
August 17, 2012 1

Requirements
Engineering

Eva Blomqvist
eva.blomqvist@liu.se

Department of Computer and Information Science (IDA)
Linköpings universitet

Sweden

Why do we need requirements?

n  Our focus is on “computational ontologies”
q  An ontology is usually a part of a software system,

performing some specific tasks (through query- or inference
engines)

n  Two main perspectives
q  Coverage oriented ontologies

n  The important thing is to cover all the terms of the domain
n  Example: Formalizing a domain vocabulary, ontologies used in

IR systems, CYC etc.
q  Task oriented ontologies

n  The important thing is to support particular queries or inferences
n  We have a software in mind when creating the ontology
n  Example: Ontology as a model for querying a DB, ontology for

performing certain inferences etc.

August 17, 2012 2

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

What are “requirements”?

n  Viewing an ontology as a black box…
what should that box provide?

n  Functional requirements
q  Query results?
q  Inferences?
q  Error checking?
q  …

n  Non-functional requirements
q  Coverage
q  Efficiency
q  Documentation
q  Changeability – extendibility
q  …

August 17, 2012 3

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Internal structure,
and content

Overall structure, acceptance
è Guidelines and rules for
development

Requirements Engineering
– Competency Questions

n  Competency Questions (CQ) = Natural language questions
that ask for information the ontology should be able to
provide to a user (or system)
q  Functional requirements
q  Related to software requirements – “input” and “output” of the

“ontology component” (including query engine, reasoner…)

n  Different kinds
q  Simple lookup queries

n  Who are the participants of a certain course?
q  Expressing inferences or constraints

n  Given that people may have children, is a specific person a
grandparent or not?

n  Is a person married to two people valid according to Swedish law?

August 17, 2012 4

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Requirements Engineering
– Competency Questions (cont.)

n  To clarify complex CQs we use
q  Contextual statements
q  Inference (reasoning) requirements

n  A contextual statement expresses an axiom that needs to
hold in the ontology, in natural language
q  Every course has at least one participant
q  A grandparent is someone who has a child who in turn also

has a child
q  In Sweden you can only marry one person

n  Reasoning requirements specify the input and output
data for a reasoning task
q  We would like to be able to query directly for all the

grandparents – classification based on the axiom above

August 17, 2012 5

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Requirements Engineering
– Non-functional Requirements

n  Coverage
q  How important is the coverage of the domain?

How will the ontology be updated?
n  Efficiency

q  What OWL profile to use?
q  Reasoning off-line or online?
q  Query optimization, e.g. not requiring inferences

n  Documentation
q  Labels and comments?
q  Naming conventions

n  Changeability – extendibility
q  Should future extensions be prepared for?
q  Alignment to online ontologies, standards?

August 17, 2012 6

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Trade-off: Software vs. Ontology

n  What functionality is going to be put into the software and
which is going to be part of the ontology?
q  An OWL reasoner is nothing more than general-purpose

code for processing data – why not use specific code in our
system instead?

n  Ontology pro:s
q  The ontology makes assumptions explicit
q  The ontology can be changed at runtime without changing

the code (or with minimal changes)
q  The reasoning procedures are sound and well-defined, and

they are reused for all inferences
n  Software pro:s

q  More efficient

August 17, 2012 7

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

August 17, 2012 8

Ontology Design
Patterns

Eva Blomqvist
eva.blomqvist@liu.se

Department of Computer and Information Science (IDA)
Linköpings universitet

Sweden

Slides partly by Valentina Presutti, STLab, ISTC-CNR, Italy

9

city - subClassOf -> country

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

What we can do with OWL

n  ... (maybe) we can check the consistency,
classify, and query our knowledge base

n  ... but, remember the Scarlet example
q  City subClassOf Country

n  Logical consistency is not the main problem
q  e.g. owl:sameAs can be wrongly used and still

we have consistency
n  Why is OWL not enough?

q  OWL gives us logical language constructs, but does not give us any
guidelines on how to use them in order to solve our tasks.

q  E.g. modeling something as an individual, a class, or an object property
can be quite arbitrary

10 August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Solutions?

n  OWL is not enough for building a good ontology,
and we cannot ask all web users neither to learn
logic, or to study ontology design

n  Reusable solutions are here through Ontology
Design Patterns, which help reducing
arbitrariness without asking for sophisticated
skills ...

