of
observations of its position would be a fluent stream. There
can be many fluent streams all approximating the same fluent.



A B

Fig. 3. A. Two frames from video sequence with the UAV hovering close to a road segment observing two cars performing overtaking maneuver. B.
Three frames from video sequence with the UAV following a driving car passing road crossings. Top row contains color images and bottom row contains
corresponding thermal images.

B. Computational Units

A computational unit encapsulates a computation on one or
more fluent streams. A computational unit takes a number of
fluent streams as input and computes a new fluent stream as
output. The encapsulated function can do anything, including
calling external services. Examples of computational units are
filters, such as Kalman filters, and other sensor processing and
fusion algorithms. Several examples of computational units
will be presented later.

C. Entity Structures

An object is represented by an entity structure consisting
of a type, a name and a set of attributes representing the
properties of the entity. The name is supposed to be unique
and is used to identify the entity. All entity structures with
the same type are assumed to have the same attributes. An
entity frame is a data structure representing a snapshot of an
entity. It consists of the type and name of an entity structure
and a value for each of the attributes of the entity. An entity
structure is implemented in DyKnow as a fluent stream where
the values are entity frames. Each entity frame represents the
state of an entity at a particular time-point and the fluent stream
represents the evolution of the entity over time.

D. Chronicle Recognition

In many applications it is crucial to describe and recognize
complex events and scenarios. In this work, the chronicle
formalism [6] is used to represent complex occurrences of
activities described in terms of temporally constrained events.
In this context, an event is defined as a change in the value of
a feature. For example, in a traffic monitoring application, a
UAV might fly to an intersection and try to identify how many
vehicles turn left, right or drive straight through a specific
intersection. In another scenario, the UAV may be interested
in identifying vehicle overtaking. Each of these complex
activities can be defined in terms of one or more chronicles.

In our project, we use the C.R.S. chronicle recognition system
developed by France Telecom [7].

A chronicle is a description of a generic scenario whose
instances we would like to recognize. The chronicle is rep-
resented as a set of events and a set of temporal constraints
between these events with respect to a context [6]. The online
recognition algorithm takes a stream of time-stamped event
instances and finds all matching chronicle instances. To do
this C.R.S. keeps track of all possible developments in a
tractable and efficient manner by using temporal constraint
networks [8]. A chronicle instance is matched if all the events
in the chronicle model are present in the stream and the time-
stamps of the event instances satisfies the temporal constraints.
Recognized instances of a chronicle can be used as events in
another chronicle, thereby enabling recursive chronicles.

In order to use chronicle recognition to recognize event
occurrences the event must be expressed in the chronicle
formalism and a suitable stream of primitive events must
be derived. The only requirement on the stream is that the
primitive events arrive ordered by valid time. The reason is
that all the information for a specific time-point has to be
available before the temporal network can be updated with
the new information. So, whenever a new sample arrives with
the valid time t the network is propagated to the time-point
t−1 and then the new information is added. If a sample arrives
out of order it will be ignored. The integration is done in two
steps, integration of chronicles and integration of events.

The first step is when a chronicle is registered for recog-
nition. To integrate a new chronicle DyKnow goes through
each of the attributes in the chronicle and subscribes to the
corresponding fluent stream. Each attribute is considered a
reference to a fluent stream containing discrete values. To
make sure that the chronicle recognition engine gets all the
intended changes in the fluent stream, a policy is constructed
which subscribes to all changes in the fluent stream and makes
sure that the changes are ordered by valid time by use of



a monotone order constraint. When subscriptions for all the
fluent streams are setup the recognition engine is ready to start
recognizing chronicle instances.

The second step is when a sample arrives to the chronicle
recognition engine. To integrate a sample it must be trans-
formed into an event, i.e. a change in an attribute. To do this
the recognition engine keeps track of the last value for each
of the attributes and creates an event if the attribute changed
values. The first value is a special case where the value changes
from an unknown value to the new value. Since it is assumed
that the events arrive in order the recognition engine updates
the internal clock to the time-point before the valid time of the
new sample. In this manner the chronicle engine can update
the constraints and prune all partial chronicles which can no
longer be recognized.

V. INTERSECTION MONITORING

The first part of the traffic monitoring application is to
monitor activities in an intersection. In this case the UAV stays
close by an intersection and monitors the cars going through.
Each car should be tracked and it should be recorded how it
travelled in the intersection to create a stream of observations
such as car c came from road a to crossing x and turned left
onto road b. The cars are tracked by the vision system on the
UAV and the information about the road system comes from
a GIS. This section describes how this information is fused
and how it is used to recognize the behavior of the cars in
real-time as the situation develops.

