Engineering Applications of Artificial Intelligence ¥ (xusn) sus-nm

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Contents lists available at ScienceDirect

Artificial
Intelligence

FlexDx: A reconfigurable diagnosis framework™

Mattias Krysander ®*, Fredrik Heintz®, Jacob Roll ?, Erik Frisk?

2 Department of Electrical Engineering, Linképing University, SE-581 83 Linkdping, Sweden
b Department of Computer and Information Science, Linképing University, SE-581 83 Linképing, Sweden

ARTICLE INFO

ABSTRACT

Article history:

Received 11 September 2009
Received in revised form

3 December 2009

Accepted 10 January 2010

Keywords:

Reconfigurable diagnosis framework
Diagnosing dynamical systems

Test reconfiguration

Test selection

Test initialization

Detecting and isolating multiple faults is a computationally expensive task. It typically consists of
computing a set of tests and then computing the diagnoses based on the test results. This paper
describes FlexDx, a reconfigurable diagnosis framework which reduces the computational burden while
retaining the isolation performance by only running a subset of all tests that is sufficient to find new
conflicts. Tests in FlexDx are thresholded residuals used to indicate conflicts in the monitored system.
Special attention is given to the issues introduced by a reconfigurable diagnosis framework. For
example, tests are added and removed dynamically, tests are partially performed on historic data, and
synchronous and asynchronous processing are combined. To handle these issues FlexDx has been
implemented using DyKnow, a stream-based knowledge processing middleware framework. Concrete
methods for each component in the FlexDx framework are presented. The complete approach is
exemplified on a dynamic system which clearly illustrates the complexity of the problem and the

computational gain of the proposed approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Reliable real-time multiple fault diagnosis of dynamical
systems in the presence of noise is of fundamental importance
in many applications. The diagnosis problem typically consists of
detecting and isolating faulty components given available sensor
and actuator signals. Important challenges are real time issues,
complexity issues when dealing with multiple faults, how to
handle process dynamics, and noisy measurements. The main
objective of this work is to describe FlexDx a diagnosis framework
that performs multiple fault isolation for dynamic noisy systems
using adaptive and reconfiguration techniques to lower the
computational burden of the diagnostic system.

1.1. Problem background

In consistency-based diagnosis, sensor and actuator signals are
compared to a formal description of the process, a model, to
detect inconsistencies indicating faults. Inconsistency detection
can for example be based on local propagation of observations,
like solutions based on the well known general diagnostic engine
(GDE) (de Kleer, 1987; Hamscher et al., 1992). However, such
solutions have limitations when diagnosing dynamical systems in

“This work is partially supported by grants from the Swedish Foundation for
Strategic Research (SSF) Strategic Research Center MOVIII and the Swedish
Research Council Linnaeus Center CADICS.

* Corresponding author. Tel.: +4613282198.

E-mail addresses: matkr@isy.liu.se (M. Krysander), frehe@ida.liu.se (F. Heintz),
roll@isy.liu.se (J. Roll), frisk@isy.liu.se (E. Frisk).

0952-1976/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engappai.2010.01.004

real-time (Cordier et al., 2004; Pulido and Gonzalez, 2004). On the
other hand, in the automatic control and signal processing
communities there exists a large volume of research directed at
detecting faults in noisy dynamic systems, see e.g. the books
Gertler (1998), Patton et al. (2000), Blanke et al. (2006), and
Basseville and Nikiforov (1993). These approaches are not based
on local propagation, but typically on a set of pre-compiled tests,
or residual generators, that are used together with a fault isolation
module (Gertler, 1998) to reach a diagnosis decision. A key topic
in these approaches has been to study residual generator design
for dynamical systems in noisy environments. However, efficient
handling of multiple faults has not been a central topic in these
works, as in the more Al-based literature (de Kleer, 1987; Nyberg,
2006).

In several works, for example Cordier et al. (2004), Nyberg
and Krysander (2003), Ploix et al. (2003), and Frank and
Koppen-Seliger (1997), it is noted that the fault isolation
techniques from the Al literature can be used together with the
pre-compilation techniques from the automatic control commu-
nity. These observations makes it possible to combine the
techniques from the automatic control community to handle
noise and system dynamics, with the fault isolation techniques
from the Al-community to handle multiple fault isolation.
However, due to the inherent computational complexity of the
multiple fault isolation problem, there are still open problems
that need to be addressed.

The computational complexity of a diagnostic system based on
pre-compiled tests mainly originates from two sources: complex-
ity of the process model and the number of behavioral modes
considered. A high resolution capability of distinguishing between

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2010.01.004
mailto:matkr@isy.liu.se
mailto:frehe@ida.liu.se
mailto:roll@isy.liu.se
mailto:frisk@isy.liu.se
dx.doi.org/10.1016/j.engappai.2010.01.004

2 M. Krysander et al. / Engineering Applications of Artificial Intelligence u (1nin) nng-ums

faults, especially when multiple faults are considered, requires a
large number of diagnostic tests (Krysander, 2006). This also
follows from the well known fact that the number of required
minimal conflicts, which corresponds to triggered tests in a
residual based approach, to solve a multiple fault diagnosis task
grows exponentially in the number of faults in the system (de
Kleer and Kurien, 2003). Also, the more complex the process
model is, the more computationally expensive the execution of
the diagnostic tests is. For example, if the model consists of non-
linear dynamic equations, a typical test involves a non-linear
observer which may be computationally expensive. Finally, since
dynamical systems are considered here, tests must be recom-
puted sufficiently often to capture fault dynamics and to get a fast
and accurate fault detection and isolation.

1.2. Solution outline

Our basic idea to mitigate the computational burden is to
exploit the fact that all pre-compiled tests are not needed at all
times. For example, only a subset of the available tests are needed
to detect a fault. The remaining tests can, in case of an alarm, then
be used to further isolate the faulty component but they are not
needed when the system is in fault free operation. As will be
shown, substantial reduction in the computational burden can be
achieved by exploiting this observation.

This approach is similar to works coping with the complexity
of multiple fault diagnosis from the Al-community. There the
complexity issues related to having many tests have been avoided
by applying propagation techniques directly on the process
model. The propagation is initiated with the observed measure-
ments and then only explore the part of the model that might be
inconsistent. Here we propose a similar technique, using pre-
compiled tests instead of local propagation.

The proposed approach, a reconfigurable diagnosis framework
called FlexDx, chooses which tests to run at a particular instant
based on the current set of diagnoses. If a test is violated, i.e. an
alarm is generated, then an updated set of diagnoses is computed
and the set of active tests is reconfigured. It is shown how such an
approach requires controlled ways of initializing the dynamic
diagnostic tests and algorithms how to select the new tests to be
started when a set of diagnostic tests has generated an alarm. To
facilitate a thorough analysis of the approach, linear process
models are used in the paper but the framework is not based on
this model assumption, but can be extended to non-linear models
if non-linear test techniques are used, e.g. Frank (1994),
Staroswiecki and Comtet-Varga (2001), and Persis and Isidori
(2001).

