Advanced Engineering Informatics 24 (2010) 14-26

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Bridging the sense-reasoning gap: DyKnow - Stream-based middleware
for knowledge processing ™

Fredrik Heintz *, Jonas Kvarnstrom, Patrick Doherty

Department of Computer and Information Science, Linkdping University, SE-581 83 Linkdping, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 20 June 2009

Accepted 10 August 2009
Available online 12 October 2009

Engineering autonomous agents that display rational and goal-directed behavior in dynamic physical
environments requires a steady flow of information from sensors to high-level reasoning components.
However, while sensors tend to generate noisy and incomplete quantitative data, reasoning often
requires crisp symbolic knowledge. The gap between sensing and reasoning is quite wide, and cannot
in general be bridged in a single step. Instead, this task requires a more general approach to integrating
and organizing multiple forms of information and knowledge processing on different levels of abstraction
in a structured and principled manner.

We propose knowledge processing middleware as a systematic approach to organizing such processing.
Desirable properties are presented and motivated. We argue that a declarative stream-based system is
appropriate for the required functionality and present DyKnow, a concrete implemented instantiation
of stream-based knowledge processing middleware with a formal semantics. Several types of knowledge
processes are defined and motivated in the context of a UAV traffic monitoring application.

In the implemented application, DyKnow is used to incrementally bridge the sense-reasoning gap and
generate partial logical models of the environment over which metric temporal logical formulas are eval-
uated. Using such formulas, hypotheses are formed and validated about the type of vehicles being
observed. DyKnow is also used to generate event streams representing for example changes in qualitative

spatial relations, which are used to detect traffic violations expressed as declarative chronicles.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

When developing autonomous agents displaying rational and
goal-directed behavior in a dynamic physical environment, we
can lean back on decades of research in artificial intelligence. A
great number of deliberative reasoning functionalities have al-
ready been developed, including chronicle recognition [1], motion
planning [2,3], and task planning [4]. However, integrating these
functionalities into a coherent system requires reconciling the dif-
ferent formalisms they use to represent information and knowl-
edge about the environment in which they operate.

Furthermore, much of the required knowledge must ultimately
originate in physical sensors, but whereas deliberative functional-
ities tend to assume symbolic and crisp knowledge about the cur-

* This work is partially supported by Grants from the Swedish Research Council
(2005-3642, 2005-4050), the Swedish Aeronautics Research Council (NFFP4-
S4203), the SSF Strategic Research Center MOVIII, the Swedish Research Council
Linnaeus Center CADICS, and the Center for Industrial Information Technology
CENIIT (06.09).

* Corresponding author. Tel.: +46 70 2074388.

E-mail addresses: frehe@ida.liu.se (F. Heintz), jonkv@ida.liu.se (J. Kvarnstrém),
patdo@ida.liu.se (P. Doherty).

1474-0346/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aei.2009.08.007

rent state of the world, the information extracted from sensors
often consists of noisy and incomplete quantitative data on a much
lower level of abstraction. Thus, there is a wide gap between the
information about the world normally acquired through sensing
and the information that deliberative functionalities assume to
be available for reasoning.

Bridging this gap is a challenging problem. It requires construct-
ing suitable representations of the information that can be ex-
tracted from the environment using sensors and other available
sources, processing the information to generate information at
higher levels of abstraction, and continuously maintaining a corre-
lation between generated representations and the environment it-
self. Doing this in a single step, using a single technique, is only
possible for the simplest of autonomous systems. As complexity in-
creases, one typically requires a combination of a wide variety of
methods, including standard functionalities such as various forms
of image processing and information fusion as well as applica-
tion-specific and possibly scenario-specific approaches. Such inte-
gration is mainly performed in an ad-hoc manner, without
addressing the principles behind the integration. These principles
encode parts of the current engineering knowledge of how to build
this type of system.

http://dx.doi.org/10.1016/j.aei.2009.08.007
mailto:frehe@ida.liu.se
mailto:jonkv@ida.liu.se
mailto:patdo@ida.liu.se
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 15

In this article, we propose using the term knowledge processing
middleware for a principled and systematic software framework
for bridging the gap between sensing and reasoning in a physical
agent. We claim that knowledge processing middleware should
provide both a conceptual framework and an implementation
infrastructure for integrating a wide variety of functionalities and
managing the information that needs to flow between them. It
should allow a system to incrementally process low-level sensor
data and generate a coherent view of the environment at increas-
ing levels of abstraction, eventually providing information and
knowledge at a level which is natural to use in symbolic delibera-
tive functionalities.

In addition to defining the concept of knowledge processing
middleware, we describe one particular instance called DyKnow.
DyKnow is a fully implemented stream-based knowledge process-
ing middleware framework providing both conceptual and practi-
cal support for structuring a knowledge processing system as a set
of streams and computations on streams. Streams represent as-
pects of the past, current, and future state of a system and its envi-
ronment. Input can be provided by a wide range of distributed
information sources on many levels of abstraction, while output
consists of streams representing objects, attributes, relations, and
events.

In the next section, a motivating example scenario is presented.
Then, desirable properties of knowledge processing middleware
are investigated and stream-based middleware is proposed as suit-
able for a wide range of systems. As a concrete example, the formal
conceptual framework of our knowledge processing middleware
DyKnow is described. The article is concluded with some related
work and a summary.

2. A traffic monitoring scenario

Traffic monitoring is an important application domain for
autonomous unmanned aerial vehicles (UAVs), providing a pleth-
ora of cases demonstrating the need for knowledge processing
middleware. It includes surveillance tasks such as detecting acci-
dents and traffic violations, finding accessible routes for emergency
vehicles, and collecting traffic pattern statistics.

One possible approach to detecting traffic violations relies on
describing each type of violation in a declarative formalism such
as the chronicle formalism [1]. A chronicle defines a class of com-
plex events as a simple temporal network [5] where nodes corre-
spond to occurrences of events and edges correspond to metric
temporal constraints between event occurrences. For example,
events representing changes in high-level qualitative spatial rela-
tions such as beside(cary,car,), close(cary,car,), and on(car,road)
might be used to detect a reckless overtake. Creating these high-le-
vel representations from low-level sensor data, such as video
streams from color and thermal cameras, involves a great deal of
processing at different levels of abstraction, which would benefit
from being separated into distinct and systematically organized
tasks.

Fig. 1 provides an overview of how the incremental processing
required for the traffic surveillance task could be organized. At the
lowest level, a helicopter state estimation component uses data from
an inertial measurement unit (IMU) and a global positioning system
(GPS) to determine the current position and attitude of the helicop-
ter. The resulting information is fed into a camera state estimation
component, together with the current state of the pan-tilt unit on
which the cameras are mounted, to generate information about
the current camera state. The image processing component uses
the camera state to determine where the camera is currently point-
ing. Video streams from the color and thermal cameras can then be
analyzed in order to extract vision objects representing hypotheses

Chronicle
Recognition

Qualitative spatial relations

Qualitative Spatial
Reasoning

N

A e
Car objects
Geographic) . i | Formula states | g
Road objects _— eSS
Information = ot Anchoring TEEIE] I.'Og'c
—— Progression
System) ¢), Formula events |
= B

Vision objects

|
Image Processing
Thermal camera >)

Camera state T
P Legend

| Process

Camera State
Estimation

Helicopter State
Estimation

IMU GPS Pan-tilt unit

Fig. 1. Incremental processing for the traffic surveillance task.

Helicopter state
(AR UL N

———> Dataflow

regarding moving and stationary physical entities, including their
approximate positions and velocities.

To use symbolic chronicle recognition, it is necessary to deter-
mine which vision objects are likely to represent cars. Such objects
must be associated with car symbols in such a way that the symbol
and the vision object consistently refer to the same physical object,
a process known as anchoring [6]. This process can take advantage of
knowledge about normative characteristics and behaviors of cars,
such as size, speed, and the fact that cars normally travel on roads.
Such characteristics can be described using formulas in a metric
temporal logic, which are progressed (incrementally evaluated) in
states that include current estimated car positions, velocities, and
higher level predicates such as on — road(car) and in — crossing(car)
obtained from road network information provided by a geographic
information system. An entity satisfying the conditions can be
hypothesized to be a car, a hypothesis which is subject to being
withdrawn if the entity ceases to display the normative character-
istics, thereby causing formula progression to signal a violation.

The next stage of processing involves deriving qualitative spatial
relations between cars, such as beside(car,, car,) and close(car,, cars).
These predicates, and the concrete events that correspond to
changes in the predicates, finally provide sufficient information
for the chronicle recognition system to determine when higher-level
events such as reckless overtakes occur.

In this scenario, which is implemented and tested on board an
autonomous UAV system developed at the Unmanned Aircraft Sys-
tems Technologies (UASTech) Lab at Linképing University [7], a
considerable number of distinct processes are involved in bridging
the sense-reasoning gap. However, in order to fully appreciate the
complexity of the system, we have to widen our perspective. To-
wards the smaller end of the scale, what is represented as a single
process in Fig. 1 is sometimes merely an abstraction of what is in
fact a set of distinct processes. Anchoring is a prime example,
encapsulating a variety of tasks that could also be viewed as sepa-
rate processes. At the other end of the scale, a complete UAV sys-
tem also involves numerous other sensors and information
sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and
reactive goal achieving procedures. Consequently, what is seen in
Fig. 1 is merely an abstraction of the full complexity of a small part
of the system.