The road system is represented in the GIS as a number of
areas which cover the road system. Each area is classified as
either being a crossing or a road (in Fig. 4 the green areas are
the crossings and the yellow are roads). There are different
areas representing the different lanes of a road. To represent
the road connecting two crossings an abstraction called a link
is introduced. All road areas between two crossings are part of
the link. The separation of areas and links are made in order
to be able to reason both about the geometry and other low
level properties of the roads and higher level road network
properties. The geometry is for example needed in order to
simulate cars driving on roads and to find the road segment
given a position. The network structure is for example needed
when reasoning about possible routes to a destination.

To represent the possible turns that can be made from a link
an entity structure called Link is used. The entity structure
has four attributes, left, right, straight, and uturn. Since it is
possible to turn e.g. left in many different ways it is necessary
to represent sets of triples 〈link1, crossing, link2〉 where
each triple represents that a car going from link1 through
crossing to link2 made a left turn. The link entities are
made available in a fluent stream called links.

The tracking functionality of the UAV platform (see Sec-
tion III) provides a stream of world coordinates which repre-
sents the best estimation of the current position of the tracked
object. Based on this position it is possible to derive further
information about the object which for now is assumed to be
a car. Cars are represented by the following entity structure:

Car {
Position pos
string link
string crossing
bool drive_along_road

}

The attribute pos is the position provided by the tracker.
The link attribute is the name of the link the car is on
according to the GIS. If the position is not on a link then the
value is “no link”. The crossing attribute is similar to the link
attribute but has a value if the area is a crossing, otherwise the
value is “no crossing”. This means that the car is not on the
road system if the link attribute is “no link” and the crossing
attribute is “no crossing” at the same time. The drive along
road attribute will be explained in the next section. The car
entities are made available in a fluent stream called cars.

The information about the world is thus provided as two
fluent streams, one containing information about links and one
about cars. In order to detect the intersection behavior these
streams must be further analyzed. In this application chronicle
recognition as described in Section IV-D is used to describe
and recognize behaviors. Part of the chronicle for detecting
left turns is shown below.
chronicle turn_left_in_crossing[?c,?l1,?x,?l2]
{
occurs(1,1,cars.link[?c]:(?l1,no_link),(t2,t3))
occurs(1,1,cars.crossing[?c]:

(no_crossing,?x),(t2,t3))

event(cars.crossing[?c]:(?x,no_crossing),t4)
event(cars.link[?c]:(no_link,?l2),t5)

event(links.left[?l1,?x,?l2]:(?,true),t1)

t1 < t2
t3-t2 in [-1000, 1000] //timeunit milliseconds
t4-t3 in [0, 10000]
t5-t4 in [-1000, 1000]

}

The chronicle says that a car makes a left turn if it is on
link ?l1, enters crossing ?x, leaves on link ?l2, and the
triple 〈 ?l1, ?x, ?l2 〉 constitutes a left turn according
to the GIS. The name cars.link[car1] refers to the link
attribute of a Car entity with the name car1 found in the
cars fluent stream. The temporal constraints at the end assert
that the car should be observed to be in the crossing within 1
second before or after it has been observed not to be on any
link and that the turn should not take more than 10 seconds
to make. The chronicle also contains a number of noevent
statements which are not shown to make sure that no changes
happen between the entering of the crossing and the leaving
of the crossing.

Since the link attribute is quite coarse it is possible to
manage the uncertainty in the position of the car which causes
it to be on the right link but not on the correct lane. It is also
possible to define a chronicle to detect turns which are made
from the correct lane, but this will often fail due to noise. For
example, see Fig. 5, where the trajectory of a tracked car is
shown as it drives through an intersection.

The chronicle will fail if no observation is made of the car



in the crossing, which can happen when the speed of the car
is too high or the time between observations is too long. To
predict that a car actually turned in the crossing even though
it was only observed on a link before the crossing and on a
link after the crossing the following chronicle is used:

chronicle
turn_left_in_crossing_predicted[?c,?l1,?x,?l2]

{
event(links.left[?l1, ?x, ?l2]:(?, true), t1)
event(cars.link[?c]:(?, ?l1), t2)
event(cars.link[?c]:(?l1, ?l2), t3)
t1 < t2
t2 < t3

}

This chronicle is much simpler than the one before since it
only checks that the car passed from one link to another and
that according to the GIS this transition indicates that the car
must have passed a crossing and actually made a left turn. This
is an example of where qualitative information about the road
system can be used to deduce that the car must have passed
through the crossing even though this was never observed.

