1

Detection and isolation of multiple faults in a dynamic pro
cess is a computationally expensive task, and the cost i
creases rapidly with the number of faults and the model com
plexity. A real-time, model-based diagnosis system that su
pervises a dynamic system with non-linear behavior ofterf"
consists of a set of precompiled diagnostic tests togethbr w
afaultisolation modul3; 14]. The diagnostic tests are based
on a formal description of the process, often in the form o

FlexDx: A Reconfigurable Diagnosis Framework

Fredrik Heintz f, Mattias Krysander*, Jacob Roll, Erik Frisk *
1 Dept. of Computer and Information Science, Linkoping Wmsity, SE-581 83 Linkodping, Sweden
Email:frehe@da. | i u. se
« Dept. of Electrical Engineering, Linkdping University=$581 83 Linkdping, Sweden
Email: {mat kr, rol |, frisk}@sy.liu.se

Abstract

Detecting and isolating multiple faults is a com-
putationally intense task which typically consists
of computing a set of tests, and then computing
the diagnoses based on the test results. This pa-
per describes FlexDx, a reconfigurable diagnosis
framework which reduces the computational bur-
den by only running the tests that are currently
needed. The method selects tests such that the
isolation performance of the diagnostic system is
maintained. Special attention is given to the practi-
cal issues introduced by a reconfigurable diagnosis
framework such as FlexDx. For example, tests are
added and removed dynamically, tests are partially
performed on historic data, and synchronous and
asynchronous processing are combined. To handle
these issues FlexDx uses DyKnow, a stream-based
knowledge processing middleware framework. The
approach is exemplified on a relatively small dy-
namical system, which still illustrates the computa-
tional gain with the proposed approath.

Introduction

differential or difference equations. For this type of syst

pre-compiled test is an attractive solution compared to e.

solutions based on propagating values like GDE.

The computational complexity of such a diagnosis syste
mainly originates from two sources: complexity of the pro-
cess model and the number of behavioral modes that are co
sidered. A high capability of distinguishing between fault
especially when multiple faults are considered, requires

large number of diagnostic tedi8]. Also, the more com-
plex the process model is, the more computationally intense
is the task of executing the diagnostic tests. In this pager w
develop a reconfiguration scheme to handle computational is
sues while still being able to handle multiple faults. A teth
approach is presented 7] although the models and diag-
nosis techniques are different. Recently, works on on-line
reconfiguration of the diagnosis system have appeared. For a
related work, see e.§2], where Kalman-filters are reconfig-
ured based on diagnosis decisions.

The main idea of this work is to utilize the observation that
all tests are not needed at all times, which can be used to
reduce the overall computational burden. For example, when
starting a fault free system, there is no need to run tests tha
are designed with the sole purpose of distinguishing betwee
faults. In such a case, only tests that are able to detedsfaul
are needed, which may be significantly fewer compared to the
complete set of tests. When a test triggers an alarm andta faul
is detected, appropriate tests are started to make it pessib
to compute a refined diagnosis decision. Such an approach
requires a flexible and reconfigurable framework where tests
can be added and removed on-line in a controlled fashion, and
also be run on historical data.

The objective of this paper is to illustrate how such a dy-
namic approach to diagnosis can be designed and imple-

_mented using linear dynamical process models. In particu-
Jar, the implementation issues introduced by a reconfigarab
diagnosis framework are discussed and a solution using Dy-
Know [7; §], a stream-based knowledge processing middle-
are framework, is described. It will also be shown how such
an approach requires controlled ways of initializing the dy
namic diagnostic tests, and how to select the new tests to be
sstarted when a set of diagnostic tests has generated an alarm

The reconfigurable diagnosis framework proposed in this

aper, named FlexDx, is introduced in Section 2, and the

heoretical diagnosis background needed is presentectin Se
niion 3. Methods how to determine, in a specific situation,
which tests should be started next are treated in Section 4. A
Rroper initialization procedure for dynamic tests is dt
In Section 5. The complete approach is exemplified on a small
gynamic system in Section 6, which, in spite of the relayivel
small size of the example, clearly illustrates the compyexd

This work is partially supported by grants from the Swedish the problemand the possible computational gain with the pro
Aeronautics Research Council (NFFP4-S4203) and the StvedisPosed approach. The software framework which facilitates
Foundation for Strategic Research (SSF) Strategic Reés€&enter
MOVIII.

the implementation of FlexDx, DyKnow, is briefly described
in Section 7, and finally a summary is given in Section 8.