n  ... provided that tools are built for any user J

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Ontology Design Patterns

An ontology design
pattern is a reusable
successful solution
to a recurrent modeling
problem

12 August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Logical Ontology Design
Patterns

Logical ODPs

n  Definition
q  A Logical ODP is a formal expression, whose only parts are

expressions from a logical vocabulary e.g., OWL, that solves
a problem of expressivity

n  Logical ODPs are independent from a specific domain of
interest
q  i.e. they are content-independent

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Logical ODPs

n A Logical ODP describes a formal
expression that can be exemplified,
morphed, and instantiated in order to
solve a domain modeling issue

n  owl:Class:_:x rdfs:subClassOf
owl:Restriction:_:y

n  Inflammation rdfs:subClassOf (localizedIn
some BodyPart)

n  Colitis rdfs:subClassOf (localizedIn some
Colon)

n  John’s_colitis localizedIn John’s_colon

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Example: N-ary relation

n  Chad Smith was the drum player of Red Hot Chili
Peppers when they recorded their album Stadium
Arcadium from September 2004 to December 2005.

n  A person plays a certain role in a band during an album
recording, taking place during a certain time interval

n  N-ary relation:
q  PlaySituation(Person, MusicianRole,

Band, Album, TimeInterval)

q  How can we express this in OWL with
only binary relations?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Transformation ODPs
Example: N-ary relation

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Transformation ODPs
Example: N-ary relation

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Content ODPs

Content ODPs (CPs)

n  CPs encode conceptual, rather than logical design
patterns.
q  Logical ODPs solve design problems independently of a

particular conceptualization
q  CPs are patterns for solving design problems for the

domain classes and properties that populate an ontology,
therefore they address content problems

n  CPs are instantiations of Logical ODPs (or of
compositions of Logical ODPs), featuring a non-empty
signature
q  Hence, they have an explicit non-logical vocabulary for a

specific domain of interest, i.e. they are content-
dependent

20 August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Catalogues of CPs

n  Content ODPs are collected and described in catalogues
and comply to a common presentation template

n  The ontologydesignpatterns.org initiative maintains a
repository of CPs and a semantic wiki for their
description, discussion, evaluation, certification, etc.

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Pragmatic characteristics of
CPs

n  Domain-dependent
q  Expressed with a domain-specific (non-logical) vocabulary

n  Requirement-covering
q  Solve domain modeling problems (expressible as use-cases, tasks

or “competency questions”), at a typical maximum size (cf. blink)
n  Reasoning-relevant components

q  Allow some form of inference (minimal axiomatization, e.g. not an
isolated class)

n  Cognitively-relevant components
q  Catch relevant core notions of a domain and the related expertise --

blink knowledge
n  Linguistically-relevant components

q  Are lexically grounded, e.g. they match linguistic frames, or at least a
domain terminology

n  Examples:
q  PartOf, Participation, Plan, Legal Norm, Legal Fact, Sales Order,

Research Topic, Legal Contract, Inflammation, Medical Guideline,
Gene Ontology Top, Situation, TimeInterval, etc.

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Sample Specialization

n  A content pattern CP2 specializes CP1 if at least one
ontology element of CP2 is subsumed by an ontology
element of CP1

q  i.e., either by rdfs:subClassOf or rdfs:subPropertyOf

23 August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Composition

n  The composition operation relates two CPs and results
into a new ontology

n  The resulting ontology is composed of the union of the
ontology elements and axioms from the two CPs, plus the
axioms (e.g. disjointness, equivalence, etc.) that are
added in order to link the CPs

n  The composition of CP1 and CP2 consists of creating a
semantic association between CP1 and CP2 by adding at
least one new axiom, which involves ontology elements
from both CP1 and CP2

n  Typically, also new elements (“expansion”) are added
when composing

24 August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

General Content ODPs

n  Roles of objects
n  Classification
n  Part-whole relationships
n  Membership
n  Information and its realization
n  Sequences
n  Topics
n  Time
n  Places
n  Moving
n  Plans
n  Events
n  Descriptions and Situations

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Example: Roles of objects

n  Objects can play different roles in different situations
n  Depending on the constraints given by the requirements,

modeling of objects and their roles can be addressed
differently

n  Do we want to represent properties of roles?
n  Do we want to classify objects based on their roles?
n  Do we want to assert facts about roles?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Roles of objects

n  A beer mug used as vase
n  Books used as table’s legs
n  A sax player (person)
n  A song writer (person)