There is still one issue which is illustrated by Fig. 4 where
the noise in the position of the tracked car makes it look like
it enters the crossing, leaves the crossing, and then comes
back. This type of oscillating attributes are very common in
the transition between two values of an attribute. A solution
is to introduce a filter which only changes the value of an
attribute if it has been stable for a fixed amount of time, in our
case 500 milliseconds. Since the attribute which was filtered
was the link attribute of the Car entity it is reasonable to say
that the value must be stable for half a second, since it is
not expected to change very often (a link is usually several
hundred meters even though shorter links may exist in urban
areas). One possible problem is if the car is not in a crossing
for more than 500 milliseconds, but this case will be detected
by the predicted turn chronicle so the turn will be detected in
any case.

Fig. 4. An example where noise makes it look like a car enters a crossing
twice. Each red dot is an observed car position.

Using the setup described and the chronicles described
above it is possible to detect all the turns made by one or
more cars driving in an urban area using either simulated cars
or cars tracked by our UAV platform during test flights. One
particular trajectory from a test flight where two left turns are
recognized is shown in Fig. 5. In the simulation the cars passed
through many different crossings and turned in all possible
directions. To simulate the coordinates produced by the tracker
white noise was added to the simulated position of the cars.

Fig. 5. An example intersection situation recorded during a test flight.

VI. ROAD SEGMENT MONITORING

The second monitoring task involves the UAV observing a
road segment and collecting information about the behavior
of the vehicles passing by. In this paper the focus is on
recognizing overtakes, but this is just an example, other
behaviors could be detected in the same way. To recognize
overtakes a stream of qualitative spatial relations between pairs
of cars, such as behind and beside, are computed and used as
input by the chronicle recognition system. This might sound
like a very simple task, but does in fact require a number
of steps. First, the set of cars that are actually being tracked
must be extracted from the stream of car observations and
based on this the set of pairs of active cars can be computed.
Second, for each pair of car names a stream of synchronized
pairs of car entity structures have to be created. Since they
are synchronized both car entities in the pair are valid at the
same time-point, which is required to compute the relation
between two cars. Third, from this stream of car pairs the
qualitative spatial relations must be computed. Finally, this
stream of car relations can be used to detect overtakes and
other driving patterns using the chronicle recognition engine.
All these functions are implemented as computational units.

To extract the active cars a computational unit is
created which keeps track of all car names which have
been updated the last minute. This means that if no
observation of a car has been made in more than 60
seconds it will be removed from the set of active cars.
For example, assume the stream of car observations
look like: 〈〈car1, . . .〉, . . . 〈car2, . . .〉, . . . 〈car3, . . .〉, . . .〉
then the stream of sets of active cars would be
〈{car1}, {car1, car2}, {car1, car2, car3}〉. Since the qualitative
relations that are computed are symmetric and irreflexive
the computational unit that extracts pairs of car names only
computes one pair for each combination of distinct car names.
To continue the example, the stream of sets of pairs would be
〈{}, {〈car1, car2〉}, {〈car1, car2〉, 〈car1, car3〉, 〈car2, car3〉}〉.
The stream of sets of pairs is called CarPairs and is updated
when a car is added or removed from the set of active car
names, called Cars. This stream of car name pairs is then
used as input to a state extraction computational unit which
for each pair synchronizes the corresponding streams of car
entities as shown in Fig. 6.

Finally the car pair entities are used as input in the car
relation computational unit which computes the qualitative
spatial relation between the two cars by comparing the forward
direction of car1 with the direction from car2 to car1.



state sync

state sync
car2, car3 <car2, car3>

state sync

cars, CarPairs car1, car3 <car1, car3>

car1, car2 <car1, car2>

car_pairs

Fig. 6. The synchronization of car pairs.

The forward direction of the car is assumed to be either along
the current road segment or against it. To compute which,
the current direction of the car as estimated by derivating the
position of the car, is compared to the forward direction of the
road segment. Since the estimated velocity of the car is very
noisy this provides a much better estimate.

The chronicle that is used to detect overtakes is quite simple
and is therefore left out, it detects that car1 is first behind car2
and then it is in front of car2. A requirement that they are
beside each other could be added to strengthen the definition.

Tracking

Source

Car

Domain

CU

Car

Relation

CU

Car

Pairs

CU

Car

Relations

CU

cars Cars CarPairs car_pairs car_relations

Fig. 7. The DyKnow setup used in the overtake monitoring application.

The complete setup is shown in Fig. 7. The recognition has
been tested on both simulated cars driving in a road system
and on real data captured during flight tests. One example of
the latter is shown in Fig. 8.

Fig. 8. An example overtake situation recorded during a test flight.