2 FlexDx: A Reconfigurable Diagnosis The residuals are designed using a model of the process to be
Framework diagnosed.

As mentioned in the introduction, a framework like FlexDx 3.1 The Model
must be capable of adding and removing tests dynamicall
while refining the set of diagnoses. This is done in an iteeati
manner by the following procedure:

¥he model class considered here is linear differential-
algebraic models. It is worth noting that even if the presen-
tation here in the paper relies on results for linear systems

1. Initiate the set of diagnoses. the basic idea is equally applicable also to non-linear rhode
2. Based on the set of diagnoses, compute the set of testescriptions.

to be performed. There are several ways to formulate differential-algebrai
3. Compute the initial state of the selected tests. models. Here, a polynomial approach is adopted, but any

. L model description is possible, e.g. standard state-spate 0
- Run'the tests until an alarm is triggered. scriptor models. The model is given by the expression
. Compute the current set of diagnoses based on the test

results, then go to step 2. H(q)z + L(qw + F(q)f = V(q)v (2)

When dealing with multiple fault diagnosis, it has beenwhere x(t) € R™=, w(t) € R™w, f(t) € R™s, and
shown useful to represent all diagnoses with the minimal div(¢) € R™~. The matrices (q), L(q), F'(q), andV (q) are
agnose$b]. This representation will also be used here. Whenpolynomial matrices in the time-shift operatprThe vector:
FlexDx is started, there are no conflicts and the only mini-contains all unknown signals, which include internal syste
mal diagnosis is the no-fault mode NF, i.e. the set of min-states and unknown inputs. The vectocontains all known
imal diagnosed is set to{NF} in step 1. Step 2 uses a signals such as control signals and measured signals, ¢he ve
function that given a set of diagnosésreturns the set of tor f contains the fault-signals, and the veatds white, pos-
testsT’ to be performed to monitor whether a fault has oc-sibly multidimensional, zero mean, unit covariance Gaussi
curred or to further explore the possible diagnoses. Step @istributed noise.
initiates each of the tests iA. A testincludes a residual gen- To guarantee that the model is well formed, it is assumed
erator given in state-space form. This means that the starthat the polynomial matri# (z) L(z)] has full column rank
up of such a residual generator involves the estimation ofor somez € C. This assumption assures that for any noise
its initial condition. In step 4, the tests are performedilunt realizationv(¢) and any fault signaf (¢) there exists a solu-
at least one triggers an alarm and a test result is generateidn to the model equations (2).
in the form of a set of conflict§4; 16. Step 5 computes
the new set of diagnosds, given the previous set of diag- 3.2 Residual Generation

noses and the generated set of conflicts. This step can be pgtesiduals are used both to detect and isolate faults. Tsks ta

formed by algorithms handling multiple fault diagnos$és can be formulated in a hypothesis testing setting. For lis,

11]. o] fi denote both the fault signal and the corresponding behav-
Step 4 and 5 are standard steps used in diagnosis systef@gal mode of a single fault. LeE be the set of faults.

and will not be described in further detail. Step 2 and 3 are A pair of hypotheses associated with a residual can then be
new steps, needed for dynamically changing the tesf'set stated as

the details are given in Section 4 and 5 respectively.
To implement an instance of the FlexDx framework, a Hy: fi=0forall f; € Fo

number of issues have to be managed besides implement- H, : f; # 0 for somef; € Fy

ing the algorithms and integrating them to a system. When _ _))

a potential fault is detected, FlexDx computes the last know where 7, C F is the set of faults the residual is designed

fault free timet; and the new set of residual generators toto detect. This means that the residual is not supposed to

be started at time;. To implement this, three issues have to detect all faults, only the faults ifty. By generating a set of

be solved. First, the FlexDx instance must be reconfigured t§uch residuals, each sensitive to different subBgtsf faults,

replace the set of residual generators and their monitexs. S fault isolation is possible. This isolation procedure igfly

ond, the computation of the residuals must begin at time described in Section 3.3. _

which will be in the past. Third, at the same time as FlexDx In the literature there exists several different ways te for

is computing residuals and performing tests on the historiénally introduce residuals. In this paper an adapted version

data, system observations will keep coming at their normathe innovation filter defined ifiL0] is used. For this, it will

rate. How these issues are solved is described in Section 7.be convenient to consider the nominal model under a specific
hypothesis. The nominal model under hypothdgjsabove

3 Theoretica| Background is given by (2) WithV(q) =0 andfi = 0 for all fz € Fo.

. . . S . With this notion, a nominal residual generator is a lineaeti
The diagnosis systems considered in this paper consist of@ arjant filterr = R(q)w where for all observations, con-
set of tests. Each test consists of a resid@lthat is thresh- i 0+ \vith the nominal model (2) under hypothekig it
olded such that it triggers an alarm|if(t)| > 1. Note that | J\4s thafim r(t) =0
the threshold can be set to one without of loss of generdétlity. L X

. ; . . Now, consider again the stochastic model (2) where it is
is assumed that the residuals are normalized such that® giv@ ey that a residual generated with a nominal residual gen-
false alarm probabilityga is obtained, i.e.

erator will be subject to a noise component from the process
P(|r(t)] > 1|NF) = pga (1) noisev. A nominal residual generator und#y, is then said

