
Co-Design Techniques for Fault-Tolerant Real-Time  

Systems using Imperfect Fault Detectors 

 
1. Background 

Fault-tolerant system design using active redundancy is a very challenging task that 

involves solving two major problems, namely finding the optimal utilization of temporal 

and/or spatial redundancy and the scheduling of tasks and replicas under timing constraints. 

Most of the current literature assumes that all faults are detected within a certain time 

interval. With this assumption, each task will produce either a correct output or no output at 

all. The prerequisite is the existence of a perfect fault detector that achieves 100% fault 

coverage. Perfect fault detectors usually come with a high timing overhead. When active 

redundancy is concerned, there is a tradeoff about whether the available resources should be 

spent on implementing better fault detection or realizing more redundancy. 

Beside software solutions, fault detection could also be implemented in hardware to reduce 

the overhead in time, e.g. using on-chip reconfigurable FPGA fabric. This not only 

contributes to reducing the schedule length but also allows more options for redundancy. 

Unfortunately, hardware fault detection increases the overall system cost. In particular, the on-

chip resources are often not sufficient to implement hardware fault detectors for all tasks. 

Hence, it is a major design decision to select which fault detector to implement for each task 

and where to implement them. 

2. System Model 

A system consists of two parts: a heterogeneous multiprocessor platform and an 

application, modeled as an acyclic task graph. Besides each processor, there exists an FPGA 

co-processor that could be used for hardware acceleration of the fault detection components. 

For each task in the application, we assume that there exists a library of implementable fault 

detectors (both software and FPGA implementations) characterized by their detection 

coverage, time overhead and area overhead (for FPGA implementations only).  

3. Problem Statement 

Given the above system model, we formulate two optimization problems to be solved. 

I. Problem 1 

Constraints:  

• The global deadline D of the application (the execution should finish before D). 

• The total amount of on-chip reconfigurable fabric is limited by a fixed amount A. 

Optimization objectives: Maximize reliability and minimize schedule length. 

II. Problem 2 

Constraints:  

• The global deadline D of the application (same as above). 

• The reliability of the whole system, given as a percentage R, specifying the 

probability that the application completes successfully. 

Optimization objectives: Minimize schedule length and the total hardware area used for 

implementing the fault detectors. 

The goals are to solve the above problems by extending an existing framework and 

implementing optimization algorithms for them. The reliability analysis will be given! 

5. Requirements 

- Strong programming and algorithmic skills. 

- Knowledge of Java. 
 

Contact: Ke Jiang, ESLAB, IDA                                     Adrian Lifa, ESLAB, IDA 

                ke.jiang@liu.se, B 329:204                                adrian.alin.lifa@liu.se, B 329:206 