It is clear that a systematic means for integrating all forms of
knowledge processing, and handling the necessary communication

16 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

between parts of the system, would be of great benefit. Knowledge
processing middleware should fill this role by providing a standard
framework and infrastructure for integrating image processing,
sensor fusion, and other information and knowledge processing
functionalities into a coherent system.

3. Design requirements

The range of functionality that could conceivably be provided
by knowledge processing middleware is wide, and attempting to
find a unique set of absolute requirements that could be univer-
sally agreed upon would most likely be futile. However, the follow-
ing requirements have served well to guide the work presented in
this article.

First, knowledge processing middleware should permit the inte-
gration of information from distributed sources, allowing this informa-
tion to be processed at many different levels of abstraction and finally
transformed into a suitable form to be used in reasoning. For traffic
monitoring, sources may include cameras, barometric pressure
sensors, GPS sensors, and laser range scanners as well as higher-
level geographical information systems and declarative specifica-
tions of normative vehicle behaviors. Knowledge processing
middleware should be sufficiently flexible to allow the integration
of such sources into a coherent processing system while minimiz-
ing restrictions on connection topologies and the type of informa-
tion being processed.

A second requirement is to support both quantitative and quali-
tative processing. In the traffic monitoring scenario, for example,
there is a natural abstraction hierarchy starting with quantitative
signals from sensors, through image processing and anchoring, to
representations of objects with both qualitative and quantitative
attributes, to high-level events and situations where objects have
complex spatial and temporal relations.

A third requirement is that both bottom-up data processing and
top-down model-based processing should be supported. While each
process can be dependent on “lower level” processes for its input,
its output can also be used to guide processing in a top-down fash-
ion. For example, if a vehicle is detected on a particular road seg-
ment, a vehicle model could be used to predict possible future
locations, thereby directing or constraining processing on lower
levels.

A fourth requirement is support for management of uncertainty.
Uncertainty exists not only at the quantitative sensor data level but
also in the symbolic identity of objects and in temporal and spatial
aspects of events and situations. Therefore, middleware should not
be constrained to the use of a single approach to handling uncer-
tainty but should enable the combination and integration of differ-
ent approaches in a way appropriate to each application.

Support for flexible configuration and reconfiguration of knowl-
edge processing is a fifth requirement. When an agent’s resources
are insufficient, either due to lack of processing power or due to
sensory limitations, various forms of trade-offs may be required.
For example, update frequencies may be lowered, maximum per-
mitted processing delays may be increased, resource-hungry algo-
rithms may be dynamically replaced with more efficient but less
accurate ones, or the agent may focus its attention on only the
most important aspects of its current task. Reconfiguration may
also be necessary when the current context changes. For example,
if a vehicle goes off-road, different forms of processing may be
required.

An agent should be able to reason about trade-offs and reconfig-
uration without outside help, which requires introspective capabil-
ities. Specifically, it must be possible to determine what
information is currently being generated as well as the potential
effects of a reconfiguration. Therefore a sixth requirement is for

the framework to provide a declarative specification of the informa-
tion being generated and the information processing functionalities
that are available, with sufficient content to make rational trade-
off decisions.

To summarize, knowledge processing middleware should
support declarative specifications for flexible configuration and dy-
namic reconfiguration of distributed context dependent processing
at many different levels of abstraction.

4. Stream-based knowledge processing middleware

Knowledge processing for a physical agent is fundamentally
incremental in nature. Each part and functionality in the system,
from sensing up to deliberation, needs to receive relevant informa-
tion about the environment with minimal delay and send pro-
cessed information to interested parties as quickly as possible.
Rather than using polling, explicit requests, or similar techniques,
we have therefore chosen to model and implement the required
flow of data, information, and knowledge in terms of streams, while
computations are modeled as active and sustained knowledge pro-
cesses ranging in complexity from simple adaptation of raw sensor
data to complex reactive and deliberative processes. This forms the
basis of one specific type of framework called stream-based knowl-
edge processing middleware, which we believe will be useful in a
broad range of applications. A concrete implemented instantiation,
DyKnow, will be discussed later.

Streams lend themselves easily to a publish/subscribe architec-
ture. Information generated by a knowledge process is published
using one or more stream generators, each of which has a (possibly
structured) label serving as a global identifier within a knowledge
processing application. Knowledge processes interested in a partic-
ular stream of information can subscribe to it using the label of the
associated stream generator, which creates a new stream without
the need for explicit knowledge of which process hosts the gener-
ator. Information produced by a process is immediately provided
to the stream generator, which asynchronously delivers it to all
subscribers, leaving the knowledge process free to continue its
work.

In general, streams tend to be asynchronous in nature. This can
often be the case even when information is sampled and sent at
regular intervals, due to irregular and unpredictable transmission
delays in a distributed system. In order to minimize delays and
avoid the need for frequent polling, stream implementations
should be push-based and notify receiving processes as soon as
new information arrives.

Using an asynchronous publish/subscribe pattern of communica-
tion decouples knowledge processes in time, space, and synchroni-
zation [8], providing a solid foundation for distributed knowledge
processing applications.

For processes that do not require constant updates, such as a
task planner that needs an initial state snapshot, stream generators
also provide an interface for querying current and historic informa-
tion generated by a process. Through integration into a unified
framework, queries benefit from decoupling and asynchronicity,
and lower level processing can build on a continuous stream of in-
put before a snapshot is generated.

4.1. Streams

In an implementation, new information is added to a stream
one element at a time. Formally, we instead choose to view a
stream as a structure containing its own history over time. This al-
lows us to extract a snapshot of the information received at any
knowledge process at any particular point in time, which is for

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 17

example essential for the ability to validate an execution trace rel-
ative to a formal system description.

Definition 4.1 (Stream). A stream is a set of stream elements, where
each stream element is a tuple (t,,...) whose first value, tg4, is a
time-point representing the time when the element is available in
the stream. This time-point is called the available time of a stream
element and has to be unique within a stream. A total order < on
time-points is assumed to exist.

Given a stream structure, the information that has arrived at its
receiving process at a particular time-point t consists of those ele-
ments having an available time t, < t. This will be used in DyKnow
in Section 5.

4.2. Policies

Each stream is associated with a policy, a set of requirements on
its contents. Such requirements may include the fact that elements
must arrive ordered by valid time, that each value must constitute
a significant change relative to the previous value, that updates
should be sent with a specific sample frequency, or that there is
a maximum permitted delay. Policies can also give advice on
how these requirements should be satisfied, for example by indi-
cating how to handle missing or excessively delayed values. For
introspection purposes, policies should be declaratively specified.
See Section 5 for concrete examples.

To satisfy the policies of the streams currently being generated,
a stream generator may filter the raw output of the knowledge pro-
cess and (if permitted by each policy) generate new approximated
samples where necessary. Some processes may also be able to ad-
just their raw output (in terms of sample rate or other properties)
at the request of a generator. For example, given two policies
requesting samples every 200 and 300 ms, the generator might re-
quest output every 100 ms from its process. The parts of the policy
that are affected by transmission through a distributed system,
such as delay constraints, can also be applied by a stream proxy
at the receiving process. This separates the generation of stream
content from its adaptation.

Sometimes, it may be impossible for a stream generator to sat-
isfy a given policy. For example, if a policy specifies a maximum
transmission delay which is exceeded by the underlying communi-
cation channel, the generator can only satisfy the policy by approx-
imating the missing value. If a subscriber sets a maximum delay
and forbids approximation, it must be completely certain that
the delay is never exceeded or be prepared to handle policy
violations.

Definition 4.2 (Policy). A policy is a declarative specification of the
desired properties of a stream, which may include advice on how
to generate the stream.

4.3. Knowledge processes

A knowledge process operates on streams. Some processes take
streams as input, some produce streams as output, and some do

Knowledge Process

stream
Stream Y
1
Generator ! stream
S

J

Fig. 2. A prototypical knowledge process.

both. A process that generates stream output does so through
one or more stream generators to which an arbitrary number of
processes may subscribe using different policies. An abstract view
of a knowledge process is shown in Fig. 2.

Definition 4.3 (Knowledge process). A knowledge process is an
active and sustained process whose inputs and outputs are in the
form of streams.

Four distinct knowledge process types are identified for the pur-
pose of modeling: Primitive processes, refinement processes, con-
figuration processes, and mediation processes.

Primitive processes serve as interfaces to the outside world, con-
necting to sensors, databases, or other information sources and
generating output in the form of streams. Such processes have no
stream inputs but provide at least one stream generator. Some-
times the first level of data refinement may also be integrated into
a primitive process. For example, image processing may be realized
as a primitive process generating image streams together with a
refinement process for the actual analysis, or may be integrated
into a single primitive process to avoid the need for a high-band-
width stream of live high-resolution video.

Definition 4.4 (Primitive process). A primitive process is a knowl-
edge process that does not take any streams as input but provides
output through one or more stream generators.

Refinement processes provide the main functionality of stream-
based knowledge processing: The processing of streams to create
more refined data, information, and knowledge. Each refinement
process takes a set of streams as input and provides one or more
stream generators providing stream outputs. For example, a refine-
ment process could fuse sensor data using Kalman filters estimat-
ing positions from GPS and IMU data, or reason about qualitative
spatial relations between objects.

