
Co-Design Techniques for Fault-Tolerant Real-Time
Systems using Imperfect Fault Detectors

1 Introduction

To meet the reliability requirements of safety-critical embedded systems, fault tolerance techniques such
as active redundancy are widely adopted. Fault-tolerant system design using active redundancy is a
very challenging task that involves solving two major problems, namely finding the optimal utilization
of temporal and/or spatial redundancy and the scheduling of tasks (including replicas) under timing
constraints. Over the past decades, a lot of research efforts have been devoted to this field.

To cope with the high problem complexity, many state-of-the-art studies make simplifying assumptions
on the fault models and modes. Perfect fail-silent behavior is one assumption that is often used in
literature. It is assumed that all faults are detected within a certain time interval and that the fault
detection overhead is contained in the tasks’ Worst-Case Execution Times (WCETs), e.g., in fault-
tolerant task scheduling [1, 2, 3, 4, 5], in reliability-aware energy management [6, 7, 8] and in error-aware
system design [9, 10]. With this assumption, each task will produce either a correct output or no output
at all. Although fail-silence is a highly desirable property, it is difficult to implement in practice. The
prerequisite is the existence of a perfect fault detector that achieves 100% coverage under the given fault
hypothesis.

In the previous study [11], we have explained the major problems of this assumption. On the one
hand, this assumption is very impractical; on the other hand, even if it is implementable, using perfect
fault detection is often a suboptimal design decision, due to the fact that good fault detectors usually
come with high timing overheads [12, 13]. Actually, when active redundancy is concerned, there is a
tradeoff about whether the available resources should be spent on implementing better fault detection or
realizing more redundancy. We have developed new analysis and optimization techniques to tackle these
issues. Experimental results show that certain designs involving imperfect fault detectors combined with
task replication can outperform other designs assuming perfect fault detection.

So far, only software-implemented fault detection is considered. However, as shown in [10], fault
detection could also be implemented in hardware to reduce the time overhead, e.g. using on-chip recon-
figurable FPGA fabric. This not only contributes to reducing the schedule length but also allows more
options for redundancy. Unfortunately, hardware fault detection increases the overall system cost. In
particular, the on-chip resources are often not sufficient to implement hardware fault detectors for all
tasks. Hence, it is a major design decision to select which fault detector to implement for each task and
where to implement them.

In Figure 1 we show an example scenario extended from the motivating example of [11]. Figure 1a
depicts the schedule using the perfect detector (it is assumed that perfect fault detection incurs 300%
timing overhead). Figure 1b is another possible schedule, in which the task is replicated twice and the
remaining time (200% task execution time in this case) is used to implement two partial fault detectors.
Figures 1c and 1d show two similar schedules with higher number of replications. Figure 2 compares
the reliability of those schedules, in terms of the probability of detectable (DUF in the figure) and
undetectable (SDC in the figure) faults. As it can be seen, the design with perfect fault detection
can detect all faults. However, only detecting the faults is often not sufficient, e.g. for fail-operational
applications. When multiple replicas of the same task are available, we have another mean of fault
detection, that is, to compare the output from different instances (voting). Actually, certain faults might
even be corrected, e.g. a single faulty input out of three inputs will be masked by voting. In this case,
the schedule with partial fault detectors might have higher reliability (see [11]). Figure 1e depicts one
schedule that has not been considered so far. In this schedule, the fault detector is implemented in
hardware to reduce the timing overhead. This allows us to schedule two instances of the task, both
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Fig. 1: Example Scenario
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Fig. 2: Reliability of the Example Schedules

using a perfect fault detector. The resulted schedule achieves the highest reliability among the example
schedules.

2 Problem Statement

In the previous paper [11], the author tried to achieve sound fault detection performance using pure
software implementations only. But in reality, the overhead of implementing the fault detectors in software
is so high that the system deadline might be violated. Therefore, we want to take hardware-acceleration
for fault detection into our consideration in this project. Thus, we can provide good fault detection for
the systems that have very tight resource limitations, or we can use the new approach to achieve better
fault coverage than pure software-implemented fault detections. We formulate the problem as follows.

2.1 Problem input

A system consists of two parts: an execution platform, which is a heterogeneous multiprocessor platform
and an application modeled as an acyclic task graph. The application has to be mapped to the execution
platform. Besides each processor, there exists an FPGA co-processor sharing the same memory space as
the processor. Memory access time and overhead of the processor and FPGA are ignored in this study.

We have a library of implementable fault detectors for each task (both software and FPGA implemen-
tations) characterized with detection coverage and overhead. The latter has two aspects, time overhead
and hardware (FPGA area) overhead. In the software-implemented versions, the area overhead is 0.

2.2 Two optimization directions

2.2.1 Problem 1

Constraints
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1. The global deadline constraint of the application. The application has to finish its execution before
the global deadline D.

2. The total hardware budget (FPGA area) is limited by a fixed total amount A. The total amount
of on-chip reconfigurable fabric should not be more than this constraint.

Optimization objectives We want to maximize the reliability of the system and at the same time
minimize the length of the schedule.

2.2.2 Problem 2

Constraints

1. The global deadline constraint of the application. The application has to finish its execution before
the global deadline D.

2. The reliability of the whole system, given as a percentage R (e.g. 99.99999%), specifying the
probability that the application completes successfully.

Optimization objectives Minimize the total hardware area added into the system for implementing the
error detectors and at the same time minimize the length of the schedule.

2.3 What is a solution

1. The number of replications for each task;

2. The mapping and schedule of the application, including all task replicas;

3. The selection of fault detectors for each task, considering both overhead and coverage and their
implementation method, i.e. in software or hardware.
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[13] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “Software-implemented hardware error detec-
tion: Costs and gains,” in Third International Conference on Dependability, 2010.