(G2l =8

to be a residual generator for the stochastic model (2) if thé of minimal diagnoses. There are many possible ways how
noise component in the residuais white Gaussian noise. this can be done. The method that will be described here is
It can be showri6] that all residual generato(q), as based on the deterministic properties of (2) only and relies
defined above, for the stochastic model (2) can be written asasic principles in consistency-based diagnosis.
A fundamental task in consistency-based diagnosis is to
R(q) = Q(g9)L(q) compute the set of consistent modiékgiven a model, a set

where the matrix operator)(q) satisfies the condition of possible behavioral modes, and observations. The design

Q(q)H(g) = 0. This means that the residual is computedgoal of the test selection algorithm will be to perform tests

by r = Q(q)L(q)w and it is immediate that the internal form such that the set of consistent modes is equal to the set of
of the residual is given by diagnoses computed by the diagnosis system.

r=Q(q)L(qQ)w =—-Q(q)F(q)f + Q(q)V(g)v (38) 41 Consistent Behavioral Modes
The deterministic behavior in a behavioral mollés de-

Thus, the fault sensitivity is given by scribed by (2) whemw = 0 andf; = 0 for all f; ¢ b, and the
r=—-Q(q)F(q)f (4) set of observations consistent witlis consequently given by
and the statistical properties of the residual undigiby O(b) = {w[3x3f (Vj: fj ¢b— f; =0)A ©6)

H(q)x + L(q)w + F(q) f = 0}

r=QVig ©®) This means that a modeis consistent with the determin-
A complete design procedure is given in €.40] for state- istic part of model (2) and an observatianif w € O(b).
space models and if6] for models on the form (2). The Hence, to achieve the goal the set of diagnoses should, given
objective here is not to describe a full design procedurgifbu an observationv, be equal to{b € Blw € O(b)} where
is worth mentioning that a design algorithm can be made fullyB denotes the set of all behavioral modes. As mentioned in
automatic, that the main computational steps involve a nullSection 2, we will use minimal diagnoses to represent all di-
space computation and a spectral factorization, and tleat thagnoses. This is possible since (6) implies thét') C O(b)
resulting residual generator is a basic dynamic linearfilte if o’ C b. Hence, ift’ is consistent it follows thak is con-
)] sistent and therefore it is sufficient to check if the minimal
3.3 Computing the Diagnoses consistent modes remain consistent when new observations
The fault sensitivity of the residual in (3) is given by (4). are processed.
Here,r is sensitive to the faults with non-zero transfer func- . .
tions. LetC' be the set of faults that a residudb sensitive to. 4-2 Tests for Checking Model Consistency
Then, if residuat triggers an alarm, at least one of the faults Next, we will describe how tests can be used to detect
in C must have occurred and the conflit6] C is generated. O(b). Let T be the set of all available tests and fet=
Now we can relate the test results to a diagnosis. Lef;(¢)L(¢)w be the residual corresponding to test
a setb C F represent a system behavioral mode with the A residual generator checks the consistency of a part of the
meaning thatf; # 0 forall f; € b C Fandf; = 0 complete model. To determine which part, only the determin-
for all f; ¢ b. In short, sed16] for details, the behav- istic model needs to be considered. It can be shidhthat
ioral modeb is then a diagnosis if it can explain all gener- residualr; checks the consistency éf(q)w = 0 whereg;(q)
ated conflicts, i.e. ib has a non-empty intersection with each is a polynomial in the time-shift operatgr By defining the
generated conflict. Algorithms to compute all minimal di- set of consistent observations for tests in a similar wayas f
agnoses for a given set of conflicts, which is equivalent tanodels, we define
the so called hitting set problem, can be found in ¢4g.

16]. The following example illustrates the main principle. O(t:) = {wl€i(q)w = 0})
Example 1 Let anX in position (i, j) in the table below in- ~_Now, we can characterize all test sdtsthat are capable
dicate that residuat is sensitive to faulf; of detecting any inconsistency between an observatiand
the assumption that € O(b). For this purpose, only tests
|1 fo fs with the property tha©(b) C O(t;) can be used. For such a
1 X X test, an alarm implies that ¢ O(t;) which further implies
ra | X X thatw ¢ O(b). This means that a test sétis capable of
rs | X X detecting any inconsistency af ¢ O(b) if and only if
If residualsr; and r, trigger alarms, then conflict€; =
{f2, fs}andCy = { f1, f3} are generated. Fo€'; this means o(b) = ﬂ O(t) (8)
that both f, and f3 can not bed. Thus, for a set of faults to vte{t;€T|O(b)CO(t:)}

be a diagnosis it must then explain both these conflicts. Itis, | . . : o B
straightforward to verify that the minimal diagnoses insthi A trivial solution to (8)isT = {t} whereO(t) = O(b).

case areh; = {fs} andby = {f1, fa}. ¢ 4.3 The Set of All Available Tests

. If 7 is not capable of checking the consistency othen no
4 Test Selection subset of tests will be capable of doing this either. Hence,
This section describes step 2 in the FlexDx procedure givethis approach sets requirements on the entire set offedfs

in Section 2, i.e. how the set of testsis selected given a set such set of tests is difficult to obtain for a particular model

any set of tests will do. By applying the approach to a modetest set includes a trivial te§2(¢;) = O(b) for all modesb
consisting of the considered set of tests, a diagnosisraystewith model redundancy, it follows that a strategy is to start
with the same diagnosis capability as the considered set dhe tests corresponding to the minimal diagnoses.in
tests will be the result. In this paper, we will use two diéfet ;