Definition 4.5 (Refinement process). A refinement process is a
knowledge process that takes one or more streams as input and
provides output through one or more stream generators.

When a refinement process is created it subscribes to its input
streams. For example, a position estimation process computing
the position of a robot at 10 Hz could either subscribe to its inputs
with the same frequency or use a higher frequency in order to filter
out noise. If a middleware implementation allows a process to
change the policies of its inputs during run-time, the process can
dynamically tailor its subscriptions depending on the streams it
is supposed to create.

In certain cases, a process must first collect information over
time before it is able to compute an output. For example, a filter
might require a number of measurements before it is properly ini-
tialized. This introduces a processing delay that can be remedied if
the process is able to request 30 seconds of historic data, which is
supported by the DyKnow implementation.

A configuration process provides a fine-grained form of dynamic
reconfiguration by instantiating and removing knowledge pro-
cesses and streams as indicated by its input.

Traffic monitoring requires position and velocity estimates for
all currently monitored cars, a set that changes dynamically over
time as new cars enter an area and as cars that have not been ob-
served for some time are discarded. This is an instance of a recur-
ring pattern where the same type of information must be produced
for a dynamically changing set of objects.

This could be achieved with a static process network, where a
single refinement process estimates positions for all currently vis-
ible cars. However, processes and stream policies would have to be
quite complex to support more frequent updates for a specific car
which is the current focus of attention.

18 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

As an alternative, a configuration process could be used to gener-
ate and maintain a dynamic network of refinement processes, where
each process estimates positions for a single car. The input to the
configuration process would be a single stream where each element
contains the set of currently monitored cars. Whenever a new car is
detected, the new (complete) set of cars is sent to the configuration
process, which may create new processes. Similarly, when a car is
removed, associated knowledge processes may be removed.

Definition 4.6 (Configuration process). A configuration process is a
knowledge process that takes streams as inputs, has no stream
generators, and creates and removes knowledge processes and
streams.

Finally, a mediation process allows a different type of dynamic
reconfiguration by aggregating or selecting information from a sta-
tic or dynamic set of existing streams (leaving more complex pro-
cessing of the resulting stream to refinement processes).

Aggregation is particularly useful in the fine-grained processing
networks described above: If there is one position estimation pro-
cess for each car, a mediation process can aggregate the outputs of
these processes into a single stream to be used by those processes
that do want information about all cars at once. In contrast to
refinement processes, a mediation process can change its inputs
over time to track the currently monitored set of cars as indicated
by a stream of labels or label sets.

Selection forwards information from a particular stream in a set
of potential input streams. For example, a mediation process can
provide position information about the car that is the current focus
of attention, automatically switching between position input
streams as the focus of attention changes. Other processes inter-
ested in the current focus can then subscribe to a single semanti-
cally meaningful stream.

Definition 4.7 (Mediation process). A mediation process is a
knowledge process that changes its input streams dynamically
and mediates the content on the varying input streams to a fixed
number of stream generators.

4.3.1. Stream generators

A knowledge process can have multiple outputs. For example, a
single process may generate separate position and velocity esti-
mates for a particular car. Each raw output is sent to a single stream
generator, which can create an arbitrary number of output streams
adapted to specific policies. For example, one process may wish to
receive position estimates every 100 ms, while another may require
updates only when the estimate has changed by at least 10 m.

Definition 4.8 (Stream generator). A stream generator is a part of a
knowledge process that generates streams according to policies
from output generated by the knowledge process.

Using stream generators separates the generic task of adapting
streams to policies from the specific tasks performed by each
knowledge process. Should the policies supported by a particular
middleware implementation be insufficient, a refinement process
can still subscribe to the unmodified output of a process and pro-
vide arbitrarily complex processing of this stream.

Note that a stream generator is not necessarily a passive filter.
For example, the generator may provide information about its cur-
rent output policies to the knowledge process, allowing the process
to reconfigure itself depending on parameters such as the current
sample rates for all output streams.

Note also that while policies are conceptually handled in the
stream generator, an implementation may transparently move
parts of policy adaptation into the stream proxy at the receiving
process, thereby allowing multiple streams to be collapsed into
one and reducing the associated bandwidth requirements.

5. The DyKnow framework

We will now present DyKnow, a specific stream-based middle-
ware framework providing detailed instantiations of the generic
concepts introduced in the previous sections. This provides a con-
crete conceptual framework for modeling knowledge processing
applications (Section 5.1), with a well-defined syntax (Section
5.2) and semantics (Section 5.3). This formal framework specifies
what is expected of an implementation, and can also be used by
an agent to reason about its own processing.

DyKnow views the world as consisting of objects and features
which may represent attributes of these objects. We specialize
the general stream concept to define fluent streams representing
an approximation of the value of a feature over time. Two concrete
classes of knowledge processes are introduced: Sources, corre-
sponding to primitive processes, and computational units, corre-
sponding to refinement processes. A computational unit is
parameterized with one or more fluent streams. Each source and
computational unit provides a fluent stream generator which cre-
ates fluent streams from the output of the corresponding knowl-
edge process according to fluent stream policies. A declarative
language called xpL is used for specifying knowledge processing
applications (Sections 5.2 and 5.3).

5.1. Knowledge processing domains

A knowledge processing domain defines the objects, values, and
time-points used in a knowledge processing application. From
them the possible fluent streams, sources, and computational units
are defined. The semantics of a DyKnow knowledge processing
specification is defined on an interpretation of its symbols to a
knowledge processing domain.

Definition 5.1 (Knowledge processing domain). A knowledge pro-
cessing domain (often referred to as a domain) is a tuple (O, T,P),
where O is a set of objects, T is a set of time-points, and P is a set of
primitive values.

Note that the temporal domain T must be associated with a to-
tal order (<) and operators for adding (+) and subtracting (—) time-
points, and that the special value no_value must not occur in the
O, T orP.

Example 5.1 (Domain). In the remainder of this article, we will
use a simplified traffic monitoring example with the domain
{{o1,...,010},Z",P), where P={pq,...,P10} U{S1,...,510} is the
set of primitive values (positions and speeds) and T is the set Z* of
non-negative integers including zero.

5.1.1. Values, samples and fluent streams

Due to inherent limitations in sensing and processing, an agent
cannot always expect access to the actual value of a feature over
time but will have to use approximations. Such approximations
are represented as fluent streams, whose elements are samples rep-
resenting observations or estimations of the value of a feature at a
specific point in time called the valid time. Each sample is also
tagged with its available time, the time when it is ready to be pro-
cessed by the receiving process after having been transmitted
through a potentially distributed system.

The available time is essential when determining whether a sys-
tem behaves according to specification, which depends on the
information actually available as opposed to information that
may have been generated but has not yet arrived. Having a specific
representation of the available time also allows a process to send
multiple estimates for a single valid time, for example by quickly

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 19

providing a rough estimate and then running a more time-consum-
ing algorithm to provide a higher quality estimate. Finally, it allows
us to formally model delays in the availability of a value and per-
mits an application to use this information introspectively to
determine whether to reconfigure the current processing network
to achieve better performance.

Definition 5.2 (Value). A simple value in D = (O, T,P) is an object
constant from O, a time-point from T, or a primitive value from P.
The set of all possible simple values in D is denoted by Wp.

A value in D is a simple value in Wp, the special constant
no_value indicating that a stream has no value at a particular
time-point, or a tuple (z1,..., v,) where all »; are values, allowing
the representation of structured values such as states. The set of all
possible values in a domain D is denoted by V).

Definition 5.3 (Sample). A sample in a domain D = (O,T,P) is
either the constant no_sample or a stream element (t,,t,,V),
where t, € T is its available time, t, € T is its valid time, and
v € Vp is its value. If s = (tq,t,,V) is a sample, then atime(s) def ta,
vtime(s) ¢, and val(s) %'y, The set of all possible samples in a
domain D is denoted by Sp.

Example 5.2. Assume a picture p is taken by a camera source at
time-point 471, and that the picture is sent through a fluent stream
to an image processing process on a separate on-board computer,
where it is received at time 474. This is represented as the sample
(474,471, p).

Assume image processing extracts a set b of blobs that may
correspond to vehicles. Processing finishes at time 479 and the set
is sent to two distinct recipients, one on the same computer
receiving it at time 482 and one on another computer receiving it
at time 499. Since this information still pertains to the state of the
environment at time 471, the valid time remains the same. This is
represented as the two samples (482,471,b) and (499,471,b)
belonging to distinct fluent streams.

The constant no_sample will be used to indicate that a fluent
stream contains no information at a particular point in time, and
can never be part of a fluent stream.

Definition 5.4 (Fluent stream). A fluent stream in a domain D is a
stream where each stream element is a sample from
Sp \ {no_sample}. The set of all possible fluent streams in a
domain D is denoted by Fp.

Available times are guaranteed to be unique within a stream,
and it is assumed that a total order < is defined on the temporal do-
main. Therefore, any stream {{tq,, tv,, V1), ..., {ta,, tv,, Va)} COITE-
sponds to a unique sequence [(tq,, ty,, V1),..., (ta,, tv,, Vn)] totally
ordered by available time, and vice versa. Both notations will be
used.