1.3. Paper outline

The reconfigurable diagnosis framework is introduced in
Section 2 and related work to the different components in the
framework is discussed. To illustrate the properties of the
approach, linear dynamical process models are used and
the theoretical diagnosis background for such systems is pre-
sented in Section 3. Methods for how to determine, in a specific
situation, which tests should be run are treated in Section 4. An
appropriate initialization procedure for dynamic tests is described
in Section 5. The complete approach is exemplified on a dynamic
system in Section 6, which, in spite of its relatively small size,
clearly illustrates the complexity of the problem and the
computational gain of the proposed approach. The diagnosis
framework is implemented using DyKnow, a stream-based
knowledge processing middleware framework (Heintz, 2009),

which is briefly described in Section 7. Finally the paper is
concluded with a summary in Section 8.

2. FlexDx: a reconfigurable diagnosis framework

The main idea of this work is to reduce the overall computa-
tional burden of a diagnostic system by utilizing the observation
that all tests are not needed at all times. For example, when
starting a fault free system, there is no need to run tests that are
designed with the sole purpose of distinguishing between faults.
In such a case, only tests that are able to detect faults are needed,
which may be significantly fewer compared to the complete set of
tests. When a test triggers an alarm and a fault is detected,
appropriate tests are started to refine the diagnosis.

FlexDx uses a consistency-based approach to diagnosis when
determining if a supervised system is working correctly (de Kleer,
1987; de Kleer et al., 1992; Reiter, 1987). If a fault is detected, the
diagnosis is incrementally refined by adding and removing tests
in an iterative manner according to the following procedure:

1. Initiate the set of diagnoses.

2. Based on the set of diagnoses, compute the set of tests to be
performed.

3. Compute the initial state of the selected tests.

4. Run the tests until an alarm is triggered.

5. Compute the new set of diagnoses based on the test results,
then go to step 2.

FlexDx represents all diagnoses with the minimal diagnoses,
which has been shown useful when dealing with multiple fault
diagnosis (de Kleer et al., 1992). When FlexDx is started, there are
no conflicts and the only minimal diagnosis is the no-fault mode
NF, i.e. the set of minimal diagnoses D is set to {NF} in step 1. Step 2
uses a function that given a set of diagnoses D returns the set of
tests T to be performed to monitor whether a fault has occurred or
to further explore the possible diagnoses. Step 3 initiates each of
the tests in T. A test includes a residual generator given in state-
space form. To properly initialize such a residual generator, it is
necessary to estimate its initial condition. In step 4, the tests are
performed until at least one is violated and a test result is
generated in the form of a set of conflicts (de Kleer et al., 1992;
Reiter, 1987). Step 5 computes the new set of diagnoses D, given
the previous set of diagnoses and the generated set of conflicts.
This step can be performed by algorithms handling multiple fault
diagnoses (de Kleer, 1987; Nyberg, 2006).

Steps 4 and 5 are standard steps used in diagnostic systems
and will not be described in further detail. Steps 2 and 3 are new
steps, needed for dynamically changing the test set T, the details
are given in Sections 4 and 5, respectively.

To implement an instance of the FlexDx framework, a number
of issues have to be managed besides implementing the
algorithms for each step and integrating them in a system. Each
test is implemented by a residual generator, computing the
residual given the measurements of the system, and a monitor
that checks if the residual has triggered a violation of the test.
When a potential fault is detected, FlexDx computes the last
known fault free time tr and the new set of residual generators to
be started at time tr To implement this, three issues have to be
handled. First, the FlexDx instance must be reconfigured to
replace the set of residual generators and their monitors. Second,
the computation of the residuals must begin at time t; which will
be in the past. Third, at the same time as FlexDx is performing
tests on historic data, system observations will keep coming at
their normal rate. How these issues are solved is described in
Section 7.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1ums) nn-um 3

A key step in the reconfiguration procedure outlined above is
the selection of which tests to run in a specific situation. Selection
of tests is related to the selection of new measurement points. For
example, in the general diagnostic engine (de Kleer, 1987) a
solution is proposed where measurement points are selected in a
sequential way such that, on average, the actual fault can be
isolated using a minimum number of measurements. This is done
by dynamically ranking the possible measurement points accord-
ing to the expected information obtained from the measurement.
A related approach is found in Biteus et al. (2009) and Biteus
(2007) where tests are ranked and selected according to some
information criterion. The approach adopted here for test
selection is fundamentally different and the objective is to find
a subset of tests, out of a predefined set of possible tests, such that
running these tests provides all information available in the
model and observations given the current set of diagnoses.

Several works (Efendic, 2006; Gertler, 1998; Korbicz et al.,
2004) have considered test selection for achieving different
objectives but contrary to this work no focus has been on on-
line reconfiguration. Another related approach is presented in
Struss (1994) although the models and diagnosis techniques are
different. Recently, works on on-line reconfiguration of the
diagnostic system have appeared. For a related work, see for
example Benazera and Travé-Massuyes (2007), where Kalman-
filters are reconfigured based on diagnosis decisions.

3. Theoretical background

The diagnostic systems considered in this paper include a set
of precompiled tests. Each test consists of a residual r(t) that is
thresholded such that it triggers an alarm if |r(t)| > 1. Note that
the threshold can be set to one without loss of generality. It is
assumed that the residuals are normalized such that a given false
alarm probability pga is obtained, i.e.

P(jr(t)] > TINF) = pra M

The residuals are designed using a model of the process to be
diagnosed.

3.1. The model

The model class considered here is linear differential-algebraic
models. Although the presentation in this paper relies on results
for linear systems, the basic idea is equally applicable to non-
linear model descriptions.

There are several ways to formulate differential-algebraic
models. Here, a polynomial approach is adopted, but any model
description is possible, e.g. standard state-space or descriptor
models. The model is given by the expression

H(@x+L@w+F@)f =V(qv (2)

where x(t) e R™, w(t)e R™, f(t)e R™, and v(t)e R™. The ma-
trices H(q), L(q), F(q), and V(q) are polynomial matrices in the
time-shift operator g. The vector x contains all unknown signals,
which include internal system states and unknown inputs. The
vector w contains all known signals such as control signals and
measured signals, the vector f contains the fault signals, and the
vector v is white, possibly multidimensional, zero mean, unit
covariance Gaussian distributed noise.

To guarantee that the model is well formed, it is assumed that
the polynomial matrix [H(z) L(z)] has full column rank for some
ze C. This assumption assures, according to Nyberg and Frisk
(2006), that for any noise realization v(t) and any fault signal f(t)
there exists a solution to the model equation (2).

3.2. Residual generation

Residuals are used both to detect and isolate faults. This task
can be formulated in a hypothesis testing setting. For this, let f;
denote both the fault signal and the corresponding behavioral
mode (de Kleer and Williams, 1992) of a single fault. Let F be the
set of all single faults in model (2).

A pair of hypotheses associated with a residual can then be
stated as

Hy:fi=0 forallfieC

H; :fi#0 for some f;eC

where C = F is the subset of faults the residual is designed to
detect. This means that the residual is not supposed to detect
all faults, only the faults in C. By generating a set of such residuals,
each sensitive to different subsets C of faults, fault isolation
is possible. This isolation procedure is briefly described in
Section 3.3.