VII. OBJECT LINKAGE STRUCTURES

One problem that has to be dealt with is recognizing that
the object being tracked by the UAV platform is actually a
car, that is, to anchor the symbolic representation of the car
with the stream of sensor data collected by the UAV. This
is called the anchoring problem [9]. Our approach is based
on using temporal logic to describe the normative behavior
of different types of entities and based on the behavior of an
observed entity hypothesize its type. For example, in the traffic
monitoring domain the object being tracked is assumed to be a
real object in the world, represented by a world object. Then,
if the position of this world object is consistently on the road
system then it is assumed that it is actually a road object, i.e. an
object moving along the road system. By further monitoring
the behavior and other characteristics such as speed and size
of the road object it could be hypothesized whether it is a car,
truck, motorcycle, or other type of vehicle. Here it is assumed
that background knowledge about vehicle types exists and can
be put to use in determining vehicle type.

Each object is represented by an entity structure and re-
lations between the entities are represented by links. A link
from entities of type A to entities of type B consists of three
constraints, the establish, reestablish, and maintain constraints,
and a computational unit for computing B entity structures
from A entity structures.

The establish constraint describes when a new instance of
type B should be created and linked to. For example, if the
position of a world object is on the road for more than 30
seconds then a road object is created together with a link
between them. A road object could contain more abstract and
qualitative attributes such as which road segment it is on which
makes it possible to reason qualitatively about its position in
the world relative to the road, other vehicles on the road,
and building structures in the vicinity of the road. At this
point, streams of data are being generated and computed for
the attributes in the linked object structures at many levels of
abstraction as the UAV tracks the road objects.

The reestablish constraint describes when two existing en-
tities of the appropriate types which are not already linked
should be linked. This is used when the tracking of a road
object is lost and the tracker finds a new world object which
may or may not be the same object as before. If the reestablish
constraint is satisfied then it is hypothesized that the new
world object is in fact the same road object as was previously
tracked. Since links only represent hypotheses, they are always
subject to becoming invalid given additional data, so the UAV
continually has to verify the validity of the links. This is done
by monitoring that a maintenance constraint is not violated.

A maintenance constraint could compare the behavior of the
new entity, which is the combination of the two representa-
tions, with the normative behavior of this type of entity and,
if available, the predicted behavior of the previous entity. In
the road object example the condition is that the world object
is continually on the road with shorter periods off the road.
If this condition is violated then the link is removed and the
road object is no longer updated since the hypothesis can not
be maintained.

One purpose of the object linkage structures is to maintain
an explicit representation of all the levels of abstraction used
to derive the representation of an object. This makes the
anchoring problem easier since senor data, such as images, do
not have to be directly connected to a car representation but
can be anchored and transformed in many small steps. Another
benefit is that if the tracking is lost only the link between the
world object and the road object is lost. If the road object is
linked to a car object then this link can still persist and the
car will be updated once the road object has been linked to
a new world object. Another usage of the linkage structures
could be to replace a lost world object with a simulated world
object which takes the previous world object and predicts the
development of the object based on its history.

VIII. EXPERIMENTAL RESULTS

The traffic monitoring application has been tested both in
simulation and on images collected during flight tests, an



Speed Sample 0m 2m 3m 4m 5m 7m
period error error error error error error

15 m/s 200 ms 100% 70% 60% 50% 40% 20%
20 m/s 200 ms 100% 60% 70% 50% 50% 20%
25 m/s 200 ms 100% 100% 50% 40% 10% 0%
15 m/s 100 ms 100% 60% 90% 60% 90% 0%
20 m/s 100 ms 100% 90% 90% 90% 80% 20%
25 m/s 100 ms 100% 90% 80% 70% 80% 0%

TABLE I
THE RESULTS WHEN VARYING THE CAR SPEED AND THE SAMPLE PERIOD.

example of which was shown in Fig. 8. The only difference
between the two cases is who creates the world objects.

The robustness to noise in the position estimation was tested
in simulation by adding random error to the true position of
the cars. The error has a uniform distribution with a known
maximum value e and is added independently to the x and y
coordinates, i.e. the observed position is within a exe meter
square centered on the true position. Two variables were
varied, the speed of the car and the sample period of the
position. For each combination 10 simulations were run where
a car overtook another. If the overtake was recognized the run
was considered successful. The results are shown in Table I.

The conclusions from these experiments are that the speed
of the car is not significant but the sample period is. The more
noise in the position the more samples are needed in order to
detect the overtake. Since the estimated error from the image
processing is at most 4-5 meters the system should reliably
detect overtakes when using a 100ms sample period.