Example 5.3 (Fluent stream). Both f; = {(1,1,v1), (3,2,v3), (4,5,
vsyyand fo = {(2,1,v4), (4,1,vs), (5,1,v¢)} are valid fluent streams,
visualized in Fig. 3.

For any fluent stream, we can extract the part that was available
at the receiving process at any given point in time using the func-
tion avail(f, t). The last sample that had been received at a particu-
lar time-point is given by the function last_avail(f, t).

Definition 5.5. Let f be a fluent stream and t a time-point.

avail(f, t) d:ef{s € f | atime(s) < t}

if avail(f,t) =0

otherwise.

no_sample

. def
last avail(f,t) = arg max atime(s)

s € avail(f t)

f, <1,1,v1> <3,2,v2> <4,5,v3>

f, <2,1,v4> <4,1,v5> <5,1,v6>
I | I I | available
| [[[| time
1 2 3 4 5

Fig. 3. Two example fluent streams.

We also need the ability to find the value of a feature at some
particular valid time t. However, sample times may be irregular,
so we cannot count on there being a sample exactly at t. Instead,
most_recent_at(f, t,tq) extracts all samples available at the query
time t, with a valid time vtime(s) < t, selects those samples that
have a maximal valid time (still < t), and finally (if more than
one sample remains) selects the one with the greatest available
time using last_avail. A knowledge process can then assume that
this value persists until ¢ or use filtering, interpolation, or similar
techniques to find a better estimate.

Definition 5.6. Let f be a fluent stream and ¢, t; time-points.
before(f,t, tq) d:ef{s € avail(f,ty) | vtime(s) < t}

most_recent_at(f,t,tq) &ef last_avail({s € before(f,t,t;) |
vtime(s) = argmax vtime(s')},tq)
s' € before(f t.tq)

The prev function returns the sample preceding a given sample
in a fluent stream, or returns no_sample to indicate that no such
sample exists. The function availtimes returns the set of available
times for all samples in a fluent stream or a set of fluent streams.

Definition 5.7. Let f be a fluent stream and s € f be a sample.
def

Then, prev(f,s) =

if s =no_sample

or —3s' € f.atime(s') < atime(s)

otherwise.

no_sample

argmax atime(s’)
s efa
atime(s’)<atime(s)

Definition 5.8. Let f.f1,...,f, be fluent streams. We define:
availtimes(f) & {atime(s) | s € f}
availtimes({f;,....f;}) & | availtimes(f,)

1<i<n

5.1.2. Sources

A primitive process is formally modeled as a source, a function
from time-points to samples representing the output of the process
at any point in time. When the process does not produce a sample,
the function returns no_sample.

Definition 5.9 (Source). Let D = (O, T,P) be a domain. A source is a
function T—Sp mapping time-points to samples. The set of all
possible sources in D is denoted by Rp.

5.1.3. Computational units

A computational unit is used to model a specific type of refine-
ment process that only considers the most recent sample from
each input stream, together with its current internal state, when
computing new samples for its unique output stream.

Definition 5.10 (Computational unit). Let D= (O,T,P) be a
domain. A computational unit with arity n > 0, taking n inputs, is
associated with a partial function T x S} x Vp—Sp x Vp of arity
n-+2 mapping a time-point, n input samples, and a (possibly
complex) value representing the previous internal state to an

20 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

output sample and a new internal state. The set of all possible
computational units for D is denoted by Cp.

The input streams to a computational unit do not necessarily
contain values with synchronized valid times or available times.
For example, two streams could be sampled with periods of 100
and 60 ms while a third could send samples asynchronously. In or-
der to give the computational unit the maximum amount of infor-
mation, we choose to apply its associated function whenever a new
sample becomes available in any of its input streams, and to use
the most recent sample in each stream. Should the unit prefer to
wait for additional information, it can store samples in its internal
state and return no_samp1le to indicate that no new output sample
should be produced at this stage. This is defined formally using the
join function.

Definition 5.11. Let D = (O, T,P) be a domain. The value of the
function join(fi, ..., f,) : Fj—~Fp is the stream that is the result of
joining a sequence of fluent streams fi, ..., f,:

join(fy..... fy) E{E. L Isr...) |
t € availtimes({fi,....fa}) A Vis; = last_avail(f;,t)}.

Example 5.4 (Fluent stream cont.). Continuing Example 5.3, the
result of joining the fluent streams f; and f, is the stream [(1,1,
[(1,1,v1),no_sample]), (2,2,[(1,1,v1),(2,1,va)]), (3,3,[(3,2,V2),
(2,1,v4)]), (4,4,[(4,5,v3),{4,1,v5)]), (5,5,[(4,5,v3),(5,1,v6)])], visu-
alized in Fig. 4.

5.2. The syntax of kL

DyKnow uses the knowledge processing language xpL to declara-
tively specify knowledge processing applications, static networks of
primitive processes (sources) and refinement processes (computa-
tional units) connected by streams. Mediation and configuration
processes modify the setup of a knowledge processing application
over time and are left for future work.

The vocabulary of kpL consists of the union of two sets of sym-
bols, the domain-independent kpL symbols and the domain-depen-
dent symbols defined by a signature o.

Definition 5.12 (xpr Symbols). The xpL symbols are comma, equals,
left and right parenthesis, left and right bracket, and the krL
keywords {any, approximation, change, compunit, delay, every, from,
max, monotone, most, no, oo, order, recent, sample, source, stream,
strict, strmgen, to, update, use, with}.

Definition 5.13 (Signature). A signature ¢ in «xeL is a tuple
(O, F,N,S,C, T,V), where

O is a finite set of object symbols,

F is a finite set of feature symbols with arity > 0,

N is a finite set of stream symbols,

S is a finite set of source symbols,

C is a finite set of computational unit symbols, each associated
with an arity > 0,

e 7 is a set of time-point symbols, and

f, <1,1,v1> <3,2,v2> <4,5,v3>
f, <2,1,v4> <4,1,v6> <5,1,v6>
join(f,of,) [<1,1,v1>, [<1,1,v1>, [<3,2v2>, [<4,5v3> [<4,5v3>,
i 21 no_sample] <2,1,v4>] <2,1,v4>] <4,1v5>] <5,1,v6>]
I | | | | available
| l I l I time
1 2 3 4 5

Fig. 4. An example of two fluent streams and the result of joining them.

e V is a finite set of value sort symbols which must include the
symbols object and time.

The symbols are assumed to be unique and the sets of symbols are
assumed to be disjoint.

A xrL specification of a knowledge processing application con-
sists of a set of labeled statements. A source declaration, labeled
source, declares a source corresponding to a class of primitive pro-
cesses (Section 5.2.1). A computational unit declaration, labeled
compunit, declares a parameterized computational unit corre-
sponding to a class of refinement processes (Section 5.2.1). A fluent
stream generator declaration, labeled strmgen, declares a specific
fluent stream generator created from either a source or a computa-
tional unit (Section 5.2.2). A fluent stream declaration, labeled
stream, declares a fluent stream generated by the application as
an output (Section 5.2.3).

Definition 5.14 (krr Specification). A kpL specification for a signature
o is a set of source declarations, computational unit declarations,
fluent stream generator declarations, and fluent stream declarations
for o.

Example 5.5 (kr. Example). A small knowledge processing applica-
tion estimating the speed of a single car will be used to illustrate
the use of KPL. An overview is shown in Fig. 5. Formal definitions
will be provided after this example.

We define the signature of this application as ¢ = ({carl},
{pos/1, speed/1}, {speed _carl}, {pos_carl}, {SpeedEst/1}, Z*, {pos,
speed, time, object}).

The source pos_carl provides position samples (of sort pos) for a
car, and the fluent stream generator pos|[carl] belongs to an
instantiation of that source.

source pos pos_carl
strmgen pos|carl]|=pos_carl

The computational unit SpeedEst estimates the speed of a car
from a stream of positions. We create one instance of this unit,
applying it to a fluent stream generated from pos|[carl] using a
policy that samples the source every 200 time units.

compunit speed SpeedEst(pos)
strmgen speed|carl|=SpeedEst(pos|[carl] with sample every 200)

Finally, a named stream speed_carl, which could be used as the out-
put of the application, is generated by the fluent stream generator
speed[carl] between time-point 300 and time-point 400. stream
speed_carl=speed|carl] with from 300 to 400.

5.2.1. Source and computational unit declarations

A source declaration specifies a class of primitive processes pro-
viding fluent streams of a particular value sort. A source is gener-
ally only instantiated once, since its stream generator can
provide an arbitrary number of output streams.

Definition 5.15 (Source declaration). A source declaration for
o=(0,F,N,S,CT,V) has the form source vs, where v €V is a
value sort symbol and s € S is a source symbol.

pos[carl]

Fig. 5. Processes, stream generators, and streams in Example 5.5.

SpeedEst(pos(carl])

speed[carl] speed_carl

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 21

A computational unit declaration specifies a class of refinement
processes. A computational unit can be instantiated multiple times
with different input streams.

Definition 5.16 (Computational unit declaration). A computational
unit declaration for a signature o = (O, F,N,S,C, T, V) has the form
compunit Vg ¢(vy ...,Vy), where v; € V are value sort symbols and
¢ € Cis a computational unit symbol.