In the literature there exists several different ways to formally
introduce residuals (Gertler, 1998; Blanke et al.,, 2006). In this
paper an adapted version of the innovation filter defined in
Nikoukhah (1994) is used. For this, it will be convenient to
consider the nominal model under a specific hypothesis. The
nominal model under hypothesis Hy above is given by (2) with
V(q)=0 and f;=0 for all f; e C. With this notion, a nominal residual
generator is a linear time-invariant filter r = R(q)w where for all
observations w, consistent with the nominal model (2) under
hypothesis Hy, it holds that lim,_, ,.r(t) = 0.

Now, consider again the stochastic model (2) where it is clear
that a residual generated with a nominal residual generator will
be subject to a noise component from the process noise v. A
nominal residual generator under Hy is then said to be a residual
generator for the stochastic model (2) if the noise component in
the residual r is white Gaussian noise.

It can be shown (Frisk, 2001) that all residual generators R(q),
as defined above, for the stochastic model (2) can be written as

R(@) =Q(q@L(q)

where the matrix operator Q(q) satisfies the condition Q(q)H(q)=0.
This means that the residual is computed by r = Q(q)L(q)w and the
internal form of the residual is given by

r=Q@L@w=—-Q@F@f +Q(@V(gyv 3
Thus, the fault sensitivity is given by

r=-Q@F@f @
and the statistical properties of the residual under Hy by
r=Q@V(gv)

A complete design procedure is presented by Nikoukhah (1994)
for state-space models and by Frisk (2001) for models in the form
(2). The objective here is not to describe a full design procedure,
but it is worth mentioning that a design algorithm can be made
fully automatic, that the main computational steps involve a null-
space computation and a spectral factorization, and that the
resulting residual generator is a basic dynamic linear filter.

3.3. Computing the diagnoses

The fault sensitivity of the residual r in (3) is given by (4). Here,
r is sensitive to the faults with non-zero transfer functions. Let C
be the set of faults that a residual r is sensitive to. Then, if residual
r triggers an alarm, at least one of the faults in C must have
occurred and the conflict C is generated (Reiter, 1987).

Now we can relate the test results to a diagnosis. Let a set of
single faults b = F represent a system behavioral mode with the

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

4 M. Krysander et al. / Engineering Applications of Artificial Intelligence u (1nin) nng-ums

meaning that f; 0 for all fie b and fj= 0 for all fi¢b. The set of
faults b will with some abuse of notation sometimes be referred to
as a behavioral mode. This is also in accordance with the notation
used in for example de Kleer (1987) and Reiter (1987). The set of
all system behavioral modes is then represented with the power
set of 7.

In short, the behavioral mode b is a diagnosis if it can explain
all generated conflicts, i.e. if b has a non-empty intersection with
each generated conflict, see Reiter (1987) for details. A diagnosis b
is considered a minimal diagnosis if no proper subset of b is a
diagnosis (de Kleer, 1987; Reiter, 1987). Algorithms to compute
all minimal diagnoses for a given set of conflicts, which is
equivalent to the so-called minimal hitting set problem, can be
found in for example de Kleer (1987) and Reiter (1987). The
following example illustrates the main principle.

Example 1. Let an X in position (i) in the table below indicate
that residual r; is sensitive to fault f;

f £ f3
5] X X
1)) X X
I3 X X

If residuals ry and r, trigger alarms, then conflicts C;={f,,f3} and
Cy={f1.f3} are generated. For C;, for instance, this means that both
f> and f3 cannot be 0. Now, for a set of faults to be a diagnosis it
must then explain both these conflicts. It is straightforward to
verify that the minimal diagnoses in this case are b;={f5} and

bx={f1f2}.
4. Test selection

There are many possible ways to select the set of tests T given a
set D of minimal diagnoses. The method used by FlexDx relies on
basic principles in consistency-based diagnosis based only on the
deterministic properties of (2).

A fundamental task in consistency-based diagnosis is to
compute the set of consistent modes given a model, a set of
possible behavioral modes, and observations (de Kleer, 1987). The
design goal of the test selection algorithm is to perform tests such
that the set of consistent modes is equal to the set of diagnoses
computed by the diagnostic system.

4.1. Consistent behavioral modes

The deterministic behavior in a behavioral mode b is described
by (2) when v = 0, f; # 0 for all f; e b, and f;=0 for all f;¢b. A set of
observations consistent with b is consequently given by

O(b) = {w(3x3f(vj : figh—fj = 0) AH(@x + L(@W+F(q)f = 0} 6)

This means that a mode b is consistent with the deterministic part
of model (2) and an observation w if we O(b). Note that f; e b is
required to be non-zero in mode b, but this is not required in the
definition of O(b). In noisy environments, it will be impossible to
distinguish infinitely small faults f; ## 0 from the case when f; = 0.
To capture this property in the deterministic analysis here we
include also the case when f; = 0 in O(b).

The design goal can now be formulated in terms of the sets
0O(b) as follows. The set of diagnoses should, given an observation
w, be equal to {beB|weO(b)} where B denotes the set of all
behavioral modes. As mentioned in Section 2, we will use minimal
diagnoses to represent all diagnoses. This is possible since (6)
implies that O(b’) = O(b) if b’ =b. Hence, if b’ is consistent it
follows that b is consistent and therefore it is sufficient to check if

the minimal consistent modes remain consistent when new
observations are processed.

4.2. Tests for checking model consistency

Next, we will describe how tests can be used to detect if
w¢O(b). Let 7 be the set of all available tests and let r; = Q,(q)L(q)w
be the residual corresponding to test t;.

A residual generator checks the consistency of a part of the
complete model. To determine which part, only the deterministic
model needs to be considered. It can be shown that residual r;
checks the consistency of &;(q)w = 0 where &;(q) is a polynomial in
the time-shift operator q (Nyberg and Frisk, 2006). By defining the
set of consistent observations for tests in a similar way as for
models, we define
o(t) = (wii(qw = 0} (7)

Now, we can characterize all test sets T that are capable of
detecting any inconsistency between an observation w and the
assumption that w e O(b). For this purpose, only tests t; with the
property that O(b) = O(t;) can be used. For such a test, an alarm
implies that w¢O(t;) which further implies that wgO(b). This
means that a test set T is capable of detecting any inconsistency of
w e O(b) if and only if
O(b) = N o(t) ®

vt e {t; e T|O(b) < O(t;)}

A trivial solution to (8) is T = {t} where O(t) = O(b).
4.3. The set of all available tests

If 7 is not capable of checking the consistency of b, then no
subset of tests will be capable of doing this either. Hence, this
approach puts requirements on the entire set of tests 7. By
applying the approach to a model consisting of the considered set
of tests, a diagnostic system with the same diagnosis capability as
the considered set of tests will be the result. In this paper, we will
use two different types of test sets 7 fulfilling (8) for all modes
b e B. These are introduced by the following example.