IX. RELATED WORK

There is a great amount of related work which is relevant for
each of the components, but in the spirit of the paper the focus
will be on integrated systems. There are a number of systems
for monitoring traffic by interpreting video sequences, for
example [10]–[15]. Of these, almost all operate on sequences
collected by static surveillance cameras. The exception is [12]
which analyses sequences collected by a Predator UAV. Of
these none combine the input from both color and thermal
images. Another major difference is how the scenarios are
described and recognized. The approaches used include fuzzy
metric-temporal logic [11], state transition networks [13],
belief networks [15], and Petri-nets [10], [14], none of which
have the same expressivity when it comes to temporal con-
straints as the chronicle recognition approach we use. Another
difference is the ad-hoc nature of how the components of
the system and the data flow are connected. In our solution
the basis is a declarative description of the properties of
the different data streams which is then implemented by the
knowledge processing middleware. This makes it very easy to
change the application to e.g. add new features or to change the
parameters. The declarative specification could also be used to
reason about the system itself and even modify it at run-time.

X. SUMMARY

An instance of a general approach to creating high level
situation awareness applications is presented. The system

implemented takes as input sequences of color and thermal
images used to construct and maintain qualitative object
structures and recognize the traffic behavior of the tracked
vehicles in real time. The system is tested both in simulation
and on data collected during test flights. It is believed that
this type of system where streams of data are generated at
many levels of abstraction using both top-down and bottom-
up reasoning handles many of the issues related to closing the
sense reasoning gap. A reason is that the information derived
at each level is available for inspection and use. This means the
subsystems have access to the appropriate abstraction while it
is being continually updated with new information and used to
derived even more abstract structures. High level information,
such as the type of vehicle, can then be used to constrain and
refine the processing of lower level information. The result is
a very powerful and flexible system capable of achieving and
maintaining high level situation awareness.

a) Acknowledgements: This work is supported in part by
the National Aeronautics Research Program NFFP04 S4203
and the Strategic Research Center MOVIII, funded by the
Swedish Foundation for Strategic Research, SSF.

REFERENCES

[1] F. Heintz and P. Doherty, “DyKnow: An approach to middleware
for knowledge processing,” Journal of Intelligent and Fuzzy Systems,
vol. 15, no. 1, pp. 3–13, nov 2004.

[2] ——, “A knowledge processing middleware framework and its relation
to the JDL data fusion model,” Journal of Intelligent and Fuzzy Systems,
vol. 17, no. 4, pp. 335–351, 2006.

[3] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson,
and B. Wingman, “A distributed architecture for autonomous unmanned
aerial vehicle experimentation,” in Proceedings of the 7th International
Symposium on Distributed Autonomous Robotic Systems, 2004.

[4] J. Bouguet, “Matlab camera calibration toolbox,” 2000.
[5] C. Wengert, M. Reeff, P. C. Cattin, and G. Székely, “Fully au-

tomatic endoscope calibration for intraoperative use,” in Bildverar-
beitung für die Medizin. Springer-Verlag, March 2006, pp. 419–23,
http://www.vision.ee.ethz.ch/∼cwengert/calibration toolbox.php.

[6] M. Ghallab, “On chronicles: Representation, on-line recognition and
learning,” in Proceedings of the Fifth International Conference on
Principles of Knowledge Representation and Reasoning, 1996.

[7] F. Telecom, “C.R.S. website,” 2007, retrieved May 7, 2007, from
http://crs.elibel.tm.fr.

[8] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, pp. 61–95, 1991.

[9] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2-3, 2003.

[10] N. Ghanem, D. DeMenthon, D. Doermann, and L. Davis, “Representa-
tion and recognition of events in surveillance video using petri nets,” in
Proceedings of Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW’04), vol. 7, 2004.

[11] H. Nagel, R. Gerber, and H. Schreiber, “Deriving textual descriptions
of road traffic queues from video sequences,” in Proc. 15th European
Conference on Artificial Intelligence (ECAI-2002), 2002.

[12] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia, “Event
detection and analysis from video streams,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 23, no. 8, pp. 873–889, 2001.

[13] J. Fernyhough, A. Cohn, and D. Hogg, “Building qualitative event mod-
els automatically from visual input,” in Proceedings of the International
Conference on Computer Vision ICCV98, IEEE. Narosa, 1998.

[14] L. Chaudron, C. Cossart, N. Maille, and C. Tessier, “A purely sym-
bolic model for dynamic scene interpretation,” International Journal on
Artificial Intelligence Tools, vol. 6, no. 4, pp. 635–664, 1997.

[15] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russell,
and J. Weber, “Automatic symbolic traffic scene analysis using belief
networks,” in Proceedings of the 12th National Conference on Artificial
intelligence, 1994.