In the current version of kpL, each instantiation of a knowledge
process is assumed to have a single unique stream generator.
Therefore, the instantiation of a source or computational unit is
implicit in the declaration of its generator.

5.2.2. Fluent stream generator declarations

A fluent stream generator declaration specifies both a generator
and the knowledge process instance it is associated with.

The streams created by a stream generator often represent
approximations of an attribute of an object or a relation between
objects. The name given to a generator is therefore a structured la-
bel consisting of a feature symbol and zero or more object symbols,
which can be used to indicate that the output of the associated pro-
cess is an approximation of the value of the given feature instance
over time. For example, pos[carl] is used as a label in Example 5.5,
which also provides concrete examples of fluent stream generator
declarations.

Definition 5.17 (Label term). A label term for a signature
o= (0,F,N,8,C,T,V) has the form floy,...,04], where n > 0, f
is a feature symbol in F with arity n, and oq,...,0, are object
symbols in O. If n = 0, the brackets are optional.

Definition 5.18 (Fluent stream generator declaration). A fluent
stream generator declaration for a signature o = (O,F,N,S,
C,7,V) is any of the following:

e strmgen [= s, where [is a label term for ¢ and s is a source sym-
bol in S.

e strmgen | = c(wy,...,wy), where | is a label term for o, n > 0, c is
a computational unit symbol in C with arity n, and wy, ..., w, are
fluent stream terms for o.

5.2.3. Fluent stream terms and declarations
A fluent stream term refers to a distinct fluent stream created by
a specific fluent stream generator using a specific policy.

Definition 5.19 (Fluent stream term). A fluent stream term for a
signature ¢ has the form [with p, where [is a label term for ¢
identifying a fluent stream generator and p is a fluent stream policy
specification for . If the policy p is the empty string, the keyword
with can be left out.

A fluent stream term such as “pos[carl] with sample every 200"
can be used as an input to a computational unit in a fluent stream
generator declaration. In case not all processes are fully integrated
into DyKnow, it can also be used to declare a named stream gener-
ated as output by an application as shown at the end of Example 5.5.

Definition 5.20 (Fluent stream declaration). A fluent stream decla-
ration for a signature o = (O, F,N,S,C,7,V) has the form stream
n =w, where n is a stream symbol in A and w is a fluent stream
term for o.

A policy specifies the desired properties of a fluent stream.

Definition 5.21 (Fluent stream policy). A fluent stream policy
specification for a signature ¢ has the form cy,...,c,, wheren > 0
and each c¢; is either an approximation constraint specification, a
change constraint specification, a delay constraint specification, a

duration constraint specification, or an order constraint specifica-
tion for ¢ as defined below.

A change constraint specifies what must change between two
consecutive samples. Given two consecutive samples, any update
indicates that some part of the new sample must be different,
while any change indicates that the value or valid time must be dif-
ferent, and sample every t indicates that the difference in valid time
must equal the sample period t. Not specifying a change constraint
is equivalent to specifying any update.

Definition 5.22 (Change constraint). A change constraint specifica-
tion for a signature o = (0, F,N,S,C,7,V) has either the form any
update, the form any change, or the form sample every t, where t is
a time-point symbol in 7.

A delay constraint specifies a maximum acceptable delay, de-
fined as the difference between the valid time and the available
time of a sample. Note that delays may be intentionally introduced
in order to satisfy other constraints such as ordering constraints.
Not specifying a delay constraint is equivalent to specifying an infi-
nite delay, max delay oo.

Definition 5.23 (Delay constraint). A delay constraint specification
for a signature o = (0, F,N,S,C,7,V) has the form max delay t,
where t is either the keyword oo or a time-point symbol in 7.

A duration constraint restricts the permitted valid times of sam-
ples in a fluent stream. If a duration constraint is not specified, va-
lid times are unrestricted.

Definition 5.24 (Duration constraint). A duration constraint speci-
fication for a signature ¢ = (O, F,N,S,C,7,V) either has the form
from t; to t;, the form from ¢, or the form to t;, where t; is a
time-point symbol in 7 and ¢; is either the keyword oo or a time-
point symbol in 7.

An order constraint restricts the relation between the valid times
of two consecutive samples. The constraint any order does not con-
strain valid times, while monotone order ensures valid times are
non-decreasing and strict order ensures valid times are strictly
increasing. Not specifying an order constraint is equivalent to spec-
ifying any order. A sample change constraint implies a strict order
constraint.

Definition 5.25 (Order constraint). An order constraint specification
for a signature ¢ has either the form any order, the form monotone
order, or the form strict order.

An approximation constraint restricts how a fluent stream may
be extended with new samples in order to satisfy its policy. If
the output of a knowledge process does not contain the appropri-
ate samples to satisfy a policy, a fluent stream generator could
approximate missing samples based on available samples. The con-
straint no approximation permits no approximated samples to be
added, while use most recent permits the addition of samples hav-
ing the most recently available value as defined in Section 5.3. Not
specifying an approximation constraint is equivalent to specifying
no approximation.

In order for the stream generator to be able to determine at
what valid time a sample must be produced, the use most recent
constraint can only be used in conjunction with a complete dura-
tion constraint from t; to t; and a change constraint sample every
t;. For the stream generator to determine at what available time
it should stop waiting for a sample and produce an approximation,
this constraint must be used in conjunction with a delay constraint
max delay tg.

Definition 5.26 (Approximation constraint). An approximation
constraint specification for a signature ¢ has either the form no
approximation or the form use most recent.

22 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

5.3. The semantics of krL

Two important entities have now been defined. A knowledge
processing domain specifies the objects, time-points, and simple
values available in a particular application. This indirectly defines
the set of possible complex values, sources, and computational
units and the fluent streams that could be produced. A kpL specifica-
tion defines symbolic names for a set of sources and computational
units. It also specifies how these sources and computational units
are instantiated into processes, how the inputs and outputs of the
processes are connected with fluent streams, and what policies
are applied to these streams.

What remains is to define an interpretation structure for a kpL
specification and to define which interpretations are models of
the specification. However, while the krL specification defines a
specific symbol for each computational unit available for use in
the application, it does not define the actual function associated
with this symbol. Providing a syntactic characterization of this
function in krL would be quite unrealistic, as it would require a full
description of an arbitrarily complex functionality such as image
processing. We therefore assume that the interpretation of the
computational unit symbols is provided in a knowledge process
specification. In contrast, the output of a source is assumed not to
be known in advance and is not specified. Thus, every possible out-
put from a source will give rise to a (possibly empty) class of mod-
els satisfying all specifications.

Definition 5.27 (Interpretation). Let o = (O, F,N,S,C,7,V) be a
signature and D = (O, T,P) be a domain. An interpretation I of the
signature ¢ to the domain D is a tuple of functions
(IO7 I, In, Is, I, Iv>, where:

e Ip maps object symbols in O to distinct objects in O,

Ir maps each feature symbol with arity n in F to a function
0"—Fp mapping arguments to fluent streams,

Iy maps symbols in N to fluent streams in Fp,

Is maps symbols in S to functions in Rp,

I+ maps symbols in 7 to distinct time-points in T, and

Iy maps symbols in V to sets of simple values in Wp.

Time-point symbols in 7 are generally assumed to be interpreted in
the standard manner and associated with an addition operator +, a
subtraction operator —, and a total order <.

Definition 5.28 (Knowledge process specification). Let ¢ = (O, F,
N,S,C,T,V) be a signature and D be a domain. Then, a knowledge
process specification K¢ for ¢ is a function mapping each compu-
tational unit symbol with arity n in C to a computational unit
function in Cp with the arity n + 2.

Example 5.6. An example interpretation of the signature
o={(0,F,N,S5CT,V) from Example 5.5 to the domain
D = (0,T,P) from Example 5.1 is the tuple (Io, I, Iy, Is,Ir, Iv), where

e [p maps carl to 0s.

e [r maps pos and speed to unary functions. The function associated
with pos maps o3 (carl) to f; = [(250,200,p,), (325,300,p,),
(430,400, p;), (505,500, p,)] and all other objects to the empty
fluent stream. The function associated with speed maps 03 to
f3 =1[(510,400,s5)] and all other objects to the empty fluent
stream.

e [y maps speed_carl to f5 = [(345,300,p,), (460,400, p;)].

e [s maps pos_carl to a unary function mapping 250 to
(250,200, p,), 325 to (325,300,p,), 430 to (430,400, p;), 505
to (505,500, p,), and anything else to no_sample.

e The standard interpretation is assumed for the temporal sym-
bols in 7, and

e [y maps pos to {p;,...,P1p}, speed to {S1,...,S10}, object to
{01,...,010}, and time to Z*.

An example knowledge process specification for ¢ and D is K¢
which maps SpeedEst to a computational unit taking a position p; as
input and computing the speed s; as output.

In the following, we will assume as given a signature
o= (0,F,N,8,CT,V), a domain D = (0,T,P), an interpretation
I = (lo,Ir,In,Is, I, Iy) of o to D, a knowledge process specification
K¢ for ¢ and D, and a krL specification s for .

5.3.1. Models

An interpretation satisfying all parts of a kpL specification s,
given a knowledge process specification K, is said to be a model
of s given Kc.

Definition 5.29 (Model). Iis a model of s given K¢, written I, K¢ E s,
iff I, K¢ E d for every declaration d € s.