Example 2. Consider the model
x1(t41) = ax1 (O +w1 (O) +£1 (D)

X2(b) = X1 (D) +f2(0)
wa(t) = X1 (t)+f3(b)

w3(t) = x2(0) +fa(t))

where x; are unknowns, w; known variables, o a known parameter,
and f; the faults. There are 2* modes and the set of observations

consistent with each mode is

0(0) = {w' [W1 O +owy (H)—wa(t+1) _ O}

O({f1}) = {(W|—wa(t)+ws(t) = 0}

O({f2}) = O({fs}) = O({f2.fa}) = (Wwlw1 () + awp (D) —w>(t+1) = 0}

—Wwa () +ws(t)
O({f3}) = {(wlw1 () +ows(H)—ws3(t+1) =0}

o) = R®

The behavioral models for the 10 last modes b do not contain any
redundancy and the observations are therefore not restricted, i.e.
O(b) = R>. In contrast to (6), the sets of consistent observations are
here expressed in the same form as for tests, that is with linear
differential equations in the known variables only. Any set

for the remaining modes.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1ums) nn-um 5

described as in (6) can be written in this form (Polderman and
Willems, 1998).

The first type of test set 7 will include one test for each distinct
behavioral model containing redundancy. For the example, 7
consists of four tests t; such that O(t;) = 0(0), O(t,) = O({f1}), O(t3)
= 0({f2}) = O({f4}), and O(t4) =0({f3}). To check the consistency of
w e 0(0), two linear residuals are needed, which is the degree of
redundancy of the model. These two residuals can be combined in
a positive definite quadratic form to obtain a scalar test quantity.
When stochastic properties are considered, the quadratic form is
chosen such that the test quantity conforms to a y?—distribution.

Tests for models with a high degree of redundancy can be
complex, and the second type of test set 7, includes only the tests
for the behavioral models with degree of redundancy 1. For the
example, T, = {t5,t3,t4} and by noting that O(@) = O(t;) N O(t;) for
any i #j where i,j € {2,3,4}, any two tests can be used to check the
consistency of we O(®). In Krysander (2006) it has been shown
under some general conditions that 7, fulfills (8) for all modes b € B.

4.4, Test selection methods

We will exemplify methods that given a set of minimal
diagnoses D select a test set T = 7 such that (8) is fulfilled for all
b e D. An optional requirement that might be desirable is to select
such a test set T with minimum cardinality. The reason for not
requiring minimum cardinality is that the computational com-
plexity of computing a minimum cardinality solution is generally
much higher than to find any solution.

A straightforward method is to use the first type of tests and
not require minimum cardinality solutions. Since this type of test
set includes a trivial test O(t;) = O(b) for all modes b with model
redundancy, it follows that a strategy is to start the tests
corresponding to the minimal diagnoses in D.

Example 3. Consider Example 2 and assume that the set of minimal
diagnoses is D = {0}. Then it is sufficient to perform test ty, i.e.T = {t;}.
If the set of minimal diagnoses are D = {{2},{f3}.{fa}}, then t5 is used
to check the consistency of both {f,} and {f4} and the total set of tests
is T = {ts,t4}. For this example, this strategy produces the minimum
cardinality solutions, but this is not true in general.

A second method is to use the second type of tests and for
example require a minimum cardinality solution. The discussion
of the method will be given in Section 6 where this method has
been applied to a larger example.

4.5. Relaxing the design goal

The design goal to perform tests such that the set of consistent
modes is equal to the set of diagnoses is an ambitious goal that
may require many tests. Three different principles for relaxing the
approach will be discussed next.

First, the test selection methods are not limited to take the set
of all minimal diagnoses as input. If the number of minimal
diagnoses is large, a focusing strategy (Tuhrim et al., 1991) can be
incorporated to reduce the number of diagnosis and thereby also
the number of selected tests. Minimal cardinality diagnosis or
most probable diagnosis given some a priori probabilities are
examples of possible focusing strategies.

The second type of relaxation reduces the total number of tests
in 7. It may require a large number of tests to fulfill (8) for all
modes beB and sometimes it is not interesting to consider
unlikely modes including a large number faulty components. By
considering a subset of modes B’ C B, the goal can be modified as
follows. Tests should be performed such that among the modes in

B’ exactly the consistent ones are diagnoses. This means that 7 is
selected such that (8) is fulfilled for all behavioral modes in B'.
When running the diagnostic system, the test selection T =7 has
to fulfill (8) for all minimal diagnoses in 5'.

A third option is to use a given set of tests 7’, that is not
required to fulfill (8) for any modes. The goal can then be
formulated as follows. Given the current minimal diagnoses,
perform the tests in T = 7' such that the diagnoses computed with
the selected subset of tests would be equal to the diagnoses
computed using all tests. This means that, given a set of minimal
diagnoses D, the test selection T = 7" has to fulfill

o(t) = N o(t) (10)

Vt e {t; e T'|O(b) = O(t;)} Vt e {t; e T|O(b) < O(t;)}

for each beD.

The three relaxations can be used individually or mixed. As an
example of how the three relaxations can be combined, we can
consider the tests in a given set 77, include only the fault free mode,
the single fault modes, and the double fault modes in 3/, and use
the minimal cardinality focusing strategy. Then, given a set of
minimal diagnoses D, the test selection T = 7" has to fulfill (10) for
all minimal cardinality diagnoses b that belong to B'. Which
relaxation, or which combination of relaxations, that are appro-
priate for a specific application must be determined case by case.

5. Initialization

When a new test selection has been made, the new tests have to
be initialized. Since information about faults sometimes are only
visible in the residuals for a short time-period after a fault occurrence,
we would like a new test to start before the currently considered fault
occurred, otherwise valuable information could be missed. It is also
important that the state of the new test gets properly initialized, such
that the fault sensitivity is appropriate already from the start, and the
residuals can deliver test results immediately. Therefore, the
initialization following a new test selection consists of:

1. Estimate the time of the fault from the alarming test(s).
2. Estimate the initial condition for each new test.

Both these steps require the use of historical data, which therefore
have to be stored. The fault time estimation will use the historical
residuals from the triggered test, while the initial condition
estimation uses the measured data from the process before the
fault occurred. In case not enough historical data are available, it
is reasonable to use all available data. In such a case, one may
expect some degradation in detection performance compared to
running all tests at all times.

5.1. Estimating the fault time

There are many possibilities to estimate the fault time. See for
example Page (1954) and Basseville and Nikiforov (1993) for
standard approaches based on likelihood ratios. Here, a window-
based test has been chosen. It should be noted, however, that for
the given framework, what is important is not really to find the
exact fault time, but rather to find a time-point before the fault
has occurred. The estimated time-point will be denoted by ty.

Given a number of residuals from an alarming test,
r(1),...,r(n), let us compute the sum of the squared residuals
over a sliding window, i.e.

1< .
S(t):;E:rz(t-i—]), t=0,...,n—¢ (1)
j=1

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

6 M. Krysander et al. / Engineering Applications of Artificial Intelligence u (1nin) nng-ums

If the residual generator is designed such that under the null
hypothesis no fault has occurred, (1(j))j~1 are white and Gaussian
with variance 62, then S(t) ~ x2(¢) in the fault free case. Hence, S(t)
can be used to test whether this null hypothesis has been rejected
at different time-points by a simple y?—test. The length ¢ of the
sliding window is selected according to the expected fault
responses. A slowly increasing fault response requires a long
time-window while short time-windows are preferable for
impulses.