- ' Example 3 Consider Example 2 and assume that the set of
types of test setg fulfilling (8) for all modesb € B. These ..o, diagnoses i® — {}. Then it is sufficient to per-

are introduced by the following example. form testty, i.e. T = {t1}. If the set of minimal diagnoses

Example 2 Consider the model are D = {{f2},{fs},{f4}} thents is used to check the
_ consistency of botfif>} and {f,} and the total set of tests
i;gﬁ 1) _ gf(lt()tl?;&)(t) +A®) is T = {t3,t4}. For this example, this strategy produces the
ws (1) — () + f(t) 9 minimum cardinality solutions, but this is not true in gealer
ws(t) = 22(t) + fa(t) A second method is to use the second type of tests and for

example require a minimum cardinality solution. The dis-
cussion of the method will be given in Section 6 where this
method has been applied to a larger example.

wherex; are unknownsw; known variablesq a known pa-
rameter, andf; the faults. There aré* modes and the set of
observations consistent with each mode is

0(0) = {w| wi(t) + O‘U(’i)(tl_ Uéi)(t +1) =0} 5 Initialization
2 s When a new test selection has been made, new tests have to be
O({f1}) = {w| — wa(t) + ws3(t) = 0} initialized. Since information about faults sometimesamly
O({f2}) = O({fs}) = O{fa, f1}) = visible in the residuals for a short time-period after a faul
’ ’ occurrence, we would like a new test to start running before
= {wlw(t) + awy(t) —wy(t +1) = 0} the currently considered fault occurred; otherwise vakiab
O({f3}) = {w|wi(t) + aws(t) —ws(t+ 1) =0} information would be missed. It is also important that the

state of the new test gets properly initialized, such that th

The behavioral models for the 10 remaining modetn not éault sensitivity is appropriate already from the start &me

contain any redundancy and the observations are therefore” " . . !
not restricted, i.eO(b) — R?. In contrast to (), the sets of 'csiduals can deliver test results immediately. Therefiwe
consistent observations are here expressed in the same fowtlallza.non fOHOW'_ng a new test selection con5|sjcs of:

as for tests, that is with linear differential equations fret 1. Estimate the time of the fault from the alarming test(s).
known variables only. Any set described as in (6) can be writ- 2 Estimate the initial condition for each new test.

tenin th_|s form{15].)) Both these steps require the use of historical data, which
The first type of test sef; will be to design one test therefore have to be stored. The fault time estimation will

for each distinct behavioral model containing redundancyyse the historical residuals from the triggered test, wihite

i.e., for the exampleZ; consists of four tests; such that jnjtial condition estimation uses the measured data froen th

O(t1) = O(0), O(tz) = O({f1}), O(t3s) = O({f2}), and process before the fault occurred.
O(t4) = O({f3}). To check the consistency af € O(0),

two linear residuals are needed, which is the degree of redus.1 Estimating the Fault Time

dancy of a model. These two residuals can be combined in fhere are many possibilities to estimate the fault time.fSee
positive definite quadratic form to obtain a scalar test Huangyamplel13: 1] for standard approaches based on likelihood
tity. When stochastic properties are considered, the quigdr 4105 Here, a window-based test has been chosen. It should
form is chosen such that the test quantity conforms 62 he noted, however, that for the given framework, what is im-

distribution. ortant is not really to find the exact fault time, but rather t

Tests for models with a high degree of redundancy can bEnd a time-point before the fault has occurred. The estithate
complex, and the second type of testggincludes only the time-point will be denoted by; .

tests for the behavioral models with degree of redundancy 1. Gjven a number of residuals from an alarming test

For the exampleT; = {t», 3,14} and by notingthaO(0) = .1y~ (%), let us compute the sum of the squared residu-
O(t:) N O(t;) for anyi # j wherei, j € {2,3,4}, any two a?s)(;ver’a (sli)d’ing Windowpi.e. |
tests can be used to check the consisteney efO(0). In [9] T
it has been shown under some general conditionsZhatl- 1 ¢
fills (8) for all modesh € B. S(t)=— S r*t+4), t=0,....k—((10)
j=1

4.4 Test Selection Methods

We will exemplify methods that given a set of minimal diag- If the reS|_duaI generator is designed such t]?at, under t_he nu
nosesD select a test séf C 7 such that (8) is fulfilled for hypothesis that no fault has occurred(;));_, are white
all b € D. An optional requirement that might be desirable and Gaussian with varianee?, then S(t) ~ x2(¢) in the
is to select such a test s€twith minimum cardinality. The fault free case. Hencé(t) can be used to test whether this
reason for not requiring minimum cardinality is that the eom null hypothesis has been rejected at different time-pphts
putational complexity of computing a minimum cardinality a simplex?-test. Since it is preferable to get an estimated
solution is generally much higher than to find any solution. time-point that occurs before the actual fault time, rathan