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

1st ODP: Roles as classes

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

1st ODP: Roles as classes

n  An object and its roles are related through the rdf:type
property

n  rdf:type relations can be either asserted or inferred
through classification

n  In order to automatically classify individuals in a certain
class the ontology has to define appropriate axioms

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

1st ODP: Roles as classes

n  Consequences
q  Low expressivity
q  Roles are described at TBox level
q  Class taxonomy is bigger - a class for each role
q  Class taxonomy is entangled - multi-typing
q  ABox is smaller – same individual, several (role) types
q  Automatic classification of individuals through

rdfs:subClassOf inheritance – with proper axioms
q  Roles cannot be indexed in terms of space and time
q  Facts about roles cannot be expressed e.g. “Roles in

UniBo can be student, professor, researcher”, “Valentina
is teacher for KMDM course”

q  Queries: ?x a SongWriter!
n  General CQs

q  What things have a certain (role) type?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

2nd ODP: Roles as individuals

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

2nd ODP: Roles as individuals

n  An object and its roles are related through domain-
specific relations

n  Relations between an object and its roles have to be
asserted

n  Automatic inference of relations between an object and
its roles can be obtained through property subsumption

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

2nd ODP: Roles as individuals

n  Consequences
q  More expressive
q  Roles are described at ABox level
q  Class taxonomy is smaller – roles are individuals
q  Abox is bigger
q  Facts on roles can be asserted
q  Roles can be indexed in terms of time and space - through n-ary

relations
q  N-ary relations are needed for relating an object to its role with respect to

some other object e.g. Valentina is teacher for KMDM course
n  kmdm_teacher involvesPerson Valentina
n  kmdm_teacher involvesRole teacher
n  kmdm_teacher involvesCourse KMDM
n  Valentina hasRole teacher

q  Roles do not type objects, no automatic classification of objects
q  Queries: ?x hasRole ?y ; ?x a Role !

n  General CQs
q  What roles does an object have? What things have a certain role?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

3rd ODP: Roles as properties

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

3rd ODP: Roles as properties

n  The semantics of “having a role” is embedded in the
name of a property

n  Objects are not explicitly related to their roles, they are
related to other things through a property expressing an
action they perform, a role they play

n  Most common pattern in the web of data for modeling
roles

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

3rd ODP: Roles as properties

n  Consequences
q  Smaller taxonomy of classes
q  Bigger taxonomy of properties – a property for each role
q  Simpler graph of data – one triple for “Valentina is teacher

for KMDM course”
n  Valentina teaches KMDM!

q  Roles cannot be indexed in terms of space and time
q  Semantics of roles is implicit (embedded in a property name)
q  Facts about roles cannot be expressed
q  Queries: ?x teaches ?y

n  General CQs
q  Who did something?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

ODPs for Roles of objects - Summary

n  The three solutions differ in expressivity, simplicity, and
CQs
q  Simplest is roles as properties
q  Most expressive is roles as individuals
q  Least expressive is roles as classes

n  Each of them has pros and cons
n  The choice depends on requirements
n  What about combining them?

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Combining roles as instances with roles as
classes

n  A class Role
n  A class for each Role e.g. SaxPlayer
n  A property restriction on classes representing roles, for

automatic classification

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

…and add roles as properties

n  Note the restriction on property writerOf

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Indexing roles in terms of time and
space

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Indexing roles in terms of time and
space

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Content ODPs for roles of objects

n  The general pattern is called “classification”
n  Object-Role and Agent-Role

q  OWL pattern representing roles as individuals
q  http://ontologydesignpatterns.org/wiki/