Since it is preferable to get an estimated time-point that occurs
before the actual fault time, rather than after, the threshold of the
x> —test should be chosen such that the null hypothesis is fairly
easily rejected. The estimate tfis then set to the time-point of the
last non-rejected test. Also, in order not to risk a too late estimate,
the time-point at the beginning of the sliding window is used.

5.2. Estimating the initial condition

Having found t5 the next step is to initialize the state of the
new residual generator. The method used here considers a time-
window of samples of w(t;—k+1),...,w(ty) as input to find a good
initial state x(t;) of the filter at the last time point of the window.

Consider the following residual generator:

X(t+1) = Ax(t)+Bw(t)
r(t) = Cx(t)+Dw(t) 12)

Assume that w(t) = wy(t) + Nu(t) where wy(t) is the noise-free
data (inputs and outputs) from the process model and v(t) is the
Gaussian noise. In fault free operation, there is a state sequence
xo(t), such that the output r(t) = 0 if v(t) = 0O,

Xo(t+]) = AXo(t) +BWQ(t)

0= CXo(f)—I—DWo(t) (13)
Given w(t), t=t;—k+1,...,t;, we would now like to estimate

Xo(tf), which, using (13) and w(t)=wg(t)+N +v(t), can be expressed as

Xo(tp) = A xo(tp—k+1)+Fy

Wo = A xo(tp—k+ 1)+ Fu(W—Dy V) (14)
where
F,=[A“?B A*3B ... ABB 0]
Wo(tf—k+ 1) W(ff—k+1)
Wo = : , W= :
Wo(ty) w(ty)
N O 0
v(tp—k+1
=+ 0 N 0
V= : , Dy=1|. . .
w(t : : . .
) 00 . N
In a similar manner, the second line of (13) gives
0 = RuXo(ty—k+1)+Rw(W—DyV) (15)
where
c 0
A CB D 0
Ry = . , Rw=| GAB (B D
CAk-1 :
CA*?B ... D

The value of k will be greater or equal to the number of states in (12)
and since the residual generator is observable, it follows that R, has

full column rank. Let Ng, be a matrix whose rows form a basis of the
left null space of R,, so that NgyR, = 0. By multiplying (15) from the
left with the full rank matrix

{(RIRXV RI}

Ng,
we get

Xo(t—k+1) = —(RTR)'RIRW(W—DyV) (16)
0 = Ng Rw(W—DyV) a7

which is equivalent to (15). Elimination of xo(tr— k+1) in (14) implies
that

Xo(tp) = (~A* T(RIR)'RERw +Fw)(W—Dy V) (18)

Now, to get an estimate of xq(ty), first E[V|W] can be computed using
(17), and then E[xo(tf)|W] can be computed from this result and (18).

Assuming that the distribution of V is known, say, V ~ N(0, Zy),
(17) gives

E[V|W]= XyDyR],N} (Ng RwDyZyDyRI,NE)~ Ng Ry W 19)
and this together with (18) gives the estimate

Xo(ty) = Elxo(ty)|W]
= (—A*"(RIR)'RIRw +Fy)(W—Dy - E[V|W]) (20

5.3. Determining the length k of the time-window

The choice of k is made in advance, based on the computed
standard deviation a,(t), t > t; of the initial residuals given Xo(ty).
Fig. 1 exemplifies how the standard deviation of an initialized
residual may vary. The thick line in the bottom indicates the
stationary standard deviation that the standard deviation of the
initialized residual will converge to. The four curves above show
the standard deviations obtained for indicated values of k. The
larger k is, the more accurate initial state estimation X(tf) and the
closer the standard deviation a.(t) comes to the stationary case.
Hence, k can be chosen via a trade-off between minimizing the
additional overhead that the computations in Section 5.2
represent and minimizing the maximum probability of false
alarms during the initial time steps as follows.

k=6
25 |]
2 L]
= 451 1
© k=8
k=10 ~__ |
k=15 |
Stationary o,
0
0 10 20 30 40 50 60 70 80 90 100

Time t [Samples]

Fig. 1. An example of how the standard deviation of a residual varies directly after
initiation for different values of k. The line represents the standard deviation of the
residual in the stationary case.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1umn) nn-am 7

Let &, be the maximum acceptable residual standard deviation
which corresponds to a maximum acceptable probability of false
alarms during the initial time steps. Further, given a k let K be the
matrix such that Xo(ty) is equal to KW according to (19) and (20).
Note that k implicitly defines the matrices. Since W = W, + DV,
the initial covariance of the estimated state Xo(ty) is given by

Z4,(tr) =KDy =y DI K"
and the standard deviation of r(t) by

Gr(t) = \/CZ;(O(t)CT +DNZX,NTDT 1)

fort = tr

Fig. 1 shows that the maximum standard deviation o,(t) for
t > ty is typically not obtained at t = trand therefore both the state
covariance and residual standard deviation have to be computed
for t > t; based on

S, (t+1)=AZ; (HAT +BNZ,NTBT

and (21). The k is selected as the smallest k such that

o/(t) <G> (22)
for all t > tf.

6. Example

To illustrate the FlexDx framework, let us consider the
simulated example system shown in Fig. 2, where a DC-servo is
connected to a flywheel through a rotational (damped) spring.
The system dynamics can be described by

J101(0) = ku(t)—o1 01 (0)—Ms(t)
M;(t) = a2 (01(£)—02(6)) +03(01(£)—0(0))

J202(6) = —0a0(t)+ Ms(0)

where u(t) is an input signal controlling the torque from the
motor (with a scaling coefficient k = 1.1), 0,(t) and 0,(t) are the
angles of the motor axis and the flywheel, respectively, and M(t)
is the torque of the spring. The moments of inertia in the motor is
J1 = 1 and for the flywheel J, = 0.5. The parameters o; =1 and
o4 = 0.1 determine the viscous friction at the motor and flywheel,
respectively, while o; =0.05 is the spring constant and o3 =0.1
the viscous damping coefficient of the spring.

As outputs, the motor axis angle and velocity, and the angle of
the flywheel are measured. We will design the diagnostic system
for six possible single faults fi(t),...,fs(t); one for each equation.
The augmented system model becomes

J101(6) = k(u(®) + 1 (£)—011 01 (H)—Ms()
Ms(t) = 02(01(£)—02(6)) + 0301 (H)—02(E) +fo ()

J202() = —0a02(6) + Ms(£) +f3(0)

0y

, J\/\ /\ 0, .
!

u

Fig. 2. Illustration of the example process; a DC-servo connected to an inertia with
a spring.

Y1(t) = 01(O) +fa(t) +Vv1 (D)
Y2(O) = 01O +f5(O) +va(t)

Y3(t) = 02()+fs(t) +v3(t)

Here, vi(t), for i = 1,2,3, are measurement noise terms.

Since the diagnosis framework will work on sampled data, the
model is discretized before designing the tests using a zero-order
hold assumption. The noise is implemented as i.i.d. Gaussian
noise with variance 10~3. By using the second type of tests
described in Section 4.3 for the discretized system, a set of 13
tests were needed. Their fault sensitivity is shown in Table 1. The
false alarm probability is set to 10~ and the maximum false
alarm probability during test initiation 1.1 x 10~3. To achieve this
performance, the number of samples needed for initiating the 13
tests are, according to the method proposed in Section 5.3, 38, 86,
65, 92, 23, 40, 52, 69, 41, 42, 113, 82, and 108, respectively. The
tests will in the following simulations be combined with the
second test selection method described in Section 4.4.