A straightforward method is to use the first type of tests andhfter, the threshold of thg?-test should be chosen such that
not require minimum cardinality solutions. Since this tgfie the null hypothesis is fairly easily rejected. The estintates

then set to the time-point of the last non-rejected testo Als M,
in order not to risk a too late estimate, the time-point at the 0 9
beginning of the sliding window is used. 1 2
. . . . Ji VA J2
5.2 Estimating the Initial Condition
Having foundt, the next step is to initialize the state of the f
new residual generator. The method used here considers a
time-window of samples ol (t; — k), ..., w(ty) as input to u
find a good initial state:(¢) of the filter at the last time point)
of the window. Figure 1: lllustration of the example process; a DC-servo
Consider the following residual generator: connected to an inertia with a spring.
x(t+1) = Ax(t) + Bw(t) (11) _))
r(t) = Cz(t) + Dw(t) (12) The choice oft is made in advance, based on the computed

variance of the initial residuals given (¢;). The largerk is,

Assume thatu(t) = wo(t)+ Nv(t) wherewy (t) is the noise- the closer this variance comes to the stationary case. kence
free data (inputs and outputs) from the process model angi@n be chosen via a trade-off between the minimizing the ad-
v(t) is Gaussian noise. In fault free operation, there is a statélitional overhead that the above computations represedt, a

sequence(t), such that the output(t) = 0 if v(¢) =0, tmhinimi_zi?tg_; the |t”naximum probability of false alarms during
e initial time steps.
0 = Cxo(t) + Dwo(t) (14) 6 Example

To illustrate the FlexDx framework, let us consider the simu
lated example system shown in Figure 1, where a DC-servo is
connected to a flywheel through a rotational (damped) spring
The system dynamics can be described by:

J161(t) = ku(t) — a10;(t) — M(t)
M(t) = az(01(t) — 02(t)) + (61 () — (1))
Joba(t) = —uba(t) + M(t)

Givenw(t), t = t; — k,...,ts, we would like to estimate
xo(ty). This will be done by first estimating (¢t — k).
From (13) ando(t) = wo(t) + Nv(t) we get

0= wao(tf —k)+ R,Wy
& Rpxo(ty — k) + RyW = RyDyV (15)

where

rC D 0o 0 ...
CA CB D 0 .. whereu(t) is an input signal controlling the torque from the
Ry=| . R,=| CAB CB D ... motor (with a scaling coefficiertt = 1.1), 6 () andéy(t) are
" e the angles of the motor axis and the flywheel, respectively,
LCA |CAF1B . D andM,(t) is the torque of the spring. The moments of inertia
rw(ty; — k) rwo (tr — k) in the motoris/; = 1 and for the flywheel/; = 0.5. The pa-
)) rametersy; = 1 anday = 0.1 determine the viscous friction
W= : Wo = : at the motor and flywheel respectively, while = 0.05 is the
L w(ty) L wo(ty) spring constant and; = 0.1 the viscous damping coefficient
‘N0 0 of the spring.
oty — k) 0 N o 0 As outputs, the motor axis angle and velocity, and the angle
V= . Dy=|. . o of the flywheel are measured. We will design the diagnosis
: P system for six possible single faulfs(t), ..., fs(t); one for
L v(ty) L0 0 ... N each equation. The augmented system model becomes

Assuming that the distribution of is known, say, Ji6:(t) = k(u(t) + fi(t)) — a16:(t) — M(t)
V ~ N(0,Zy), (15) means thaRR,zo(ty — k) + R,W _ : ;
is a zero-mean stochastic vector with covariance matrix]\{S(t) - 0‘2(91.(15) = 02(t)) + as(61(t) — 62(1)) + fo(?)
R,DyXy DL R, Note that the expression above cor- J,fy(t) = —aufy(t) + M(t) + f(t)
responds to the actual residuals obtained when starting in (

(

xo(t; — k). Due to the design of the residual generator giving ! t) = ?105) +fa(t) + (1)
white residuals, this means th&t, Dy Xy DT RL ~ o21. Y2(t) = 01(t) + f5(t) + va(t)
Hence, a reasonable estimateagft; — k) is given by the ys(t) = O2(t) + fo(t) + vs(t)

regular least-squares estimate, _
Here,v;(t), fori = 1,2, 3, are measurement noise terms.

oty — k) = —(RL R.) 'R RyW (16) Since the diagnosis framework will work on sampled data,
From this i (t) can be computed as the model is discretized before designing the tests, using a
zero-order hold assumption. The noise is implemented as
Zo(ty) = Akcﬁo(tf —k)+ i.l.d. Gaussian noise with variand@f?’. By using the sec-
1 A2 R AB B OlwW ond type of tests described in Section 4.3 for the discrétize
[A B e } system, a set of 13 tests were needed and their fault sétysitiv