5.3.2. Source and computational unit declarations

A source or computational unit declaration specifies the sort of
the values that may be generated by a process and, for computa-
tional units, the sort of the values that may occur in its input
streams. The values function will be used to determine which val-
ues occur in the samples of a given fluent stream.

Definition 5.30 (Values). Let f be a fluent stream. We define
values(f) dﬁf{val(sa) | sa € SASa## no_sample}.

Definition 5.31. Let d be a source or computational unit declara-
tion for o. Then, I, K¢ | d according to:

IKc E source v s iff values({Is(s)(t) | t € T}) Cly(v)
I,Kc = compunit vo ¢(vy...,v,) iff
Kc(c) is a total function T x S; x ... x S; x VpoSy x Vp
where {s € Sp | val(s) € Iy(v;)}CS; foreachi € {1,...,n}
and values(So) C Iy (vo)

Example 5.7. The source declaration “source pos pos_carl” is satis-
fied by the interpretation I from Example 5.6, because Is(pos_carl) is
a function returning samples having values in {p,, p,,ps,p,} which
is a subset of Iy(pos) = {p;,...,P10}-

5.3.3. Fluent stream generator declarations

Though it is conceptually the task of a fluent stream generator
to adapt output streams to policies, modularity is improved by in-
stead defining the semantics of policies in the context of each flu-
ent stream term. The semantics of a fluent stream generator
declaration will then merely ensure that the interpretation of the
declared label term, which is a fluent stream, is equivalent to the
unadapted output of the associated knowledge process. The fol-
lowing shorthand notation is used for evaluating a complete label
term in an interpretation.

Definition 5.32. Let f[oy,...,0,] be a label term for . Then,
eval_label(I, floy, . .. ,04]) def Ir(f)(Io(01), - .., Io(0n))-

A fluent stream generator declaration associates a label with the
fluent stream generator for an instance of a source or a computa-
tional unit. In the case of a source, the fluent stream denoted by
the label must be equivalent to the function of time denoted by
the source symbol, which can be defined as follows:

Definition 5.33. Let s be a source symbol for ¢ and [a label term
for o. Then, I, K¢ | strmgen | = s iff eval_label(l,1) = {sa | 3t.Is(s)(t)
=SaAsa#no_sample}.

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 23

A computational unit calculates an output sample whenever
there is a new input sample in either of its input streams. This is
equivalent to calculating an output sample for each tuple of sam-
ples in the join of its input streams. For the purpose of modeling,
each sample calculation requires as input the current time, the se-
quence of input samples, and the previous internal state, generat-
ing as output a tuple containing a new sample and the new internal
state. As explained in the following section, the eval fsterm func-
tion returns a set of possible fluent streams corresponding to a flu-
ent stream term.

Definition 5.34. Let | be a label term for o, ¢ be a computational
unit symbol for o, fstermy, ..., fsterm,, be fluent stream terms, and
ip = no_value be the initial internal state for c. For brevity, we
introduce the notation s to denote a sequence of samples of
appropriate length for its context. Then,

I,Kc k= strmgen | = c(fsterm,, ..., fsterm,,)

iff eval_label(I,]) = {s1,...,S,} where there exists
f1 € eval fsterm(l, fsterm,),... ,fm € eval fsterm(I,fsterm,,)
such that join(fi,...,fm) = [(t1,t1,51), . .., (ta, tn, Sn)]

and for each j € {1,...,n},(s;,i) = Kc(c)(t,5;,ii-1)

Example 5.8. The declaration “strmgen pos|carl]=pos_carl” is satis-
fied by the interpretation I from Example 5.6, because
Ir(pos)(Io(carl)) = f; which contains the same samples as the func-
tion denoted by pos_carl.

5.3.4. Fluent stream terms and declarations

A fluent stream term consists of a label term [and a (possibly
empty) policy p, and refers to a stream created by one particular
subscription to a fluent stream generator. Such a stream is gener-
ated from the output of a knowledge process by actively adapting
it to a policy, and in certain cases, this can be done in more than
one way. A fluent stream term is therefore evaluated to a set of pos-
sible streams denoted by eval fsterm(I, | with p), giving implemen-
tations some freedom in choosing how policies are applied while
still ensuring that all constraints are met.

The interpretation of the fluent stream term is defined in two
steps. First, there are cases where new samples must be added to
the stream in order to approximate missing values. The function
extend(f,p) is introduced for this purpose. Intuitively, it computes
the valid times when the fluent stream must have values in order
to satisfy the policy and approximates any missing values. Second,
a maximal set of samples which satisfies the policy p must be fil-
tered out from the stream, leaving only the final adapted stream.

Definition 5.35. Let | with p be a fluent stream term. The
interpretation of the fluent stream term, eval_fsterm(l, with p) is
then defined as follows:

eval_fsterm(l, | with p) &

{f € satisfying(I,] with p)| —=3f € satisfying(I,l with p).f C f'}

satisfying(I, 1 with p) def

{f C extend(eval_label(l,1),p)| I.f & p}

def

extend(f,p) =
{{tq, ty, V)] if usemostrecent € p
dn>0t,=b+snat, <e A3s.sample every S € p
Nt =t,+d Adb,efrombtoe € p
AV = most_recent_at(f,t,, ts)} A3d.max delayd € p
f otherwise.

The substream relation C used above is similar but not identical
to the subset relation. Informally, a fluent stream f” is a substream
of fif f' could be created from f by removing some samples and
delaying others. Thus, for every sample (t,,t,,v) in the “new”
stream f’, there must be a sample (t,,t,,v) € f with t, < t, having
the same value and valid time.

Definition 5.36 (Substream relation). A fluent stream f’' is a
substream of a fluent stream f, written f'Cf, iff
V(t;,tv,w € f 3t,. [ta < t’a/\<ta,tv,v> S ﬂ

Example 5.9 (Substream relation). In Example 5.6, the stream
fs = ({345,300, p,), (460,400,p;)] is a substream of f; = [(250,
200, p,), (325,300,p,), (430,400,p;), (505,500,p,)], since each
sample in fs has a corresponding sample in f; where only the avail-
able time differs and is earlier in f.

The entailment relation I,f & p, used in the satisfying function
above, determines which streams satisfy a particular policy.

Definition 5.37. Let f be a fluent stream and p a fluent stream
policy specification for o. Then, I,f | p according to:

LfEci,...,cp iff [f Ecyand ...
I.f | no approximation iff true
I.f = use most recent iff true
Lf E any update iff true
If = any change iff Vs,s' € f [s' = prev(f,s)
— vtime(s) # vtime(s’)
v val(s) # val(s')]
I.f = sample every t iff Vs,s' € f [s' = prev(f,s)
— vtime(s) — vtime(s') = Ir(t)]
ILf E from tf to t; iff Vs € f [Ip(ty) < vtime(s) < Ir(ty))
Lf | from t; to oo iff Vs € f [I(tf) < vtime(s)]
I.f E max delay t iff Vs € f [atime(s) — vtime(s) < Ir(t)]
I.f E any order iff true
I.f E monotone order iff Vs,s' € f [s' = prev(f,s)
— vtime(s') < vtime(s)]
Lf & strict order iff Vs,s' € f [s' = prev(f,s)
— vtime(s') < vtime(s)]

and .f E ¢,

(handled by extend)

Example 5.10 (Fluent stream policy). The fluent stream policy
specification “sample every 100” is satisfied by the fluent stream
f1 from Example 5.6, since the difference between each pair of valid
times is exactly 100 time units. The same stream does not satisfy
the policy “max delay 40” since the first sample has a delay of 50
time units.

Example 5.11 (Fluent stream term). Let f = [(280,200,p,), (480,
400, p;)] be a fluent stream. Using the interpretation I from Exam-
ple 5.6, f is one of the possible streams that can be generated from
the fluent stream term “pos|[carl] with sample every 200”. First, fis a
substream of the stream f; denoted by the label [as shown in
Example 5.9. Second, f satisfies p since the difference between each
pair of valid times is exactly 200 time units. Finally, it is not possi-
ble to add further samples to f without violating p.

Finally, we define the semantics of a stream declaration.

Definition 5.38. Let nn be a stream symbol for ¢, [a label term for g,
and p a fluent stream policy specification. Then, I,K¢ | stream
n =l with p iff Iy(n) = eval_fsterm(l, | with p).

5.4. Extensions to DyKnow

DyKnow is an extensible knowledge processing middleware
framework where additional functionalities can be incorporated

24 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

if they are judged sufficiently important for a range of applications.
The following extensions should be mentioned: A state synchroni-
zation mechanism generates temporally synchronized states from
separate unsynchronized fluent streams [9]. A formula progression
component incrementally evaluates metric temporal logic formu-
las over states [10]. An object classification and anchoring system
builds object linkage structures where objects are incrementally
classified and re-classified as new information becomes available
[11]. A chronicle recognition system detects complex high-level spa-
tio-temporal events given a declarative description [7]. Finally, a
group of agents can share information by setting up a DyKnow fed-
eration which allows a knowledge processing application to import
and export streams [12]. These functionalities are implemented
and can be used by any knowledge processing application.