6.1. Test reconfiguration

To show how the diagnostic system is reconfigured during a
fault transient, we will describe what happens when the fault f;
occurs at t = 100 in a simulated scenario. The course of events is
described in Table 2.

Each row in the table gives the most important properties of
one iteration in the FlexDx procedure given in Section 2. In one
such iteration, the set of active tests are executed on observations
collected from time tf to t,. The column Minimal Diagnoses shows
a simplified representation of the minimal diagnoses during the
corresponding phase. For example 25 represents the mode {f>, fs}.
Each iteration ends when one or several of the active tests trigger
an alarm. These are shown in bold type.

Let us take a closer look at the steps of the FlexDx procedure.
Step 1 initiates the set of minimal diagnoses to D = {NF}, which is

Table 1
The fault sensitivity of the residuals.

h f f3 fa fs fs
T X X X
) X X X X
I3 X X X X
T4 X X X X
Ts X X X X
To X X X X
ry X X X X
Tg X X X X
To X X X X
o X X X X
11 X X X X
T12 X X X X
13 X X X X

Table 2

Diagnosis events.

ty (ks Minimal diagnoses Active tests
1 0 102.6 NF 1,2,5
2 98.9 102.7 1,3,56 1, 3,10, 13
3 98.9 102.2 1, 3, 25, 26, 45, 46 1,2,6,7, 811,12
4 98.9 102.3 1, 23, 25, 26, 35, 36, 45 1,2,6,7,9, 10, 11
5 98.9 102.6 1, 23, 26, 35, 36, 45 1,2,7,9,10, 11
6 98.9 105.2 1, 23, 26, 36, 45 1,2,7,10, 11
7 100.6 - 1, 23, 26, 36, 245, 345, 456 1,2,7,10

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

8 M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1nin) nna-u

shown in row 1. The degree of redundancy of the behavioral
model for NF is 3, and therefore three tests are needed to check if
w e O(NF) is consistent. Step 2 computes the first, in lexicogra-
phical ordering, minimum cardinality solution to (8), which is the
test set T = {1,2,5} given in row 1. Step 3 initiates the tests T and
test 5 triggers an alarm at time t, 102.6. From the fault
sensitivity of residual rs given in Table 1, C= {f1f3.fs.fs} becomes a
conflict which is the output of step 4. The new set of minimal
diagnoses, computed in step 5, is shown in the second row.
Returning to step 2, the degree of redundancy for each of the
behavioral models corresponding to minimal diagnoses is 2, and
therefore at least two tests are needed to check the consistency of
each of them. The minimum cardinality test set computed in step
21is T = {1,3,10,13}. This set is shown in row 2. Tests 1 and 3 check
the consistency of {f;}, 1 and 10 the consistency of {fs}, 3 and 13
the consistency of {fs}, and 10 and 13 the consistency of {fs}. In
step 3, the last fault free time is estimated to t; = 98.9 by using the
alarming residual rs. The initial states of the residuals used in the
tests T are estimated using observations sampled in a time
interval ending at t; Proceeding in this way, FlexDx finds in row 4
that {f1} is the only consistent single fault and then the multiple
fault diagnoses are further refined. In row 7 the last fault free time
is estimated to be 100.6 due to slow fault response in test 11. A
correct estimation can be obtained by tuning the length of the
time-window and the threshold of the fault time estimator (11).

One straightforward option to further decrease the computa-
tional load is to modify the approach to focus on single faults, as
indicated in Section 4.5. In such a case, the first two iterations in
Table 2 are the same since the minimal diagnosis only include
single faults. However, after the triggering of test 13, also multiple
faults appear in the minimal diagnoses. If only single fault
diagnoses are considered, only the diagnoses {f;} and {f3} are left.
Then, by disregarding the multiple fault diagnoses, it is concluded
that tests T={1,2,8} should be started instead of the set
T={1,2,6,7,8,11,12} which is needed when also considering the
multiple fault diagnoses. The next test to trigger is test 8 and then
the only single fault diagnosis is {f;} and we have finalized the
isolation procedure. From this it is clear that the number of tests

2 2
= 0 S0
-2 -2
0 100 200 300 0 100 200 300
2 2
I © 0 |
-2 -2
0 100 200 300 0 100 200 300
2 2
e o |—i 20 ————“l“i‘————
-2 -2
0 100 200 300 0 100 200 300
2
2 o
-2

0 100 200 300

r7

11

needed can be further reduced by focusing on single faults. If the
situation arises that no single fault diagnoses are left, focus is then
shifted to double faults, and so on.

6.2. Reduction of the computational burden

Let us consider a second simulated scenario, where the system
is started in the fault-free mode. At t = 100, f; is set to 0.2, and at t
= 200, f5 is set to 0.1. The residuals computed by the diagnostic
system are shown in Fig. 3. It is noteworthy that the residuals
have not been computed for all time-points and thereby the
expected cost reduction has been achieved. It is difficult to
quantify the reduction in computational cost. In this case, where
all residual generators are linear filters, one possibility is to
evaluate the computational cost by examining the number of
multiplication and addition operations used to compute the
residuals. Using that approach in this simulation, by comparing
the computational cost for a diagnostic system running all tests at
all times with the computational cost with the proposed system
without using focusing, a 98% reduction of the computational cost
is obtained for the simulated scenario. This number is in itself not
an indication of expected computational gain in a typical
application. The reduction strongly depends on for example
failure rates, degree of redundancy, complexity of the system
model, and fault isolation requirements. The key point is that not
all tests are run at all times, and during fault free operation,
typically only a few tests are needed which typically results in a
significant reduction in the computational load.

The largest number of tests is performed during the fault
transitions which last only a short period of time. Although the
computational load decreases with the approach, during fault
transients, i.e. when faults are isolated, the number of tests to run
may still be too large with a too high computational load. Since
the FlexDx framework includes the possibility to store observa-
tional data and run the tests in an asynchronous way, it is
straightforward to serialize the test computations. Thereby, the
need for high computational power can be traded against

2 2
0 S0 {
-2 -2 !

0 100 200 300 0 100 200 300
2 2
0 ———1“"~L——— & 0 —1
-2 -2

0 100 200 300 0 100 200 300
2 2
0 | So J
-2 1 -2

0 100 200 300 0 100 200 300

Fig. 3. Residuals computed by FlexDx.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1umi) 1na-um 9

increased memory usage and increased time for detection and
isolation.

7. DyKnow

To implement an instance of the FlexDx framework, a number
of issues have to be managed besides implementing the described
algorithms and integrating them in a system. When a potential
fault is detected, FlexDx computes the last known fault free time tf
and the new set of residual generators to be monitored starting at
time ¢z To implement this, three issues have to be solved. First, the
FlexDx instance must be reconfigured to replace the set of
residual generators and their monitors. Second, the computation
of the residuals must begin at time t; in the past. Third, at the
same time as FlexDx is computing residuals and performing tests
on the historic data, system observations will keep coming at
their normal rate.