2 2 2 2

Table 1: The fault sensitivity of the residuals. o ~ 0 o o ~ 0 l

fi f2 fa fs Je -2 -2 - S
X

r X 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
1

r9 2 2 2 2
» 0 © of— o~ O—M— = of—

&

3

T4 -2 -2 -2 -2
s

Te

7

8

T9

T10
T11
T12
T13

XX X

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

2 2 2 2
= of—f 2 O—M— = oo— & oo—
-2 ‘ -2 -2 -2
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

XXX XXX

XX XX XX

2

X XX XX XXX

o

kHOi

-2

X X XX XX X

0 100 200 300

XXX XXX XXX
XXX XXX
XX X

x

Figure 2: Residuals computed by FlexDx.

is shown in Table 1. These tests will in the following simu-
lations be combined with the second test selection method

described in Section 4.4. Table 2: Diagnosis events

6.1 Test Reconfiguration te ta Minimal Diagnoses Active Tests

To show how the diagnosis system is reconfigured during al | 0 102.6 NF 1,2,5

fault transient, we will describe what happens when thetfaul 2 | 98.9 102.7 1,3,5,6 1,3,10,13

f1 occurs at = 100 in a simulated scenario. The course of 3 | 98.9 102.2 1,3,25,26,45,46 1,2,6,7,8,11,12

events is described in Table 2. 4198.9 102.3 1,23,25,26,35,36,45 1,2,6,7,9,10,11
Each row in the table gives the most important properties 5 | 98.9 102.6 1,23, 26,35, 36,45 1,2,7,9,10,11

of one iteration in the FlexDx procedure given in Section 2. 6 | 98.9 105.2 1,23,26, 36,45 1,2,7,10,11

In one such iteration, the set of active tests are executed or¥ | 100.6 — 1,23,26,36, 245,345,456 1,2,7,10

observations collected from tinig to ¢,. The column mini-
mal diagnoses shows a simplified representation of the mini-

mal diagnoses during the corresponding phase. Eachderati .2 Reduction of the Computational Burden

ends when one or several of the active tests trigger an alarrﬂ,l a simulated scenario, the system is started in the faedt-f

these are shown in bold type. : :
mode. Att = 100, f; is set t00.2, and att = 200, f5 is set
Let us take a closer look at the steps of the FlexDx Pr0%, 0.1. The residuals computed by the diagnosis system are
cedure. Step 1 initiates the set of minimal diagnoses t

o ! Bhown in Figure 2. It is noteworthy that the residuals hawvte no
Fans o i b el o 3 e rpepeen compie foralme-pans. By comparig the rumber
tests are needed to checkife O(NF) is con'sistent Step 2 of residuals computed for a diagnosis system running d# tes
L ; . ; L at all times with the number of residuals computed with the
computes the first, in lexicographical ordering, minimum ca proposed system, a 78.3% reduction in the number of com-
d:\r/]gl‘:%igwtllonstt% (?’irm?;%gslfhg]teeg;nsﬁegt E{Slt’riz 5;8 puted residuals is obtained for the simulated scenarios Thi
gn alarm at time P 102.6. Erom the fault sensitiv?tg/ of number is in itself not an indication of expected computa-
residualrs given iﬁ 'E;lble 10 — {1, f5. f5, f} becomes a tional gain in a typical application. For systems with low-fa
conflict W5hiCh is the output of gtep147 'I?i’he%e?/v set of minimal ' © rate, more redundancy, or more complex system model
diagnoses. computed in step 5 are. shown in the second rOthe reduction will typically be much larger. The key point is
g : P P>, Yhiat not all tests are run at all times, and during fault freere

bReertllz:\:/r?(l)r:gltr%gtjeeplszé(grr]r?e(sjeg;?jien()ftge?nlijgi?ﬁz;cgi;orn?)izg g];ethgtion, typically only a few tests are needed. The largest-num
P 9 9 ’ ber of tests is performed during the fault transitions which
and therefore at least two tests are needed to check the Ca%'sts only a short period of time

sistency of each of them. The minimum cardinality test se
computed in step 2 i = {1, 3,10, 13}. This set is shown
in row 2. Tests 1 and 3 check the consistency ff}, 1 and 7 DyKnow

10 the consistency dffs}, 3 and 13 the consistency §f;}, To implement an instance of the FlexDx framework, a num-
and 10 and 13 the consistency ofs}. In step 3, the last ber of issues have to be managed besides implementing the
fault free time is estimated tg = 98.9 by using the alarm- algorithms and integrating them to a system. When a poten-
ing residualrs. The initial states of the residuals used in thetial fault is detected, FlexDx computes the last known fault
testsI’ are estimated using observations sampled in a time infree timet ; and the new set of residual generators to be mon-
terval ending aty. Proceeding in this way, FlexDx finds in itored starting at time;. To implementthis, three issues have
row 4 that{ f1 } is the only consistent single fault and then theto be solved. First, the FlexDx instance must be reconfigured
multiple fault diagnoses are further refined. to replace the set of residual generators and their monitors

system observations residuals

R . \
ResidualGenerator ‘ ResidualMonitor
System ‘
C C /

__ N <
N

Second, the computation of the residuals must begin at tim
t¢ in the past. Third, at the same time as FlexDx is comput
ing residuals and performing tests on the historic datdesys
observations will keep coming at their normal rate.