6. The DyKnow implementation

To support distributed real-time and embedded systems, the
formal DyKnow framework specified in the previous section has
been implemented as a CORBA middleware service [13]. The COR-
BA event notification service [14] is used to implement streams
and to decouple knowledge processes from clients subscribing to
their output. This provides an implementation infrastructure for
knowledge processing applications.

The DyKnow service takes a set of krL declarations and sets up
the required processing and communication infrastructure to al-
low knowledge processes to work according to specification in a
distributed system. It can take a complete kpL application specifica-
tion resulting in an application where the set of knowledge pro-
cesses and the set of streams connecting them are static. It is
also possible to specify an initial kpL specification and then incre-
mentally add new declarations. The implementation has been
extensively used as part of an autonomy architecture on board
two Yamaha RMAX UAVs in the UASTech Lab at Linkdping Univer-
sity [15]. For details see [9].

7. Related work

There are many frameworks and toolkits for supporting the
development of robotic systems. These often focus on how to sup-
port the integration of different functional modules into complete
robotic systems. To handle this integration, most approaches sup-
port distributed computing and communication. However, even
when a framework supports communication between distributed
components it does not necessarily explicitly support information
and knowledge processing.

There are a few surveys available [16-19]. Of these the survey by
Kramer and Scheutz [17] is the most detailed. It evaluates nine
freely available robotic development environments according to
their support for specification, platforms, infrastructure, and imple-
mentation. However, it mainly focuses on software engineering as-
pects while we are more interested in how robotic frameworks
support knowledge processing and bridging the sense-reasoning
gap.

Before summarizing the support for knowledge processing in
current robotics software frameworks we will give an overview
of a representative selection of such frameworks.

7.1. CAST/BALT

The CoSy architecture schema toolkit (CAST) is developed in
order to study different instantiations of the CoSy architecture
schema [20,21]. An architecture schema defines a design space
containing many different architectural instantiations which are
specific architecture designs. CAST implements the instantiations

of the architecture schema using the Boxes and Lines Toolkit
(BALT) which provides a layer of component connection software.

BALT provides a set of processes which can be connected by
either 1-to-1 pull connections or 1-to-N push connections. With
its support for push connections, distributing information, and
integrating reasoning components BALT can be seen as basic
stream-based knowledge processing middleware. A difference is
that it does not provide any declarative specification to control
push connections nor does it explicitly represent time.

An instantiation of the CoSy architecture schema (CAS) consists
of a collection of interconnected subarchitectures (SAs). Each
subarchitecture contains a set of processing components that can
be connected to sensors and actuators, and a working memory
which acts like a blackboard within the subarchitecture. A process-
ing component can either be managed or unmanaged. An unman-
aged processing component runs constantly and directly pushes
its results onto the working memory. A managed process, on the
other hand, monitors the working memory content for changes
and suggests new processing tasks. Since these tasks might be
computationally expensive a task manager uses a set of rules to de-
cide which task should be executed next based on the current goals
of the SA.

When data is written to a working memory, change objects are
propagated to all subarchitecture-managed components and all
connected working memories, which forward the objects to the
managed components in their subarchitectures. This is the primary
mechanism for distributing information through the architecture.
Like many other frameworks, CAST has no explicit support for
time. Support for specifying the information a component is inter-
ested in is also limited to the change objects.

7.2. GenoM

GenoM was developed for use in distributed hybrid robotic
architectures, and provides a language for specifying functional
modules and automatically generating module implementations
according to a generic model [22,23]. A module is a software entity
offering services related to a physical (sensor, actuator) or a logical
(data) resource. The module is responsible for its resource, includ-
ing detecting and recovering from failures.

Services are parameterized and activated asynchronously
through requests to the module. A request starts a client/server
relationship that ends with the termination of the service by the
server returning a reply to the client. The reply includes an execu-
tion report from a set of predefined reports and optionally data
produced by the service. A service may dynamically choose to
use other services to execute a request.

During the execution of a service it may have to read or produce
data. This is done using posters. A poster is a structured shared
memory that is readable by any other element in the architecture
but only writable by its owner. Each poster always provides the
most up to date value which can be accessed by a service using
the unique poster identifier. This allows services to access the va-
lue of any poster in their own pace. Since a service can be executed
periodically it is possible to poll a poster with a certain sample
period.

From a knowledge processing perspective, GenoM provides
support for both synchronous and asynchronous polling of data
but not for asynchronous notification of the availability of new
data. Neither does it provide support for synchronization or the
specification of the data required by a service.

7.3. MARIE

The mobile and autonomous robotics integration environment
(MARIE) is a middleware framework for developing and integrating

F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26 25

new and existing software for robotic systems [24,25]. MARIE uses
a mediator interoperability layer (MIL) adapted from the mediator
design pattern to implement distributed applications using heter-
ogeneous software. The MIL acts as a centralized control unit
which interacts with any number of components to coordinate
the global interactions among them. Components have ports that
can be connected to other components. Each component has a
director port used to control execution, a configuration port, and
possibly input and output ports. The configuration port is used to
configure the input and output ports.

To integrate a set of applications into a working system a com-
ponent called an adapter must be developed for each application.
Adapters can then be connected either using the existing commu-
nication mechanisms supported by MARIE or through communica-
tion adapters such as mailboxes, splitters, shared maps, and
switches. A mailbox serves as a buffer between asynchronous
components. A splitter forwards incoming data to multiple compo-
nents. A shared map is a push-in/pull-out key-value data structure
used to store data that can be used by other components at their
own rate. A switch takes multiple inputs but only sends one of
them to its single output port.

To our knowledge MARIE provides no support for a component
to specify the desired properties of its input which DyKnow sup-
ports through its policies. Neither does it have any explicit repre-
sentation of time or synchronization of input streams. It might,
however, be possible to provide synchronization through the use
of a communication adapter.

7.4. Discussion

Even though there exist many different frameworks on different
abstraction level, the support provided for knowledge processing is
usually limited to providing distributed components that can com-
municate. Most frameworks provide some form of publish/sub-
scribe communication while some also support the combination
of push and pull communication. What these frameworks lack is
a way for a consumer to specify the information that it would like
to have. For example, in DyKnow a knowledge process can specify
the start and end time of a stream or the sampling period and how
to approximate missing values. To our knowledge, there is no
robotics framework that supports this type of specification. Some
of the frameworks do however provide ways of specifying when
a value has changed enough for it to be relevant for a consumer,
for example CAST.

Another important aspect of knowledge processing that is not
supported by the mentioned frameworks is an explicit represen-
tation of time. In DyKnow all samples are tagged with both valid
time and available time. This makes it possible for a knowledge
process to reason about when a value is valid, when it was actu-
ally available to the process, and how much it was delayed by
previous processing. DyKnow also supports sample-based sources
that periodically read a sensor or a database and make the result
available through a stream generator. Stream generators support
caching of historic data which can be used for later processing.
This allows the specification of streams that begin in the past,
where the content is partially generated from cached historic
data.

Since DyKnow explicitly tags samples with time-stamps and
each stream is associated with a declarative policy specifying its
properties, it is possible to define a synchronization algorithm that
extracts a sequence of states from a set of asynchronous streams.
Each of these states is valid at a particular time-point and contains
a single value from each of the asynchronous streams valid at the
same time as the state. Some of these values may be approximated
as specified by the state synchronization policy. This is another
example of functionality that is missing from existing approaches.

8. Discussion

In the introduction six requirements on knowledge processing
middleware were presented (Section 3). These requirements are
not binary in the sense that a system either satisfies them or not.
Instead, most systems satisfy the requirements to some degree.
In this section, we argue that DyKnow provides a significant degree
of support for each of the six requirements.

8.1. Support integration of information from distributed sources

DyKnow satisfies this requirement by virtue of three features: a
CORBA-based implementation, explicit support for representing
time, and a stream synchronization mechanism that uses the
declarative policies to determine how to synchronize a set of asyn-
chronous streams and derive a stream of states.

8.2. Support processing on many levels of abstraction

General support is provided through fluent streams, where
information can be sent at any abstraction level from raw sampled
sensor data and upwards. The use of knowledge processes also pro-
vides general support for arbitrary forms of processing. At the same
time, DyKnow is explicitly designed to be extensible to provide
support for information structures and knowledge processing that
is more specific than arbitrary streams. DyKnow also provides di-
rect support for specific forms of high-level information structures,
such as object linkage structures, and specific forms of knowledge
processing, including formula progression and chronicle recogni-
tion. This provides initial support for knowledge processing at
higher levels than plain streams of data. Heintz and Doherty [26]
argue that this support is enough to provide an appropriate frame-
work for supporting all the functional abstraction levels in the JDL
Data Fusion Model.

8.3. Support integration of existing reasoning functionality

Streams provide a powerful yet very general representation of
information varying over time, and any reasoning functionalities
whose inputs can be modeled as streams can easily be integrated
using DyKnow. As two concrete examples, we have shown how
progression of temporal logical formulas [10] and chronicle recog-
nition [7] can be integrated using DyKnow.

8.4. Support quantitative and qualitative processing

Fluent streams provide support for arbitrarily complex data
structures, from real values to images to object structures to qual-
itative relations. The structured content of samples also allows
quantitative and qualitative information to be part of the same
sample. DyKnow also has explicit support for combining qualita-
tive and quantitative processing in the form of chronicle recogni-
tion, progression of metric temporal logical formulas, and object
linkage structures. Both chronicles and temporal logical formulas
support expressing conditions combining quantitative time and
qualitative features.