To manage these issues, FlexDx is implemented using DyKnow,
a stream-based knowledge processing middleware framework for
processing asynchronous streams of information (Heintz, 2009).
Even though FlexDx could have been implemented with a
dedicated solution with less overhead there are a number of
benefits of using DyKnow. First, it provides solutions to the
mentioned issues within an existing framework. Second, DyKnow
provides a distributed infrastructure which allows sensors and
other components to be hosted on many different computers in a
network. This can be used both to collect data from distributed
sensors and to distribute computations in the case were no
computer is powerful enough.

DyKnow provides both a conceptual framework and an
implementation infrastructure for integrating a wide variety of
components and managing the information that needs to flow
between them. It allows a system to incrementally process low-
level sensor data and generate a coherent view of the environ-
ment at increasing levels of abstraction. Due to the need for
incremental refinement of information at different levels of
abstraction, we model computations and processes within the
knowledge processing framework as active and sustained knowl-
edge processes. The complexity of such processes may vary greatly,
ranging from simple adaptation of raw sensor data to controllers
to diagnosis algorithms.

The system being diagnosed by FlexDx is assumed to be
synchronous. At the same time the diagnosis procedure is

system observations

asynchronous, jumping back and forth in time trying to figure
out which fault has occurred. This requires knowledge processes
to be decoupled and asynchronous to a certain degree. In
DyKnow, this is achieved by allowing a knowledge process to
declare a set of stream generators, each of which has a label and
can be subscribed to by an arbitrary number of processes. A
subscription can be viewed as a continuous query, which creates a
distinct asynchronous stream onto which new data are pushed as
it is generated. Each stream is described by a declarative policy
which defines both which generator it comes from and the
constraints on the stream. These constraints can for example
specify the maximum delay, how to approximate missing values
or that the stream should contain samples added with a regular
sampling period. Each stream created by a stream generator can
have different properties and a stream generator only has to
process data if it produces any streams. The contents of a stream
may be seen by the receiver as data, information, or knowledge.

A stream-based system pushing information easily lends itself
to “on-availability” processing, i.e. processing data as soon as it is
available. This minimizes the processing delays, compared to a
query-based system where polling introduces unnecessary delays
in processing and the risk of missing potentially essential updates
as well as waste resources. This is a highly desired feature in a
diagnostic system where faults should be detected as soon as
possible.

For the purpose of modeling, DyKnow provides four distinct
types of knowledge processes: primitive processes, refinement
processes, configuration processes, and mediation processes. To
introduce these processes and to describe how the three issues
introduced by FlexDx are solved, we will use a concrete FlexDx
instance as an example. An overview of the processes and streams
is shown in Fig. 4.

Primitive processes serve as an interface to the outside world,
connecting to sensors, databases, or other information sources
that in themselves have no explicit support for stream-based
knowledge processing. Such processes have no stream inputs but
provide a non-empty set of stream generators. In general, they
tend to be quite simple, mainly adapting data in a multitude of
external representations to the stream-based framework. For
example, in FlexDx the stream of observations of the system being
diagnosed is provided by a primitive process System.

The second process type to be considered is the refinement
process, which takes a set of streams as input and provides one or
more stream generators producing refined, abstracted, or

residuals

—_—
ResidualGenerator b ResidualMonitor
System ‘
C J L]
N < v
last fault free time
CreateTests ConflictSetMediator
test set

TestSet

diagnoses

conflict set

Diagnoses

initial diagnosis

Fig. 4. An overview of the components of the FlexDx implementation. The boxes are knowledge processes and the arrows are streams.

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

dx.doi.org/10.1016/j.engappai.2010.01.004

10 M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1nin) nnn-am

otherwise processed values. In FlexDx there are four refinement
processes, as seen in Fig. 4:

e ResidualGenerator—Computes the residual for a particular test
from system observations. The residual is initialized as
described in Section 5.

o ResidualMonitor—Monitors a residual and checks whether it
has triggered a test. This can either be a simple threshold check
or a more elaborate test which checks properties of the
residual over time, such as if it has been above or below the
threshold for more than five consecutive samples. If a test has
been triggered the process computes the last known fault free
time, which is the output of the process.

e Diagnoses—Computes the new set of diagnoses each time a
test has been triggered.

e TestSet—Computes the new set of residual generators to be
monitored when the set of diagnoses changes.

The third type of process, the configuration process, takes a set of
streams as input but produces no new streams. Instead, it enables
dynamic reconfiguration by adding or removing streams and
processes. In FlexDx a configuration process is required to handle
the first issue, to be able to reconfigure the set of residuals and
tests that are computed.

e CreateTests—Updates the set of residual generators and monitors
as the set of tests changes. Each test consists of two refinement
processes, one to compute the residual and one to monitor the
test on the residual. In order to manage the second issue, that
residuals are computed starting at the last known fault free time.
The input to a residual is a stream which begins at this time-
point. This is part of the policy the configuration process uses to
set up the new residual generator process. Creating streams
partially consisting of historic data is a DyKnow feature.

Finally, a mediation process generates streams by selecting or
collecting information from other streams. Here, one or more of
the inputs can be a stream of labels identifying stream generators
to which the mediation process may subscribe. This allows a
different type of dynamic reconfiguration in the case where not all
potential inputs to a process are known in advance or where one
does not want to simultaneously subscribe to all potential inputs
due to processing costs. FlexDx uses a mediation process to collect
the detected conflicts.

e ConflictSetMediator—Subscribes to the output of each of the
tests and aggregates these to a single stream. When tests are
added or removed the current set of subscriptions is updated
accordingly. The output of this process is a stream of pairs,
each pair containing the identifier of the test that was
triggered and the last known fault free time for the
corresponding residual.

Without any specific termination condition FlexDx will run as
long as the system produces output and there are tests that have
not been violated yet. It is possible to stop earlier, for example
when there is a unique consistent single fault.

To give a concrete example of a run of the system, consider the
example from Section 6 as described in Table 2. When the system
is started, tests 1, 2, and 5 are created by CreateTests. These are
computing the residuals and performing tests from time O to
102.6, when test 5 is triggered. Then the refinement process for
test 5 computes the last known fault free time to 98.9. Using this
information Diagnosis computes the set of minimal diagnosis to
{1,3,5,6} and TestSet the new set of tests to {1,3,10,13}. The old

tests 2 and 5 are removed and the new tests are added by
CreateTests. All of the tests are computed from time 98.9 until
time 102.7 when test 13 is triggered, which means that they are
computed from historic data until time 102.6. In this manner the
set of tests is updated one more time before concluding that f; is
the only consistent single fault.

The FlexDx algorithms are implemented in Matlab and inte-
grated through code generation into DyKnow which is implemen-
ted in C+ using CORBA as a communication infrastructure.

8. Conclusions

FlexDx an implemented reconfigurable diagnosis framework is
proposed. It reduces the computational burden of performing
multiple fault diagnosis by only running the tests that are
currently needed. This involves a method for dynamically starting
new tests. An important contribution is a method to select tests
such that the computational burden is reduced while maintaining
the isolation performance of the diagnostic system. Key compo-
nents in the approach are test selection and test initialization. To
illustrate that the general framework can be instantiated, specific
algorithms for diagnosing linear dynamical systems have been
developed for each component.

