Advanced Algorithmic

Problem Solving
Le 1 — Data Structures

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University




Outline

Basic data structures (UVA 10107, UVA 902)

Union-Find (lab 1.4)
Fenwick Trees (lab 1.5)

Segment Trees (UVA 11402)



Time Limits and Computational Complexity

The normal time limit for a program is a few seconds.

You may assume that your program can do about 100M
operations within this time limit.

< [10..11] O(n!), O(n®) Enumerating permutations

< [15..18] O(2" x n?) DP TSP

< [18..22] O(2" x n) DP with bitmask technique

<100 O(n4) DP with 3 dimensions and O(n) loop
< 450 O(n3) Floyd Warshall’s (APSP)

< 2K O(n? log, n) 2-nested loops + tree search

< 10K O(n?) Bubble/Selection/Insertion sort
<1M O(n log, n) Merge Sort, Binary search

< 100M O(n), O(log,), O(1) Simulation, find average



Basic Data Structures

Linear data structures
Pair, tuple (C++11)
static array
vector (ArrayList or Vector)
bitset (BitSet)
stack (Stack)
queue (Queue)
deque (Deque)
Linked list data structures
list (LinkedList)
Tree-like data structures
priority queue (PriorityQueue)
C++ max heap, Java min heap
set (TreeSet), multiset
map (TreeMap), multimap
unordered_map (HashMap/HashSet/HashTable), unordered_multimap (C++11)



Example Problem: UVA 10107 and 902

UVA 10107: Compute the median of n integers

vector<int> that is extended and sorted allows to take out the median in
O(1), O(n log n) => 1M elements

Linked list, insert in the right place to keep sorted (basically insertion
sort)

Balanced tree, keep sorted (basically heap sort), find median element
using binary search (?)

UVA 9o2: Find the most frequent string of length n in a text ¢

Create a map<string, id> counting the frequency of each substring of
length n, O(t log tn) => 1M elements



Union-Find Disjoint Sets

Union-Find Disjoint Sets is a data structure for storing a set of
disjoint sets where it is very efficient (~O(1)) to find which set
an element belongs to and to merge two sets.

The disjoint sets are represented by a forest of trees, where the
root of a tree is the representative element for that set.

To improve the performance use the union-by-rank and path-
compression heuristics.

Example usage: Finding connected components in an
undirected graph or Kruskal’s algorithm for finding a
Minimum Spanning Tree.

In Lab 1.5 you will implement this data structure

In Exercise 1 (Almost Union-Find you will implement an
extended version of the data structure which also supports
delete and move)



Fenwick Tree

A Fenwick Tree is an efficient data structure for computing range
sum queries with updates, both in O(log n).

An example range sum is cumulative frequencies, in which case n is the
highest value in the data.

If the data is static then the range sums can be precomputed in O(n)
(rsq[i] = rsq[i-1] + Ali]).

The cost of building a Fenwick Tree is O(m log n), where m is the
number of data points.

A Fenwick Tree only stores range sums, not the original values, which
makes it very space efficient (O(n)).

A Fenwick Tree is a binary tree where element i stores the range sum
query for [i-LSOne(i)+1, i-LSOne(i)+2, ..., i], where LSOne(i) is the
least significant one in the binary representation of i.

The range sum for any range [i,j] can be computed as rsq(j) - rsq(i-1).

Fenwick Trees can be extended to d-dimensional data with query and
update operations in O(29 log? n).



Segment Tree

A Segment Tree is an efficient data structure for computing
range queries with updates, both in O(log n).

Example range queries are range min/max queries and range
sum queries.

If the data is static then the range min/max queries can be
precomputed in O(n log n).

A Segment Tree is a binary tree where the root has index 1 and
the index of the left/right child of index p is 2p/2p+1.

RMQ(1,i) = Ali].

For RMQ(i,j), let pi=RMQ(j, (i+j)/2) and p2=RMQ((i+j)/2+1, j),
RMQ(,j)=p1 if A[p1]<A[pz2], otherwise p2.



Fenwick Tree vs Segment Tree

Build tree from array
Dynamic RMin/RMaxQ
Dynamic RSQ

Query Complexity

Point update complexity

Length of code

O(n)
Ok

Ok
O(log n)
O(log n)

Longer

O(m log n)
Limited
Ok

O(log n)
O(log n)
Shorter



Example Problem: UVA 11402



Summary

Learn to use basic data structures in standard libraries such as
vector, map, stack, queue, priority queue and set.

Use a Union-Find data structure to represent collections of
disjoint sets when you need to efficiently check membership
and merge sets. Can be extended to handle move and delete.

Use a Fenwick Tree to compute range sum queries when the
data needs to be updated between queries. Can be extended to
d-dimensional data.

Use a Segment Tree to compute range min/max queries when
the data needs to be updated between queries.