8.5. Support bottom-up data processing and top-down model-based
processing

Streams are directed but can be connected freely, giving the
application programmer the possibility to do both top-down and
bottom-up processing. Though this article has mostly used bot-
tom-up processing, Chronicle recognition is a typical example of
top-down model-based processing where the recognition engine

26 F. Heintz et al./Advanced Engineering Informatics 24 (2010) 14-26

may control the data being produced depending on the general
event pattern it is attempting to detect.

8.6. Support management of uncertainty

In principle, DyKnow supports any approach to representing
and managing uncertainty that can be handled by processes con-
nected by streams. It is for example easy to add a probability or
certainty factor to each sample in a fluent stream. This information
can then be used by knowledge processes subscribing to this fluent
stream. Additionally, DyKnow has explicit support for uncertainty
in object identities and in the temporal uncertainty of complex
events that can be expressed both in quantitative and qualitative
terms. The use of a metric temporal logic also provides several
ways to express temporal uncertainty.

8.7. Support flexible configuration and reconfiguration

Flexible configuration is provided by the declarative specifica-
tion language krL, which allows an application designer to describe
the different processes in a knowledge processing application and
how they are connected with streams satisfying specific policies.
The DyKnow implementation uses the specification to instantiate
and connect the required processes.

Mediation and configuration processes provide ample support
for flexible reconfiguration where streams and processes are added
and removed at run time. The DyKnow implementation also pro-
vides the necessary interfaces to procedurally reconfigure an
application.

8.8. Provide a declarative specification of the information being
generated and the information processing functionalities available

This requirement is satisfied through the formal language xpL for
declarative specifications of DyKnow knowledge processing appli-
cations, as already described. The specification explicitly declares
the properties of the streams by policies and how they connect
the different knowledge processes.

9. Summary

As autonomous physical systems become more sophisticated
and are expected to handle increasingly complex and challenging
tasks and missions, there is a growing need to integrate a variety
of functionalities developed in the field of artificial intelligence. A
great deal of research in this field has been performed in a purely
symbolic setting, where one assumes the necessary knowledge is
already available in a suitable high-level representation. There is
a wide gap between such representations and the noisy sensor data
provided by a physical platform, a gap that must somehow be
bridged in order to ground the symbols that the system reasons
about in the physical environment in which the system should act.

When physical autonomous systems grow in scope and com-
plexity, bridging the gap in an ad-hoc manner becomes impractical
and inefficient. At the same time, a systematic solution has to be
sufficiently flexible to accommodate a wide range of components
with highly varying demands. Therefore, we began by discussing
the requirements that we believe should be placed on any princi-
pled approach to bridging the gap. As the next step, we proposed
a specific class of approaches, called stream-based knowledge pro-
cessing middleware, which is appropriate for a large class of auton-
omous systems. This step provides a considerable amount of
structure for the integration of the necessary functionalities, with-

out unnecessarily limiting the class of systems to which it is appli-
cable. Finally, DyKnow was presented to give an example of a
concrete instantiation.

Knowledge processing middleware such as DyKnow is an engi-
neering tool for developing applications that need to derive infor-
mation and knowledge from sensor data and use it to reason about
the embedding environment. The tool allows existing engineering
knowledge in the form of both knowledge representation and soft-
ware components to be integrated in a knowledge processing
application using a formally defined communication and integra-
tion framework.

References

[1] M. Ghallab, On Chronicles: representation, on-line recognition and learning, in:
Proceedings of KR, 1996, pp. 597-607.

[2] M. Wzorek, P. Doherty, Reconfigurable path planning for an autonomous
unmanned aerial vehicle, in: Proceedings of ICAPS, 2006.

[3] P.O. Pettersson, P. Doherty, Probabilistic roadmap based path planning for an
autonomous unmanned helicopter, Journal of Intelligent and Fuzzy Systems 17
(5) (2006).

[4] J. Kvarnstrom, P. Doherty, TALplanner: a temporal logic based forward
chaining planner, Annals of Mathematics and Artificial Intelligence 30 (2000)
119-169.

[5] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial
Intelligence 49 (1991) 61-95.

[6] S. Coradeschi, A. Saffiotti, An introduction to the anchoring problem, Robotics
and Autonomous Systems 43 (2-3) (2003) 85-96.

[7] F. Heintz, P. Rudol, P. Doherty, From images to traffic behavior - a UAV tracking
and monitoring operation, in: Proceedings of Fusion, 2007.

[8] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of
publish/subscribe, ACM Computer Survey 35 (2) (2003) 114-131.

[9] F. Heintz, DyKnow: A Stream-Based Knowledge Processing Middleware
Framework, Ph.D. Thesis, Linkopings Universitet, 2009. http://
www.ida.liu.se/frehe/publications/thesis.pdf.

[10] P. Doherty, J. Kvarnstrom, F. Heintz, A temporal logic-based planning and
execution monitoring framework for unmanned aircraft systems, Journal of
Autonomous Agents and Multi-Agent Systems (forthcoming).

[11] F. Heintz,]. Kvarnstrom, P. Doherty, A stream-based hierarchical anchoring
framework, in: Proceedings of IROS, 2009.

[12] F. Heintz, P. Doherty, DyKnow federations: distributing and merging
information among UAVs, in: Proceedings of Fusion, 2008.

[13] Object Management Group, The CORBA Specification v 3.1, 2008.

[14] P. Gore, D.C. Schmidt, C. Gill, . Pyarali, The design and performance of a real-
time notification service, in: Proceedings of the 10th I[EEE Real-time
Technology and Application Symposium, 2004.

[15] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, B. Wingman, A
distributed architecture for autonomous unmanned aerial vehicle
experimentation, in: Proceedings of DARS, 2004.

[16] A. Orebdck, H. Christensen, Evaluation of architectures for mobile robotics,
Autonomous Robots 14 (1) (2003) 33-49.

[17] J. Kramer, M. Scheutz, Development environments for autonomous mobile
robots: a survey, Autonomous Robots 22 (2) (2007) 101-132.

[18] G. Biggs, B. Macdonald, A survey of robot programming systems, in: Proc. of
the Australasian Conference on Robotics and Automation, 2003.

[19] N. Mohamed,]J. Al-Jaroodi, 1. Jawhar, Middleware for robotics: a survey, in:
Proceedings of RAM, 2008.

[20] N.Hawes, M. Zillich,]. Wyatt, BALT & CAST: middleware for cognitive robotics,
in: Proceedings of RO-MAN, 998-1003, 2007a.

[21] N. Hawes, A. Sloman,]. Wyatt, M. Zillich, H. Jacobsson, G.-]. Kruijff, M. Brenner,
G. Berginc, D. Skocaj, Towards an integrated robot with multiple cognitive
functions, in: Proceedings of AAAIL, 2007b.

[22] A. Mallet, S. Fleury, H. Bruyninckx, A specification of generic robotics software
components: future evolutions of GenoM in the orocos context, in:
Proceedings of IROS, 2002, pp. 2292-2297.

[23] S. Fleury, M. Herrb, R. Chatila, GenoM: a tool for the specification and the
implementation of operating modules in a distributed robot architecture, in:
Proceedings of IROS, 1997, pp. 842-848.

[24] C. Coté, Y. Brosseau, D. Létourneau, C. Ra, F. Michaud, Robotic software
integration using MARIE, International Journal of Advanced Robotic Systems 3
(1) (2006) 55-60.

[25] C. Coté, D. Létourneau, F. Michaud, Robotics system integration frameworks:
MARIE's approach to software development and integration, in: Springer
Tracts in Advanced Robotics: Software Engineering for Experimental Robotics,
vol. 30, Springer Verlag, 2007.

[26] F. Heintz, P. Doherty, DyKnow: a knowledge processing middleware
framework and its relation to the JDL Data Fusion Model, Journal of
Intelligent and Fuzzy Systems 17 (4) (2006) 335-351.

http://www.ida.liu.se/frehe/publications/thesis.pdf
http://www.ida.liu.se/frehe/publications/thesis.pdf

	Bridging the sense-reasoning gap: DyKnow – Stream-based middleware for knowledge processing
	Introduction
	A traffic monitoring scenario
	Design requirements
	Stream-based knowledge processing middleware
	Streams
	Policies
	Knowledge processes
	Stream generators

	The DyKnow framework
	Knowledge processing domains
	Values, samples and fluent streams
	Sources
	Computational units

	The syntax of kpl
	Source and computational unit declarations
	Fluent stream generator declarations
	Fluent stream terms and declarations

	The semantics of kpl
	Models
	Source and computational unit declarations
	Fluent stream generator declarations
	Fluent stream terms and declarations

	Extensions to DyKnow

	The DyKnow implementation
	Related work
	CAST/BALT
	GenoM
	MARIE
	Discussion

	Discussion
	Support integration of information from distributed sources
	Support processing on many levels of abstraction
	Support integration of existing reasoning functionality
	Support quantitative and qualitative processing
	Support bottom-up data processing and top-down model-based processing
	Support management of uncertainty
	Support flexible configuration and reconfiguration
	Provide a declarative specification of the information being generated and the information processing functionalities available

	Summary
	References