Implementing a reconfigurable diagnosis framework such as
FlexDx introduces a number of interesting issues. First, FlexDx
must be reconfigured to compute the new set of tests each time
the set changes. Second, these computations must begin at the
last known fault free time, which will be in the past. Third, at the
same time as FlexDx is performing tests on historic data, system
observations will keep coming at their normal rate. To handle
these issues FlexDx is implemented using DyKnow, a stream-
based knowledge processing middleware framework.

In the given example, the proposed approach has shown a
significant reduction of the computational burden for a relatively
small dynamical system. For systems with a high degree of
redundancy, i.e. systems for which there exists many possible
tests, the reduction can be expected to be even higher. Systems
with low failure rate are also a class of systems where the
approach can be expected to be advantageous, since then typically
only a small subset of the tests are required to run continuously,
rendering a significant reduction in computational burden.

References

Basseville, M., Nikiforov, L., 1993. Detection of Abrupt Changes. PTR Prentice-Hall,
Inc..

Benazera, E., Travé-Massuyes, L., 2007. A diagnosis driven self-reconfigurable filter.
In: Proceedings of DX.

Biteus, J., 2007. Fault isolation in distributed embedded systems. Ph.D. Thesis,
Linkopings universitet, April.

Biteus, J., Nyberg, M., Frisk, E., Aslund, J., 2009. Determining the fault status of a
component and its readiness, with a distributed automotive application.
Engineering Applications of Artificial Intelligence 22 (3), 363-373.

Blanke, M., Kinnaert, M., Lunze,]., Staroswiecki, M., Schréder, J., 2006. Diagnosis
and Fault-Tolerant Control. Springer, New York, Secaucus, NJ, USA.

Cordier, M.-0., Dague, P., Montmain, F.L]., Staroswiecki, M., Trave-Massuyes, L.,
2004. Conflicts versus analytical redundancy relations: a comparative analysis
of the model based diagnosis approach from the artificial intelligence and
automatic control perspectives. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 34 (5), 2163-2177.

de Kleer, J., 1987. Diagnosing multiple faults. Artificial Intelligence 32 (1), 97-130.

de Kleer, J., Williams, B., 1992. Diagnosis with behavioral modes. In: Readings in
Model-based Diagnosis. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 124-130.

de Kleer,], Kurien, J., 2003. Fundamentals of model-based diagnosis. In:
Proceedings of IFAC Safeprocess’03, Washington, USA, pp. 25-36.

de Kleer, J., Mackworth, A., Reiter, R., 1992. Characterizing diagnoses and systems.
Artificial Intelligence 56 (2-3), 197-222.

Efendic, H., 2006. Model-on-Demand MATLAB toolbox for fault diagnosis. In:
Proceedings of the 5th International Conference on Circuits, Systems,
Electronics, Control and Signal Processing.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

M. Krysander et al. / Engineering Applications of Artificial Intelligence 1 (1us1) §a-as 11

Frank, P., 1994. On-line fault detection in uncertain nonlinear systems using
diagnostic observers: a survey. International Journal of Systems Science 25
(12), 2129-2154.

Frank, P.M., Koppen-Seliger, B., 1997. New developments using Al in fault
diagnosis. Engineering Applications of Artificial Intelligence 10 (1), 3-14.
Frisk, E., 2001. Residual generation in linear stochastic systems—a polynomial

approach. In: Proceedings of the 40th IEEE Conference on Decision and Control.

Gertler, J., 1998. Fault Detection and Diagnosis in Engineering Systems. Marcel
Dekker, Inc., New York.

Hamscher, W., Console, L., de Kleer,]. (Eds.), Readings in Model-based Diagnosis.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

Heintz, F., 2009. DyKnow: a stream-based knowledge processing middleware
framework. Ph.D. Thesis, Linkdpings universitet, March.

Korbicz, A., Koscielny, J.M., Cholewa, W., Kowalczuk, Z., 2004. Fault Diagnosis:
Models, Artificial Intelligence, Applications. Springer, Berlin.

Krysander, M., 2006. Design and analysis of diagnosis systems using structural
methods. Ph.D. Thesis, Linképings universitet, June.

Nikoukhah, R., 1994. Innovations generation in the presence of unknown inputs:
application to robust failure detection. Automatica 30 (12), 1851-1867.

Nyberg, M., 2006. A fault isolation algorithm for the case of multiple faults and
multiple fault types. In: Proceedings of Safeprocess.

Nyberg, M., Frisk, E., 2006. Residual generation for fault diagnosis of systems
described by linear differential-algebraic equations. IEEE Transactions on
Automatic Control 51 (12), 1995-2000.

Nyberg, M., Krysander, M., 2003. Combining Al, FDI, and statistical hypothesis-
testing in a framework for diagnosis. In: Proceedings of IFAC Safeprocess’03,
Washington, USA.

Page, E., 1954. Continuous inspection schemes. Biometrika 41, 100-115.

Patton, RJ., Frank, P.M., Clark, R.N. (Eds.), Issues of Fault Diagnosis for Dynamic
Systems. Springer, Berlin, 2000.

Persis, C.D., Isidori, A., 2001. A geometric approach to nonlinear fault detection and
isolation. IEEE Transactions on Automatic Control 46 (6), 853-865.

Ploix, S., Touaf, S., Flaus, J.M., 2003. A logical framework for isolation in fault
diagnosis. In: Proceedings of IFAC Safeprocess’03, Washington, USA.

Polderman, J.W., Willems, J.C., 1998. Introduction to Mathematical Systems
Theory: A Behavioral Approach. Springer, Berlin.

Pulido, B., Gonzalez, C., 2004. Possible conflicts: a compilation technique for
consistency-based diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 34 (5), 2192-2206.

Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intelligence 32
(1), 57-95.

Staroswiecki, M., Comtet-Varga, G., 2001. Analytical redundancy relations for
fault detection and isolation in algebraic dynamic systems. Automatica 37 (5),
687-699.

Struss, P., 1994. Testing for discrimination of diagnoses. In: Proceedings of DX.

Tuhrim, S., Reggia, J., Goodall, S., 1991. An experimental study of criteria for
hypothesis plausibility. Journal of Experimental & Theoretical Artificial
Intelligence 3 (2), 129-144.

Intelligence (2010), doi:10.1016/j.engappai.2010.01.004

Please cite this article as: Krysander, M., et al., FlexDx: A reconfigurable diagnosis framework. Engineering Applications of Artificial

dx.doi.org/10.1016/j.engappai.2010.01.004

	FlexDx: A reconfigurable diagnosis framework
	Introduction
	Problem background
	Solution outline
	Paper outline

	FlexDx: a reconfigurable diagnosis framework
	Theoretical background
	The model
	Residual generation
	Computing the diagnoses

	Test selection
	Consistent behavioral modes
	Tests for checking model consistency
	The set of all available tests
	Test selection methods
	Relaxing the design goal

	Initialization
	Estimating the fault time
	Estimating the initial condition
	Determining the length k of the time-window

	Example
	Test reconfiguration
	Reduction of the computational burden

	DyKnow
	Conclusions
	References