To manage these issues, FlexDx is implemented usin
DyKnow, a stream-based knowledge processing middlewar
framework for implementing applications processing asyn-
chronous streams of informati¢#; §].

DyKnow provides both a conceptual framework and an im-
plementation infrastructure for integrating a wide variet
components and managing the information that needs to flo\
between them. It allows a system to incrementally proces
low-level sensor data and generate a coherent view of the e
vironment at increasing levels of abstraction. Due to trezine
for incremental refinement of information at different llsve))
of abstraction, we model computations and processes withifigure 3: An overview of the components of the FlexDx im-
the knowledge processing framework as active and sustainglementation. The boxes are knowledge processes and the
knowledge processe$he complexity of such processes may arrows are streams.
vary greatly, ranging from simple adaptation of raw sensor

data to controllers to diagnosis algorithms. data in a multitude of external representations to the strea
The system being diagnosed by FlexDx is assumed to bgased framework. For example, in FlexDx the initial diagno-

synchronous. At the same time the diagnosis procedure isis and the stream of observations of the system being diag-

asynchronous, jumping back and forth in time trying to figurenosed are seen as a primitive processagem.

out which fault has occurred. This requires knowledge pro- The second process type to be considered isafieement

cesses to be decoupled and asynchronous to a certain degrpgcess which takes a set of streams as input and provides

In DyKnow, this is achieved by allowing a knowledge pro- one or more stream generators producing refined, abstracted

cess to declare a set stiream generatorsach of which can or otherwise processed values. In FlexDx there are four re-

besubscribedo by an arbitrary number of processes. A sub-finement processes, as seen in Figure 3:

scription can be viewed as a continuous query, which creates « ResidualGenerator — Computes the residual for a partic-

adistinct asynchronoustreamonto which new data s pushed ular test from system observations. The residual is ini-

as it is generated. Each stream is described by a declarative tialized as described in Section 5 '

policywhich defines both which generator it comes from and) T

the constraints on the stream. These constraints can for-exa ResidualMonitor — Monitors a residual and checks
whether it has triggered a test. This can either be a

ple specify the maximum delay, how to approximate missing / >
values or that the stream should contain samples added with ~ simple threshold check or a more elaborate test which
checks properties of the residual over time, such as if it

a regular sample period. Each stream created by a stream .
generator can have different properties and a stream genera has been_above or below the threshold fOF more than five
consecutive samples. If atest has been triggered the pro-

tor only has to process data if it produces any streams. The I 1N
contents of a stream may be seen by the receiver as data, in- €ess computes the last known fault free time; this is the
output of the process.

formation or knowledge.
A stream-based system pushing information easily lends e Diagnosis — Computes the new set of diagnoses each
time a test has been triggered.

itself to “on-availability” processing, i.e. processingtd as
soon as it is available. This minimizes the processing delay TestSet — Computes the new set of residual generators to
be monitored when the set of diagnoses changes.

compared to a query-based system where polling introduces

unnecessary delays in processing and the risk of missing po- _))

tentially essential updates as well as wastes resourcés. Th The third type of process, thenfiguration procesdakes

is a highly desired feature in a diagnostic system wherggfaul @ set of streams as input but produces no new streams. In-
should be detected as soon as possible. _stead, it enables dynamic reconfiguration by Qddmg_ orremov
finement processes, configuration processes and mediatidte et of residuals and tests that are computed.

processes. To introduce these processes and to describe how CreateTests — Updates the set of residual generators and

last fault free time

CreateTests ConflictSetMediator

test set

conflict set

diagnoses
TestSet Diagnoses

initial diagnosis

the three issues introduced by FlexDx are solved, we will use
a concrete FlexDx instance as an example. An overview of
the processes and streams is shown in Figure 3.

Primitive processes serve as an interface to the outside
world, connecting to sensors, databases or other informa-
tion sources that in themselves have no explicit support for

stream-based knowledge processing. Such processes have no

stream inputs but provide a non-empty set of stream genera-
tors. In general, they tend to be quite simple, mainly adapti

monitors as the set of tests changes. Each test consists
of two refinement processes, one to compute the residual
and one to monitor the test on the residual. In order to
manage the second issue, that residuals are computed
starting at the last known fault free time, the input to a
residual is a stream which begins at this time-point. This
is part of the policy the configuration process uses to set
up the new residual generator process. Creating streams
partially consisting of historic data is a DyKnow feature.