Submissions:Objectrole
q  http://ontologydesignpatterns.org/wiki/

Submissions:AgentRole
n  Time-indexed person role-pattern

q  http://ontologydesignpatterns.org/wiki/
Submissions:Time_indexed_person_role

n  Time-place-indexed object-role
q  N-ary relation representing an objects, the roles it plays at a

certain date in a certain place
q  http://www.ontologydesignpatterns.org/cp/owl/dul/

timeplaceindexedobjectrole.owl

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

August 17, 2012 43

Methodologies
- Exemplified through XD

Eva Blomqvist
eva.blomqvist@liu.se

Department of Computer and Information Science (IDA)
Linköpings universitet

Sweden

Slides partly by Valentina Presutti, STLab, ISTC-CNR, Italy

Ontology Engineering Methodologies

n  Mostly focus has been on overall life-cycle and “model” of
the methodology – rather than how to actually perform it

n  Few are focused on reuse and the networked nature of web
ontologies

n  One of the most cited:
q  Ontology development 101 – Noy & McGuinnes (2001)

n  Pre-OWL methodology
n  Traditional in the sense

q  It doesn’t have a specific task focus
q  It is a waterfall like method

n  Although detailed in some steps, no details on requirements or
testing etc.

n  Basic steps for modelling
(1) Domain an scope (2) Consider reuse (3) Enumerate terms
(4) Develop class hierarchy (5) Define the properties
(6) Define restrictions and constraints (7)Create instances

August 17, 2012 44

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Example: METHONTOLOGY (~1997)

n  Waterfall-like process consisting of (overlapping) phases
1.  Specification – document requirements, scope, level of

formality etc.
2.  Knowledge Acquisition – gathering and studying sources

of information
3.  Conceptualization – structure the terminology identified in

1, going from glossary to logical formulas
4.  Integration – find and select other ontologies to reuse
5.  Implementation – represent in formal language using tool
6.  Evaluation – verification and validation
7.  Documentation

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Example: DILIGENT (~2004)

n  Based on theories for argumentation
n  Intended for

q  Empowering domain experts in ontology engineering
q  Continous and distributed construction and update

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Building

Adaptation &
update Analysis & revision

The NeOn Methodology (2006-2010)

n  Seven scenarios for ontology engineering

eXtreme Design

“Rapid Prototyping” based on ODPs

48

Why the name “XD”?

n  Inspired by XP J with focus on design
n  An agile methodology for web ontology design
n  It is part of the NeOn methodology

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

XD principles

n  Customer involvement and feedback
n  Customer stories to derive CQs (+ contextual statements,

reasoning requirements)

n  CP reuse and modular design (ontology networks)
n  Collaboration and integration
n  Task-oriented design
n  Test-driven design
n  Pair design

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Project((
idea(Design(team(

Integra2ng(par2al(
solu2ons,(evalua2ng((

and(revising(

All(stories(
covered?(

Iden2fying(CP((
catalogues(

Project(ini2a2on((
and(scoping(

Ontology((
Network(

CP((
catalogues(

No(

Design(pair(

Integra2on(team(

Collec2ng((
requirement(stories(Stories(

Customer(

Selec2ng(
story(

Releasing((
module(s)(

Releasing((
new(version(of(

Ontology(Network(

Elici2ng(requirements(
and(construc2ng(

module(s)((
from(CPs(

Design(team(

Design(team(

Seman2c(
Web(

Customer(

XD
Iteration

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

Project((
idea(Design(team(

Integra2ng(par2al(
solu2ons,(evalua2ng((

and(revising(

All(stories(
covered?(

Iden2fying(CP((
catalogues(

Project(ini2a2on((
and(scoping(

Ontology((
Network(

CP((
catalogues(

No(

Design(pair(

Integra2on(team(

Collec2ng((
requirement(stories(Stories(

Customer(

Selec2ng(
story(

Releasing((
module(s)(

Releasing((
new(version(of(

Ontology(Network(

Elici2ng(requirements(
and(construc2ng(

module(s)((
from(CPs(

Design(team(

Design(team(

Seman2c(
Web(

Customer(

XD
Iteration

Tes$ng''
module''

Reusing'and'
integra$ng'CPs'

Matching'and''
selec$ng'pa8erns'

Elici$ng''
requirements'

Select'
set'

All'require=
ments'

covered?'

No'

All'stories'
covered?'

Select'
story'

Releasing''
module(s)'

No'

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

XD Summary

n  XD is an agile method – start building small modules that
solve a few requirements, then add more, we don’t
decide on all the requirements at once

n  Testing is essential – by figuring out the test you figure
out how the model should work!

n  Collaboration is essential
n  Many problems are resolved in the integration phase –

alignments or refactoring?
q  Need for good overall design policies

August 17, 2012

Department of Computer and Information Science (IDA)
Linköpings universitet, Sweden