Finally, amediation procesgenerates streams by select- atively small dynamical system, and for larger systems the
ing or collecting information from other streams. Here, onereduction is expected to be higher.

or more of the inputs can be a stream of labels identifying

other streams to which the mediation process may subscribReferences

This allows a different type of dynamic reconfiguration ie th
case where not all potential inputs to a process are known iL11]
advance or where one does not want to simultaneously sub-
scribe to all potential inputs due to processing cost. FiexD [2]
uses a mediation process to collect the detected conflicts:

e ConflictSetMediator — Subscribes to the output of each of (3l
the tests and aggregates these to a single stream. When
tests are added or removed the current set of subscrif]
tions is updated accordingly. The output of this process
is a stream of pairs, each pair containing the identifier of,
the test that was triggered and the last known fault free[5]
time for the corresponding residual.

FlexDx will continue to add new tests until there is exactly 6]
one consistent single fault or all tests have been added.

To give a concrete example of a run of the system, consider
the example from Section 6 as described in Table 2. When th[e
system is started, tests 1, 2 and 5 are createCréyteTests. 7]
These are computing the residuals and performing tests from
time 0 to 102.6, when test 5 is triggered. Then the refinement
process for test 5 computes the last known fault free time to
98.9. Using this informatiomiagnosis computes the set of [g]
minimal diagnosis td1, 3, 5,6} and TestSet the new set of
tests to{1, 3,10, 13}. The old tests 1, 2 and 5 are removed
and the new tests are added @ateTests. All of the tests
are computed from time 98.9 until time 102.7 when test 13 iig]
triggered, which means that they are computed from histori
data until time 102.6. In this manner the set of tests is tgatiat
one more time before concluding thtis the only consistent
single fault. If there are no consistent single faults FlexD [10]
will continue to add tests until all have been evaluated.

8 Summary [11]
An implemented reconfigurable diagnosis framework FlexDx
is proposed. It reduces the computational burden of perfornhz]
ing multiple fault diagnosis by only running the tests thag a
currently needed. This involves a method for dynamically
starting new tests. An important contribution is a method
to select tests such that the computational burden is reduce
while maintaining the isolation performance of the diagnos [13]
tic system. Key components in the approach are test sefectio
and test initialization. Specific algorithms for diagnagiim-
ear dynamical systems have been developed to illustrate the
diagnosis framework, but the framework itself is general.

Implementing a reconfigurable diagnosis framework suc
as FlexDx introduces a number of interesting issues. Firs ,15]
FlexDx must be reconfigured to compute the new set of tests
each time the set changes. Second, these computations must
begin at the last known fault free time, which will be in the [16]
past. Third, at the same time as FlexDx is performing tests on
historic data, system observations will keep coming atrthei

, g 517]

normal rate. To handle these issues FlexDx is implemente
using DyKnow, a stream-based knowledge processing mid-
dleware framework.

In the given example, the proposed approach has shown a
significant reduction of the computational burden for a rel-

M. Basseville and I.V. Nikiforov.Detection of Abrupt
ChangesPTR Prentice-Hall, Inc, 1993.

E. Benazera and L. Travé-Massuyes. A diagnosis driven
self-reconfigurable filter. I®roc. DX'07, 2007.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant ControSpringer, 2003.

J. de Kleer. Diagnosing multiple faultévrtificial Intel-
ligence 32(1):97-130, 1987.

J. de Kleer, A. Mackworth, and R. Reiter. Characteriz-
ing diagnoses and system@urtificial Intelligence 56,
1992.

Erik Frisk. Residual generation in linear stochastic sys-
tems - a polynomial approach. Rroc. of the 40th IEEE
Conference on Decision and Contr@001.

Fredrik Heintz and Patrick Doherty. DyKnow: An
approach to middleware for knowledge processing.
Journal of Intelligent and Fuzzy Systeni$(1):3-13,
November 2004.

Fredrik Heintz and Patrick Doherty. A knowledge pro-
cessing middleware framework and its relation to the
JDL data fusion modelournal of Intelligent and Fuzzy
Systemsl7(4):335-351, 2006.

Mattias Krysander. Design and Analysis of Diagno-
sis Systems Using Structural MethodsPhD thesis,
Linkopings universitet, June 2006.

R. Nikoukhah. Innovations generation in the presence of
unknown inputs: Application to robust failure detection.
Automatica30(12):1851-1867, 1994.

Mattias Nyberg. A fault isolation algorithm for the case
of multiple faults and multiple fault types. IAroceed-
ings of IFAC Safeprocess’08006.

Mattias Nyberg and Erik Frisk. Residual genera-
tion for fault diagnosis of systems described by linear
differential-algebraic equationsEEE Transactions on
Automatic Contrgl51(12), 2006.

E.S. Page. Continuous inspection scherBésmetrika
41:100-115, 1954.

4] R. J. Patton, P. M. Frank, and R. N. Clark, editols-

sues of Fault Diagnosis for Dynamic Syster@pringer,
2000.

J. W. Polderman and J. C. Willemslntroduction to
Mathematical Systems Theory: A Behavioral Approach
Springer-Verlag, 1998.

R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence 32(1):57-95, 1987.

Peter Struss. Testing for discrimination of diagnoses. In
Proc. of DX'94 1994.

